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Abstract

In fair division of indivisible items, domain restriction has played a key role in escaping from
negative results and providing structural insights into the computational and axiomatic bound-

aries of fairness. One notable subdomain of additive preferences, the lexicographic domain, has

yielded several positive results in dealing with goods, chores, and mixtures thereof. However,
the majority of work within this domain primarily consider strict linear orders over items, which

do not allow the modeling of more expressive preferences that contain indifferences (ties). We
investigate the most prominent fairness notions of envy-freeness up to any (EFX) or some (EF1)

item under weakly lexicographic preferences. For the goods-only setting, we develop an algo-

rithm that can be customized to guarantee EF1, EFX, maximin share (MMS), or a combination
thereof, along the efficiency notion of Pareto optimality (PO). From the conceptual perspective,

we propose techniques such as preference graphs and potential envy that are independently of

interest when dealing with ties. Finally, we demonstrate challenges in dealing with chores and
highlight key algorithmic and axiomatic differences of finding EFX solutions with the goods-only

setting. Nevertheless, we show that there is an algorithm that always returns an EF1 and PO
allocation for the chores-only instances.

1 Introduction

The distribution of indivisible items is a fundamental problem in a wide array of societal, compu-

tational, and economic settings. Over the past few decades, the field of fair division has emerged

to promote fairness in designing scalable algorithms for distributing resources and tasks. Arguably,

one of the primary drivers behind recent advancements in algorithmic fairness was the focus on

restricted domains (e.g., additive valuations) that enabled concise representation of preferences in

complex resource allocation problems. Domain restriction has played a key role in escaping from

negative results and providing structural insights into the computational and axiomatic boundaries

in computational social choice [Lang et al., 2018, Hosseini and Larson, 2019, Nguyen, 2020, Fu-

jita et al., 2018]. One notable subdomain of additive preferences, the lexicographic domain, has

received much attention due to its succinct representation of complex preferences and its natural

proxy for modeling consumer behavior [Gigerenzer and Goldstein, 1996, Fishburn, 1974].

Within fair division, the lexicographic domain has resulted in several positive results in dealing

with goods [Hosseini et al., 2021], chores [Ebadian et al., 2022, Hosseini et al., 2022b], and

mixtures thereof [Hosseini et al., 2023]. These results primarily consider strict linear orderings

over the items, which do not allow for the modeling of more expressive preferences that contain

ties (aka weak preferences). Yet, individuals are often indifferent between sets of items and tend
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to group those into ‘equivalence classes’. For example, in conference paper reviewing, one may

strictly prefer papers from computational social choice to those from computer vision, but the same

reviewer may be indifferent between papers that cover topics in fair division.

The introduction of weak preferences poses several intriguing algorithmic challenges, particu-

larly when dealing with economic efficiency; as such ties have been in the center of attention in a

large body of work, for example, in probabilistic assignments with ordinal or lexicographic prefer-

ences [Katta and Sethuraman, 2006, Saban and Sethuraman, 2014, Aziz et al., 2015], mechanism

design for object allocation [Bogomolnaia et al., 2005, Krysta et al., 2014], assigning papers to

reviewers [Garg et al., 2010], and Shapley-Scarf housing markets [Klaus and Meo, 2023, Saban

and Sethuraman, 2013, Jaramillo and Manjunath, 2012, Aziz and De Keijzer, 2012].

Along this line, we focus on expanding the existing computational and axiomatic results in fair

division to the more expressive preference class that allows for ‘mild continuity’ in preferences over

items. We investigate the most prominent fairness notion, envy-freeness EF, and its relaxations

envy-freeness up to any item (EFX) [Caragiannis et al., 2019] and envy-freeness up to some item

(EF1) [Lipton et al., 2004, Budish, 2011], along with an efficiency requirement of Pareto optimality

(PO). EFX requires that a pairwise envy between the two agents is eliminated by the removal of any

good (or chore) from the envied (envious) agent’s bundle, while EF1 relaxes this requirement to the

removal of some single item from the bundle of one of the two agents. Furthermore, we consider

fairness notion of maximin share (MMS) [Budish, 2011], which states that an agent should receive

a bundle at least as preferable as the best possible bundle it can get in a partition from which it

receives the worst bundle.

1.1 Contributions

We study fair and efficient allocations in goods-only and chores-only instances under weakly lexi-

cographic preferences. We present computational and axiomatic results regarding well-established

fairness notions of EF and its prominent relaxations, EFX and EF1, and MMS, as well as conceptual

techniques which hold independent significance when dealing with ties.

Goods. Our first result shows that with the introduction of ties, deciding if an EF allocation of

goods exists becomes NP-complete, even when agents have at most two indifference classes (The-

orem 1). Given the nonexistence and computational hardness for EF, we develop a customizable

algorithm that finds a PO allocation satisfying an EF relaxation of EF1, MMS, EFX, or a combination

thereof, depending on the chosen parameters (Theorem 3).

This way, we are able to pinpoint to an exact place in our algorithm that is responsible for

guaranteeing fairness.

Chores. Under additive preferences, there has been much less progress for chores, and as such,

the existence of EF1 and PO is still open. We prove the existence and computation of such an

allocation under weakly lexicographic preferences (Theorem 4) as the largest known subclass of

additive valuations for which EF1 and PO can be guaranteed. Moreover, we illustrate the chal-

lenges involved in fairly allocating chores (Examples 2 and 3), and show that in the chores-only

instances, EFX implies MMS (Proposition 3), which surprisingly stands in contrast to the case of

goods (Appendix E).

Conceptual Techniques. From the technical perspective, we develop novel techniques such as

preference graphs and potential envy (Definition 1 and Figure 1a) for handling indifferences when
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the goal is to guarantee fairness along with efficiency in this setting.

2 Related Work

It is well-known that for goods-only instances with additive preferences an EF1 allocation can be

efficiently computed [Lipton et al., 2004]. Moreover, an allocation satisfying EF1 and PO always

exists [Caragiannis et al., 2019] and can be computed in pseudo-polynomial time [Barman et al.,

2018]. Nevertheless, the existence of EFX allocations remains unresolved for this general setting.

To gain insights into the problem, a wide variety of restricted domains have been considered. In

particular, it has been shown that an EFX allocation always exists for instances with identical valu-

ations [Plaut and Roughgarden, 2020], under submodular utilities with binary marginals [Babaioff

et al., 2021], and for additive preferences with interval valuations or at most two distinct val-

ues [Amanatidis et al., 2021, Garg and Murhekar, 2021]. However, EFX is not compatible with PO

under submodular valuations [Plaut and Roughgarden, 2020]. Nevertheless, under strict lexico-

graphic preferences, an EFX and PO allocation always exists and can be computed in polynomial

time [Hosseini et al., 2021].

In studying possible fairness, Aziz et al. [2023a] proposed an algorithm for finding an EFX,

MMS, and PO allocation under weakly lexicographic preferences. Our algorithm achieving the same

guarantees has been developed concurrently and independently. Moreover, there are significant

differences between these algorithms, both in terms of their outputs (see Example 1) as well as

construction. The main difference on the conceptual level is that our algorithm can be easily

alternated to cover different notions of fairness, allowing for better understanding of where the

particular fairness guarantee is invoked. For more detailed comparison see Appendix C.

Analogous problems for chores-only instances seem much more complex. EF1 allocations can

still be efficiently computed [Bhaskar et al., 2021, Aziz et al., 2022], however the existence of EF1
and PO allocations remains an important open problem, except for a few restricted domains [Eba-

dian et al., 2022, Garg et al., 2022, Aziz et al., 2023b]. Despite much efforts, the progress for

EFX is also limited. Recent works established its existence for ordered instances [Li et al., 2022],

generalized binary preferences [Camacho et al., 2023], strictly lexicographic preferences [Hosseini

et al., 2022b], and instances with two types of chores [Aziz et al., 2023b].

The next most studied fairness notion is arguably MMS. It may fail to exist for both goods-

only [Kurokawa et al., 2018] and chores-only [Aziz et al., 2017] instances under additive prefer-

ences. Therefore, both multiplicative approximations [Aziz et al., 2017, Ghodsi et al., 2021, Garg

and Taki, 2021] and ordinal ones [Babaioff et al., 2019, Hosseini et al., 2022a] have been proposed

and analyzed. [Ebadian et al., 2022] showed, among others, that an MMS and PO allocation can

be efficiently computed in every goods-only or chores-only weakly lexicographic instance.

3 Preliminaries

For every k ∈ N, let [k] = {1, . . . , k}. A weakly lexicographic instance is defined as a triple

(N,M,⊲), in which N = [n] is a set of agents, M a set of items, and ⊲ = (⊲i)i∈N a family of

weak linear orders over M , based on which we will define the preferences of the agents. We will

consider two types of instances: in a goods-only instance, we say that M = {g1, . . . , gm} is a set of

goods, while in a chores-only instance, it is a set of chores, M = {c1, . . . , cm}.

3



Indifference classes. For each agent i ∈ N , a weak linear order ⊲i partitions the set M into ki
indifference classes, ⊲i(1), . . . ,⊲i(ki), for some integer ki ≤ |M |. Intuitively, the agent is indifferent

between two items from the same class, but for every k ∈ [ki], a single element of the k-th class,

i.e., ⊲i(k) cannot be compensated by any number of items from the later classes, i.e., ⊲i(k
′) for

k′ > k. In examples, we will define the weak linear orders by explicitly writing the indifference

classes divided by a triangle sign, ⊲, to denote relation between them, e.g.,

1 : g1 ⊲ {g2, g3}⊲ g4. (1)

Preferences. For every subset X ⊆ M , and indifference class k ∈ [ki], let ⊲i(k,X) = ⊲i(k) ∩X.

Then, we will denote a score vector, si(X) = (si(1,X), . . . , si(ki,X)), in which for each k ∈ [ki]
its k-th coordinate is defined as si(k,X) = | ⊲i (k,X)|, for goods-only instances, and si(k,X) =
−| ⊲i (k,X)|, for chores-only instances. For X = M , we will write simply si(k) for brevity. For

two sets of items, X,Y ⊆ M , agent i strictly prefers set X over Y , i.e., X ≻i Y , if the score of

X lexicographically dominates the score of Y , i.e., si(X) >lex si(Y ). In other words, there exists

k̄ ∈ [ki] such that si(k̄,X) > si(k̄, Y ), and si(k,X) = si(k, Y ), for every k < k̄.

For example, agent 1 from (1) prefersX = {g1, g4} over Y = {g2, g3, g4} as si(X) = (1, 0, 1) >lex

(0, 2, 1) = si(Y ). If si(X) = si(Y ), then agent i is indifferent between the sets, i.e., X ∼i Y . Finally,

agent i weakly prefers X over Y , denoted by X �i Y , if either X ≻i Y or X ∼i Y . For singleton

sets, we will skip the brackets in these relations, e.g., we will write g1 ≻1 g2 ∼1 g3.

Allocations. An allocation A = (A1, . . . , An) is an n partition of M , such that the bundles of

agents are disjoint, i.e., Ai∩Aj = ∅, for every i, j ∈ N . If all items are allocated, i.e.,
⋃

i∈N Ai =M ,

we say that A is complete. It is partial otherwise. The goal is to find a complete allocation that is

fair and efficient.

Envy-freeness. An agent j envies i if Ai ≻j Aj. An allocation A is said to be envy-free (EF) if no

agent envies any other. It is envy-free up to one item (EF1), if for every pair of agents i, j ∈ N such

that j envies i, Aj �j Ai \ {g} for some g ∈ Ai in case of a goods-only instance, or Aj \ {c} �j Ai

for some c ∈ Aj in case of a chores-only instance. Finally, allocation A is envy-free up to any item

(EFX), if for every pair of agents i, j ∈ N , Aj �j Ai \ {g} for every g ∈ Ai in case of a goods-only

instance, or Aj \ {c} �j Ai for every c ∈ Aj in case of a chores-only instance.

Maximin share. A maximin share of an agent is the score vector of the most preferred bundle it

can guarantee for itself by dividing the items into n bundles and receiving the worst one. Formally,

MMSi = max(A1,...,An)∈Πn minj∈[n] si(Aj), where Πn is a set of all possible n-partitions and max and

min are determined based on lexicographic dominance. An allocation A satisfies maximin share

(MMS) if for every agent i ∈ N , it holds that si(Ai) ≥lex MMSi.

Pareto optimality. An (possibly partial) allocation A Pareto dominates allocation B if A assigns

the same set of goods as B, i.e.,
⋃

i∈N Ai =
⋃

i∈N Bi, and Ai �i Bi for every i ∈ N and there exists

j ∈ N such that Aj ≻j Bj . Allocation A is Pareto optimal (PO), if it is not Pareto dominated by any

other allocation.
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4 Goods

Let us start with weakly lexicographic goods-only instances.

[Hosseini et al., 2021] proved that we can decide if a strict lexicographic goods-only instance

admits an EF allocation in polynomial time. However, we show that the same is no longer true for

weakly lexicographic instances.

Theorem 1. Deciding whether an EF allocation exists for a given weakly lexicographic goods-only

instance is NP-complete, even if every agent has at most two indifference classes.

The proof is relegated to Appendix A, where we also show NP-completeness of EF combined

with PO. We build upon similar proofs by Aziz et al. [2015] and Hosseini et al. [2020] for binary

preferences. However, under binary preferences a good may hold no additional value to an agent,

which is not possible in our setting (i.e., an agent always strictly prefers to have a good rather than

not). As a result, our construction is more intricate and requires additional steps in the proof.

Motivated by the non-existence and computational hardness for EF, we move to its most com-

pelling relaxation: EFX. In what follows, we will provide an algorithm (Algorithm 1) that, depend-

ing on a given requirement, finds an allocation that satisfies PO as well as EF1, MMS, EFX, or MMS

and EFX simultaneously (Theorem 3).

4.1 Preference Graph and Potential Envy

We begin by introducing additional constructions and definitions which our algorithm utilizes.

