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ABSTRACT

Comprehensive evaluation is one of the basis of experimental sci-
ence. In High-Performance Graph Processing, a thorough evalu-
ation of contributions becomes more achievable by supporting
common input formats over different frameworks. However, each
framework creates its specific format, which may not support read-
ing large-scale real-world graph datasets. This shows a demand for
high-performance libraries capable of loading graphs to (i) accel-
erate designing new graph algorithms, (ii) to evaluate the contri-
butions on a wide range of graph algorithms, and (iii) to facilitate
easy and fast comparison over different graph frameworks.

To that end, we present ParaGrapher, a high-performance API
and library for loading large-scale and compressed graphs. ParaG-
rapher supports different types of requests for accessing graphs in
shared- and distributed-memory and out-of-core graph processing.
We explain the design of ParaGrapher and present a performance
model of graph decompression, which is used for evaluation of
ParaGrapher over three storage types.

Our evaluation shows that by decompressing compressed graphs
in WebGraph format, ParaGrapher delivers up to 3.2 times speedup
in loading and up to 5.2 times speedup in end-to-end execution in
comparison to the binary and textual formats.

ParaGrapher is available online on https://blogs.qub.ac.uk/DIPSA/
ParaGrapher/.
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1 INTRODUCTION

The literature on High-Performance Graph Processing includes
several graph frameworks that optimize graph algorithms for dif-
ferent optimization metrics. The frameworks are implemented us-
ing different parallelization libraries/techniques in different pro-
gramming languages. Since frameworks have designed incompat-
ible and different formats for the input datasets, a comprehen-
sive evaluation across different frameworks and for a wide
range of graph datasets becomes time-consuming, inaccurate,
and sometimes impossible, especially for the emerging trillion-
scale datasets such as Software Heritage version-control-history

graphs! [4] and MS-BioGraphs sequence similarity graphs? [23, 25]
that are published in WebGraph compressed format [5].

For those high-performance graph frameworks that are mostly
implemented in C/C++, the Java implementation of WebGraph
may imply that compressed graphs should be decompressed into
a framework-designed format, stored in the storage, and then be
accessed by the framework. This process is complicated, error-
prone, and invalidates the main benefits provided by graph
compression in WebGraph, i.e., reducing the required space on
storage and the load time.

Moreover, designing a new graph algorithm/framework re-
quires investing time for implementing solutions for loading
graphs (as input datasets to the algorithms), while the main tar-
get of the graph frameworks is, usually, to optimize execution of
graph algorithms. Due to this focus, we observe that graph pro-
cessing frameworks often have highly optimized processing steps
and limited optimizations for graph loading. Nonetheless, it has
been argued that evaluating the end-to-end execution time is a
more appropriate metric than evaluating only the processing
step [1, 37, 39]. As such, there is also value in separately study-
ing and optimizing the process of loading graphs from designing
high-performance graph algorithms.

To this end, we present ParaGrapher, an API and its imple-
mentation as a library for loading graphs. ParaGrapher supports
(i) synchronous (blocking) and asynchronous (non-blocking)
loading of (ii) unweighted, vertex- and edge-weighted graphs (iii) in
different formats, including WebGraph. ParaGrapher is designed
to support several use cases, including loading a graph in full,
or loading specific parts of the graph, down to a single vertex’s
neighbor list. This versatility helps ParaGrapher to be used in a
variety of architectures such as shared-memory, distributed-
memory, and disk-based processing.

By delegating the choice of graph formats to graph dataset pub-
lishers, ParaGrapher helps graph processing frameworks to concen-
trate on processing data in a more efficient way, which accelerates
and simplifies the evaluation and refinement of new (and pre-
vious) falsifiable contributions on a wider range of datasets.

To build a theoretical basis for the evaluation of ParaGrapher
(and generally for evaluation of loading compressed graphs), we

Lhttps://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html
Zhttps://blogs.qub.ac.uk/DIPSA/MS-BioGraphs
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Format bits/edge | Largest Graph Size (|E|)
Matrix Market 82.9 8 Billion
Adjacency Graph 84.5 -

Binary CSX 32.8 -
WebGraph 13.2 2.5 Trillion

Table 1: Graph formats

construct a performance model of loading compressed graphs
to elucidate the relative impacts of (i) storage bandwidth, (ii) com-
pression rate, and (iii) decompression speed on graph loading time.
This model is used to specify when a greater level of compression
accelerates graph loading and when graph loading is bounded by
the decompression speed (i.e., further increase in compression the
ratio does not accelerate the graph loading process).

