2405.00127v1 [cs.GR] 30 Apr 2024

arxXiv

GPU-friendly Stroke Expansion

Raph Levien
Arman Uguray
Google
San Francisco, CA, USA

ABSTRACT

Vector graphics includes both filled and stroked paths as the main
primitives. While there are many techniques for rendering filled
paths on GPU, stroked paths have proved more elusive. This paper
presents a technique for performing stroke expansion, namely the
generation of the outline representing the stroke of the given input
path. Stroke expansion is a global problem, with challenging con-
straints on continuity and correctness. Nonetheless, we implement
it using a fully parallel algorithm suitable for execution in a GPU
compute shader, with minimal preprocessing. The output of our
method can be either line or circular arc segments, both of which
are well suited to GPU rendering, and the number of segments is
minimal. We introduce several novel techniques, including an en-
coding of vector graphics primitives suitable for parallel processing,
and an Euler spiral based method for computing approximations to
parallel curves and evolutes.

CCS CONCEPTS

+ Computing methodologies — Rendering; Parametric curve
and surface models.

KEYWORDS
Vector Graphics, Stroke, Offset Curve, Path Rendering, GPU

1 INTRODUCTION

Rendering of vector graphics documents requires handling both
filled and stroked primitives. There is substantial literature on GPU
rendering of filled paths, but many fewer published techniques for
strokes. It is a more challenging problem, especially for parallel
computation, because path segments cannot be processed indepen-
dently of each other; the joins between adjacent path segments
depend on context. In addition, the path topology affects the ren-
dered result, in particular whether subpaths are open or closed. In
the former case, the endpoints are rendered with caps. Joins and
caps can have multiple styles, including different styles within the
same document.

Stroke expansion is the process of generating an outline that,
when filled, produces the stroke of a given input path. Informally, a
line of the same width as the stroke is swept along the path, normal
to it, and also decorated with joins and caps. Though stroke ren-
dering is referenced in many 2D graphics standards, it has lacked a
precise formal definition until recent work, primarily Nehab [2020]
and Kilgard [2020].

The Nehab [2020] paper gives a comprehensive survey of tech-
niques for stroke expansion, and an algorithm which, for a number
of reasons, is only suitable for implementation on CPU (though
adapting it to GPU is listed as promising future work). It classifies
techniques into local, where each path segment generates closed

geometry (which may be triangles or other primitives), and global,
where the overall result is a closed outline of the stroked path, but
the partial result from each segment is in general open. Our tech-
nique is considered global in this scheme, yet allows independent
processing of each path segment.

A number of factors contribute to an algorithm being “GPU-
friendly” In addition to simply being able to process the input
segments in parallel, such an algorithm also avoids divergent con-
trol flow (avoiding the need for explicit subdivision at special events
such as inflection points and cusps) and uses robust numerical tech-
niques not subject to particular problems when evaluated using
32-bit floating point numbers.

We propose that the correctness of stroke outlines be divided
into weak correctness and strong correctness. We define strong cor-
rectness as the computation of the outline of a line swept along the
segment, maintaining normal orientation, combined with stroke
caps and joins. Weak correctness, by contrast, only requires the par-
allel curves of stroke segments, combined with caps and the outer
contours of joins. The two notions are equivalent for sufficiently
well-behaved input, in particular when the curvature measured at
endpoints of path segments does not exceed the reciprocal of the
half linewidth. As described in detail in Nehab [2020], very few
existing implementations actually implement the strong version,
so document authors have become accustomed to not depending
on behavior at endpoints. Standards for graphics formats, such as
SVGI4], also provide an “out,” enabling the weaker behavior. While
our current implementation emphasizes weak correctness, we be-
lieve it can be extended to the stronger sense, by implementing
evolutes and inner join contours.

A great number of rendering techniques for strokes have been
proposed. Some are local, in that they break the stroke up into
smaller closed pieces, the union of which forms an approximation
to the stroke. Included in this category is polar stroking[9], which
proposes a GPU-friendly subdivision scheme based on an angle
step error. Others are based on stroke expansion, generating an
explicit outline, which is then filled to produce the stroke rendering.
Such techniques are further divided into flattening approaches,
where the outline is approximated by a polyline, and curve-based
approaches, exemplified by the approach in Nehab [2020]. In both
cases, the outline contains approximations of parallel curves of
the input curve segments, and, as proposed in Nehab [2020], their
evolutes when targeting strong correctness. For a more detailed
survey of existing stroke rendering techniques, the reader is directed
to Section 4 of Nehab [2020].

The subproblem of approximating parallel curves has also spawned
extensive literature, none of which is entirely satisfying, especially
when it comes to algorithms that can be efficiently evaluated on
GPU. An example of a reasonably good algorithm that computes
flattened parallel curves is Yzerman [2020], as used in the Blend2D

rendering library. For producing curved outlines, the Tiller and
Hanson[19] algorithm is commonly implemented and cited, but
its performance is quite poor when applied to cubic Béziers. The
quadratic Bézier version is adequate, and forms the basis of the
algorithm in Nehab [2020]. A variant is also used in Skia[7]; in-
stead of lowering the cubic Bézier to a quadratic approximation and
then computing the parallel curve, Skia approximates the parallel
curve directly with a quadratic Bézier, then measures the error to
determine whether further subdivision is necessary.

This paper presents a comprehensive solution to stroke expan-
sion, well suited to GPU implementation. It can produce both flat-
tened polylines or an approximation consisting of circular arcs.
The best choice depends on the capabilities of the path rendering
mechanism following stroke expansion, but as we show, outlines
consisting of circular arcs have many fewer segments and are corre-
spondingly faster to produce. The algorithm is based on Euler spiral
segments as an intermediate representation, with an iterative algo-
rithm based on a straightforward error metric for conversion from
cubic Béziers. We have also devised a compact binary encoding
of paths, suitable for fully parallel computation of stroke outlines,
while requiring minimal CPU-side processing. Our algorithm has
been implemented in GPU compute shaders, integrated in a full ren-
dering engine for vector graphics, and shows a dramatic speedup
over CPU methods.

2 FLATTENING AND ARC APPROXIMATION
OF CURVES

The core problem in stroke expansion is approximating the desired
curve by segments of some other curve, usually a simpler one. These
segments must be within an error tolerance of the source curve, and
ideally close to a minimal number of them. We consider a number
of source to target pairs, most importantly cubic Béziers to Euler
spirals, and Euler spiral parallel curves to either lines or arcs.

There are generally three approaches to such curve approxi-
mation. The most straightforward but also least efficient is “cut
then measure,” usually combined with adaptive subdivision. In this
technique, a candidate approximate curve is produced, then the
error is measured against the source curve, usually by sampling a
number of points along both curves and determining a maximum
error (or perhaps some other error norm). If the error is within
tolerance, the approximation is accepted. Otherwise, the curve is
subdivided (usually at ¢ = 0.5) and each half is recursively approxi-
mated. A substantial fraction of all curve approximation methods
in the literature are of this form, including Nehab [2020]. The main
disadvantage is the cost of computing the error metric. Another
risk is underestimating the error due to inadequate sampling; this
is a particular problem when the source curve contains a cusp.

The next approach is similar, but uses an error metric to estimate
the error. Ideally such a metric is a closed-form computation rather
than requiring iteration. A good error metric is conservative, yet
tight, in that it never underestimates the error (which would allow
results exceeding the error bound to slip through), and does not
significantly overestimate the error, which would result in more
subdivision than optimal.