Preference graph. First, let us introduce a preference graph, which is a weighted complete bi-

partite graph, Gpref = (N,M,E,ψ), in which both agents and goods are vertices, all agent-good

pairs are edges E = N × M , and the weights, ψ : E → N, denote in which indifference class

is a given good for a given agent, i.e., for every (i, g) ∈ E, ψ(i, g) = k such that g ∈ ⊲i(k). An

example of a preference graph can be found in Figure 1a. For every (possibly partial) allocation A,

we will slightly abuse the notation and treat A both as a collection of subsets, (A1, . . . , An), and as

a subset of edges in a preference graph,
⋃

i∈N{(i, g) : g ∈ Ai}, depending on the context. Given a

preference graph Gpref = (N,M,E,ψ) and an (possibly partial) allocation A, an alternating path,

p = (g0, i1, g1, . . . , is, gs), is a path in Gpref (possibly of length zero) such that

• the goods in p are pairwise distinct,

• p alternates between edges that belong and do not belong to A, i.e., (gr−1, ir) ∈ A, for every

r ∈ [s], and (ir, gr) 6∈ A, for every r ∈ [s], and

• for every r ∈ [s], agent ir weakly prefers good gr over gr−1, i.e., ψ(gr−1, ir) ≥ ψ(ir, gr).

Available goods. We say that a good g is available if there exists an alternating path from g to

an unallocated good (or g is unallocated itself). Otherwise g is unavailable. If an alternating path

p = (g0, i1, g1, . . . , is, gs) ends with an unallocated good, then allocation A can be updated along p,
to obtain allocation A′ such that A′ = A \ {(gr−1, ir) : r ∈ [s]} ∪ {(ir, gr) : r ∈ [s]}. Observe that

every agent i ∈ N weakly prefers its bundle in A′ compared to A. Note also that for a given good g,
we can find an alternating path starting in g and ending in an unallocated good (or conclude that

there is none) using the BFS algorithm in time O(nm).
Moreover, a preference graph can be used to efficiently check whether an allocation is PO.

Rewriting the result of Aziz et al. [2019] using a preference graph, we get that the allocation is PO,
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if and only if, there is no alternating path, p, and agent, i, such that the last good in the path, gs,
belongs to agent i, but i strictly prefers the first good in the path over gs.

Theorem 2. [Aziz et al., 2019, Theorem 5] Given a weakly lexicographic goods-only instance (N,M,⊲),
an (possibly partial) allocationA is PO, if and only if, there is no alternating path, p = (g0, i1, g1, . . . , is, gs)
and agent i0 such that (gs, i0) ∈ A and ψ(i0, g0) < ψ(gs, i0).

Next, we introduce a notion of potential envy in a partial allocation, which we will use to

guarantee EFX. Intuitively, potential envy towards an agent exists, if giving all still available goods

to this agent, would result in an (actual) envy.

Definition 1. (Potential envy) Given an instance (N,M,⊲), a partial allocation A, and agents i, j ∈
N , agent j potentially envies agent i if Ai ∪B ≻j Aj, where B denotes the set of all available goods.

Then, a potential envy graph is a directed graph, Genvy(U,A) = (U,E), that given a subset of

agents U and a partial allocation A, puts an edge (i, j) from agent i ∈ U to j ∈ U \ {i}, if and only

if, i potentially envies j (see Figure 1b for an illustration).

Finally, let us include a characterization of MMS allocations that will be useful in proving that

our algorithm always outputs an MMS allocation. This characterization is based on the algorithm

for establishing an MMS threshold for a given agent, i, which was developed by Ebadian et al.

[2022]. The algorithm starts with a family of n empty bundles. Then, in each step, it assigns an

unallocated good from the first indifference class of agent i with still unallocated goods to a bundle

with lexicographically minimal score si. After all goods are allocated, the MMS threshold is then

the lexicographically minimal score si among the n bundles. Based on the algorithm, we provide a

numerical formula for the threshold.

Proposition 1. Given a weakly lexicographic goods-only instance (N,M,⊲) and agent i ∈ N , it

holds that MMSi = (x1, x2, . . . , xk), where xl = ⌊si(l)/rl⌋, for every l ∈ [k], while r1 = n, and rl+1 =
rl−(si(l)−rlxl), for every l∈ [k−1].

4.2 The Algorithm

Now, let us move to the main result of this section which is Algorithm 1 that finds a fair (EF1, MMS,

or EFX) allocation which satisfies PO in polynomial time for every weakly lexicographic goods-only

instance.

Our algorithm allows for flexibility in regard to the fairness guarantees it obtains. Specifically,

in each iteration of our algorithm, for each agent, our algorithm decides whether we want to stop

giving goods to this agent or not, based on certain criteria, F . The choice of criteria affects the

fairness guarantee for the outcome. In general, these criteria can be arbitrary, but we focus on

three, which, with a slight abuse of terminology, we call based on the fairness notions they turn

out to guarantee: EFX, MMS, and the conjunction of both EFX+MMS. We also analyze the baseline

version of the algorithm which never differentiates agents (i.e., F = null), and show that such

algorithm guarantees EF1 and PO allocations.

Description. Fix an ordering of agents, σ.

We initialize the algorithm with empty bundles. In U we keep the set of prioritized agents, for

which we put U = N at the start. In each iteration of the main loop (lines 2–8), we take an agent i0
from U that has the least number of goods (the earliest in ordering σ if there is a tie). In case U = ∅
(which is only possible if F = MMS), we take i0 from N . Next, agent i0 chooses the most preferred

6



Algorithm 1 Finding a fair and efficient allocation of goods

Input: A weakly lexicographic goods-only instance 〈N,M,⊲〉, an ordering σ, and criteria F
1: A← (∅, . . . , ∅), Gpref ← (N,M,E, ψ), U ← N
2: while there is an unallocated good do
3: Take i0 ∈ U (or i0 ∈ N , if U = ∅) s.t. |Ai0 | is minimal (break ties by σ)

4: Find an alternating path p = (g0, i1, g1, . . . , is, gs) in Gpref such that gs is unallocated and ψ(i0, g0) is
smallest possible

5: A← A updated along p
6: Ai0 ← Ai0 ∪ {g0}
7: U ← {i ∈ U : CHECKCRITERIA(i, A, U, F ) = True} (Algorithm 2)

8: end while
9: return A

Algorithm 2 Checking fairness criteria

Input: An agent i, a partial alloc. A, a set U , and criteria F
1: if F = null then return True

2: if F = EFX or F = EFX + MMS then
3: Ue ← a strongly connected component with no incoming edge in Genvy(A,U) (if there is more than

one, take the one with the earliest agent according to σ)

4: if i ∈ Ue then return True

5: end if
6: if F = MMS or F = EFX + MMS then
7: if si(Ai) ≤lex MMSi then return True

8: end if
9: return False

available good, g0. We update the allocation along alternating path from g0 to an unallocated good

(if g0 is allocated), and give g0 to i0.
Then, we update set U using subroutine CHECKCRITERIA (Algorithm 2) to give the priority to

agents satisfying given criteria F . If F = EFX, in potential envy graph Genvy(A,U) we look for

a strongly connected component without an incoming edge and remove from U agents outside it.

Intuitively, since there are no edges to the strongly connected component, no agent outside of U
will ever start envying an agent in U at the later steps of the algorithm. If F = MMS, we remove

from U agents that crossed their MMS thresholds. Finally, if F = EFX + MMS, we remove from U
agents satisfying both conditions simultaneously, and if F = null, we never remove agents from U .

After m iterations, all goods are allocated and we output the final allocation.

Let us illustrate the most restrictive version of Algorithm 1, i.e., when F = EFX+MMS, with an

example. We provide an analogous example for the other criteria in Appendix D. For each variable

used in the algorithm, we will write it with superscript t, to denote its value at the end of t-th
iteration of the main loop of our algorithm (lines 2–8). We use superscript 0 to denote the initial

values of variables.

Example 1. Consider a goods-only instance with three agents, four goods, and the following prefer-

ences (see Figure 1a for an illustration of the respective preference graph).

1 : {g1, g2}⊲ {g3, g4}

2 : g1 ⊲ {g2, g3, g4}

3 : g1 ⊲ {g2, g3, g4}

Let σ = (1, 2, 3). In iteration 1, agent 1 receives g1 (see the red highlight in Figure 1a). Observe that
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2

3

g1

g2

g3

g4

(a) Gpref with A1 highlighted in red.

3

2

1

(b) Genvy(A
2, U1).

Figure 1: The preference graph Gpref and potential envy graph Genvy(A
2, U1) for the instance from Exam-

ple 1. Thin black edges in the graph Gpref represent agents’ first indifference classes, i.e., these e ∈ E, for

which ψ(e) = 1, and gray thick edges the second ones. In (b), a strongly connected component without an
incoming edge, U2

e , is given in red, which is a single node.

good g1 is still available since there exists an alternating path (g1, 1, g2) ending in an unallocated good.

Thus, in iteration 2, agent 1 exchanges g1 for g2 and agent 2 receives g1. Then, in the potential envy

graph at the end of iteration 2, i.e., Genvy(A
2, U1), agent 3 is the only agent that forms a strongly

connected component with no incoming edge, U2
e (see Figure 1b). Moreover, since for each of agents

1 and 2, its bundle is above the respective MMS threshold, we remove them from U , thus U2 = {3}.
Therefore, agent 3 receives goods g3 and g4. The final allocation is underlined.

We note that the algorithm of [Aziz et al., 2023a] returns the allocation ({g2, g4}, {g1}, {g3}) in

the above example. Observe that in this allocation, agent 3 is envious of agent 1, which is not the case

in the allocation returned by Algorithm 1. See Appendix C for a detailed discussion.

Let us now sketch the proof of correctness of our algorithm (the full proof can be found in

Appendix B).

Theorem 3. Given a weakly lexicographic goods-only instance (N,M,⊲), Algorithm 1 always returns

(A) if criteria F = null, an EF1 and PO allocation;

(B) if criteria F = EFX, an EFX and PO allocation;

(C) if criteria F = MMS, an MMS and PO allocation; and

(D) if criteria F = EFX + MMS, an EFX, MMS and PO allocation.

Proof (Sketch). We begin with the series of observations that hold for all considered by us criteria

F (Claim 1 to 3) or only those with either EFX or MMS (Claim 4 to 6). Using them, we will prove

the fairness guarantees in each of the statements (A)–(D). Finally, PO can be easily proved using

Theorem 2. In this sketch we will mainly focus on showing statement (D).

We first prove several basic observations, which we group in the following two claims. Let Xt

be a set of unavailable goods at the end of iteration t.

Claim 1. For every agent i ∈ N , its indifference classes k, k′ ∈ [ki], and iterations t, t′ ∈ [m], such that

k′ < k and t′ < t, it holds that

(a) an unavailable good stays unavailable, i.e., Xt′ ⊆ Xt,

(b) agents weakly prefer their goods over the available ones, i.e., if si(k,A
t
i) > 0, then ⊲i(k

′) ⊆
Xt−1,
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(c) score of the bundle of an agent is (weakly) monotonic, i.e., si(k,A
t
i) ≥ si(k,A

t′

i )

(d) if an agent has an unavailable good, then the whole indifference class with this good is unavail-

able, i.e., if ⊲i(k,A
t
i) ∩X

t 6= ∅, then ⊲i(k) ⊆ X
t.

Claim 2. For arbitrary iterations t′, t ∈ [m] and agents i, j ∈ N such that t′ < t, it holds that

(a) no agent becomes prioritized again, i.e., U t ⊆ U t′ ,

(b) the sizes of bundles of agents in U are as equal as possible, i.e., 0 ≤ |At
i| − |A

t
j | ≤ 1, if i, j ∈ U t

and σ(i) < σ(j), and

(c) an agent cannot start envying an agent that did not receive more goods, i.e., if At′

j �j A
t′

i and

|At′

i | = |A
t
i|, then At

j �j A
t
i.

(d) an agent never envies agents that are later in the ordering, i.e., if σ(i) < σ(j), then At
i �i A

t
j .

Next, we prove a quite technical result that if an agent has only unavailable goods and po-

tentially envies other agent, then the envied agent has at least the same amount of unavailable

goods.

Claim 3. For every iteration t ∈ [m] and agents i, j ∈ N such that At
i ⊆ Xt, if i potentially envies j,

but not actually envies, then |At
i| ≤ |A

t
j ∩X

t|.

Next, we focus on the case where EFX is a part of criteria F and show that in such a case, the

set U is never empty.

Claim 4. If criteria F = EFX or F = EFX + MMS, then for every t ∈ [m] it holds that U t 6= ∅.

Using this and Claim 3, we show one of the key observation of the proof that allows us to

guarantee EFX: if an agent, j, envies another agent, i, with at most the same number of goods,

then there is no potential envy path from i to j. In consequence, in such cases, i can be eliminated

from U .

Claim 5. If criteria F = EFX or F = EFX+MMS, then for every agents i, j ∈ N , and iteration t ∈ [m]
such that j envies i and |At

i| ≤ |A
t
j |, there is no path p = (i1, . . . , ir) in Genvy(A

t−1, N) such that

i = i1 and j = ir.

Next, we inductively show the key result for the proof of MMS. For this claim, for an agent i,
let us denote set ⊲i(1: k) = ⊲i(1) ∪ · · · ∪ ⊲i(k) and vectors si(1: k,A

t
i) = (si(1, A

t
i), . . . , si(k,A

t
i))

and MMSi(1: k) = (MMSi(1), . . . ,MMSi(k)).

Claim 6. If fairness criterion F = MMS or F = EFX + MMS, then for every iteration t ∈ [m], agent

i ∈ N , and k ∈ N such that ⊲i(1: k) ⊆ X
t, it holds that:

(a) si(1: k,A
t
i) ≥lex MMSi(1: k),

(b) if si(k
′, At

i) = 0 for every k′ > k and there is an agent j ∈ U t such that |At
j | < |A

t
i|, then

At
i >lex MMSi,

(c) if si(1: k,A
t
i) = MMSi(1: k), then there is a subset of agents L ⊆ N \U t such that |L| = n−rk+1

and
∑

j∈L

|At
j | =

k
∑

u=1

si(u)− rk+1 ·
k

∑

u=1

MMSi(u),

where, as in Proposition 1, r1 = n and ru+1 = si(u)−MMSi(u) · ru, for every u ∈ [ki − 1].
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Observe that point (a) of Claim 6 directly implies MMS of the output allocation as at the end

of the algorithm all goods are unavailable. Thus, let us show that if F = EFX + MMS, then the

output allocation satisfies EFX as well. Assume otherwise, and take first t ∈ [m] such that there

exist i, j ∈ N and g ∈ Ai for which Ai \ {g} ≻j Aj .