We present the design of ParaGrapher’s API and the implemen-
tation of this API in ParaGrapher’s library. To access compressed
graph datasets, ParaGrapher provides a C/C++ front-end connected
to a parallel Java back-end that decompresses the whole graph or
requested subgraph using the WebGraph framework.

We empirically evaluate the performance of ParaGrapher
on three storage types (HDD, SSD, and NAS) in comparison to
graph formats (textual and binary) in GAPBS[2], a state-of-the-art
graph framework for loading graphs and end-to-end execution of a
graph analytic algorithm. The evaluation shows that ParaGrapher
provides up to 3.2 times speedup in loading graphs and up to 5.2
times speedup in end-to-end execution.

The contributions of this paper are:

o Introducing the ParaGrapher API and library for loading
large-scale graphs,

e Modeling decompression efficiency based on the storage
characteristics, and

o Evaluating ParaGrapher on three types of storage and in
comparison to a state-of-the-art graph framework.

The paper is structured as follows. Section 2 reviews the back-
ground of graph storage formats. Section 3 presents a model for
decompression efficiency. Section 4 explains the design of ParaGra-
pher API and its implementation for WebGraph format. Section 5
empirically evaluates ParaGrapher. Section 6 presents an analysis
and future directions. Section 7 reviews further related works and
Section 8 concludes the discussion.

2 BACKGROUND

Terminology. A graph G = (V,E) has a set of vertices V, and a
set of directed edges E. The adjacency matrix is a binary matrix
representing the graph: the element at row i and column j is 1
if E contains an edge from vertex i to j, and 0 otherwise. For an
edge-weighted graph, the elements of the adjacency matrix show
the weights on the corresponding edges between vertices.

Graph Loading. Graph processing starts by preparing access to
the input dataset, which is either (i) read from the secondary storage,
(ii) built by a synthetic graph generator [7], (iii) extracted from
table(s) in relational database(s), or (iv) computed from other graph
formats such as sum graphs [15] or context-free grammars [41].
In this paper, we focus on the first method, loading from storage,
which is widely used in igh-Performance Computing.

Textual and Binary Formats. Storage-based graph loading con-
sists of accessing storage for reading data represented in a particular
format. The Textual Coordinated (Txt. COO) or Matrix Market [3]
is used in graph collections such as Network Repository® [47],
Konect* [34], and SuiteSparse® [11]. The input file contains a num-
ber of lines, where each line presents the ID of the endpoint vertices
of an edge. The Textual Metis format [20] stores the neighborhood of
each vertex in the file. The Textual Adjacency (Txt. CSX) format [54]
represents the Compressed Sparse Row (CSR) or Column (CSC) [50]
format of the graph as a textual file. The Compressed Sparse for-
mat consists of two arrays: (1) an offsets array containing |V| + 1
elements, and (2) an edges array of |E| elements. The offsets array
is indexed by a vertex ID and specifies the index of the first edge of
that vertex in the edges array. The edges array specifies the ID of
the source endpoint of the edges for the CSC and the destination
endpoint for the CSR.

While a textual format is easy for humans to read, it wastes
space and requires text-to-binary conversion during reading, which
increases loading time. To prevent this, binary presentation of the
above formats may be used.

Compressed Formats. To better use disk space, the stored graph
may be compressed. Graph compression is also vital for the efficient
transferring of graph datasets over a network. WebGraph® [5] is the
most long-lasting (over 25 years) and accurate open-source graph
compression and processing framework, implemented mainly in
Java. The framework had been mainly targeted for Web graphs
where vertices represent URLs and edges show the hyperlinks,
however, it is now used for compressing and processing different
types of real-world graphs [4, 25].

WebGraph compression works on top of two features: (i) Locality:
most links refer to pages within the same host, and (ii) Similarity:
pages that are close to each other in lexicographic order usually
have common successors. Graphs are compressed in WebGraph
format using delta-encoding, reference compression, differential
compression, and interval representation techniques. In this way,
WebGraph may facilitate up to 35X compression.

Table 1 shows (i) a comparison of #bits/edge for different for-
mats of graphs used in this paper (Table 3) and (ii) the size of
largest (known to us) public graph in each format.