By far the most efficient approach is an invertible error metric.
In this approach, the error metric has an analytic inverse, or at least

Figure 1: A circular arc segment with notations for angles (9), arc
length (s), and distance to chord (d)

a good numerical approximation. Because the metric is invertible,
it can predict the number of subdivisions needed, as well as the
parameter value for each subdivision. If the error metric is accurate,
then approximation is near-optimal. One example of an invertible
error metric is angle step, used in polar stroking (Kilgard [2020]);
the number of subdivisions is the total angle subsumed by the curve
divided by the angle step size, and the parameter value for each
subdivision is the result of solving for a tangent direction. Another
widely used invertible error metric is Wang’s formula (Goldman
[2003], Section 5.6.3), which gives a bound on the flattening error
based on the second derivative of the curve. This metric is conser-
vative but works well in practice; among other applications, it is
used in Skia for path flattening. One limitation of Wang’s method
is that it only applies to the flattening of filled outlines; when ap-
plied naively to generation of parallel curves, it can undershoot
substantially, especially near cusps.

2.1 Error metrics for flattening

The distance between a circular arc segment of length s and its
chord, with angle between arc and chord of 6 (see Figure 1), is
exactly (1—cos 0) 5. The curvature is k = % (equivalently, 6 = £2),
and this remains constant even as the arc is subdivided. Rewriting,
d=(1-cos % % From this, we can derive a precise, invertible
error metric. Subdividing the arc in to n segments, the distance

error for each segment is %(1 — cos). Solving for n, we get:

B SK
"7 Zcos T (1-dx)

To flatten a finite arc, round up n to the nearest integer. This will
cause the error to decrease, so will still be within the error bounds.

Note that the number of subdivisions is proportional to the
arc length. Another way of stating this relationship is that the
subdivision density, the number of subdivisions per unit of arc
length, is constant.

The error metric for flattening an arc is exact. It always yields
the minimum number of subdivisions needed to flatten the curve,
and the flattening error is the least possible given that number of
subdivisions. For general curves, an exact error bound is not feasible,
and we resort to an approximation. Again the circular arc provides
a good example. Applying the small angle approximation cos § ~
1— 62 /2, the approximate distance error is d = %, and solving for

n we get n = s,/¢7. Note that this estimate is conservative, in that

it will always request more subdivision and thus produce a lower
error than the exact metric.

We are of course concerned with the flattening of more general
curves (ultimately the parallel curve of a cubic Bézier), not simply
circular arcs. It is tempting to sample the curvature and plug it
into the formula above, but this can both dramatically undershoot

the error (predicting that no subdivision is needed at an inflection
point) and overshoot it (requiring infinite subdivision at a cusp;
and cusps). Apparently, some kind of average curvature is needed.
We propose the following error metric to estimate the maximum
distance between an arbitrary curve of length § and its chord.

A 2
1 S
d~ 3 (‘/0 \/|K(s)|ds)

This formula is the same as the approximate error metric for
circular arcs, except that instead of a constant curvature value, a
norm-like average with an exponent of 1/2 is used (it is not con-
sidered a true norm because the triangle inequality does not hold).
We chose this particular formulation because it tends to produce
invertible error metrics, and because it works well in practice.

This formula also has a meaningful interpretation: the quantity
under the integral sign is the subdivision density, and represents
the number of subdivisions per unit length of an optimal flattening
as the error tolerance approaches zero. In particular, the number of

subdivisions is:
§ [1
n= / VIk(s)|ds| v/ —
0 8d

In addition, if the function represented by the integral is invert-
ible, then the corresponding error metric is invertible. Evaluate
the function to determine the number of subdivision points, then
evenly divide the result, using the inverse of the function to map
these values back into parameter values for the source curve being
approximated.

2.2 Error metrics for flattening Euler spirals

We choose Euler spiral segments for our intermediate curve rep-
resentation precisely because their simple formulation in terms of
curvature (Cesaro equation) results in similarly simple subdivision
density integrals.

An Euler spiral segment is defined by k(s) = as + b, or alter-
natively k(s) = a(s — so), where sy = —b/a is the location of the
inflection point. Applying the above error metric, the subdivision
density is simply +/|a(s — so)|. The integral is %\/E(s —s0)1%, which
is readily invertible.

An immediate consequence is that flattening an Euler spiral by
choosing subdivision points s; = a - i3 produces a near-optimal
flattening, as visualized in Figure 2.

3 EULER SPIRALS AND THEIR PARALLEL
CURVES

It is common to approximate cubic Béziers to some intermediate
curve format more conducive to offsetting and flattening. A number
of published solutions (Yzerman [2020], Nehab [2020]) use quadratic
Béziers, as it is well suited for computation of parallel curves. Even
so, this curve has some disadvantages. In particular, it cannot model
an inflection point, so the source curve must be subdivided at in-
flection points.

Like these other approaches, we also use an intermediate curve,
but our choice is an Euler spiral. In some ways it is similar to
quadratic Béziers - it also has O(n?) scaling and is best computed

Figure 2: Flattening of an Euler spiral using points spaced by power-
law

using geometric Hermite interpolation — but differs in others. It
has no difficulty modeling an inflection point. Further, its parallel
curve has a particularly simple mathematical definition and clean
behavior regarding cusps.

An Euler spiral segment is defined as having curvature linear in
arc length.

The parallel curve of the Euler spiral (also known as “clothoid”)
was characterized by Wieleitner [1907] well over a hundred years
ago[21], and has a straightforward closed-form Cesaro representa-
tion, curvature as a function of arc length.

4 FLATTENED PARALLEL CURVES

The geometry of a stroke outline consists of joins, caps, and the two
parallel curves on either side of the input path segments, offset by
the half linewidth. The joins and caps are not particularly difficult
to calculate, but parallel curves of cubic Béziers are notoriously
tricky. Analytically, it is a tenth order algebraic curve, which is not
particularly feasible to compute directly.

Conceptually, generating a flattened stroke outline consists of
computing the parallel curve of the input curve segment followed
by flattening, the generation of a polyline that approximates the
parallel curve with sufficient accuracy (which can be measured
as Fréchet distance). However, these two stages can be fused for
additional performance, obviating the need to store a representation
of the intermediate curve.

Using a subpixel Fréchet distance bound guarantees that the
rendered image does not deviate visibly from the exact rendering.
Another choice would be uniform steps in tangent angle, as chosen
by polar stroking[9]. However, at small curvature, the stroked path
can be off by several pixels, and at large curvature there may be
considerably more subdivision than needed for faithful rendering.

The limitation of the angle step error metric is shown in Figure 3.
The top row shows the use of a distance-based error metric, as
is used in our approach, which is visually consistent at varying
curvature (in practice, a tolerance value of 0.25 of a pixel is below
the threshold of perceptibility). The bottom row shows a consistent
angle step, as implemented in polar stroking, but has excessive
distance error at low curvature, and excessive subdivision at high

(a)
I/’;/;::Q

(b)
I”?”sl

Figure 3: Comparison of error metrics. Top row (a) shows a distance
based error metric. Bottom row (b) shows the angle step error
metric.

1.8

subdi\)ision densi&y —
1.6 - T

14 - .
12 .

0.8 - \

06 \ / N , 1
04 \ / \ / 4

02 \f \f 8|

Figure 4: Subdivision density for the parallel curve of an Euler
spiral

curvature. It should be noted, to avoid the undershoot at low cur-
vature, both the Skia[7] and Rive[8] renderers use a hybrid of the
Wang and polar stroking error metrics.

4.1 Optimal flattening

The optimal flattening of a curve contains the minimum number
of subdivisions required to satisfy a maximum error constraint,
in which the error is the minimum possible with that number of
subdivisions.

For a convex curve, the optimal flattening is tractable to compute,
though not necessarily very fast. When a curve is monotonic, error
is also monotonic with respect to both subdivision points. Thus,
any standard root finding technique can find a subdivision with
a given error (bisection is the best known, but the ITP method
Oliveira and Takahashi [2020] is better). A similar outer loop with
a root finding technique can find the error which minimizes the
global error for the entire flattening, which, due to monotonicity,
is that for which the error of the final segment equals that of the
previous segments. Subdividing at the inflection point adds at most
one additional point; it is possible to optimize further, but we do
not consider that (though the near-optimal flattening we will later
present is not subject to this constraint).