From Claim 2d we know that i is before j in ordering σ. Let us take the last iteration t′ < t in

which i had smaller number of goods, i.e., |At′

i | < |A
t
i|. By Claim 4, this means that i ∈ U t′ and

from Claim 1c we get that |At′

i | = |A
t′

j |. Based on this, using Claim 5, we deduce that j does not

envy i at the end of iteration t′ (otherwise it could not be that i ∈ U t). Since between iteration t′

and t agent i receives just one more good, we can show that this implies that i and j do not violate

EFX in iteration t—a contradiction.

5 Chores

In many aspects, the situation for chores is more complex than that of goods. For example, we can

decide if there exists an EF allocation for goods-only strict lexicographic instances in polynomial

time, but the same problem is NP-complete for chores [Hosseini et al., 2022b]. For additive pref-

erences, even the existence of an EF1 and PO allocation remains an open problem for the chores

case.

In this section, we will show that Algorithm 1 can be adapted so that we obtain an EF1 and

PO allocation for every weakly lexicographic chores-only instance. However, let us first discuss

the differences and challenges of finding EFX allocations for chores in comparison with goods. We

believe that this sheds some light on the nature of the general problem of dividing the chores.

5.1 EFX implies MMS

Let us start by noting that EFX implies MMS for weakly lexicographic instances, which is not the

case for goods (see Appendix E). To this end, we first provide a compact formulation of an agent’s

MMS threshold analogous to the ones for goods in Proposition 1.

Proposition 2. For every weakly lexicographic chores-only instance (N,M,⊲) and agent i ∈ N , it

holds that

MMSi = (si(1)/n, si(2)/n, . . . , ⌊si(k)/n⌋, 0, . . . , 0),

where k is the number of the first indifference class of i such that n does not divide si(k). Note that

since si(k) is negative, the absolute value of ⌊si(k)/n⌋ is the number of chores in the k-th indifference

class of i divided by n and rounded up.

Using it let us show that EFX implies MMS.

Proposition 3. Given a weakly lexicographic chores-only instance (N,M,⊲), every EFX allocation

satisfies MMS.

Proof. Assume for a contradiction that there is an allocation A that is EFX but not MMS, i.e., there

is agent i ∈ N such that its si(Ai) <lex MMSi.

From Proposition 2 we know that

MMSi = (si(1)/n, si(2)/n, . . . , ⌊si(k)/n⌋, 0, . . . , 0),

where k is the number of the first indifference class of i such that n does not divide si(k).
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Given that for agent i, si(Ai) <lex MMSi, it is not possible to have that si(Aj) ≤lex MMSi, for

every agent j ∈ N\{i} (otherwise, from one of the first k indifference classes of agent i, there would

be more chores assigned to agents than there are in total). Hence, there exists j ∈ N such that

si(Aj) >lex MMSi. Let k̄ be an indifference class such that si(k̄, Ai) < MMSi(k̄), and c ∈ ⊲i(k̄, Ai)
be an arbitrary chore assigned to i from this class. Observe that si(Ai \{c}) ≤lex MMSi <lex si(Aj).
Hence, agent i envies agent j even after the removal of chore c from its bundle. This contradicts

EFX.

Despite the fact that an EFX allocation implies MMS, we note that there is no implication from

MMS (with or without PO) to EFX for chores-only instances even when each agent has at most two

indifference classes (see Example 9 in Appendix E).

5.2 EFX and PO Challenges

Given a chores-only instance, a straightforward approach to obtain an EFX and PO allocation would

be to directly copy the idea behind Algorithm 1: assign to agents their most preferred available

items (using the alternating paths) in rounds, removing certain agents from the set of prioritized

agents U on the way, to guarantee EFX. In the goods-only case, the agents start picking the items

from their first indifference classes, which works well, as the same items are key to establishing

envy relations. However, in the chores case, the order is reversed: the agents start picking the

items from the last indifference classes, but still the envy relations depend predominantly on the

first indifference classes. Hence, an initial fair allocation of chores in the last indifference classes,

may turn out to be impossible to extend to an EFX allocation.

Example 2. Consider a chores-only instance with two agents, three chores and preferences as follows:

1 : c1 ⊲ {c2, c3}

2 : c1 ⊲ {c2, c3}

If we allow agents to choose their chores, agent 1 can pick chore c3 in iteration 1 and agent 2 chore

c2 in iteration 2. Observe that the resulting partial allocation is EFX (indeed, EF). However, if we

assign c1 to either of the agents, then the recipient would envy the other agent, and the envy will not

be eliminated by the removal of the other chore. Hence, this allocation cannot be extended to an EFX

allocation.

Given the above observation, another strategy would be to start assigning chores to the agents

from their first indifference classes (worst chores). On the other hand, for the sake of PO, we need

to allow agents to exchange the chores among themselves if it is beneficial for all sides. However,

such exchanges can lead to a situation similar to that in Example 2.

Example 3. Consider a chores-only instance with four agents, five chores and preferences as follows:

1 : {c1, c2}⊲ c3 ⊲ {c4, c5}

2 : {c1, c2}⊲ c3 ⊲ {c4, c5}

3 : {c4, c5}⊲ c3 ⊲ {c1, c2}

4 : {c4, c5}⊲ c3 ⊲ {c1, c2}

Assume we start allocating chores from the first indifference classes of the agents: agent 1 receives chore

c1, agent 2 chore c2, agent 3 c4 and 4 c5.

11



Algorithm 3 Finding an EF1 and PO allocation of chores

Input: A weakly lexicographic chores-only instance 〈N,M,⊲〉 and the ordering σ
Output: An EF1 and PO allocation A
1: A← (∅, . . . , ∅), Gpref ← (N,M,E, ψ)
2: while there is an unallocated chore do
3: Take i0 ∈ N s.t. |Ai0 | is minimal (break ties by σ)
4: Find an alternating path p = (c0, i1, c1, . . . , is, cs) in Gpref such that cs is unallocated and ψ(i0, c0) is

largest possible
5: A← A updated along p,
6: Ai0 ← Ai0 ∪ {c0}
7: end while
8: return A

Such partial allocation is not PO, thus agents have to exchange their chores.

As a result, each agent has one chore from its last indifference class. Such partial allocation is EFX

and PO, and in fact it is the only EFX and PO allocation of this subset of chores (up to relabeling of the

agents). However, assigning chore c3 to any one agent will result in an allocation that violates EFX.

Finally, we note that we can overcome the above problems and find an EFX and PO allocation

when we deal with two agents only. Indeed, Gafni et al. [2021] have shown that for each chores-

only instance we can construct an equivalent goods-only instance with n − 1 goods for each chore

of the original instance (the goods can be interpreted as “not doing a chore”). Then, each EFX and

PO allocation in the chores-only instance correspond to an EFX and PO allocation in the goods-

only instance, and vice-versa, assuming that no agent receives two goods that come from the same

chore. For two agents, this condition is always satisfied, thus whenever we have an algorithm

guaranteeing EFX and PO for goods (and here we have Algorithm 1), we have one for chores as

well.

Remark 1. Given a weakly lexicographic chores-only instance (N,M,⊲) with two agents, we can

always find an EFX and PO allocation in polynomial time.

5.3 EF1 and PO

In this section, we show that despite the challenges in obtaining EFX and PO shown in Examples 2

and 3, if we relax EFX to EF1, then we can always find an EF1 and PO allocation.

To this end, we need to adapt the definitions from Section 4 to chores-only setting. Most of them

are symmetrically applicable. To point out the only difference, we explicitly define alternating paths

for chores. Given a preference graph Gpref = (N,M,E,ψ) and an (possibly partial) allocation A,

an alternating path, p = (c0, i1, c1, . . . , is, cs), is a path in Gpref (possibly of length zero) such that

• the chores in p are pairwise distinct,

• p alternates between edges that belong and do not belong to A, i.e., (cr−1, ir) ∈ A, for every

r ∈ [s], and (ir, cr) 6∈ A, for every r ∈ [s], and

• for every r ∈ [s], agent ir weakly prefers chore cr over cr−1, i.e., ψ(cr−1, ir) ≤ ψ(ir, cr).
Note that since items are chores, an agent prefers its higher indifference class, which is the

difference with the goods.
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The Algorithm. Algorithm 3 proceeds similarly to Algorithm 1 with criteria F = null. Fix an

ordering of agents, σ. We initialize the algorithm with the empty allocation. Then, in each iteration

of the main loop (lines 2–7), we take an agent i that has the least number of chores (the earliest

in σ if there is a ties). Next, agent i chooses the most preferred (i.e., least important) available

chore, c0. We update the allocation along alternating path from c0 to an unallocated chore (if c0 is

allocated), and assign c0 to i. After m iterations of the main loop, all chores are allocated and we

return the final allocation.

We illustrate Algorithm 3 in the following example.

Example 4. Consider a chores-only instance with three agents, four chores and preferences as follows:

1 : c1 ⊲ {c2, c3, c4}

2 : {c1, c2, c3}⊲ c4

3 : {c1, c2}⊲ {c3, c4}

Let σ = (1, 2, 3). In iteration 1, agent 1 receives c4. However, c4 is still available, so in iteration 2,

agent 2 gets c4, while agent 1 exchanges c4 for c3 in an alternating path.

Next, agent 3 receives c3 and we update the allocation along the alternating path, p = (c3, 1, c2).
Finally, agent 1 gets c1.

The proof of correctness of Algorithm 3 is similar to the proof of Theorem 3A and is relegated

to Appendix F.

Theorem 4. Given a weakly lexicographic chores-only instance (N,M,⊲), Algorithm 3 always returns

an EF1 and PO allocation.

6 Concluding Remarks

We showed that when dealing with goods allowing agents to express indifferences immediately

results in computational hardness for deciding the existence of an EF allocation. Yet, we developed

an algorithm that always finds an EFX, MMS, and PO allocation in polynomial time; and more

importantly, our algorithm is versatile as it enables a social planner to select a set of desired fairness

criteria. An intriguing future direction is investigating whether our positive results can be extended

beyond weak lexicographic orderings, possibly to allow for more complex (e.g. combinatorial)

preferences.

We illustrated the challenges in dealing with chores when agents have weakly lexicographic

preferences. While in this setting EFX implies MMS for chores—in contrast to the goods-only case—

finding an algorithm for achieving EFX allocations (with or without PO) remains an interesting

open problem. Nonetheless, we developed an algorithm for finding an EF1 and PO allocation in

this domain.
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Appendix

A Envy-Freeness for Goods

Theorem 1. Deciding whether an EF allocation exists for a given weakly lexicographic goods-only

instance is NP-complete, even if every agent has at most two indifference classes.

Proof. Observe that given an allocation, we can check if it is EF in polynomial time. Thus, our

problem is in NP. Hence, let us focus on showing the hardness of our problem.

We prove the hardness by a reduction from EQUITABLE COLORING (EC). The EC problem is

defined as follows. For a fixed constant l ∈ N, given a graph G, the task is to determine if there

exists a proper l-coloring, i.e., an assignment of l colors to the vertices of the graph such that no two

adjacent vertices are of the same color, with the property that the numbers of vertices in any two

color classes differ by at most one. We further extend the EC problem by requiring that each color

class has the same number of vertices. This problem is known to be NP-complete by a reduction

from GRAPH k-COLORABILITY Gary and Johnson [1979], Hosseini et al. [2020]. Let G = (V,E),
where |V | = n and |E| = m.1 We assume that l ≥ 3 and that in the graph G each vertex has

a degree of at least two. Since EC was shown to be NP-hard for much more restricted classes of

graphs Furmańczyk et al. [2013], we still retain NP-hardness in this more general version of the

problem. The assumption that each vertex has at least two incident edges, implies that there are at

least that many edges as vertices, i.e.,

m ≥ n. (2)

Finally, since for small number of vertices and fixed l the problem can be solved in polynomial time

by a brute-force algorithm, without loss of generality, we assume that the number of vertices is at

least three times greater than the number of colors, i.e., n ≥ 3l.
For an EC instance, a graph G = (V,E), we construct its corresponding weakly lexicographic

instance 〈N,M,⊲〉. To this end, we take m + l agents, i.e., one agent, ae, for each edge e ∈ E
and one agent, ar, for each color r ∈ [l]. Furthermore, we take 2m+ n goods, where we have two

goods, e and e′, for every edge e ∈ E and one good, v, for every vertex v ∈ V . Thus, the set of

goods is given by M = E ∪ E′ ∪ V , where E′ = {e′ : e ∈ E}. Finally, the preferences are such

that each agent has two indifference classes. More precisely, each edge agent ae has all the edge

goods and vertex goods which are incident to the edge e in the first indifference class and the rest

of the goods in the second one. Meanwhile, each color agent ar has all the vertex goods in the first

indifference class, while all the edge goods are in the second class. Formally,

ae :
(

E ∪ E′ ∪ {v, v′}
)

⊲

(

V \ {v, v′}
)

, for every e = (v, v′) ∈ E, and

ar : V ⊲

(

E ∪ E′
)

, for every r ∈ [l].

In what follows, we will show that there exists an equitable l-coloring of G if and only if there

is an EF allocation A in the corresponding allocation instance.

First, assume that the graph G admits an equitable l-coloring. Consider an allocation A such

that for every e ∈ E, edge agent ae receives two edge goods e and e′, and for every r ∈ [l], color

agent ar receives all vertex goods of color r. Since all the edge agents receive exactly two goods

which are from their first indifference classes, there is no envy among them. Moreover, for every

e = (v, v′), the edge agent ae envies none of the color agents as due to the proper coloring of G, the

vertex goods v and v′, which are in the first indifference class of the agent ae, are not allocated to

1To maintain consistency with the standard graph notation, it should be noted that in this context, the variables n

and m do not represent the number of agents and the number of goods as in the rest of the paper.
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the same color agent. Each color class is of the same size and therefore, each color agent receives

the same number of goods. Thus, there is no envy among the color agents. Each color agent envies

none of the edge agents given that each color agent gets at least 3 vertex goods (by the assumption

that n ≥ 3l) and has all the edge goods in its second indifference set. Hence, the allocation A is EF.