Parallel Loading. All formats mentioned above have the po-
tential to be loaded in parallel. The file contents of a Textual COO
graph can be divided into a number of chunks that are assigned to
threads to be processed. Each thread first specifies the number of
edges in its chunk. The prefix sum of the number of edges in chunks
will be used in the second pass to specify the index for writing the
edge. Similarly, the textual CSX and Metis formats can be read in
parallel. Binary formats can be read more easily by dividing the
file’s total size between threads, and each thread reads its chunk in
parallel with the others.

Parallel Decompression. WebGraph provides random access
to different parts of a compressed graph and parallel threads can
start concurrently accessing different parts of the graph and decom-
pressing it. We explain the details of this procedure in Section 4.

3https://networkrepository.com/
*http://konect.cc/
Shttps://sparse.tamu.edu/
®https://webgraph.di.unimi.it/
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3 MODELING COMPRESSION EFFICIENCY

In this section, we present a mathematical model to shed light on
the opportunities and limitations of loading compressed graphs. We
assume that the storage system has a fixed average read bandwidth
of o, measured in GigaBytes per second (GB/s). So, the uncom-
pressed graph data (stored in a binary representation that matches
one-to-one with the in-memory graph layout) is transferred from
storage to memory at a rate of o GB/s.

The compressed graph is transferred from storage to memory
at the same rate. However, the transferred graph should be decom-
pressed, which requires computation. Working in a multi-processing
environment, different CPU cores are involved in different tasks,
and an extensive overlap between computation and data movement
happens. The overlapping of computation and data movement re-
sults in two scenarios:

(i) Decompression takes relatively little time, which is fully
overlapped with data movement. In this scenario, the data move-
ment (i.e., storage bandwidth) is the main factor in specifying the
throughput bound. Assuming a compression ratio of r > 1 (i.e., r
Bytes have been compressed into 1 Byte), an upper bound on the
rate at which a compressed graph can be loaded is or.

(ii) Decompression takes relatively longer than data move-
ment. In this case, graph loading is bounded by the decompression
time d. Both r and d depend on the compression algorithm, but
d may vary with compression rate r, and the speed of the CPUs
(i.e., frequency and number of cores). In fact, by increasing r, d is
reduced, but the largest value of d remains the upper bound. We
ignore dependencies on CPU speed and compression algorithm.
The second upper bound for graph loading is, thus, identified by d.

Combining the above bounds, the graph loading b has a lower
bound ¢ < b and an upper bound b < min(or, d).

Figure 1 shows the load bandwidth for two storage types: (i) HDD
with 160 MB/s average read bandwidth and (ii) SSD with 3.6 GB/s
average read bandwidth. The quantities 160 MB/s and 3.6 GB/s are
bandwidth measured in this work, which is explained in Section 5.1.

Figure 1 shows that using a storage with a high through-
put (such as SSD), it is necessary to have faster decompres-
sion methods as it is the computation limit (d) that specifies the
efficiency of the decompression process. On the other hand, for a
low-bandwidth storage (such as a single HDD or a remote stor-
age bounded by network limits and shared between users),
compression efficiency is mainly limited by the graph com-
pression ratio.

We use this model in Sections 5 to evaluate the throughput of
ParaGrapher on different storage types and in Section 6 to analyze
the decompression process.

4 PARAGRAPHER

Section 4.1 reviews the requirement of a high-performance graph
loading library to be used effectively in different applications. Sec-
tion 4.2 explains the high-level design of the ParaGrapher API,
which is detailed in Section 4.3. Section 4.4 explains the implemen-
tation of the ParaGrapher for graphs in WebGraph format.
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Figure 1: Load bandwidth model for HDD (with o = 160MB/s
bandwidth) and SSD (¢ = 3.6GB/s bandwidth) - The X-axis
shows the Compression Ratio (r), and the Y-axis shows the Load
Bandwidth (b). The decompression bandwidth (computation limit)
is shown by d. b is modeled as ¢ < b < min(or, d).

4.1 Use Cases and Design Requirements

Static graphs are accessed by different shared-memory, storage-
based, and distributed-memory frameworks in 4 ways:

A. Each edge may be accessed more than one time in algo-
rithms such as Breadth-First Search and Label Propagation
Connected Components. This is a prevalent access pattern
in shared-memory graph frameworks.

B. Each edge is accessed once and processed independently
from the other edges in algorithms such as Jayanti-Tarjan
Connected Components (JT-CC) [19] and Low-Diameter
Decomposition (LDD) [44].

C. A subgraph containing a number of consecutive blocks of
edges is accessed by each machine in a distributed-memory
graph processing framework [42, 43, 52].