4.2 The subdivision density integral
The subdivision density for the parallel curve of an Euler spiral,
normalized so that its inflection point is at -1 and the cusp of the

parallel curve is at 1, is simply 1—+/|1 — s2|. This function is plotted
in Figure 4.

The subdivision density integral for the parallel curve of an Euler
spiral is given as follows:

f(x) ='/0x\/|u2—1|du

This integral has a closed-form analytic solution:

F(x) = L(xIx2 =1 +sin7lx) if|x] <1
%(X\HXZ — 1| —cosh™lx+ 2) ifx>1

Values for x < —1 follow from the odd symmetry of the function.

4.3 Approximation of the subdivision density
integral
The subdivision density integral (Section 4.2) is fairly straightfor-
ward to compute in the forward direction, but not invertible using
a straightforward closed-form equation. Numerical techniques are
possible, but require multiple iterations to achieve sufficient accu-
racy, so are slower. In this subsection, we present a straightforward
and accurate approximation, constructed piecewise from easily
invertible functions. If higher flattening quality is desired at the
expense of slower computation, this approximation can be used to
determine a good initial value for numeric techniques; two itera-
tions of Newton solving are enough to refine this guess to within
32-bit floating point accuracy.
The approximation is given as follows:

T ifx <08

V?g(x—l)l-ﬂ% if0.8 < x < 1.25
0.6406x% — 0.81x + ¢y if1.25 < x < 2.1
0.5x2 — 0.156x +¢3 ifx > 2.1

fapprox(x) =

c1 1.0976991822760038
c2 0.9148117935952064
c3 = 0.16145779359520596

The primary rationale for the constants is for the approximation
to be continuous. The other parameters were determined empir-
ically; further automated optimization is possible but is unlikely
to result in dramatic improvement. Further, this approximation is
given for positive values. Negative values follow by symmetry, as
the function is odd.

The exact integral and the approximation given above are shown
in Figure 5. Visually, it is clear that the agreement is close, and in
numerical testing the worst case discrepancy between approximate
and exact results is approximately 6%.

5 ERROR METRICS FOR APPROXIMATION BY
ARCS

The problem of approximating a curve by a sequence of arc seg-
ments has extensive literature, but none of the published solutions
are quite suitable for our application. The specific problem of ap-
proximating an Euler spiral by arcs is considered in Meek and
Walton [2004] using a “cut then measure” adaptive subdivision
scheme, but their solution has poor quality; it scales as O(1/n?),
while O(1/n3) is attainable. The result was improved “slightly” by
Narayan [2014]. The literature also contains optimal results, namely

T T
exact integral

approximation ——

Figure 5: Integral of subdivision density for Euler spiral parallel
curve, and its approximation

Maier [2014] and Nuntawisuttiwong and Dejdumrong [2021], but
at considerable cost; both approaches claim O(n?) time complex-
ity. The through-line for all these results is that they are solving
a harder problem: adopting the constraint that the generated arc
sequence is G! continuous. While desirable for many applications,
this constraint is not needed for rendering a stroke outline. Even
with this constraint relaxed, the angle discontinuities of an arc
approximation are tiny compared to flattening to lines.

Our approach is based on a simple error metric, similar in flavor
to the one for flattening to line segments. The details of the met-
ric (in particular, tuning of constants) were obtained empirically,
though we suspect that more rigorous analytic bounds could be
obtained. In practice it works very well indeed; the best way to
observe that is an interactive testing tool, which is provided in the
supplemental materials.

The proposed error metric is as follows. The estimated distance
error for a curve of length § is:

. 3
1 S,
~— VI’ (s)|ds
120 | Jo
For an Euler spiral segment, k’(s) is constant and thus this error
metric becomes nearly trivial. With n subdivisions, the estimated

3k’ . 3 |k’ .
Sk Solving for n, we getn =s I subdivi-

distance is simply ;5. 120d

sions, and those are divided evenly by arc length, as the subdivision
density is constant across the curve, just as is the case for flattening
arcs to lines.

Remarkably, the approximation of an Euler spiral parallel curve
by arc segments is almost as simple as that for Euler spirals to
arcs. As in flattening to lines, the parameter for the curve is the
arc length of the originating Euler spiral. The subdivision density
is then constant, and only a small tweak is needed to the formula
for computing the number of subdivisions, taking into account
the additional curvature variation from the offset by h (the half
line-width). The revised formula is:

Figure 6: A lowercase ‘g’ glyph from Nimbus Roman (left, con-
structed from cubic Bézier segments), its flattening to lines (center),
and its approximation by arc segments (right), both with a tolerance
of 2.0.

s/ |k’|(1+0.4|hsk’|)
=S B —
120d

This formula was determined empirically by curve-fitting mea-
sured error values from approximating Euler spiral parallel curves
to arcs, but was also inspired by applying the general error metric
formula to the analytical equations for Euler spiral parallel curve,
and dropping higher order terms. A more rigorous derivation, ide-
ally with firm error bounds, remains as future work.

One consequence of this formula is that, since h appears under
absolute value, the same arc approximation can be used for both
sides of a stroke.

See Figure 6 for a comparison between flattening and approxima-
tion with arc segments. The arc segment version has many fewer
segments at the same tolerance, while preserving very high visual
quality.

6 EVOLUTES

In the principled, correct specification for stroking[14], parallel
curves are sufficient only for segments in which the curvature
does not exceed the reciprocal half width. When it does, additional
segments must be drawn, including evolutes of the original curve.
In general, the evolute of a cubic Bézier is a very complex curve,
requiring approximation techniques. By contrast, the evolute of
an Euler spiral (k = as) is another spiral with a simple Cesaro
equation, namely x = —a~!s73, an instance of the general result
that the evolute of a log-aesthetic curve is another log-aesthetic
curve[22].

Flattening this evolute is also straightforward; the subdivision
density is proportional to s~ where s is the arc length parameter
of the underlying Euler spiral (and translated so s = 0 is the inflec-
tion point). Thus, the integral is 24/s, and the inverse integral is just
squaring. Thus, flattening the evolute of an Euler spiral is simpler
than flattening its parallel curve.

The effect of adding evolutes to achieve strong correctness is
shown in Figure 7. The additional evolute segments and connecting
lines are output twice, to make the winding numbers consistent
and produce a watertight outline. All winding numbers are positive,
so rendering with the nonzero winding rule yields a correct final
render.

. = =
N‘ 7 !
@ — © W ® N W
<

Figure 7: Weakly and strongly correct stroke outlines. The top
row shows weakly correct stroke outlines. In (a) the curvature does
not exceed the reciprocal half-width, and the stroke is rendered
correctly. In (b) the curvature of the bottom outline consistently
exceeds the reciprocal half-width, and a section of the outline in-
correctly has negative winding number. In (c) there is a cusp. The
bottom row shows corresponding strongly correct renders; (d) is the
same as (a), while the other two show additional segments for the
evolute and connecting lines (in purple). Note that the sections of
parallel curve outline with above-threshold curvature are reversed,
and that the section enclosed by the evolute has a total winding
number of +2.

7 CONVERSION FROM CUBIC BEZIERS TO
EULER SPIRALS

The Euler spiral segment representation of a curve is useful for
computing near-optimal flattened parallel curves, but standard APIs
and document formats overwhelmingly prefer cubic Béziers as the
path representation.

Many techniques for stroke expansion described in the literature
apply some lowering of cubic Bézier curves to a simpler curve type,
more tractable for evaluating parallel curve. Computing parallel
curves directly on cubic Bézier curve segments is not very tractable.
In particular, the widely cited Tiller-Hanson algorithm[19] performs
well for quadratic Béziers but significantly worse for cubics.

A typical pattern for converting from one curve type to another
is adaptive subdivision. An approximate curve is found in the param-
eter space of the target curve family. The error of the approximation
is measured. If the error exceeds the specified tolerance, the curve
is subdivided (typically at ¢ = 0.5), otherwise the approximation
is accepted. Subdivisions are also indicated at special points; for
example, since quadratic Béziers cannot represent inflection points,
and geometric Hermite interpolation is numerically unstable if
the input curve is not convex, lowering to quadratic Béziers also
requires calculation of inflection points and subdividing there. A
good example of this pattern is Nehab [2020]. One advantage of
Euler spirals over quadratic Béziers is that they can represent in-
flection points just fine, so it is not necessary to compute those for
additional subdivision.