Conversely, assume that there is an EF allocation denoted by A. We will show that this implies

the existence of a proper l-coloring for the graph G. In order to establish this, we will prove a series

of Claims 1 – 10 that pertain to the properties of the allocation A.

Claim 1. For each e ∈ E, edge agent ae receives at most two edge goods under A.

Proof. Suppose, for a contradiction, that there is some edge agent ae who receives three or more

edge goods. For every edge agent, all the edge goods are in its first indifference class. Thus, all the

edge agents should receive at least three or more goods that are in their first indifference classes (as

otherwise they will envy ae). Therefore, there should be at least 3m goods to be allocated among

the edge agents. By Equation 2, the number of goods in the instance, 2m + n, is bounded by 3m.

This implies that after allocating at least 3m goods to the edge agents, no good will be allocated to

the color agents. Thus, the color agents will surely be envious—a contradiction.

Claim 2. For every r ∈ [l], color agent ar receives at least one vertex good under A.

Proof. Suppose, for a contradiction, that there is some color agent ar who does not receive any

vertex good. Since its first indifference class consists exactly of all vertex goods, it envies an agent

that receives some vertex good—a contradiction.

Claim 3. For every r ∈ [l], color agent ar receives at most one edge good under A.

Proof. Suppose, for a contradiction, that there is some color agent ar who receives two or more

edge goods. By Claim 2, this agent also receives some vertex good v0. By the assumption that the

graph G has minimum degree two, there exists some edge e0 = (v0, v1) incident to the vertex v0
and also a cycle that contains e0, i.e., (e0, e1, . . . , ez), in which ek = (vk, vk+1) and vz+1 = v0. Since

the agent ar receives three goods from the first indifference class of ae0 , the latter agent has to

receive three such goods as well. Thus, by Claim 1, two edge goods and the vertex good v1 must

be assigned to the agent ae0 . Similarly, the agent ae1 views the bundle of ae0 as having the score

vector of at least (3, 0). Hence, it has to receive two edge goods and the vertex good v2. Continuing

this way, we can show by induction that agent aek for every k ∈ [z] is given two edge goods and

vertex good vk+1. However, since vz+1 = v0 this leads to a contradiction.

Claim 4. There exists some e ∈ E such that edge agent ae receives two edge goods under A.

Proof. Observe that if none of the color agents receives an edge good, then by a pigeonhole princi-

ple some edge agent has to receive at least two edge goods. Therefore, let us assume that there is

some color agent ar who receives an edge good (by Claim 3, it can receive at most one edge good).

Suppose, for a contradiction, that none of the edge agents receive more than one edge good.

By Claim 2, gent ar also receives some vertex good v0. Now, consider a similar construction as in

the proof of Claim 3. Take a cycle (e0, e1, . . . , ez) such that ek = (vk, vk+1) and vz+1 = v0. Since

the agent ae0 views the bundle of ar as having the score vector of at least (2, 0), it must receive two

goods from its first indifference class. Given that the agent ae0 does not receive two edge goods (by

the assumption), it has to receive the vertex good v1 together with one edge good. Continuing this

way, we can show by induction that agent aek for every k ∈ [z] is given one edge good and vertex

good vk+1. However, since vz+1 = v0 this leads to a contradiction.
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Claim 5. For every e ∈ E, if edge agent ae has two edge goods, then it does not receive a vertex good

under A.

Proof. Suppose, for a contradiction, that there is some edge agent ae who receives two edge goods

and a vertex good. Then, every other edge agent views the bundle of the edge agent ae as having

the score vector of at least (2, 1). Therefore, to guarantee envy-freeness of A, every other edge

agent should receive at least three goods. Thus, at least 3m goods should be allocated among

the edge agents. Then, there will be at most one good to be allocated to the color agents, which

contradicts Claim 2.

Claim 6. For each e ∈ E, edge agent ae receives exactly two goods under A.

Proof. Observe that if none of the color agents receives an edge good, then each edge agent has to

receive two edge goods (and nothing more) by Claims 1 and 5. Therefore, let us assume that there

is some color agent ar who receives an edge good.

By Claim 4, there is at least one edge agent who receives two edge goods. Therefore, all edge

agents should receive at least two goods. Suppose now, for a contradiction, that there is some edge

agent aē who receives more than two goods. By Claim 1, the edge agent aē must receive at least one

vertex good. Moreover, by Claim 5, this agent can not get two edge goods. Therefore, aē receives

at least two vertex goods.

Since all vertex goods are in the first indifference set of the agent ar, it should receive at least

two vertex goods as well. Let us denote one of these vertex goods by v0. Once again, consider a

similar construction to those in the proofs of Claims 3 and 4. Take a cycle (e0, e1, . . . , ez) such that

ek = (vk, vk+1) and vz+1 = v0. Since the agent ae0 views the bundle of ar as having the score vector

of at least (2, 1), it must receive two goods from its first indifference class and one good from its

second class. By Claim 5, the agent ae0 has to receive one edge good and two vertex goods one of

which is the vertex good v1. Continuing this way, we can show by induction that agent aek for every

k ∈ [z] is given one edge good and two vertex goods one of which is vertex good vk+1. However,

since vz+1 = v0 this leads to a contradiction.

Claim 7. There exists some r ∈ [l], the color agent ar receives at least n
l

goods under A.

Proof. The total number of goods in the instance is 2m + n. By Claim 6, edge agents receive 2m
goods in total. Therefore, one of the color agents must receive at least n

l
goods from the pigeonhole

principle.

Claim 8. For each e ∈ E, edge agent ae receives exactly two edge goods and no vertex good under A.

Proof. Observe that if none of the color agents receives an edge good, then each edge agent should

receive exactly two edge goods and nothing more by Claims 1 and 5. Therefore, assume now that

there is some color agent ar who receives at least one edge good.

By Claim 2, the agent ar also receives vertex good v. By the assumption that the graph G has

minimum degree two, there is an edge e = (v, v′) which is incident to the vertex v. The agent

ae views the bundle of the agent ar as having the score vector (2, 0) or better. Since the edge

agent ae receives exactly two goods (by Claim 6), the color agent ar cannot receive any other good

(otherwise, the agent ae will envy the agent ar). Thus, the color agent ar also receives exactly

two goods – one edge good and the vertex good v. By Claim 7, there is some color agent ar′ who

receives at least n
l

goods, which is at least 3 goods by the assumption that n ≥ 3l. Since the agent

ar′ also receives one or more vertex goods (by Claim 2), the agent ar views the bundle of the agent
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ar′ as having the score vector (1, 2) or better. Thus, the agent ar will be envious of the agent ar′—a

contradiction.

Claim 9. For each r ∈ [l], color agent ar receives exactly n
l

vertex goods and no edge good under A.

Proof. From Claim 8 all edge goods are distributed among edge agents, and all vertex goods are

distributed among color agents. Since there is no envy among color agents and they have identical

preferences, every color agent must receive exactly the same number of vertex goods, i.e., n
l
.

Claim 10. For every e ∈ E with e = (v, v′), there is no r ∈ [l] such that the color agent ar receives

both the vertex goods v and v′ under A.

Proof. Suppose, for a contradiction, that there is some color agent ar who receives both of the

vertex goods v and v′ for some edge e = (v, v′). By Claim 8, edge agent ae has two edge goods and

nothing more. However, by Claim 9, agent r has n
l

goods, which by our initial assumptions that

n ≥ 3l is at least 3. Since both v and v′ are in the first indifference class of e that makes agent ae
envy agent ar, which is a contradiction.

To conclude the proof, observe that we can identify the color of each vertex with the color

agent that received the corresponding vertex good. By Claim 10 such coloring will be proper and

by Claim 9 it will be equitable as well.

Observe that the EF allocation constructed in the proof for the NP-completeness of the EF-

existence problem satisfies PO as well. This is because every good is assigned to an agent who

has it in its first indifference set. As a result, the problem of determining whether an EF and PO

allocation is also NP-complete.

Corollary 1. Deciding whether an EF and PO allocation exists for a given weakly lexicographic goods-

only instance is NP-complete.

B Correctness of Algorithm 1

Theorem 3. Given a weakly lexicographic goods-only instance (N,M,⊲), Algorithm 1 always returns

(A) if criteria F = null, an EF1 and PO allocation;

(B) if criteria F = EFX, an EFX and PO allocation;

(C) if criteria F = MMS, an MMS and PO allocation; and

(D) if criteria F = EFX + MMS, an EFX, MMS and PO allocation.

Proof. Throughout the proof, we will use t to denote the number of an iteration of the main loop

(lines 2–8), and each variable used in the algorithm with superscript t, e.g., At or U t, will denote

the value of this variable at the end of iteration t. For convenience, by A0 or U0, etc., we denote

the initial values of these variables.

We start the proof by showing that Algorithm 1 is well defined and always returns a complete

allocation for all statements (A), (B), (C) and (D) of Theorem 3. To this end, observe that in each

iteration of the main loop (lines 2–8), we take one still unallocated good, gs, and assign it to one

of the agents identified by Algorithm 2 (possibly, changing the assignments of some of the already

allocated goods on the way). Hence, after m iterations of the main loop, we allocate all items.

The remainder of the proof is organized into the three main parts as follows:

21



1. First, we will prove several basic properties regarding the concepts and notions used in the

proof, which hold for all considered criteria F (Claim 1 to 3).

2. Next we will show several results that make some assumptions on the criteria we consider

(Claim 4 to 6).

3. Then, for each statement, we will provide a separate proof for the fairness of the output

allocation: EF1 for (A), EFX for (B), MMS for (C), and EFX and MMS for (D).

4. Finally, we will prove PO of the output allocation once for all statements.

Part 1: Basic common properties.

By Xt let us denote the set of all unavailable goods in iteration t, i.e., goods from which there is

no alternating path to an unallocated good in Gpref . Let us prove the basic properties regarding

unavailable goods and score vectors of agents.

Claim 1. For every agent i ∈ N , its indifference classes k, k′ ∈ [ki], and iterations t, t′ ∈ [m], such that

k′ < k and t′ < t, it holds that

(a) an unavailable good stays unavailable, i.e., Xt′ ⊆ Xt,

(b) agents weakly prefer their goods over the available ones, i.e., if si(k,A
t
i) > 0, then ⊲i(k

′) ⊆
Xt−1,

(c) the score of the own bundle of an agent is (weakly) monotonic, i.e., si(k,A
t
i) ≥ si(k,A

t′

i ),

(d) if an agent has an unavailable good, then the whole indifference class with this good is unavail-

able, i.e., if ⊲i(k,A
t
i) ∩X

t 6= ∅, then ⊲i(k) ⊆ X
t.

Proof. For (a), we will show that for every good g ∈M , if g ∈ Xt, then g ∈ Xt+1, which will imply

the thesis by induction. If g ∈ Xt, then, for allocation At, there is no alternating path in Gpref

that starts in g and ends in an unallocated good. Hence, the same is true for every good g′, for

which there exists an alternating path that starts in g and ends in g′. This means that in the next

iteration, the allocation of every such good g′ as well as good g has to remain the same (only the

available goods can change ownership in lines 5 and 6 of the algorithm). Thus, again, for allocation

At+1, there is no alternating path in Gpref starting in g and ending in an unallocated good. Thus,

g ∈ Xt+1.

For (b), assume by contradiction that there exists an available good that is strictly preferred by

agent i over one of its owned goods, i.e., there exist g ∈ M \Xt−1 and g′ ∈ At
i such that g ≻i g

′.

Let k be an indifference class of good g′, i.e., g′ ∈ ⊲i(k), and t′ be the first iteration in which

si(k
′, At′

i ) > 0 for some k′ ≥ k. Since by an exchange in an alternating path each agent always

weakly prefers its new goods over the old ones, this means that in iteration t′ agent i was chosen

in line 3 of the algorithm and received a new good, g′′ ∈ ⊲i(k
′), in line 5. Observe also that t′ ≤ t,

which means, by (a), that g was available at the end of iteration t′−1. However, since g ≻i g
′ �i g

′′,

agent i should receive good g instead of g′′ in iteration t′—a contradiction.

For (c), observe that the bundle of an agent can change only in line 5 and 6 of the algorithm. In

line 5 an agent receives an additional good, thus the score si(k,A
t
i) can only increase. Hence, let us

prove that it is not possible for a score si(k,A
t
i) to decrease as an effect of the exchange along the

alternating path in line 6 of the algorithm. To the end, we will show that in the alternating paths

an agent exchanges only goods it sees as indifferent. More formally, let p = (g0, i1, g1, . . . , is, gs) be

an alternating path chosen in line 4 of the algorithm. We will prove that for every j ∈ [s], it holds

that gj−1 ∼ij gj .
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Observe that gj �ij gj−1 by the the definition of an alternating path. Observe also that gj is

available at the end of iteration t−1, as witnessed by alternating path p′ = (gj , ij+1, gj+1, . . . , is, gs).
Thus, from (b) we get that gj−1 �ij gj , which proves that gj−1 ∼ij gj .

For (d), assume for a contradiction that there exists g ∈ ⊲i(k,A
t
i)∩X

t and g′ ∈ ⊲i(k)\X
t. This

means that there exists an alternating path p = (g0, i1, g1, . . . , ir, gr) in Gpref that starts in g0 = g′

and ends in some unallocated good gr. Thus, since i is indifferent between g and g′, we get that

path (g, i, g0, i1, g1, . . . , ir, gr) is also alternating. As a result, g is available—a contradiction.

Next, let us prove some basic observations regarding set U and envy in our algorithm.

Claim 2. For arbitrary iterations t′, t ∈ [m] and agents i, j ∈ N such that t′ < t, it holds that

(a) no agent becomes prioritized again, i.e., U t ⊆ U t′ ,

(b) the sizes of bundles of agents in U are as equal as possible, i.e., 0 ≤ |At
i| − |A

t
j | ≤ 1, if i, j ∈ U t

and σ(i) < σ(j), and

(c) an agent cannot start envying an agent that did not receive more goods, i.e., if At′

j �j A
t′

i and

|At′

i | = |A
t
i|, then At

j �j A
t
i.