D. All edges are required, but memory cannot store all edges.
Therefore, periodically, blocks of consecutive edges are loaded
from storage and processed. This is used in storage-based (out-
of-core) graph frameworks [36, 49, 58].

In addition to support the above access types, it is necessary for
a graph loading API to support parallelism. Computing clusters
are equipped with high-bandwidth parallel storage/file systems
and support concurrent storage accesses. Moreover, it is necessary
for the highly compressed datasets to be decompressed in parallel
as the decompression may require a longer time than loading the
compressed graph. As such, the underlying compression format
should support parallel and random access.

Memory management should also be planned in a graph loading
API as graph algorithms are memory-intensive and simple assump-
tions such as allocating memory for all requested edges may not
be applicable (use case D) or even required (use case B). So, it is
necessary for the API to support solutions that minimize the
impacts that may inherently be implied into the memory
management layer to allow the user application/framework to
have a full authorization around arranging memory.

Minimizing the impacts made on computational resources by call-
ing a function from a graph loading library is not limited to memory
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allocation for edges. The impacts on RAM-based OS caching of
storage contents and finalizing/Killing threads (which have
been started by the library) should also be considered. By
loading (and decompressing) data from the storage, the OS may
cache storage contents in RAM and if this cache is not dropped, the
next memory allocations in the main program/framework may ex-
perience some delays. On the other hand, the library should ensure
the created threads for load parallelization are killed/finished and

do not consume CPU cycles after completion of the load process. 7.

4.2 ParaGrapher API Design

To support all four use cases enumerated in Section 4.1, ParaG-
rapher uses the finest granularity as its base, and the user asks
for a consecutive block of edges. If the whole graph is required,
the user passes the whole range as input to ParaGrapher.

The ParaGrapher API supports loading graphs in blocking and
non-blocking modes. The implementing library may block the
caller thread and return only after completion of loading the graph
or requested subgraph. Figure 2 shows an example of a synchronous
(blocking) call.

Alternatively, the user may need to overlap loading graph
with other tasks such as computation and communicating with
other machines (particularly for use cases B, C, and D). In this case,
a call for loading a subgraph is performed asynchronously, i.e., in
a non-blocking mode and user specifies a callback that is invoked
by the library when all or part of the requested edges have been
read. Figure 3 shows an example of an asynchronous (non-blocking)
call. The call is returned immediately to the user after creating a
thread to load the requested edges. Loading is divided into a number
of edge blocks that are perfromed in parallel, and the callback is
invoked on a new thread after the completion of loading each block.

In the ParaGrapher API, the user may allocate memory for the
block of edges and pass it to the graph loading function. The API
also supports storing data in reusable buffers allocated and
managed by the library. The buffers are then passed to the user,
who is responsible for transferring data to its own data structures.
In this way, ParaGrapher minimizes applying restrictions to the
memory management layer of the graph framework.

4.3 ParaGrapher API in Details

In this section, we review the ParaGrapher APL. A more detailed list
of functions is presented in Appendix A and online on ParaGrapher
repository®. Function names start with paragrapher_, which is
skipped for the sake of brevity.

To initialize the library, init() is called and for opening a
graph open_graph() is used, which receives the graph’s path and
type. To release an opened graph, release_graph() is used. The
get_set_options() function is called to query (get) the properties
of the graph or to set some options of the library. This function
can be used to receive the number of vertices, edges, if the library
reads the graph synchronously or asynchronously, getting/setting

"E.g., if the graph loading library uses OpenMP and an “active” value for
OMP_WAIT_POLICY, and if the main graph processing framework is run on the same
process but using another parallelization library, the OMP threads may continue
consuming CPU cycles.
8https://github.com/DIPSA-QUB/ParaGrapher/wiki/API-Documentation

get_subgraph(...)
user code

ParaGrapher
Figure 2: A synchronous (blocking) call. The library paral-

lelizes loading/decompression while user is waiting for receiving
the requested graph/subgraph all at once.

get_subgraph(callback, ...)

user code
z‘,, ParaGrapher
mack() thread k
h&ﬂt’ack() thread k+1

Figure 3: An asynchronous (non-blocking) call. The exe-
cution is immediately returned to the user and the library par-
allelizes the loading/decompression. Upon completion of load-
ing/decompressing each block of edges, the user is notified through
the callback(). In this way, the user gradually receives the re-
quested graph/subgraph and may start processing them as soon as
the first block of edges has been returned.