The approach in this paper is another variant of adaptive subdi-
vision, with two twists. First, it’s not necessary to actually generate

the approximate curve to measure the error. Rather, a straightfor-
ward closed-form formula accurately predicts it. The second twist
is that, since compute shader languages on GPUs typically don’t
support recursion, the stack is represented explicitly and the con-
ceptual recursion is represented as iterative control flow. This is an
entirely standard technique, but with a clever encoding the entire
state of the stack can be represented in two words, each level of
the stack requiring a mere single bit.

7.1 Error prediction

A key step in approximating one curve with another is evaluating
the error of the approximation. A common approach (used in Ne-
hab [2020] among others) is to generate the approximate curve,
then measure the distance, often by sampling at multiple points on
the curve. All this is potentially slow, with the additional risk of
underestimating the error due to undersampling.

Our approach is different. In short, we perform a straightfor-
ward analytical computation to accurately estimate the error. Our
approach to the error metric has two major facets. First, we obtain
a cubic Bézier which is a very good fit to the Euler spiral, then we
estimate the distance between that and the source cubic. Due to the
triangle inequality, the sum of these is a conservative estimate of
the true Fréchet distance between the cubic and the Euler spiral.

For mathematical convenience, the error estimation is done with
the chord normalized to unit distance; the actual error is scaled
linearly by the actual chord length.

The cubic Bézier approximating the Euler spiral is one in which
the distance of each control point from the endpointisd = m,
where 0 is the angle of the endpoint tangent relative to the chord.
This is a generalization of the standard approximation of an arc. It
should be noted that this is not in general the closest possible fit, but
it is computationally tractable and has near-uniform parametriza-
tion. In general it has quintic scaling; if an Euler spiral segment is
divided in half, the error of this cubic fit decreases by a factor of 32.
A good estimate of this error is:

4.6255 X 107%|0g + 01]° + 7.5 x 1073|0 + 01]?|6p — 61|

The distance between two cubic Bézier segments can be further
broken down into two terms; in most cases, the difference in area
accurately predicts the Fréchet distance between the curves. Two
cubic Béziers with the same area and same tangents tend to be
relatively close to each other, but there is some error stemming from
the difference in parametrization. Area of a cubic Bézier segment is
straightforward to compute using Green’s theorem:

a= %(Zdo sin 0y + 2d; sin 61 — dydy sin(0y + 61))

The conservative Fréchet distance estimate is 1.55 the absolute
difference in area between the source cubic and the Euler spiral
approximation. The final term for imbalance is as follows, with dy
and d; representing the distance from the endpoints of the Euler
approximation and dy and d; the corresponding distance in the
source cubic segment, as in the area calculation above:

(0.005|6y + 01| + 0.07]|6y — 91')\/(d_0 - do)z + (d_l - dl)z

0.7 -1
06 b -1.5
05 b -2
@
o
c
S 04 - b -2.5
2
>
2 o3 -4 -3
f =
Q
o
£ 02 b -3.5
k=g
o
0.1 4 4
0F B -4.5
-0.1 | | | | | | | -5
-0.1 0 01 02 03 04 05 06 07
Left control distance
0.7 -1
0.6 b -1.5
05 b -2
@
o
j =
S 04 - q -2.5
2
e
g 03r i K
c
Q
o
E 02 b -3.5
k=g
o
0.1 - il
0F B -4.5
-0.1 | | | | | -5

L L
01 0 01 02 03 04 05 06 07
Left control distance

Figure 8: Comparison of measured (top) and approximated (bottom)
error for cubic Bézier to Euler spiral conversion. Scale is log (base
10) of the error.

The total estimated error is the sum of these three terms. We
have validated this error metric in randomized testing. For values
of 6 between 0 and 0.5, and values of d between 0 and 0.6, this
estimate is always conservative, and it is also tight: over Bézier
curves generated randomly with parameters drawn from a uniform
distribution in this range, the mean ratio of estimated to true error
is 1.656.

A visualization of combined error metric is shown in Figure 8,
comparing measured and approximate error for a slice of the pa-
rameter space, fixing the endpoint angles to 0.1 and 0.2, and varying
the distance from both endpoints to the control point.

7.2 Geometric Hermite interpolation

Given tangent angles relative to the chord, finding the Euler spiral
segment that minimizes total curvature variation is a form of geo-
metric Hermite interpolation. There are a number of published so-
lutions to this problem, involving nontrivial numerical solving tech-
niques: gradient descent[10], bisection[20], or Newton iteration[3].
A more direct approach is to approximate the function as a reason-
ably low-order polynomial in terms of the endpoint angles. Our
approach is to use a 7th order polynomial, which is more precise

than the 3rd order polynomial proposed in Reif and Weinmann
[2021], at only modest increased cost. The exact coefficients used
are presented in Appendix A.

7.3 Unrolled recursion

The entire recursion stack for adaptive subdivision can be repre-
sented in two words: dt and scaled_t0. The range is dt * scaled_t0 ..
dt * (scaled_t0 + 1). Initial values of 1 and 0 represent the range (0,
1). Pushing the stack, subdividing the range in half, is represented
by halving dt and doubling scaled_t0, which leaves the start of the
range invariant but its size halved. After accepting an approxima-
tion, the next range is determined by incrementing scaled_t0, then
repeatedly popping the stack by doubling dt and halving scaled_t0,
as long as the latter is odd. This can in fact be achieved without
iteration by using the “count trailing zeros” intrinsic.

7.4 Cusp handling

There are two types of cusps that must be handled in the stroke
expansion problem. One is when the input cubic Bézier contains a
cusp (or near-cusp, which is prone to numerical robustness issues),
and one is when the parallel curve contains cusps. This section will
describe both in order.

A Bézier curve is expressed in parametric form, and the derivative
with respect to the parameter can be zero or nearly so, causing
serious numerical problems for many stroke expansion algorithms.
In the limit, as the Bézier curve describes a semi-cubical parabola,
the curvature can become infinite.

Our approach is to leverage the conversion to Euler spiral seg-
ments, which have finite curvature. The geometric Hermite inter-
polation depends on accurate tangents at the endpoints, which in
turn are derived from derivatives. The tangents are not well de-
fined when the derivative is zero, and are not numerically stable
when near-zero. Thus, the algorithm has one major mechanism to
deal with numerical robustness in these cases: when sampling the
cubic Bézier, if the derivative is near zero (as determined by testing
against an epsilon threshold), then the derivative is sampled at a
slightly perturbed parameter value.

In practice, when rendering a cubic Bézier with a cusp, the region
near the cusp is rendered with one Euler spiral segment approxi-
mately in shape of the top of a question mark, as shown in Figure 9.
Its parallel curve is well defined, and has the correct shape for the
outline of the stroke, given of course that the distance is within
tolerance (as enforced by the error metric).

As recommended in both Nehab [2020] and Kilgard [2020], the
rendering of a cusp with infinite curvature matches that of a near-
cusp. The code to detect near-zero derivatives and re-evaluate is a
small amount of non-divergent logic, unlike the additional “regu-
larization” pass proposed in Section 3.1 of Nehab [2020] to handle
special cases.

7.4.1 Cusps in parallel curves. Even when the input curve is smooth,
its parallel curve contains a cusp when the (signed) curvature equals
the offset distance (the half-width of the stroke). In published tech-
niques, dealing with these cusps is a nontrivial effort, and involves
numerical methods that are not GPU friendly. In particular, detect-
ing locations in the cubic Bézier where the curvature crosses a given
quantity is a medium-degree polynomial, and in general requires

Figure 9: Rendering of a cubic Bézier cusp using Euler spiral seg-
ments

numerical techniques for root finding. In the approach of Nehab
[2020], the root finder not only requires a hybrid Newton/bisection
method, which requires iteration, but is also recursive in that it uses
the roots of a polynomial of one degree lower as a subroutine. In
general, polynomials up to cubic can be considered GPU-friendly,
while finding cusps in cubic Béziers requires a higher degree.