(d) an agent never envies agents that are later in the ordering, i.e., if σ(i) < σ(j), then At
i �i A

t
j .

Proof. We get (a) directly from the algorithm as U t is always chosen as a subset of U t−1 in line 7

by checking criteria F (Algorithm 2).

For (b), since in line 3 of the algorithm we choose an agent from U (whenever it is nonempty)

with the smallest number of goods and from (a) U never gets new agents, the difference in the

number of goods of agents in U never increases above one. Since we break ties according to σ, if

the number of goods is not equal, it is the earlier agent in σ that has one more good.

For (c), assume otherwise, i.e., At′

j �j A
t′

i and |At′

i | = |A
t
i|, but At

i ≻j A
t
j . From Claim 1c we

have At
i ≻j A

t
j �j A

t′

j �j A
t′

i . Thus, in order for the envy to appear, between iteration t′ and t,
agent i had to exchange one of its goods for a good, g, which is preferred by j over one of its goods,

g′, in At′

j . This implies that g was available in iteration t′. However, this and the fact that g ≻j g
′

contradicts Claim 1b.

Finally, for (d), assume by contradiction that there is an iteration t such that At
j ≻i A

t
i and let

us take the first such t. Since At−1
i �i A

t−1
j , in iteration t, agent j obtains good g (either receives it

in line 7 or exchanges for another good in the alternating path in line 6) that is preferred by agent

i over one of i’s goods. Since j received g in iteration t it must be that g was available at the end of

iteration t− 1, i.e., g 6∈ Xt−1. However, this contradicts Claim 1b.

Finally, let us show a quite technical result that if an agent has only unavailable goods and

potentially envies other agent, then the envied agent has at least the same amount of unavailable

goods.

Claim 3. For every iteration t ∈ [m] and agents i, j ∈ N such that At
i ⊆ Xt, if i potentially envies j,

but not actually envies, then |At
i| ≤ |A

t
j ∩X

t|.

Proof. Let us denote the set of available goods in iteration t by Ht = M \ Xt. By definition, if i
potentially envies j, then it strictly prefers bundle At

j ∪H
t over its bundle. This means that there

exists a position k̄ such that si(k̄, A
t
j∪H

t) > si(k̄, A
t
i) and si(k,A

t
j∪H

t) = si(k,A
t
i), for every k < k̄.

By k∗ let us denote the last position for which si(k
∗, At

i) > 0. From Claim 1b and Claim 1d we know

that every good in the first k∗ indifference classes of i is unavailable. Thus, for every k ≤ k∗, we
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have si(k,A
t
j) = si(k,A

t
j ∪H

t). Since i does not actually envy j, this means that k̄ > k∗ (otherwise,

we would have si(k̄, A
t
j) = si(k̄, A

t
j ∪ H

t) > si(k̄, A
t
i)) Hence, we get the bound in question, i.e.,

|At
j ∩X

t| ≥
∑k∗

k=1 si(k,A
t
j) =

∑k∗

k=1 si(k,A
t
i) = |A

t
i|.

Part 2: Criteria specific properties.

We now move the second part of the proof in which we consider properties that rely on specific

fairness criteria.

Claim 4. If criteria F = EFX or F = EFX + MMS, then for every t ∈ [m] it holds that U t 6= ∅.

Proof. Observe that in every directed graph, there exists a strongly connected component without

any incoming edge. In particular, such a component exists in Genvy(A
t, S) for every S ⊆ N and

t ∈ [m]. Hence, in each iteration t ∈ [m], for some agent i ∈ U t−1, Algorithm 2 will return True and

keep it in U t.

Now, let us show one of the key observation of the proof that allows us to guarantee EFX: if an

agent, j, envies another agent, i, with at most the same number of goods, then there is no potential

envy path from i to j in Genvy. We will use this result later on to prove that, in such cases, i can be

eliminated from U .

Claim 5. If criteria F = EFX or F = EFX+MMS, then for every agents i, j ∈ N , and iteration t ∈ [m]
such that j envies i and |At

i| ≤ |A
t
j |, there is no path p = (i1, . . . , ir) in Genvy(A

t−1, N) such that

i = i1 and j = ir.

Proof. We will prove that for every agents i, j ∈ N , if t ∈ [m] is the first iteration in which j envies

i and |At
i| ≤ |A

t
j |, then in iteration t− 1, it holds that:

(a) agent j envies i, i.e., At−1
i ≻j A

t−1
j ,

(b) agent i has one more good than agent j in its bundle, i.e., |At−1
i | = s and |At−1

j | = s− 1

(c) all goods of agent i are unavailable, i.e., At−1
i ⊆ Xt−1, and

(d) there is no path p = (i1, . . . , ir) in Genvy(A
t−1, N) such that i = i1 and j = ir.

Observe that point (d) will imply the thesis of the claim, as by Claim 1a and Claim 1c , it is not

possible for the potential envy to reappear in our algorithm once it is gone. Thus, if there is no

potential envy path from i to j in iteration t, then there is no such path in any later iteration.

Assume otherwise. Fix arbitrary agents i, j ∈ N , and take the first iteration t ∈ [m] such that j
envies i and |At

i| ≤ |A
t
j |. Observe that from Claim 2d we know that i is before j in the ordering σ.

Denote s = |At
i|. Let us now prove each of the points (a)–(d) separately.

Point (a). Let us start by showing that actually |At
j | = |A

t
i| = s. Assume otherwise, i.e., |At

j | > s.

Let t′ be the last iteration in which |At′

j | = s. This means that in iteration t′ + 1 agent j is chosen

in line 3 of the algorithm, not agent i. Since |At′

j | = s ≥ |At′

i | and σ(i) < σ(j), this implies that

i 6∈ U t′ and j ∈ U t′ . From the minimality of t, we know that j does not envy i in iteration t′, i.e.,

At′

j �j A
t′

i . Hence, |At′

i | 6= s, as otherwise this would violate Claim 2c. Thus, |At′

i | < s. However,

since i 6∈ U t′ and the fact that, by Claim 4, set U is never empty, the number of goods of i cannot

increase in later iterations. But this contradicts the fact that |At
i| = s.

Let us now show that agent j envies i in iteration t− 1 as well. Assume otherwise, i.e., the envy

appeared in iteration t. From Claim 2c this means that i received a new good in line 7 of iteration

t, which means that |At−1
i | = s − 1 and |At−1

j | = s. Consequently, this implies that i ∈ U t−1 from
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the fact that U is never empty (Claim 4). Furthermore, from Claim 2b we get that j 6∈ U t−1. Let

t′ be the last iteration in which j ∈ U t′ . By Claim 2b, |At′

j | ≤ |A
t′

i | ≤ |A
t−1
i | = s − 1. Observe that

between iterations t′ + 1 and t agent j cannot receive new goods in line 7 of the algorithm (as i
should receive a good before j). Hence, |At′+1

j | = |At
j | and the latter is equal to s as we have shown

in the previous paragraph. Thus, in iteration t′ we have |At′

j | = |A
t′

i | = s− 1. But then, it is agent i
that should receive a new goods in line 7 of iteration t′ + 1 not j—a contradiction.

Point (b). Since, by (a), agent j envies i in iteration t − 1, then by minimality of t, this means

that |At−1
i | > |A

t−1
j |. Since in each single iteration, the number of goods increases by one for one

agent and stays the same for all others, it must be that |At−1
i | = s and |At−1

j | = s− 1.

Point (c). Now let us show that at the end of iteration t − 1 all goods of agent i are un-

available. Assume for contradiction that At−1
i 6⊆ Xt−1. By k∗ let us denote the last position

for which sj(k
∗, At−1

j ) > 0. Since, by (a), j envies i there must be a position k̄ ∈ N such that

sj(k̄, A
t−1
i ) > sj(k̄, A

t−1
j ) and sj(k,A

t−1
i ) = sj(k,A

t−1
j ), for every k < k̄. Now, let us consider two

cases based on relation between k∗ and k̄.

If k̄ ≥ k∗, then since j has only one less good than i, k̄ is the only position on which score

vectors sj(A
t−1
i ) and sj(A

t−1
j ) differ. Specifically, sj(k̄, A

t−1
i ) = sj(k̄, A

t−1
j ) + 1 and sj(k,A

t−1
i ) =

sj(k,A
t−1
j ), for every k < k̄. Take arbitrary i’s available good, g ∈ At−1

i \Xt−1. From Claim 1b we

know that g must be in the k̄-th or k∗-th indifference class of agent j. In line 7 of iteration t agent

j receives the most preferred available good, which, since g is available, has to be in k̄-th or earlier

indifference class. Thus, sj(A
t
j) ≥lex sj(A

t
i), but this contradicts the fact that j envies i.

Now, consider the case in which k̄ < k∗. By Claim 1b, all i’s goods in k̄-th and earlier in-

difference classes of j are unavailable. Thus, if we remove all available goods we still have

sj(A
t−1
i ∩ Xt−1) >lex sj(A

t−1
j ). Now, let t′ < t − 1 be some iteration in which |At′

j | = |A
t′

i | =

|At−1
i ∩ Xt−1| (from Claim 2b and Claim 4 we know that there exists at least one). By Claim 1c,

At−1
j �j A

t′

j , thus At−1
i ∩Xt−1 ≻j A

t′

j . On the other hand, from the minimality of t we know that

j does not envy i in iteration t′, i.e., At′

j �j A
t′

i . Since j weakly prefers At′

j over At′

i but not over

At−1
i ∩Xt and we know that |At′

i | = |A
t−1
i ∩Xt−1|, there must be a good in the latter but not former,

g ∈ (At−1
i ∩ Xt−1) \ At′

i , that j strictly prefers over one of its goods g′ ∈ At′

j . However, since g is

assigned to agent i in some iteration later than t′, g is available in t′. But then the fact that g ≻j g
′

contradicts Claim 1b. Therefore, all of the goods in At−1
i are unavailable.

Point (d). In order to prove this point, let us take minimal iteration t ∈ [m] for which there

are agents i, j ∈ N such that j envies i, |At
j | ≥ |A

t
i| and there is a path p = (i1, i2, . . . , ir)

in Genvy(A
t−1, N) such that i = i1 and j = ir. We will show by induction that each agent in

{i1, i2, . . . , ir} has |At
i| = s unavailable goods in iteration t − 1. This will lead to contradiction as

from (b) we know that agent j = ir has s− 1 goods in total.

The basis of induction follows from (c). For the inductive step, assume that iu has s unavailable

goods for arbitrary u ∈ [r − 1]. Observe that since in iteration t − 1 we have that j ∈ U t−1 and it

has s− 1 goods, then by Claim 2b, no agent has more than s goods. Thus, all of the goods of iu are

unavailable. Hence, by Claim 3, either iu actually envies iu+1 or iu+1 also has s unavailable goods.

In the former case, by minimality of t, we get that there is no potential envy path from iu+1 to iu in

Genvy(A
t−2, N). Since j potentially envies i in t− 2 (as otherwise it would not envy it in t− 1), this

means that there is no potential envy path from iu+1 to j in Genvy(A
t−1, N), which contradicts our

assumptions. Hence, iu+1 has s unavailable goods. Thus, by induction, we obtain that j also has s
unavailable goods, but that contradicts the fact that |At−1

j | = s− 1, which concludes the proof.

Next, we show the key result for the proof of MMS. Specifically, we consider an arbitrary agent
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i and iteration t such that all goods in the first k indifference classes of agent i are unavailable.

We show that in such a case the score vector of i’s bundle is lexicographically as large as its MMS

vector up to first k coordinates (a). Moreover, if all of i’s goods are from its first k classes and

there is an agent with less goods than i, then i strictly prefers its bundle to its MMS (b). Finally,

if the first k positions of the score of i’s bundle are exactly the same as the first k positions of i’s
MMS, then we can identify a certain subset of agents that are not in U with a specific number of

goods in total (c). To this end, let us introduce some additional notation. For an agent i, let us

denote set ⊲i(1: k) = ⊲i(1) ∪ · · · ∪ ⊲i(k) and vectors si(1: k,A
t
i) = (si(1, A

t
i), . . . , si(k,A

t
i)) and

MMSi(1: k) = (MMSi(1), . . . ,MMS)i(k)).

Claim 6. If fairness criterion F = MMS or F = EFX + MMS, then for every iteration t ∈ [m], agent

i ∈ N , and k ∈ N such that ⊲i(1: k) ⊆ X
t, it holds that:

(a) si(1: k,A
t
i) ≥lex MMSi(1: k),

(b) if si(k
′, At

i) = 0 for every k′ > k and there is an agent j ∈ U t such that |At
j | < |A

t
i|, then

At
i >lex MMSi,

(c) if si(1: k,A
t
i) = MMSi(1: k) and i ∈ U t, then there is a subset of agents L ⊆ N \ U t such that

|L| = n− rk+1 and

∑

j∈L

|At
j | =

k
∑

u=1

si(u)− rk+1 ·
k

∑

u=1

MMSi(u),

where, as in Proposition 1, r1 = n and ru+1 = ru− (si(u)−MMSi(u) ·ru), for every u ∈ [ki−1].

Proof. We will prove the claim by induction on the iteration number t. Observe that for t = 0, for

every agent i we have ⊲i(1) 6⊆ X0. Hence, the thesis holds vacuously. Thus, let us take t > 0 and

assume that for every t′ ∈ [t − 1] the thesis holds. In what follows, we will show that each point

(a)–(c) also holds in iteration t.
Point (a). Assume otherwise, i.e., there is k ∈ N such that ⊲i(k

′) ⊆ Xt for every k′ ≤ k, but

si(k
′, At

i) =lex MMSi(k
′), for every k′ ∈ [k − 1], and si(k,A

t
i) < MMSi(k). Observe that since the

point (a) was satisfied in iteration t − 1, it must be that there is k∗ ∈ [k] such that ⊲i(k
∗) 6⊆ Xt−1.