Type Vertex ID | Vertex Weight | Edge Weight

Size (Bytes) Size (Bytes) Size (Bytes)
CSX_WG_400_AP 4 0 0
CSX_WG_800_AP 8 0 0
CSX_WG_404_AP 4 0 4

Table 2: WebGraph types in ParaGrapher

the buffer size of threads and the number of buffers, and to query if
loading a graph is completed or how many edges have been read.

To get offsets of vertices of a graph in CSX format, the function
csx_get_offsets() is used, and to get vertex weights function
csx_get_vertex_weights() is used.

To get a block of edges (and their weights if the graph is edge-
weighted) in CSX format, function csx_get_subgraph() is called.
Based on the type of access (synchronous/asynchronous) imple-
mented by the library, this function can be called in both synchro-
nous (i.e., blocking) and asynchronous (i.e., non-blocking) modes.
If the library passes its internal buffers to the user, the user is re-
quired to call csx_release_read_buffers() after it has finished
accessing the buffer. Similarly, for the graphs in COO format, the
function coo_get_edges() is used.

4.4 WebGraphs in ParaGrapher Library

ParaGrapher supports compressed graphs in WebGraph format
and categorizes them into three types shown in Table 2.

The type names end with two characters: the first one is either
A or S and indicates if the graph is loaded asynchronously or syn-
chronously. The second character is P or S to show if the library
loads in parallel or in serial. Note that the current edge-weighted
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graphs have less than 23! vertices, however, ParaGrapher can easily
be extended to support other weights such as WG_80X_AP, X={4,8}.

For loading a WebGraph, ParaGrapher implements a consumer-
producer pattern where the consumer side is implemented in the C
language and the producer side is implemented in Java (as the main
language of the WebGraph framework). ParaGrapher uses shared
memory to communicate between the sides. The C side program
allocates the shared memory for (i) the buffers that contain the
read edges and (ii) for the metadata of each buffer that contains the
status of the buffer and the start and end vertex and edges. A buffer
can be in one of the 5 statuses:

o C_IDLE: the buffer is ready to be allocated for reading an
edge block.

e C_REQUESTED: the metadata of the buffer has been set, and
the Java program can start reading the buffer.

e J_READING: the Java program has created a new thread for
reading the buffer.

o J_READ_COMPLETED: reading has been completed by the Java
program.

o C_USER_ACCESS: the buffer is accessed by the user and the
library cannot use it until the user releases it.

When a buffer is in C_IDLE status and a block of edges should
be read, The C program sets the metadata of the related buffer
and changes its status to C_REQUESTED. The Java program observes
there is a new request, creates a thread for reading the requested
block of edges, and sets the status of the buffer to J_READING.
When reading is completed, the Java program sets the status to
J_READ_COMPLETED to inform the C program that the block has
been read and the user can access the buffer. By observing this sta-
tus, the C program sets the status of the buffer to C_USER_ACCESS
and creates a new thread to run the user-defined callback function.
By the end of the callback function, the user releases the buffer, and
its status is set to C_IDLE so that the C program can start requesting
a new block of edges.

Both sides access the status field in buffer metadata, but in each
step, based on the current value, it is modified by only one side,
and the other side only observes it. So, the observer will see either
the old or new values. By observing the new value, the observer
starts the required operation on its side. Since the observer starts
(and does not stop) an operation after observing a new value in
the status field, delays in propagation of the changed status from
CPU register to cache and then to memory until it is observed
by the observer thread (running on another CPU core) does not
affect the correctness of the synchronization. However, the modifier
thread should ensure that modifying the state happens as the last
modification to the buffer and its metadata.

As we explain in Section 5.5, the ParaGrapher’s WebGraph li-
brary creates up to 2 X #cores concurrent threads for parallelizing
the loading process. The default value of buffer size is 64 Million
edges. The user may change these values. The library tracks the
requests and sends new requests when the previous buffers are free.
In this way, a queuing system is not required for communication
between the C and Java sides.