In the simplest case, weak stroke correctness with line segments
as the output primitive, no additional work is needed - the flattening
algorithm for Euler spiral parallel curves will naturally generate a
point within the given error tolerance of the true cusp. However,
generation of arc segments and drawing the evolutes needed for
strong correctness both require subdivision at the parallel curve
cusps.

Fortunately, finding the cusp in the parallel curve of an Euler
spiral is a simple linear equation, and there is at most one cusp in any
such segment. Euler spirals are thus a good solution for determining
cusps as a piecewise linear approximation to curvature.

8 GPUIMPLEMENTATION

We applied the techniques outlined in Section 7 to implement a
data-parallel algorithm that can convert stroked 2D Bézier paths
into flat geometry suitable for GPU rendering. We focused primarily
on the global stroke-to-fill conversion problem in order to generate
polygonal outlines for rasterization. Since the Euler spiral approxi-
mation can fit any source cubic Bézier and its parallel offset curves,
our implementation can be used to render both filled and stroked
primitives within a satisfactory error tolerance.
We aimed to satisfy the following the criteria:

(1) The implementation must be able to handle a large number
of inputs at real-time rates.

(2) The stroke outlines must meet the weak correctness defini-
tion.

(3) The implementation must support the standard SVG stroke
end cap (butt, square, round) and join styles (bevel, miter,
round).

(4) The CPU must do no work beyond the basic preparation of
the input path data for GPU consumption.

One of our artifacts is a GPU compute shader that satisfies these
criteria. We coupled this with a simple and efficient data layout
for parallel processing. Notably, our implementation is fully data-
parallel on input path segments and does not require any computa-
tionally expensive curve evaluation on the CPU. We implemented
our shader on general-purpose GPU compute primitives supported
by all modern graphics APIs, particularly Metal, Vulkan, D3D12,
and WebGPU[2]. As such, the ideas presented in this section are
portable to various GPU platforms.

The rest of this section describes the design of our GPU pipeline
and input encoding scheme.

8.1 Pipeline Design

An SVG path consists of a sequence of instructions (or "verbs").
The lineto and curveto instructions denote an individual path seg-
ment consisting of either a straight line or a cubic Bézier. A given
subsequence of path segments can be bounded by a moveto and/or
closepath instruction which mark the beginning and end of a sub-
path. A subpath must form a closed contour if painted as a fill. When
painted as a stroke, each subpath must begin and end with a cap
according to the desired cap style. In addition, each path segment
in a stroked subpath must be connected to adjacent path segments
of the same subpath with a join. For any given path, the cap and
join styles do not vary across subpaths or individual path segments.

The standard organizational primitive for a compute shader
is the workgroup. A workgroup can be organized as a 1, 2, or 3-
dimensional grid of individual threads that can cooperate using
shared memory. Multiple workgroups can be dispatched as part of
a larger global grid, also of 1, 2, or 3 dimensions.

Our compute shader is arranged as a 1-dimensional grid, paral-
lelized over input path segments. We chose a workgroup size of 256
as it works well over a wide range of GPUs. However, this choice of
workgroup size is not particularly important for our algorithm as
it does not require any cross-thread communication. Each thread
in the global grid is assigned to process a single path segment. We
encode the individual path segments contiguously in a GPU storage
buffer such that each element has 1:1 correspondence to a global
thread ID in the dispatch. This layout easily scales to hundreds of
thousands of input path segments, which can be distributed across
any number of paths and subpaths. We submit the kernel to the
GPU as a single dispatch with as many workgroups as needed to
handle the entire input.

Each thread outputs a polyline that fits a subset of the rendered
subpath’s outer contour, represented by the path segment (see
Figure 11). For a filled primitive, a thread only outputs the flattened
approximation of the path segment. For a stroke, a thread outputs
the polylines approximating multiple curves: a) the two parallel
curves on both sides of the source segment, offset by the desired
stroke halfwidth, and b) the joins that connect the path segment
to the next adjacent segment. We also store metadata in our input

Figure 10: Stroked cubic Béziers with cusps and near-cusps, rendered using our algorithm. The individual curves were adapted from the

Skia test corpus.

Stroke
n
7
B
<
L
<
n+2
Fill
n
.
A
n+2

Figure 11: Visualization of contour outlines and the IDs of GPU
threads that flatten them. The subpath contains two adjacent cubic
Bézier curves rendered as both a stroke and a fill. In the stroked
version, thread n flattens the offset curves of the first curve (blue)
and the join segment with the miter style (dark blue). Thread n + 1
flattens the offset curves of the second curve (orange) and the end
cap with the round style (dark orange). Thread n + 2 handles the
subpath end segment and flattens the start cap (red). When the same
path is rendered as a fill, threads n and n + 1 each flatten the source
curves, while thread n + 2 outputs the close segment that joins the
end of the subpath to its starting point. The black arrows represent
the winding direction of the output segments.

encoding that marks the position of a path segment within the
containing subpath. We use this information to determine whether
to output an end cap instead of a join. We encode one additional
segment designated as the stroke cap marker for every subpath. The
thread assigned to the marker segment only outputs a start cap,
which completes the stroke outline.

The joins between adjacent segments need to form a continuous
outline when combined with the segments. This requires that a
thread have access to the tangent vector at the end of its assigned
segment and the start tangent of the next adjacent segment. We

1 tid « global invocation ID;
2 (style,segment) < readScene(tid);
3 if style is fill then

4 ‘ output source curve;
5 else
// Handle stroked segment

6 if segment is stroke cap marker then
7 if path is open then

8 ‘ output start cap;

9 else

10 ‘ output nothing;

11 end
12 else

13 output both offset curves;

14 neighbor « readScene(tid + 1);
15 if neighbor is not stroke cap marker OR path is

closed then

16 ‘ output join;

17 else

18 ‘ output end cap;

19 end
20 end
21 end

Algorithm 1: The control flow of the compute shader

require that the input segments within a subpath are stored in
order which simplifies the access to the adjacent segment down to
a buffer read at the next array offset. While we take care to output
the outer join segment (where the offset curves meet at a reflex
angle) according to the join style, we output the inner join simply
as a line segment.

A property of this data-parallel structure is that the output is un-
ordered. The cubic-Bézier-to-Euler-spiral conversion is sequential
within a single thread, so it is possible to preserve ordering at the
scope of an individual path segment, if desired. However, ordering
cannot be guaranteed across path segments. We refer to this output
data structure as line soup. We integrated the compute shader as a
stage in a larger compute shader pipeline (discussed in Section 9.2)
that spatially sorts the line soup in subsequent binning and tiling
stages prior to rasterization.

Table 1: Coordinate count indicates the type of path segment: 1
for lines, 2 for quadratic Béziers, 3 for cubic Béziers. The subpath
end bit is set on the last segment of a subpath and the path bit
is additionally set on the last tag of a path. The number of curve
control points is given by coordinate count, plus 1 if the subpath
end bit is set. The number of bytes per coordinate pair is 4 for 16
bit or 8 for 32 bit coordinates.

Path Tag Bits Monoid Fields
0-1 coordinate count
2 subpath end bit
16/32 bit coordinates
path bit
transform bit
style bit

AN U W

The compute shader writes the line soup output to a GPU storage
buffer. Each line soup entry contains the viewport coordinates of
the two endpoints of a singe line segment. We also implemented
a variant that outputs circular arc segments instead of lines, in
which the output entries contain the arc endpoints in addition to
its curvature. For both primitive types, our renderer also outputs
a 32-bit path ID used by downstream pipeline stages to identify
the path that a segment belongs to, in order to retrieve the correct
paint (solid or gradient color) for rendering.