Since si(A
t
i) <lex MMSi, we know that i ∈ U t and, by Claim 2a, i ∈ U t−1. Thus, from (c) for

iteration t− 1 we get that there is a set L ⊆ N \ U t−1 such that |L| = n− rk∗ and

∑

j∈L

|At
j | =

k∗−1
∑

u=1

si(u)− rk∗ ·
k∗−1
∑

u=1

MMSi(u). (3)

Let us denote s = |At
i|. Since i ∈ U t, by Claim 2b, no agent has more than s+1 goods. Now, let

us consider two cases, based on whether k∗ = k (1) or k∗ < k (2).

Case (a.1) Assume k∗ = k. Then, since by Claim 2b si(k,A
t
i) = 0 for every k′ ≥ k, we have

|At
i| =

k
∑

u=1

si(u,A
t
i) <

k
∑

u=1

MMSi(u), (4)

while for every j ∈ N \ L \ {i}, we have

|At
j | ≤ |A

t
i|+ 1 ≤

k
∑

u=1

MMSi(u). (5)
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Adding inequalities (3), (4), and (5) sidewise together, we get
∑

j∈N |A
t
j | <

∑k−1
u=1 si(u) − rk ·

∑k−1
u=1 MMSi(u) + rk ·

∑k
u=1 MMSi(u), which gives

∑

j∈N

|At
j | <

k−1
∑

u=1

si(u) + rk ·MMSi(k) ≤
k

∑

u=1

si(u),

where the last inequality comes from the definition of the sequence r1, . . . , rkj . However, this stands

in a contradiction to the fact that all items from ⊲i(1), . . . ,⊲i(k) are unavailable, hence allocated.

Case (a.2). If k∗ < k, then by Claim 1b, it must be that si(k
′, At−1

i ) = 0, for every k′ > k∗. Also,

since some goods from ⊲i(k
∗) are still available after iteration t − 1, if it is agent i that is chosen

in line 3 of iteration t, it will receive a good from this class. Thus, also si(k
′, At

i) = 0, for every

k′ > k∗.
Thus, we have,

|At
i| =

k∗
∑

u=1

si(u,A
t
i) =

k∗
∑

u=1

MMSi(u), (6)

while for every j ∈ N \ L \ {i}, we have

|At
j | ≤ |A

t
i|+ 1 = 1 +

k∗
∑

u=1

MMSi(u). (7)

Adding equation (3) and inequalities (6) and (7) sidewise together, we get

∑

j∈N

|At
j | ≤

k∗−1
∑

u=1

si(u) + rk∗ ·MMSi(k
∗) + (rk∗ − 1). (8)

From the definition of the sequence r1, . . . , rkj we have that

k
∑

u=k∗

si(u) =
k

∑

u=k∗

(ru − ru+1 + ru ·MMSi(u))

≥ rk∗ ·MMSi(k
∗) + rk ·MMSi(k) +

k
∑

u=k∗

(ru − ru+1)

≥ rk∗ ·MMSi(k
∗) + rk ·MMSi(k) + rk∗ − rk

≥ rk∗ ·MMSi(k
∗) + rk∗,

where the last inequality comes from the fact that si(k,A
t
i) < MMSi(k), thus MMSi(k) ≥ 1. Com-

bining this with inequality (8), yields
∑

j∈N |A
t
j | <

∑k
u=1 si(k), which contradicts the assumption

that ⊲i(k
′) is unavailable, thus also allocated, for every k′ ∈ [k].

Point (b). Assume otherwise, i.e., there is k ∈ N such that ⊲i(1 : k) ⊆ Xt, agent j ∈ U t such

that |At
j | < |A

t
i|, and it holds that si(A

t
i) ≤ MMSi and si(k

′, At
i) = 0, for every k′ > k. From (a) we

know that this means that si(1: k,A
t
i) = MMSi(1: k).

Observe that since the point (b) was satisfied in iteration t− 1, it must be that there is k∗ ∈ [k]
such that ⊲i(k

∗) 6⊆ Xt−1. Since, by Claim 1c, si(A
t−1
i ) ≤ si(A

t
i) ≤ MMSi, this means that i ∈ U t−1.

Thus, from (c) for iteration t− 1, we know that there is L ⊆ N \ U t−1 such that |L| = n− rk∗ and

∑

h∈L

|At
h| =

k∗−1
∑

u=1

si(u)− rk∗ ·
k∗−1
∑

u=1

MMSi(u). (9)
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Let us denote s = |At
i|. Then, |At

j | < s. Since j ∈ U t, from Claim 2b we know that |At
j | = s− 1

and no agent has more than s goods. If k∗ < k, then from Claim 1b it must be that si(k
′, At−1

i ) = 0,

for every k′ > k∗. Hence, no matter the relation between k∗ and k, it holds that

s =

k
∑

u=1

si(u,A
t
i) =

k∗
∑

u=1

si(u,A
t
i) =

k∗
∑

u=1

MMSi(u).

Therefore,

|At
j | = s− 1 =

k∗
∑

u=1

MMSi(u)− 1, (10)

while for every h ∈ N \ L \ {j}, we have

|At
h| ≤ s =

k∗
∑

u=1

MMSi(u). (11)

Adding inequalities (9), (10), and (11) sidewise together, we get
∑

h∈N |A
t
h| ≤

∑k∗−1
u=1 si(u)− rk∗ ·

∑k∗−1
u=1 MMSi(u) + rk∗ ·

∑k∗

u=1 MMSi(u)− 1, which gives

∑

h∈N

|At
h| <

k∗−1
∑

u=1

si(u) + rk∗ ·MMSi(k
∗)

≤
k∗
∑

u=1

si(u).

However, this stands in a contradiction to the fact that all items from ⊲i(1), . . . ,⊲i(k
∗) are unavail-

able, hence allocated.

Point (c). Take iteration t ∈ [m], agent i ∈ U t, and class k ∈ [ki] such that ⊲i(1 : k) ⊆ Xt

and si(1 : k,At
i) = MMSi(1 : k). First, let us consider the case in which the first k classes of i

are unavailable also in iteration t − 1, i.e., ⊲i(1: k) ⊆ Xt−1. Observe that U does not increase

(Claim 2a) and the agents in U do not receive more goods if U is not empty (and since i ∈ U t, it is

not empty). Thus, since (c) holds for iteration t − 1, we get that it holds also for t. Therefore, for

the remainder of the proof, we will assume that there is k∗ ∈ [k] such that ⊲i(k
∗) 6⊆ Xt−1.

From Claim 2a and the assumption that i ∈ U t we get that i ∈ U t−1. Thus, from (c) for iteration

t− 1 we know that |U t−1| ≤ rk∗ and there is L ⊆ N \ U t−1 such that |L| = n− rk∗ and

∑

j∈L

|At
j | =

k∗−1
∑

u=1

si(u)− rk∗ ·
k∗−1
∑

u=1

MMSi(u). (12)

The fact that ⊲i(1: k) ⊆ Xt, implies that
∑

j∈N |A
t
j ∩ ⊲i(1: k)| =

∑k
u=1 si(u). Combining this

with equation (12) implies that among agents in N \L there are
∑k

u=k∗ si(u)+rk∗ ·
∑k∗−1

u=1 MMSi(u)
goods from ⊲i(1: k). From the definition of the sequence r1, . . . , rki , we have that

k
∑

u=k∗

si(u) =
k

∑

u=k∗

(ru − ru+1 + ru ·MMSi(u))

=

k
∑

u=k∗

ru ·MMSi(u) + rk∗ − rk+1.
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Thus,
∑

j∈N\L

|At
j ∩⊲i(1: k)| = rk∗ − rk+1 + rk∗ ·

k∗
∑

u=1

MMSi(u) +

k
∑

u=k∗+1

ru ·MMSi(u).

Since ⊲i(k
∗) 6∈ Xt−1, then by Claim 1b, we know that si(u,A

t
i) = 0 for every u > k∗. Hence,

by the assumption that si(1 : k,At
i) = MMSi(1 : k), we get that MMSi(u) = 0 for every u ∈

{k∗, k∗ + 1, . . . , k}. Therefore,

∑

j∈N\L

|At
j ∩⊲i(1: k)| = rk∗ − rk+1 + rk∗ ·

k∗
∑

u=1

MMSi(u). (13)

Now, let us denote s = |At
i| =

∑ki
u=1 si(u,A

t
i) =

∑k∗

u=1 MMSi(u). By Claim 2b, no agent has

more than s + 1 = 1 +
∑k∗

u=1 MMSi(u) goods. By equation (13), the fact that |N \ L| = rk∗, and

a pigeonhole principle kind of argument, this means that there are at least rk∗ − rk+1 agents with

s+ 1 goods from ⊲i(1: k).
Let j be an arbitrary agent with s + 1 goods from ⊲i(1: k) at the end of iteration t. We will

show that necessarily j 6∈ U t. Observe that all goods of agent j belong to ⊲i(1: k), hence they are

unavailable. In particular, if l is the last indifference class such that sj(l, A
t
j) > 0, then by Claim 1d

we know that ⊲j(l) ⊆ Xt. Also, from Claim 1b we know that this is the case for every indifference

class of j before l. Thus, since i has less goods than j, from (b) we have that sj(A
t
j) >lex MMSj .

Hence, if fairness criterion F = MMS, then j 6∈ U t.

Now, let us show that the same holds if fairness criterion F = EFX + MMS. We can show that

sj(A
t
j) >lex MMSj in the same way, hence let us focus on showing that there is no path from j to i in

graph Genvy(A
t, U t−1). Assume otherwise, i.e., there exists a path (i0, i1, . . . , ir) in Genvy(A

t, U t−1)
such that j = i0 and i = ir. Similarly to the proof of Claim 5c, we will inductively show that this

would imply that every agent in the path has s+ 1 unavailable goods, which would contradict the

fact that |At
i| = s. The basis of induction we have already established, i.e., agent j has s+ 1 goods

and all of them are unavailable. For the inductive step, assume that for some u ∈ [r − 1] agent iu
has s+ 1 unavailable goods. Since no agent has more than s+ 1, this means that all iu’s goods are

unavailable. Hence, if agent iu does not actually envy iu+1, but only potentially, then iu+1 has s+1
unavailable goods from Claim 3. Thus, assume that iu actually envy agent iu+1. Observe that iu+1

has to be in U t if there is a potential envy path from iu+1 to ir in Genvy(A
t, U t−1). Moreover, since

iu envies iu+1, from Claim 2d we know that iu+1 is before iu in the ordering σ. Hence, by Claim 2b,

agent iu+1 also has s + 1 goods. But then, from Claim 5c we get that all of the goods of iu+1 are

unavailable. Thus, by induction, we get that i has s+1 unavailable goods, which is a contradiction.

Hence, also in this case, j 6∈ U t. Let us denote by L′ the union of L and the set of such agents in set

N \L. Observe that |L′| = (n− rk∗)+ (rk∗ − rk+1) = n− rk+1. Moreover, from the definition of the
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sequence r1, . . . , rki and the fact that MMSi(u) = 0 for every u ∈ {k∗ +1, k∗ +2, . . . , k} we get that

∑

j∈L′\L

|At
j | = (rk∗ − rk+1) · (s+ 1)

= (rk∗ − rk+1) · (1 +
k

∑

u=1

MMSi(u))

= (rk∗ − rk+1)(1 + MMSi(k
∗) +

k∗−1
∑

u=1

MMSi(u))

=
k

∑

u=k∗

si(u)− rk+1 ·MMSi(k
∗) + (rk∗ − rk+1) ·

k∗−1
∑

u=1

MMSi(u).

Hence, from equation (12), we get

∑

j∈L′

|At
j | =

∑

j∈L′\L

|At
j |+

∑

j∈L

|At
j |

=

k
∑

u=1

si(u)− rk+1 ·
k∗
∑

u=1

MMSi(u)

=

k
∑

u=1

si(u)− rk+1 ·
k

∑

u=1

MMSi(u).

Therefore, L′ is a desired set of agents.

Part 3: Fairness guarantees.

In this part of the proof, we will show how Claim 1 to 6 imply the fairness guarantees in the

statements (A)–(D). Let us consider each of the statements separately.

(A): EF1. Let us show that if there is no criteria, i.e., F = null, then the output allocation is

EF1. To this end, observe that at the end of every iteration, U contains all agents, i.e., for every

t ∈ [m], U t = N .

For iteration t and two agents i, j let eti,j be a vector such that

eti,j(k) =

{

1, if k is minimal s. t. sj(k,A
t
i) > 0,

0, otherwise.

Observe that an allocation At is EF1, if and only if, for every agents i, j ∈ N it holds that sj(A
t
j) ≥lex

sj(A
t
i) − e

t
i,j . Let us show that indeed, for every t ∈ [m], allocation At is EF1. For a contradiction,

let us assume that there is t ∈ [m] such that sj(A
t
i) − e

t
i,j >lex sj(A

t
j) for some i, j ∈ N and let us

take the first such t.
Let t′ < t be the last iteration in which agent j has less goods than in iteration t, i.e., |At′

j | < |A
t
j|.

This means that in iteration t′ + 1 agent j is chosen in line 3 of the algorithm and receives a good,

g, in line 5. Let k ∈ [kj ] be such that g ∈ ⊲j(k) and let ek be a vector with 1 on k-th position and 0

otherwise. Then, by Claim 1c,

sj(A
t
j) = sj(A

t′

j ) + ek. (14)

Now, let us compare vectors x = (x(1), . . . , x(kj)) = sj(A
t′

i )+ek−e
t′

i,j and y = (y(1), . . . , y(kj)) =
sj(A

t
i)− e

t
i,j. Observe that:
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(a) |At
j | ≥

∑kj
u=1 y(u) by Claim 2b;

(b) x(u) ≥ y(u) for every u < k, since, by Claim 1b, all goods from the first k − 1 classes of j are

unavailable ⊲j(1 : k− 1) ⊆ Xt, which means that between iteration t′ and t, agent i can only

gain new goods from the k-th and further indifference classes of j;

(c) sj(u,A
t
j) = 0 for every u ∈ [k], by Claim 1b and the fact that g ∈ ⊲j(k) is available in iteration

t− 1; and finally

(d) sj(A
t
j) ≥lex x. This holds since from minimality of t, we have sj(A

t′

j ) ≥ sj(A
t′

i ) − et
′

i,j .