To ensure ParaGrapher returns the computational resources
as they were before calling (Section 4.1), (i) ParaGrapher finishes
all threads it creates in its Java-side and tracks the status of threads

ICPP ’24,,

Abbr. Name V| | |E| Size on Storage

Txt. COO|Txt. CSX Bin. CSX|WebGraph
RD ||USRoads'! [47] |23 M |58 M|| 940 MB | 671 MB | 403 MB | 122 MB
TW ||Twitter 2010'% [35]| 42M |2.4B|| 40GB | 21GB 93 GB | 4.1GB
G5 ||Graph500 RMAT!? 540 M| 16 B|| 310 GB | 168 GB 68 GB | 51 GB
SH ||SWH Gitlab'* [4] | 1B |55B|| 1.0TB |512GB 217GB | 26 GB
CW ||ClueWeb 201215 1B |74B 1.4TB | 701 GB 286 GB 17 GB
MS |[MS50%¢ [25,33]  |585M|[124B|| 2.3TB | 1.3TB 470 GB | 325GB
Table 3: Datasets - M: Million, B: Billion, MB: MegaBytes, GB:
GigaBytes, TB: TeraBytes

it creates in C-side for the callback specified by the user, (ii) Para-
Grapher minimizes its memory impacts through sharing its buffers
with user and delegating transfer to the user, and (iii) the OS cache
of storage contents is evicted through OS interfaces® or through
calling the flushcache program!? in the ParaGrapher library with
the same functionality.

5 EVALUATION

Experimental Setup. We use a machine with an Intel W-2295
3.00GHz CPU, 18 cores, 36 hyper-threads, 24MB L3 cache, 256 GB
DDR4 2933Mhz memory, running Debian 12 Linux 6.1. The machine
has a 4TB Samsung MZQL23T8HCLS-00A07 PCle4 NVMe v1.4 SSD
and a 6TB Hitachi HUS726060AL 7200RPM SATA v3.1 HDD. The
storage is used without any RAID or caching mechanism.

We also measure the performance of ParaGrapher on a TS-
853DU-RP NAS containing 4xST16000NM001G 16TB Seagate HDDs
connected through a switch to a cluster. A machine with 2 Intel
Xeon Gold 6438Y+, in total, 64 cores, 128 hyper-threads, 120 MB L3
cache, and 256 GB memory used for NAS experiemnts.

We used gcc 12.2, OpenMP [10] for C parallelization, OpenJDK
17.0.10, and WebGraph 3.6.10. We use GAPBS!? [2] as baseline com-
parison. GAPBS is a state-of-the-art graph framework that supports
different graph formats.

Table 3 shows the graph datasets we use for evaluation. G5 is a
RMAT synthetic graph (logz|V| = 26, log2|E| = 33) and the other
ones are real-world graphs. We compressed the binary versions of
G5 and RD to WebGraph format using the WebGraph framework.
Compressing these two graphs required 6.4 and 2,480.1 seconds,
respectively. The other datasets have only been published in We-
bGraph format, and we symmetrized the asymmetric ones. For
comparison with GAPBS, we created CSX Binary and COO edge
list presentation of the graphs. The graphs are encoded with 4 Bytes
ID per vertex as |V| < 232, In the CSX format, the of fsets array
requires 8 Bytes per entry as |E| > 232 for some datasets.

E.g., /proc/sys/vm/drop_cache in Linux, https://www.kernel.org/doc/
Documentation/sysctl/vm.txt.

Ohttps://github.com/DIPSA- QUB/ParaGrapher/blob/main/test/flushcache.c
https://networkrepository.com/road-road-usa.php
2https://law.di.unimi.it/webdata/twitter-2010/
https://github.com/graph500/graph500/tree/newreference/generator, commit 4ff7573
4https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset. html#gitlab-all
Bhttps://law.di.unimi.it/webdata/clueweb12/

®https://doi.org/10.21227/gmd9- 1534

https://github.com/sbeamer/gapbs/, commit 33f73f4
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Figure 4: HDD and SSD read bandwidth benchmarking

5.1 SSD and HDD Read Bandwidth

To have a correct evaluation of the efficiency of the compression,
it is required to have the baseline bandwidth of different storage
types. To that end, in this section, we present an evaluation'® of the
SSD and HDD read bandwidth for (i) different sizes of blocks (4KB
and 4MB), (ii) for 1, 18, and 36 threads, and (iii) for different read
methods: mmap!?, pread??, and read?!. In this experiment, a 12GB
file was used for each evaluation, and the OS cache of storage
contents was dropped before the evaluation. The content of the
file has been divided between the threads based on the block size
granularity (i.e., 4KB/4MB). In the case of mmap, we report accessing
file opened with/out O_DIRECT.

Figure 4 shows the results of this evaluation. It shows that the
bandwidth of HDD can be saturated using a single thread;
however, for SSD, a greater number of threads are required.
Moreover, in HDD, by increasing the number of threads, we may see
degradation in bandwidth. Figure 4 also shows that mmap reduces
the bandwidth of SSD and using O_DIRECT does not have much
impact on mmap. In total, we can practically expect a 160 MB/s
bandwidth for HDD and a 3.6 GB/s bandwidth for SSD.