8.2 Input encoding

The input to our pipeline consists of a sequence of paths, each
with an associated 2D affine transformation matrix and a style data
structure containing information about the stroke style or fill rule.
We encode paths, transforms, and styles as parallel input streams.
Unlike a conventional structure-of-arrays arrangement, we permit
a one-to-many mapping across elements between certain streams:
each transform and style entry can apply to one or more path
entries with an array index greater than or equal to transform or
style index.

Paths get encoded as two parallel streams: a path tag stream con-
taining an element for every segment in every subpath, and a path
data stream of point coordinates. Each segment/verb contributes
a variable number of points: 1 for moveto/lineto, 2 for quadratic
Béziers, and 3 for cubic Béziers. This variable length stream en-
coding allows for a highly compact representation of SVG-type
content in memory. A GPU thread assigned to a path segment must
be able to reference the corresponding element in each stream in
order to obtain the right curve coordinates, transform, and style
information. This is done by computing a set of stream offsets for
every element in the path tag stream.

We compute the offsets on the GPU in a separate compute shader
that runs prior to the flattening stage. A path tag consists of 8 bits
that store stream offset increments, such that the inclusive prefix
sums of all increments for every element in the tag stream yield
the stream offsets. We call this structure the tag monoid and have
implemented the computation as a parallel prefix scan.

Table 1 shows the individual fields of the 8-bit path tag. The
offset increments for the transform and style streams can be stored
in a single bit that is set to 1 only if a path tag marks the beginning

of a new transform and/or style entry. We also encode an additional
path bit in the final segment of all paths, which allows us to access
additional streams (such as fill color or gradient parameters) using
a per-path offset in later rendering stages.

The handling of the subpath bit allows for overlap in coordi-
nates, so that except at subpath boundaries, the first coordinate
pair of each segment overlaps with the last coordinate pair of the
previous one. During the CPU-side encoding, subpath boundaries
are moved from the beginning of a subpath (moveto) to the end.
The encoding process inserts an additional line segment into the
tag and coordinate streams to close the subpath if the final point
does not coincide with the start point. The subpath end bit is set to
1 for the final segment of every subpath. For strokes, the subpath
end segment represents the stroke cap marker defined in Section
8.1. This special segment is assigned a coordinate count of 2, and
the corresponding two points in the path data stream encode the
tangent vector of the subpath’s initial segment, used to correctly
draw the start cap or the connecting join in a closed contour.

9 RESULTS

We present two versions of our stroking method: a sequential CPU
stroker and the GPU compute shader outlined in Section 8. Both
versions can generate stroked outlines with line and arc primitives.
We focused our evaluation on the number of output primitives and
execution time, using the timings dataset provided by Nehab [2020],
in addition to our own curve-intensive scenes to stress the GPU
implementation. We present our findings in the remainder of this
section.

9.1 CPU: Primitive Count and Timing

We measured the timing of our CPU implementation, generating
both line and arc primitives, against the Nehab and Skia strokers,
which both output a mix of straight lines and quadratic Bézier
primitives. The results are shown in Figure 12. The time shown is
the total for test files from the timings dataset of Nehab [2020], and
the tolerance was 0.25 when adjustable as a parameter.

Similarly to Nehab [2020]’s observations, Skia is the fastest stroke
expansion algorithm we measured. The speed is attained with some
compromises, in particular an imprecise error estimation that can
sometimes generate outlines exceeding the given tolerance. We
confirmed that this behavior is still present. The Nehab paper pro-
poses a more careful error metric, but a significant fraction of the
total computation time is dedicated to evaluating it.

We also compared the number of primitives generated, for vary-
ing tolerance values from 1.0 to 0.001. The number of arcs generated
is significantly less than the number of line primitives. The number
of arcs and quadratic Bézier primitives is comparable at practical
tolerances, but the count of quadratic Béziers becomes more favor-
able at finer tolerances. The vertical axis shows the sum of output
segment counts for test files from the timings dataset, plus mmark-
70k (as described in more detail in Section 9.2), and omitting the
waves example!.

The waves example triggers Skia issue https://issues.skia.org/issues/336617138 at finer
tolerance.

600 T
spiral —
blender mm—

500 -
mmark-70k ——
spirograph m—"

lorenz m—"
400 - T

300 b

Time in milliseconds

100 - b

Ours (Line) Ours (Arc) Skia Nehab
Figure 12: CPU timings for stroke expansion, comparing two ver-
sions of our stroker (outputting line and arc primitives) against

Skia’s curve-to-curve stroker. Measured on an AMD 3970

1x107

1x108 |- _— 4

Primitive count
\

100000 L L
1 0.1 0.01

Tolerance

0.001

Figure 13: Primitive count for stroke expansion

9.2 GPU: Execution Time

We evaluated the runtime performance of our compute shader on 4
GPU models and multiple form factors: Google Pixel 6 equipped
with the Arm Mali-G78 MP20 mobile GPU, the Apple M1 Max inte-
grated laptop GPU, and two discrete desktop GPUs: the mid-2015
NVIDIA GeForce GTX 980Ti and the late-2022 NVIDIA GeForce
RTX 4090. We authored our entire GPU pipeline in the WebGPU
Shading Language (WGSL) and used the wgpu[5] framework to
interoperate with the native graphics APIs (we tested the M1 Max
on macOS via the Metal API; the mobile and desktop GPUs were
tested via the Vulkan API on Android and Ubuntu systems).

We instrumented our pipeline to obtain fine-grained pipeline
stage execution times using the GPU timestamp query feature sup-
ported by both Metal and Vulkan. This allowed us to collect mea-
surements for the curve flattening and input processing stages in
isolation. We ran the compute pipeline on the timings SVG files
provided by Nehab [2020]. The largest of these SVGs is waves (see
rendering (a) in Figure 17) which contains 42 stroked paths and a
total of 13,308 path segments.

We authored two additional test scenes in order stress the GPU
with a higher workload. The first is a very large stroked path
with 500,000 individually styled dashed segments which we adapted
from Skia’s open-source test corpus. We used two variants of this
scene with butt and round cap styles. For the second scene we

Table 2: Comparison of input and output segment counts in the
more intensive GPU test cases. Segments are input path segments.
Lines and Arcs are the output primitives.

Test Input Segments | Lines Arcs
waves.svg 13,308 406,059 111,965
mmark-70k 70,000 1,039,899 | 500,351
mmark-120k 120,000 1,784,896 | 858,162
long dash (butt) 503,304 1,060,476 | 1,060,476
long dash (round) 503,304 2,013,216 | 1,060,476

6 Il spirograph (arcs)
B orenz (arcs)
Bl spiral (arcs)

blender (arcs)
waves (arcs)
roads (arcs)
spirograph (lines)
lorenz (lines)
spiral (lines)
blender (lines)
waves (lines)
roads (lines)

Time (ms)
w

Z
/]
"/
/]
/
7

Nl

Mali-G78

M1 Max GTX 980Ti RTX 4090

Figure 14: Mean GPU execution times of the compute shader that
performs stroke expansion and flattening when run on the Nehab
[2020] timings data set. The timings are shown in milliseconds. The
hatched bars show the timings for the version that outputs line
primitives while the solid bars show that for arcs. Mali-G78 (the
lowest end GPU we tested) converts waves (the largest scene in the
set) to lines in 3ms. The compute shader executes at least an order
of magnitude faster on the other GPUs.

adapted the Canvas Paths test case from MotionMark[1], which ren-
ders a large number of randomly generated stroked line, quadratic,
and cubic Bézier paths. We made two versions with different sizes:
mmark-70k and mmark-120k with 70,000 and 120,000 path seg-
ments, respectively. Table 2 shows the payload sizes of our largest
test scenes.

The test scenes were rendered to a GPU texture with dimensions
2088x1600. The contents of each scene were uniformly scaled up
(by encoding a transform) to fit the size of the texture, in order to
increase the required number of output primitives. As with the CPU
timings, we used an error tolerance of 0.25 in all cases. We recorded
the execution times across 3,000 GPU submissions for each scene.