Combining this with equation (14), yields sj(A
t
j) ≥lex sj(A

t′

i ) + ek − e
t′

i,j = x.

Finally, let us show that sj(A
t
j) ≥lex y. If there is u ∈ [k − 1] such that either x(u) > y(u) or

sj(u,A
t
j) > x(u), then by (b) and (d) we get that sj(A

t
j) >lex y. Hence, assume otherwise, i.e.,

sj(u,A
t
j) = x(u) = y(u) for every u ∈ [k − 1]. Then, from (c) and (a) we get that

sj(k,A
t
j) = |A

t
j | −

k−1
∑

u=1

sj(u,A
t
j) ≥

kj
∑

u=1

y(u)−
k−1
∑

u=1

y(u) ≥ y(k),

where the equality is only possible if y(u) = 0 for every u > k. Thus, sj(A
t
j) ≥lex y, which

contradicts the assumption that i and j violate EF1 at the end of iteration t.
(B): EFX. Let us show that if criteria F = EFX, then the output allocation satisfies EFX.

Assume by contradiction that for some iteration t ∈ {0, . . . ,m} allocation At is not EFX and let

us take the first such t. Since for t = 0, empty allocation A0 is EFX, we know that t > 0. This means

that there exist agents i, j ∈ N and good g ∈ At
i such that j prefers At

i \ {g} over its bundle. From

Claim 2d we know that i is before j in ordering σ.

Let t′ < t be the last iteration in which agent i had smaller number of goods, i.e., |At′

i | < |A
t
i|.

This means that in iteration t′ + 1 agent i was chosen in line 4 of the algorithm. Thus, by Claim 4,

i ∈ U t′ and |At′

i | = |A
t′+1
i | − 1 = |At

i| − 1. Observe that j ∈ U t as otherwise there would be some

iteration t′ < t in which j did not potentially envy i, so, by Claim 1c, j could not envy i in iteration

t. Hence, since i is before j in ordering σ, from Claim 2b we get that in iteration t′ agents i and

j had equal number of goods, i.e., |At′

i | = |A
t′

j |. Let us show that necessarily t′ + 1 6= t. Assume

otherwise. By Claim 5 and the fact that i ∈ U t′ this means that j does not envy i in iteration

t′. Let k∗ ∈ N be the last position for which there is a positive number in j’s bundle score, i.e.,

sj(k
∗, At′

j ) > 0. By Claim 1c, sj(k
∗, At′+1

j ) > 0 as well. Then, a good, g′, that agent i receives in

iteration t′ + 1 has to be in a k-th indifference class of j for some k < k∗ (otherwise removing any

good from At′+1
i would eliminate the envy). However, since g′ was available in iteration t′, this

contradicts Claim 1b.

Therefore, t′ + 1 < t and j and i do not violate EFX in iteration t′ + 1. Since |At
i| = |A

t′+1
i | and,

by Claim 1c, At
j �j A

t′+1
j , this means that between iteration t and t′ + 1 agent i exchanged one of

its goods for a good g that is preferred by j over one of goods from At′+1
j . However, this means that

g was available at iteration t′ + 1, which contradicts Claim 1b. Thus, At is EFX for every t ∈ [m].
(C): MMS. Observe that if criteria F = MMS, then the fact that the output allocation satisfies

MMS follows directly from Claim 6a: at the end of the algorithm all goods are unavailable, thus

si(Ai) ≥lex MMSi, for every agent i ∈ N .

(D): EFX+MMS. Let us show that if criteria F = EFX+MMS, then the output allocation satisfies

EFX and MMS. Observe that MMS follows directly from Claim 6a: at the end of the algorithm all

goods are unavailable, thus si(Ai) ≥lex MMSi, for every agent i ∈ N .
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Therefore, let us focus on proving EFX. Assume by contradiction that for some iteration t ∈
{0, . . . ,m} allocation At is not EFX and let us take the first such t. Since for t = 0, empty allocation

A0 is EFX, we know that t > 0. This means that there exist agents i, j ∈ N and good g ∈ At
i such

that j prefers At
i \ {g} over its bundle. From Claim 2d we know that i is before j in ordering σ.

Let t′ < t be the last iteration in which agent i had smaller number of goods, i.e., |At′

i | < |A
t
i|.

This means that in iteration t′ + 1 agent i was chosen in line 3 of the algorithm. Thus, by Claim 4,

i ∈ U t′ and |At′

i | = |A
t′+1
i | − 1 = |At

i| − 1. Observe that j ∈ U t as otherwise there would be some

iteration t′′ < t in which j did not potentially envy i, so, by Claim 1c, j could not envy i in iteration

t. Hence, since i is before j in ordering σ, from Claim 2b we get that in iteration t′ agents i and j
had equal number of goods, i.e., |At′

i | = |A
t′

j |.
Let us prove that j does not envy i in iteration t′. Assume otherwise and observe that, by

Claim 5c, all goods of j are unavailable in iteration t′− 1. Hence, by Claim 1d, also all indifference

classes of j containing these goods are unavailable. Therefore, from Claim 6b, At′−1
i >lex MMSi.

However, combining this with Claim 5d yields j 6∈ U t′−1, which is a contradiction.

Now, we will show that necessarily t′ + 1 6= t. Let us denote the good that agent i receives in

line 6 of iteration t′ + 1 as g′. Also, let k∗ ∈ N be the last position for which there is a positive

number in j’s bundle score, i.e., sj(k
∗, At′

j ) > 0. By Claim 1b, g′ ∈ ⊲j(k
∗ : kj). Since by Claim 1c

sj(A
t′

j ) = sj(A
t′+1
j ), this means that removing any good from At′+1

i would eliminate the envy. Thus,

i and j do not violate EFX in iteration t′ + 1, hence t′ + 1 6= t.
Therefore, t′ + 1 < t and j and i do not violate EFX in iteration t′ + 1. Since |At

i| = |A
t′+1
i | and,

by Claim 1c, At
j �j A

t′+1
j , this means that between iteration t and t′ + 1 agent i exchanged one of

its goods for a good g that is preferred by j over one of goods from At′+1
j . However, this means that

g was available at iteration t′ + 1, which contradicts Claim 1b. Thus, At is EFX for every t ∈ [m].
Part 4: Pareto optimality.

Finally, let us prove that the output of our algorithm is always a PO allocation.

To this end, we will show that for each iteration t ∈ {0, . . . ,m}, partial allocation At is PO.

Assume otherwise. Let us take the first iteration t such that At is not PO. From Theorem 2 we know

that there is an alternating path, p = (g0, i1, g1, . . . , is, gs) and agent i0 such that (gs, i0) ∈ A
t and

ψ(i0, g0) < ψ(gs, i0). Since allocation At−1 is PO, either (gs, i0) 6∈ A
t−1 or path p is not alternating

for At−1. Either way, this means that at least one of the goods on path p changed the owner in

iteration t. Let us take the one such good gu with the smallest u ∈ [s]. As gu changed the owner,

it has to be available in t− 1, i.e., gu 6∈ X
t−1. Since u is the smallest, the part of the original path,

(g0, i1, g1, . . . , iu, gu), is still an alternating path in At−1. Thus, g0 is available in t − 1 as well. By

Claim 1b, this means that agent i0 weakly prefers each of its goods in At over g0. However, this

stands in contradiction to the fact that (gs, i0) ∈ A
t and ψ(i0, g0) < ψ(gs, i0).

C Comparison with Aziz et al. [2023a]

In this appendix, we compare Algorithm 1 and the algorithm developed by Aziz et al. [2023a] for

the purpose of studying possible fairness that also achieves EFX, MMS and PO for every weakly

lexicographic goods-only instance. We note that both algorithms were developed independently

and there are important differences between them both in terms of the techniques they utilize and

the final outcomes they produce (see Example 5).

Our algorithm (in contrast to Aziz et al. [2023a]’s) directly checks a predefined fairness re-

quirement for the bundle of each agent in each round of the runtime. Then, the agents with an

unfair advantage stop receiving more goods and the priority is given to the worse-off agents. Such
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construction has several benefits.

Firstly, the working mechanism behind our algorithm is well-structured and easy to understand,

which is in a sharp contrast with the more black-box approach of Aziz et al. [2023a]. Thus, we

believe that our formulation of the algorithm holds an educational value as it allows for explanation

of where the fairness comes from.

Secondly, our algorithm is customizable in the sense that a set of imposed fairness requirements

can be modified, which will directly affect the outcome of the algorithm. This in turn allows for

easy modification of the algorithm to different notions of fairness (including and beyond the notions

studied in this paper).

Finally, the construction of our algorithm introduces the techniques of potential envy and pref-

erence graph, which can be found useful on their own.

In contrast, the algorithm of Aziz et al. [2023a] uses an exchange graph, which is a directed

graph whose vertices are goods and there is an edge (g, g′) for g, g′ ∈ M if there is an agent i ∈ N
such that g ∈ Ai and g′ �i g. The algorithm starts by initializing an empty bundle for each agent.

The agents that can still receive goods are kept in set N , which is updated over the run of the

algorithm. In each round, each agent in N (in an arbitrary order) receives its most preferred good

out of the unallocated ones or the ones that can be freed if other agents exchange their goods in

along the edges of the exchange graph. After the goods are allocated, the set N is updated. To

this end, the algorithm looks at the set of goods distributed in this round. If some agent, i, strictly

prefers the good received by another agent, j, over its own, then agent j is removed. Moreover,

whenever an agent is removed, all agents with whom it can exchange goods received in this round

are also removed. The algorithm proceeds this way until all of the goods are allocated.

In addition to the differences in the construction, the outcomes of the two algorithms can also

be significantly different. Let us consider the following example to illustrate this.

Example 5. Consider the instance given in Example 1.

1 : {g1, g2 }⊲ {g3, g4 }

2 : g1 ⊲ {g2, g3, g4}

3 : g1 ⊲ {g2, g3 , g4}

The outcome of Algorithm 1 with F = EFX + MMS:

In iteration 1, agent 1 receives g1 (see the red highlight in Figure 1a). Observe that good g1 is

still available since there exists an alternating path (g1, 1, g2) ending in an unallocated good. Thus, in

iteration 2, agent 1 exchanges g1 for g2 and agent 2 receives g1. Then, in the potential envy graph at

the end of iteration 2, i.e., Genvy(A
2, U1), agent 3 is the only agent that forms a strongly connected

component with no incoming edge, U2
e . Moreover, since for each of agents 1 and 2, its bundle is above

the respective MMS threshold, we remove them from U , thus U2 = {3}. Therefore, agent 3 receives

goods g3 and g4. The final allocation is underlined.

The outcome of the algorithm of Aziz et al. [2023a]:

In the first round, the algorithm begins by giving agent 1 good g1. Next, in the same round, since

agent 1 can exchange good g1 for g2, agent 2 gets good g1 and agent 1, g2. The first round ends, with

agent 3 receiving good g3. Observe that agent 3 strictly prefers good g1 over g3, thus agent 2 is removed

from set N , i.e., N = {1, 3}. In the second round, agent 1 receives good g4. The final allocation is

circled with red.

Observe that although the allocation produced by the algorithm of Aziz et al. [2023a] is EFX, agent

3 envies agent 1. In our Algorithm 1, since agent 1 received a good from its first indifference class, we
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know that it will never envy agent 3, thus we do not give any more goods to agent 1. As a result, agent

3 does not envy agent 1 and the total number of envy relations between the agents is smaller in the

output of our algorithm.

D Examples of Running Algorithm 1

In this section, we analyze several examples for the goods-only setting.

In Examples 6 to 8, we illustrate how Algorithm 1 runs with different fairness criteria F in its

input on the same instance.

Example 6. Consider a goods-only instance with three agents, seven goods and preferences as follows.

Each agent partitions the goods into two indifference classes.

1 : {g1, g2, g3}⊲ {g4, g5, g6, g7}

2 : {g1, g2, g3}⊲ {g4, g5, g6, g7}

3 : {g1, g2, g3, g4, g5}⊲ {g6, g7}

Algorithm 1 with F = null (EF1 and PO):

First, agents 1, 2 and 3 receive goods g1, g2 and g3, respectively. Then, agent 1 points to g3, and

we update the allocation along the alternating path p = (g3, 3, g4) and assign g3 to agent 1. In the

following iterations, agents 2 and 3 receive goods g6 and g5 in order. Finally, agent 1 receives good g7.

The final allocation is underlined.

Example 7. Consider the instance given in Example 6.

1 : {g1, g2, g3}⊲ {g4, g5, g6, g7}

2 : {g1, g2, g3}⊲ {g4, g5, g6, g7}

3 : {g1, g2, g3, g4, g5}⊲ {g6, g7}

Algorithm 1 with F = EFX (EFX, PO, but not MMS):

First, agents 1, 2 and 3 receive goods g1, g2 and g3, respectively. Observe that every agent potentially

envies every other agent at the current allocation. Thus, agent 1 points to g3, and we update the

allocation along the alternating path p = (g3, 3, g4) and assign g3 to agent 1. Then, agent 3 is the only

agent that is not potentially envied. Therefore, 3 receives the rest of the goods. The final allocation is

underlined. Observe that this allocation is EFX. However, agent 2’s MMS threshold is not met, as it

receives no good from its second indifference class.

Example 8. Consider the instance given in Example 6.

1 : {g1, g2, g3}⊲ {g4, g5, g6, g7}

2 : {g1, g2, g3}⊲ {g4, g5, g6, g7}

3 : {g1, g2, g3, g4, g5}⊲ {g6, g7}

Algorithm 1 with F =MMS (MMS and PO):

First, agents 1, 2 and 3 receive goods g1, g2 and g3, respectively. Then, agent 1 points to g3, and

we update the allocation along the alternating path p = (g3, 3, g4) and assign g3 to agent 1. Agent 1
prefers its bundle to its MMS threshold. However, agents 2 and 3 have not yet met their MMS. Thus,

agent 2 receives goods g6 and g7, while agent 3 gets g5. The final allocation is underlined.
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E EFX and MMS Relation

In the current section, we present examples for the relation between EFX and MMS under both

goods-only and chores-only settings.