5.2 Graph Loading

In this section, we evaluate the performance of ParaGrapher in
comparison to Binary CSX and Textual COO formats used in GAPBS

Bhttps://github.com/DIPSA- QUB/ParaGrapher/blob/main/test/read_bandwidth.c
https://man7.org/linux/man-pages/man2/mmap.2.html
2https://man7.org/linux/man-pages/man2/pread.2.html
Hhttps://man7.org/linux/man-pages/man2/read.2.html
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for loading graphs. We run the experiments for HDD, SSD, and NAS,
which are shown in Figure 5.

Section 5.1 shows that the HDD storage has a bandwidth of
160 MB/s, and with 4 Bytes/edge we can expect a throughput of
around 40 Million Edges/second (ME/s) for an uncompressed bi-
nary graph in CSX format. The HDD plot in Figure 5 shows that
ParaGrapher delivers a throughput of up to around 129 ME/s,
i.e., 3.2 times the base storage throughput, which indicates an
efficient usage of compression. Also, we see that ParaGrapher is
able to load all graphs as it partially loads the graph, even if
the graph cannot be stored completely in the memory.
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Similarly, we can expect a throughput of around 900 ME/s for the
SSD storage, however, Figure 5 shows that ParaGrapher provides up
to 260 ME/s throughput. As discussed in Section 3, load bandwidth
is limited by the compression ratio, storage bandwidth, and the
decompression process bandwidth. For a high-bandwidth storage,
the bandwidth of the decompression specifies the limit. This shows
that for high-bandwidth storage (such as SSD), further im-
provements on decompression are necessary to benefit from
decompression. For SSD, we also see that the Binary CSX format
provides a throughput of around 504 ME/s, which is compatible
with the results in Figure 4 (Single threaded read on SSD provides
around 2-2.1 GB/s bandwidth).

Figure 5 shows that ParaGrapher achieves a throughput of up to
179 ME/s when using NAS which is 7.3 times of the throughput of
the Binary CSX format.

5.3 Partial Graph Processing

In Section 4.1, we enumerated four use cases that a graph loading
library should support. In Section 5.2, we evaluated ParaGrapher
for loading the whole graph (use case A). In this section, we eval-
uate ParaGrapher for use cases B, C, and D (storage-based and
distributed-memory graph processing), where a partition of edges
is required. To materialize this condition optimally, we use a graph
algorithm that requires one pass over the edges and processes each
edge independently from the others. By gradually loading edges
and processing them, the experiment evaluates the efficiency of the
ParaGrapher for use cases B, C, and D.

We compare ParaGrapher and GAPBS for the Weakly-Connected
Components (WCC) graph algorithm. GAPBS includes Afforest [57]
and we use an implementation®? of Jayanti-Tarjan WCC (JT-CC) [19]
with ParaGrapher. JT-CC works based on mapping a tree to each
component of graph and requires one pass over edges where each
edge is processed independently from other edges. In this way,
JT-CC can be applied on the graph even if the graph cannot be com-
pletely stored in the memory. We use this experiment to evaluate
how ParaGrapher provides partial access to a graph.

Figure 6 compares execution of WCC for different formats in
GAPBS (Textual COO and Binary CSX) and ParaGrapher (Web-
Graph). It shows that for all graphs and for all storage types, Para-
Grapher is able to load the graph partially, pass the subgraph
to the user’s callback to be processed, and continue with the
next partition without storing the whole graph in memory.
Figure 6 shows that ParaGrapher provides up to 5.2 times speedup,
however, as we explained in Section 5.2, for graphs in Binary CSX
format and for loading from SSD, the decompression bandwidth
limits the performance of ParaGrapher.

5.4 Decompression Bandwidth

In Section 3, we explained that the load bandwidth depends on
the compression ratio, graph decompression bandwidth, and on
the storage bandwidth. To have a better illustration of the last two
factors, in this section, we evaluate the performance of ParaGrapher
on different mediums. In addition to HDD and SSD that we had
used in the previous sections, we use:

Zhttps://github.com/DIPSA-QUB/ParaGrapher/blob/main/test/test2_jtcc_WG400.c
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Figure 6: Performance of Weakly-Connected Components in
seconds. “-1” indicates an “Out of Memory” error.

e NVMM: 1TB 3.2GHz Intel NMB1XXD128GPS non-volatile
memory DIMMs on a machine with 2 Intel 5318Y CPUs, in
total 48 cores, 96 threads, and 256GB memory,

o DDR4, 3.2GHz: 2TB 3.2GHz DDR4 memory on a machine
with 2 AMD 7702, in total, 128 cores, 256 threads.