Figures 14 and 15 show the execution times for the two data
sets. The entire Nehab [2020] timings set adds up to less than 1 ms
on all GPUs except the mobile unit. Our algorithm is 14x slower
on the Mali-G78 compared to the M1 Max but it is still capable of
processing waves in 3 ms. We observed that the performance of the

50 A
Il |ong dash (arcs)
I mmark-70k (arcs)
40 4 B mmark-120k (arcs)
Bl |ong dash (lines)
B2 mmark-70k (lines)
% 30 - 7 mmark-120k (lines)
E
[J]
£
= 20 4
10 A

Mali-G78

M1 Max GTX 980Ti RTX 4090

Figure 15: Mean GPU execution times of the compute shader that
performs stroke expansion and flattening when run on the stress
test scenes. The timings are shown in milliseconds.

kernel scales well with increasing GPU ability even at very large
workloads, as demonstrated by the order-of-magnitude difference
in run time between the mobile, laptop, and high-end desktop form
factors we tested. We also confirmed that outputting arcs instead
of lines can lead to a 2x decrease in execution time (particularly in
scenes with high curve content, like waves and mmark) as predicted
by the lower overall primitive count.

9.3 GPU: Input Processing

Figure 16 shows the run time of the tag monoid parallel prefix sums
with increasing input size. The prefix sums scale better at large
input sizes compared to our stroke expansion kernel. This can be
attributed to a lack of expensive computations and high control-
flow uniformity in the tag monoid kernel. The CPU encoding times
(prior to the GPU prefix sums) for some of the large scenes is shown
in Table 3. Dashing on the GPU was out of scope, so the dash style
applied to the long dash scene had to be processed on the CPU and
dashes were sequantially encoded as individual strokes. Including
CPU-side dashing, the time to encode long dash on the Apple M1
Max was approximately 25 ms on average, while the average time
to encode the path after dashing was 4.14 ms.

Our GPU implementation targets graphics APIs that do not sup-
port dynamic memory allocation in shader code (in contrast to
CUDA, which provides the equivalent of malloc). This makes it
necessary to allocate the storage buffer in advance with enough
memory to store the output, however, the precise memory require-
ment is unknown prior to running the shader.

We augmented our encoding logic to compute a conservative esti-
mate of the required output buffer size based on an upper bound on
the number of line primitives per input path segment. We found that
Wang’s formula[6] works well in practice, as it is relatively inexpen-
sive to evaluate, though it results in a higher memory estimate than

3000 A
1000 4
300 A
i”:} 100 A
(]
£
'_
—— M1 Max (tag monoid)
M1 Max (flatten)
= RTX 4090 (tag monoid)
—— RTX 4090 (flatten)
1

0 100,000 200,000 300,000 400,000 500,000
Input Segments

Figure 16: Mean GPU execution time of the tag monoid parallel
prefix sums with increasing number of input path segments, mea-
sured on Apple M1 Max and NVIDIA RTX 4090. The figure also
shows the execution time of the stroke expansion and flattening
kernel. The y-axis is shown in logarithmic scale to highlight the
similar scaling trend on both GPUs despite the order-of-magnitude
difference in performance.

Table 3: Comparison of CPU encoding time with and without size
estimation on the largest scenes. All measurements were computed
on an Apple M1 Max. The additional cost is negligible when the
scene size is modest but tangible with increased complexity.

Test Encoding | Encoding + Estimation
roads.svg 398.56 s 618.24 s
waves.svg 197.53 ps 418.96 us
mmark-70k 2.69 ms 6.89 ms
mmark-120k | 4.28 ms 11.59 ms

Table 4: The estimated and actual line soup buffer sizes for scenes
rendered at 2088x1600 resolution. Our estimation uses Wang’s for-
mula combined with a scaling heuristic based on the linewidth. In
the worst case, our buffer size estimator overshoots by a factor 4.

Test Actual Size | Estimated Size
roads.svg 958.78 KB 2.45MB
waves.svg 9.37 MB 10.44 MB
mmark-70k 23.81 MB 100.79 MB
mmark-120k 40.86 MB 173.56 MB

required (see Table 4). For parallel curves, Wang’s formula does not
guarantee an accurate upper bound on the required subdivisions,
which we worked around by inflating the estimate for the source
segment by a scale factor derived from the linewidth. We observed
that enabling estimation increases our CPU pre-processing time by
2-3x on the largest scenes but the impact is overall negligible when
the scene size is modest.

Figure 17: Renderings of some of our test scenes created using our algorithm and associated frame rates. All images were rendered on
an Apple M1 Max at 2088x1600 resolution using our GPU pipeline. (a) waves.svg from the Nehab2020 timings data set (340fps); (b) The
mmark-120k scene with 120,000 input segments (72fps); (c) The long path scene with 500k input segments and round caps (40fps with
CPU-side dashing - the GPU time to render the scene is 9ms); (d); A simple test scene showcasing various cap and join styles (950fps); (e)
The famous Ghostscript Tiger containing both stroked and filled paths (810fps).

10 CONCLUSIONS

Path stroking has received attention in recent years, with Nehab
[2020] and Kilgard [2020] both having proposed a complete theory
of correct stroking in vector graphics. While there are a number
of implementations of path filling on the GPU, the goal of also
implementing stroke expansion on the GPU had not yet been re-
alized. Building upon the theory proposed by Nehab [2020], we
implemented an approach to stroke expansion that is GPU-friendly,
and achieves high performance on commodity hardware.

We present the Euler spiral as an intermediate representation for
a fast and precise approximation of both filled and stroked Bézier
paths. Our method for lowering to both line and arc primitives
avoids recursion and minimizes divergence, potentially serious
problems for parallel evaluation on the GPU. We propose a novel
error metric to directly estimate approximation error as opposed
to the commonly employed cut-then-measure approaches which
often consume the lion’s share of computational expense.

Our approach includes an efficient encoding scheme that alle-
viates the need for expensive CPU pre-computations and unlocks
fully GPU-driven rendering of the entire vector graphics model.

11 FUTURE WORK

e The GPU implementation sequentializes some work that
could be parallel, and is thus not as well load-balanced as

it might be. An appealing future direction is to split the
pipeline into separate stages, executed by the GPU as nodes
in a work graph[17]. This structure is appealing because
load balancing is done by hardware.

e The pre-allocation requirement for bump-allocated line
soup buffer is a limitation due to today’s graphics APIs. A
more accurate and optimized buffer size estimation heuris-
tic is considered future work. It may also be interesting to
explore whether graphics APIs can be extended to facilitate
GPU-driven scheduling of the compute workload under a
bounded memory footprint.

e Many of the error metrics were empirically determined.
The mathematical theory behind them should be devel-
oped more rigorously, and that process will likely uncover
opportunities to fine-tune the technique.

e Dashing stroked paths on the GPU was left out of scope
for this paper. Given its parameterization by arc length, we
believe the Euler spiral representation is highly suitable for
dashing.