The fact that EFX (even with PO) does not necessarily imply MMS in the goods-only setting

is visible in Example 7. In contrast, as shown in Section 5.1, EFX implies MMS for chores-only

instances. However, Example 9 illustrates that MMS coupled with PO does not imply EFX for this

setting, even when agents have at most two indifference classes.

Example 9. Consider a chores-only instance with three agents, three chores and preferences as follows.

Agent 3 has all chores as one class while the others partition the chores into two indifference classes.

1 : c1 ⊲ {c2, c3}

2 : c1 ⊲ {c2, c3}

3 : {c1, c2, c3}

Observe that the underlined allocation is MMS and PO. But agent 1 envies agent 2 more than EFX.

F Correctness of Algorithm 3

In this appendix, we show that our Algorithm 3 indeed always finds an EF1 and PO allocation.

Helpful for that will be the observation made by [Ebadian et al., 2022, Lemma 4.14] that the

PO characterization in Theorem 2 can be also adapted to chores-only instances. For completeness,

we provide its proof in Appendix G.

Theorem 5. Given a weakly lexicographic chores-only instance (N,M,⊲), an (possibly partial) allo-

cation A is PO, if and only if, there is no alternating path, p = (c0, i1, c1, . . . , is, cs) and agent i0 such

that (cs, i0) ∈ A and ψ(i0, c0) > ψ(cs, i0).

Let us now move to the proof of the correctness of Algorithm 3.

Theorem 4. Given a weakly lexicographic chores-only instance (N,M,⊲), Algorithm 3 always returns

an EF1 and PO allocation.

Proof. For every t ∈ [m], by At, we will denote the allocation we have at the end of the t-th iteration

of the main loop of the algorithm (lines 2–7). By A0, we denote the initial empty allocation.

The proof is split in two parts in which we focus on showing that the output allocation is EF1
(part 1) and PO (part 2).

Part 1: The output allocation is EF1.

Let ek denote a vector with all zeros except for 1 in the k-th position. Also, letXt be the set of all

unavailable chores at the end of iteration t, i.e., allocated chores from which there is no alternating

path ending in an unallocated chore. Let us show two claims that correspond to Claim 1a and

Claim 1b from the proof of Theorem 3. First, let us show that unavailable chores do not become

available.

Claim 1. For every iterations t, t′ ∈ [m] such that t < t′, it holds that Xt ⊆ Xt′ .

Proof. The proof is almost identical to that of Claim 1a in the proof of Theorem 3. It suffices to

show that Xt−1 ⊆ Xt, for every t ∈ [m]. Take an arbitrary chore c ∈ Xt−1. Observe that every chore

c′ such that there is an alternating path starting in c and ending in c′ has to be unavailable. Thus,

all of these chores will not change the ownership in iteration t. Thus, they will remain unavailable,

i.e., c ∈ Xt.
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The second claim ensures that agents weakly prefer their chores over the available ones.

Claim 2. For every agent i ∈ N , iteration t ∈ [m], and chore c ∈ At
i, it holds that c �i c

′, for every

c′ ∈M \Xt−1.

Proof. The proof is similar to that of Claim 1b in the proof of Theorem 3. Assume by contradiction

that there exists c ∈M \Xt−1 such that c ≻i c
′ for some c′ ∈ At

i. Let k be such that c′ ∈ ⊲i(k) and

let t′ ∈ [m] be the first iteration in which i received a chore, c′′, from its k-th or earlier indifference

class. Thus, t′ ≤ t. Since all chores in At′−1
i are preferred over chore c′′, agent i could not obtain

it in line 5 of the algorithm, by the definition of the alternating path. Hence, i received it in line

6. However, by Claim 1, chore c was also available at the end of iteration t′ − 1. Therefore, since

c ≻i c
′ �i c

′′, agent i should receive c instead of c′′—a contradiction.

Next, let us show how the score vectors of agents are changing as the algorithm progresses.

Claim 3. For every agent i ∈ N and iteration t ∈ [m] it holds that

si(A
t
i) =

{

si(A
t−1
i ), if i is not chosen in line 3 of iteration t

si(A
t−1
i )− ek, otherwise

where k ∈ [ki] is the number of the last indifference class of i with available chores, i.e., si(k,M \X
t) >

0.

Proof. First, consider iteration t ∈ [m] such that i is not chosen in line 3. Then, the bundle of i
can change only due to an alternating path. By definition of an alternating path agent i cannot get

worse off, i.e., si(A
t
i) ≥lex si(A

t−1
i ). Assume by contradiction that si(A

t
i) >lex si(A

t−1
i ). This means

that there is a chore c ∈ At−1
i \ At

i that got exchanged for c′ ∈ At
i \ A

t−1
i such that c′ ≻i c. This

means that c′ was available at the end of iteration t − 1, so, by Claim 1 also t − 2. However, this

contradicts Claim 2. Hence, si(A
t
i) = si(A

t−1
i ).

Now, if in iteration t ∈ [m] agent i is chosen in line 3, then in line 6 it receives an available

chore from its last possible indifference class. The thesis follows.

Now, let us move to the main observation of the proof that is Claim 4. Intuitively, the following

claim guarantees that an agent that is just about to pick a chore, i, does not envy any other agent.

However, it is even a bit stronger than that. Denote by k the first indifference class of agent i from

which i has some chores, i.e., si(k,A
t
i) > 0. Then, the claim guarantees that agent i would not envy

other agents, even if we move all allocated chores from the first k indifference classes of i to the

k-th class of i. For this purpose, some additional notation will be helpful. For every agent i ∈ N ,

indifference class k ∈ [ki], and a subset of chores X ⊆ M , let us denote the score vector of i with

the first k-th positions merged as ski (X) = (
∑

u∈[k] si(u), si(k + 1), . . . , si(ki − k + 1)).

Claim 4. For every agent i ∈ N , iteration t ∈ [m], and k ∈ [ki] such that agent i is chosen in line 3 of

the algorithm in iteration t+1 and k is the first indifference class of i such that si(k,A
t
i) > 0 or k = ki

if si(A
t
i) = (0, . . . , 0), it holds that ski (A

t
i) ≥lex s

k
i (A

t
j), for every agent j ∈ N .

Proof. Assume otherwise and take the first iteration t for which there exist agents i, j ∈ N such

that i is chosen in line 3 of the algorithm in iteration t+ 1, and ski (A
t
j) >lex s

k
i (A

t
i).

Observe that t > n (otherwise, agent i has no chores at the end of iteration t). Let t′ = t − n.

Note that agent i is chosen in line 3 of the algorithm in iteration t′ + 1 and, by Claim 3, receives

a chore from its k-th indifference class in line 6. Thus, from the minimality of t, we get that
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sk
′

i (A
t′

i ) ≥lex s
k′

i (A
t′

j ), where k′ is the first indifference class such that si(k
′, At′

i ) > 0. Since k′ ≥ k,

this implies that

ski (A
t′

i ) ≥lex s
k
i (A

t′

j ). (15)

Since in iteration t′ + 1 agent i gets a chore from its k-th class, all of the chores from its later

classes are no longer available. Thus, the chores from these classes cannot change owners between

iteration t′ and t. In particular, agent j has the same chores from these classes in t′ and t. Since in

line 3 of some iteration between t′ + 1 and t agent j receives an additional chore, which has to be

in the first k indifference classes of i, we get that ski (A
t
j) = ski (A

t′

j )− e1. Therefore, by Claim 3 and

equation (15),

ski (A
t
i) = ski (A

t′

i )− e1 ≥lex s
k
i (A

t′

j )− e1 = ski (A
t
j),

which is a contradiction.

Now, let us prove the main theorem. Fix arbitrary i, j ∈ N . We will show by induction that for

every iteration t ∈ [m] it holds that si(A
t
i) + ek ≥lex si(A

t
j), where k is the first indifference class of

i such that si(k,A
t
i) > 0, or k = ki, if si(A

t
i) = (0, . . . , 0). Since there exists a chore c ∈ At

i such that

si(A
t
i \ {c}) = si(A

t
i) + ek, this will imply that At is EF1. Clearly, for t = 0 the thesis holds. Assume

that the thesis holds for some t ∈ [m] and consider iteration t + 1. Let k be the first indifference

class such that si(k,A
t+1
i ) > 0 or let k = ki if i does not have chores. By Claim 2, the chores from

the later than k-th indifference classes of agent i are not available. Hence, agent j has the same

chores from these classes in t and t+ 1. Thus,

ski (A
t+1
i ) + ek = ski (A

t
j) ≥lex s

k
i (A

t+1
j ) (16)

(the inequality is only possible if j received an additional chore in line 6 of the iteration t+ 1).

If i was chosen in line 3 of iteration t+ 1, then, by Claim 4, we have ski (A
t
i) ≥lex s

k
i (A

t
j). Let c

be a chore that i received in line 6 of iteration t. Then, by Claim 3 and Equation (16),

ski (A
t+1
i \ {c}) = ski (A

t
i) ≥lex s

k
i (A

t
j) ≥lex s

k
i (A

t+1
j ).

Since si(k
′, At+1

i \ {c}) = 0 for every k′ < k, this implies the inductive thesis.

Thus, let us assume that i was not chosen in line 3 in iteration t + 1. Then, by Claim 3,

Equation (16), and the inductive assumption,

ski (A
t+1
i ) + ek = ski (A

t
i) + ek ≥lex s

k
i (A

t
j) ≥lex s

k
i (A

t+1
j ).

Again, the fact that si(k
′, At+1

i \ {c}) = 0 for every k′ < k, implies the inductive thesis.

Part 2: The output allocation is PO.

The proof of PO is similar to the respective part in the proof of Theorem 3. We will prove that for

every t ∈ {0, . . . ,m}, allocation At is PO. Assume otherwise and take the first t such that At is not

PO. By Theorem 5, this means that there is an alternating path, p = (c0, i1, c1, . . . , is, cs) and agent

i0 such that (cs, i0) ∈ A
t and ψ(i0, c0) > ψ(cs, i0). Since At−1 is PO, either (cs, i0) 6∈ A

t−1 or p is not

an alternating path for At−1. In both cases, at least one chore on path p belongs to different agents

in At and At−1. Let us take the first on the path such chore cu, i.e., such that u ∈ [s] is the smallest.

Observe that cu is available in t − 1. Also, the part of path p that is (c0, i1, c1, . . . , iu, cu) is still an

alternating path in At−1 as chores c0, . . . , cu−1 belong to the same agents in At and At−1. Both facts

imply, that c0 is available in t− 1. Hence, by Claim 2, agent i0 weakly prefers each of its chores in

At over c0. However, this contradicts the fact that ψ(i0, c0) > ψ(cs, i0) and (cs, i0) ∈ A
t.
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G PO Characterization for Chores

In this appendix, we present the proof of the PO characterization for weakly lexicographic chores

only instances.

Theorem 5. Given a weakly lexicographic chores-only instance (N,M,⊲), an (possibly partial) allo-

cation A is PO, if and only if, there is no alternating path, p = (c0, i1, c1, . . . , is, cs) and agent i0 such

that (cs, i0) ∈ A and ψ(i0, c0) > ψ(cs, i0).

Proof. If there exists such alternating path and agent i0, then let us obtain A′ from A by updating

it along this path, i.e., A′ = A \ {(cs, i0)} \ {(cr−1, ir) : r ∈ [s]} ∪ {(ir, cr) : r ∈ {0, . . . , s}}. From

the definition of alternating path, for every r ∈ [s], agent ir weakly prefers its bundle in A′ over its

bundle in A. Moreover, i0 strictly prefers its bundle in A′. Thus, we get that A′ Pareto dominates

A.

Thus, it remains to show that if A is not PO, then there exists an alternating path and agent i0
in question. Take an arbitrary A′ that Pareto dominates A and for which the number of reallocated

chores, i.e.,
∑

i∈N |Ai \ A
′
i|, is minimal. By N ′ = {i ∈ N : A′

i 6= Ai} let us denote the set of agents

with different bundles in A′ and A.

For every agent i ∈ N ′, by xi let us denote the first position such that si(xi, Ai\A
′
i) > 0 (observe

that there always exists such xi since i cannot just receive chores without giving away any). For

every chore c ∈ M and agent i ∈ N ′ such that c ∈ Ai \ A
′
i, let us use bc(i) to denote agent j that

has c in A′, i.e., c ∈ A′
j \Aj .

Next, let us consider a directed multigraph, G = (N ′, E) in which the set of vertices is N ′ and

for every agent i ∈ N ′ and chore c ∈ ⊲(xi, Ai \ A
′
i) we put an edge (i, bc(i)). Intuitively, graph G

denotes who has to give the chores to whom to convert A to A′ (where we take into account only

the most important chores from the perspective of the giver).

Observe that every vertex in G has an outgoing edge. Hence, there has to be a cycle, C =
(i0, i1, i2, . . . , is). For every r ∈ [s], let cr−1 be a chore that is "given" by ir to ir−1 and cs by i0
to is, i.e., bcr−1

(ir) = ir−1 and bcs(i0) = is. Fix r ∈ [s]. Since cr−1 is in the xir -th indifference

class of agent ir chore cr has to be in the class xir or further otherwise agent ir would strictly

prefer its bundle in A over A′. Similarly, chore cs has to be in the class xi0 or further for agent

i0. If for every r ∈ {0, . . . , s} it would be in exactly xir -th class, i.e., not higher, then consider

A′′ obtained from A′, i.e., A′′ = A′ \ {(cr−1, ir) : r ∈ [s]} \ {(cs, i0)} ∪ {(cr, ir) : r ∈ {0, . . . , s}}.
Observe that every agent is indifferent between the bundles in A′′ and A′. Hence, A′′ also Pareto

dominates A. However,
∑

i∈N |Ai \ A
′′
i | <

∑

i∈N |Ai \ A
′
i|, which is a contradiction. Thus, there

exists an agent ir in the cycle C that strictly prefers the new chore to the old one. Without loss of

generality, let us assume that r = 0, i.e., c0 is in the later indifference class of i0 than xi0 . Then,

observe that (c0, i1, c1, . . . , is, cs) is an alternating path for allocation A such that (cs, i0) ∈ A and

ψ(i0, c0) > ψ(cs, i0), which concludes the proof.
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