REFERENCES

[1] 2021. MotionMark 1.2. https://browserbench.org/MotionMark1.2/about.html

[2] World Wide Web Consortium 2024. WebGPU. World Wide Web Consortium.
https://www.w3.org/TR/webgpu

[3] Dale Connor and Lilia Krivodonova. 2014. Interpolation of two-dimensional
curves with Euler spirals. J. Comput. Appl. Math. 261 (2014), 320-332. https:

https://browserbench.org/MotionMark1.2/about.html
https://www.w3.org/TR/webgpu
https://doi.org/10.1016/j.cam.2013.11.009

//doi.org/10.1016/j.cam.2013.11.009
[4] Amelia Bellamy-Royds et al. 2018. Scalable Vector Graphics (SVG 2) Candidate
Recommendation. World Wide Web Consortium. https://www.w3.org/TR/SVG2/
painting html#StrokeShape
[5] The gfx-rs authors. 2024. gfx-rs/wgpu. https://github.com/gfx-rs/wgpu
[6] Ron Goldman. 2003. Chapter 5 - Bezier Approximation and Pascal’s Triangle.
In Pyramid Algorithms, Ron Goldman (Ed.). Morgan Kaufmann, San Francisco,
187-306. https://doi.org/10.1016/B978-155860354-7/50006-4
7] Google. 2024. Skia. https://skia.org
[8] Rive Inc. 2024. Rive Renderer. https://github.com/rive-app/rive-renderer
] Mark J. Kilgard. 2020. Polar Stroking: New Theory and Methods for Stroking
Paths. ACM Trans. Graph. 39, 4, Article 145 (Aug. 2020), 15 pages.
//doi.org/10.1145/3386569.3392458
Benjamin B. Kimia, Ilana Frankel, and Ana-Maria Popescu. 2003. Euler Spiral for
Shape Completion. International Journal of Computer Vision 54, 1 (01 Aug 2003),
159-182. https://doi.org/10.1023/A:1023713602895
Georg Maier. 2014. Optimal arc spline approximation. Computer Aided Geometric
Design 31, 5 (2014), 211-226. https://doi.org/10.1016/j.cagd.2014.02.011
D. S. Meek and D. J. Walton. 2004. An arc spline approximation to a clothoid. 7.
Comput. Appl. Math. 170, 1 (2004), 59-77. https://doi.org/10.1016/j.cam.2003.12.
038
Smita Narayan. 2014. Approximating Cornu spirals by arc splines. J. Comput.
Appl. Math. 255, 1 (2014). https://doi.org/10.1016/j.cam.2013.06.038
Diego Nehab. 2020. Converting Stroked Primitives to Filled Primitives. ACM
Trans. Graph. 39, 4, Article 137 (Aug. 2020), 17 pages. https://doi.org/10.1145/
3386569.3392392
Taweechai Nuntawisuttiwong and Natasha Dejdumrong. 2021. An Approxima-
tion of Bézier Curves by a Sequence of Circular Arcs. Information Technology
and Control 50, 2 (2021). https://doi.org/10.5755/j01.itc.50.2.25178
L F. D. Oliveira and R. H. C. Takahashi. 2020. An Enhancement of the Bisection
Method Average Performance Preserving Minmax Optimality. ACM Trans. Math.
Softw. 47, 1, Article 5 (Dec. 2020), 24 pages. https://doi.org/10.1145/3423597
Amar Patel and Tex Riddell. 2024. D3D12 Work Graphs. DirectX Developer Blog.
https://devblogs.microsoft.com/directx/d3d12-work-graphs/
Ulrich Reif and Andreas Weinmann. 2021. Clothoid fitting and geometric Hermite
subdivision. Advances in Computational Mathematics 47, 50 (26 June 2021).
https://doi.org/10.1007/s10444-021-09876-5
W. Tiller and E. G. Hanson. 1984. Offsets of two-dimensional profiles. IEEE
Computer Graphics and Applications 4, 9 (Sept. 1984), 36-46.
D. J. Walton and D. S. Meek. 2009. G1 interpolation with a single Cornu spiral
segment. J. Comput. Appl. Math. 223, 1 (2009), 86-96. https://doi.org/10.1016/j.
cam.2007.12.022
Heinrich Wieleitner. 1907. Die Parallelkurve der Klothoide. Archiv der Mathe-
matik und Physik 11 (1907), 373-375.
Norimasa Yoshida and Takafumi Saito. 2012. The Evolutes of Log-Aesthetic
Planar Curves and the Drawable Boundaries of the Curve Segments. Computer-
Aided Design and Applications 9, 5 (2012), 721-731. https://doi.org/10.3722/
cadaps.2012.721-731
Fabian Yzerman. 2020. Fast approaches to simplify and offset Bézier curves
within specified error limits. https://blend2d.com/research/simplify_and_offset_
bezier_curves.pdf

https:

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

A GEOMETRIC HERMITE INTERPOLATION
FOR EULER SPIRAL

This appendix gives the detailed algorithm for Geometric Hermite
interpolation, determining Euler spiral segment parameters given
the tangent angles at the endpoints relative to the chord.

The Euler spiral is represented by x(s) = ko +kis, where s ranges
from 0 to 1, i.e. the arc length is unit normalized. This segment is
scaled, rotated, and translated into place so that its endpoints match
the desired locations. Immediately, ko can be determined as 6 + 6.
Therefore, the remaining parameters to compute are k; and the
ratio of chord length to arc length. The latter could be computed
from ko and k1 by numerical integration, but it is more efficient to
obtain it at the same time as ky. Setting k = 6y + 67 and A = 61 — 0y,
we have:

= 6A

- A3/70

A®/10780

A7 - 2.769178184818219 x 107
k*A/10

k%A3 /4200

k2A> - 1.6959677820260655 X 107>
k*A /1400

k*A3 - 6.84915970574303 X 107>
kOA - 7.936475029053326 X 10~°

Similarly, the formula for the chord to arc length ratio:

L+ + 1+

+

c=1
— A?/40
A* - 0.00034226190482569864
A® - 1.9349474568904524 x 107°
— k%/24
k2A? - 0.0024702380951963226
— k2A* - 3.7297408997537985 X 107>
+ k*/1920
— k*A? - 4.87350869747975 x 1073
kS - 3.1001936068463107 x 10~°
Note that the latter quantity is equal to sinc(k/2) when A = 0.
The coefficients were determined by numerical differentiation,
using a Newton-style solver as the source of truth. The resulting
formulas are extremely accurate over a wide range of inputs.

+

+

https://doi.org/10.1016/j.cam.2013.11.009
https://www.w3.org/TR/SVG2/painting.html#StrokeShape
https://www.w3.org/TR/SVG2/painting.html#StrokeShape
https://github.com/gfx-rs/wgpu
https://doi.org/10.1016/B978-155860354-7/50006-4
https://skia.org
https://github.com/rive-app/rive-renderer
https://doi.org/10.1145/3386569.3392458
https://doi.org/10.1145/3386569.3392458
https://doi.org/10.1023/A:1023713602895
https://doi.org/10.1016/j.cagd.2014.02.011
https://doi.org/10.1016/j.cam.2003.12.038
https://doi.org/10.1016/j.cam.2003.12.038
https://doi.org/10.1016/j.cam.2013.06.038
https://doi.org/10.1145/3386569.3392392
https://doi.org/10.1145/3386569.3392392
https://doi.org/10.5755/j01.itc.50.2.25178
https://doi.org/10.1145/3423597
https://devblogs.microsoft.com/directx/d3d12-work-graphs/
https://doi.org/10.1007/s10444-021-09876-5
https://doi.org/10.1016/j.cam.2007.12.022
https://doi.org/10.1016/j.cam.2007.12.022
https://doi.org/10.3722/cadaps.2012.721-731
https://doi.org/10.3722/cadaps.2012.721-731
https://blend2d.com/research/simplify_and_offset_bezier_curves.pdf
https://blend2d.com/research/simplify_and_offset_bezier_curves.pdf

	Abstract
	1 Introduction
	2 Flattening and arc approximation of curves
	2.1 Error metrics for flattening
	2.2 Error metrics for flattening Euler spirals

	3 Euler spirals and their parallel curves
	4 Flattened parallel curves
	4.1 Optimal flattening
	4.2 The subdivision density integral
	4.3 Approximation of the subdivision density integral

	5 Error metrics for approximation by arcs
	6 Evolutes
	7 Conversion from cubic Béziers to Euler spirals
	7.1 Error prediction
	7.2 Geometric Hermite interpolation
	7.3 Unrolled recursion
	7.4 Cusp handling

	8 GPU Implementation
	8.1 Pipeline Design
	8.2 Input encoding

	9 Results
	9.1 CPU: Primitive Count and Timing
	9.2 GPU: Execution Time
	9.3 GPU: Input Processing

	10 Conclusions
	11 Future work
	References
	A Geometric Hermite interpolation for Euler spiral