Figure 7 compares the throughput of ParaGrapher for the dif-
ferent storage mediums. It shows that the largest throughput for
ParaGrapher is 952 Million Edges/second or 3.8 GB/s. In Section 6,
we present solutions for optimizing decompression bandwidth.

5.5 ParaGrapher Parameters

As we explained in Section 4.4, ParaGrapher uses two parameters
for parallelizing reading graphs in WebGraph format: (i) the number
of buffers that specifies the number of parallel threads, and (ii) the
size of each buffer that specifies the work performed by each thread.
To evaluate the impacts of these parameters, we set the number of
threads to 9, 18, and 36 threads and buffer sizes to 8, 16, and 128
Million edges and consider the performance of ParaGrapher for
reading graphs.
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Figure 8 shows that when using HDD, by increasing the num-
ber of threads, we may see performance degradation. How-
ever, a small number of threads reduces the performance of
SSD. Moreover, increasing the size of buffers reduces the number
of total partitions that should be read. In this way, the large size
of buffers results in load imbalance between threads and the
maximum bandwidth of the load cannot be reached.

The Java-side scheduler thread periodically checks if reading
buffers have been finished. As a result, if each thread has a small
amount of work to do, a large fraction of time is passed waiting for
the scheduler to assign another block. So, reducing the buffer size
to very small values may result in performance degradation while
providing more load balance.

Based on our analysis in this section, ParaGrapher uses blocks of
64 Million edges and sets the number of threads to #cores for HDD
and to 2 * #cores for SSD. The user can modify these parameters
before starting to read the graph.

On the other hand, load performance is bounded by (i) the stor-
age bandwidth and (ii) the decompression bandwidth (Section 3).
Both factors are affected by the parallelism. Increasing the num-
ber of threads reduces the read bandwidth of HDD but is useful
for SSD (Section 5.1). On the other hand, the decompression band-
width is increased by increasing the number of threads. This shows
that the storage type, machine’s computation throughput,
and compression ratio specify the decompression process as
either a computation-bound or a storage-bound problem.

5.6 Decompression Scalability

For low-bandwidth storage, the performance of graph loading de-
pends on the storage, but graph decompression is a computation-
bound problem when using high-bandwidth storage. To measure
the scalability of ParaGrapher, we use the machine with 128 cores
and 2TB DDR4 3.2GHZ and store the datasets on memory. In this
way, the execution is independent of the storage delays, and we
can measure the scalability of decompression.

Figure 9 shows up to 3.8 times speedup using 128 cores in com-
parison to 16 cores. To consider the limited scalability, we need to
study how a graph is loaded in WebGraph. This process consists of
two steps: (i) the graph metadata is sequentially loaded to memory
by ImmutableGraph.loadMapped() and (ii) graph is accessed by
parallel threads. A source of limited scalability in ParaGra-
pher is the sequential loading of graph metadata, i.e., the first

step. Our measurements shows that 12.9-60.6% of execution time
is passed in the sequential step.

6 A POSTERIORI ANALYSIS & FUTURE
DIRECTIONS

Trading-off Between Decompression Bandwidth and Com-
pression Ratio. The compressed graph loading model (presented
in Section 3) shows that the speed of loading compressed graphs
is influenced by investing in hardware (storage systems and/or
compute power) to increase s and d. Alternatively, there is scope
to evaluate and to design compression algorithms with different
trade-offs for the compression rate and decompression time, i.e.,
finding light-weight decompression algorithms with high decom-
pression bandwidth (d) that achieve high compression rate (r) at
the same time.

Considering Storage Types. Section 5.1 shows that storage
types such as HDD and SSD reveal different bandwidth depend-
ing on block size and number of concurrent requests. Moreover,
another study®? on LustreFS shows that O_DIRECT may improve
the bandwidth by 2.15 times by removing client-side cache. This
shows that using the easier solutions (such as mmap()) is not always
the key to optimising the bandwidth and decompression process
can benefit from considering the requirements of the medium for
saturating its bandwidth (Section 3).

Optimizing Storage Bandwidth. In Section 5.5 and Section 5.6
we saw that storage bandwidth is one of the limiting factors of
the decompression process. To optimize storage bandwidth, it is
required to use the best read methods that consider the storage
type (Section 5.1). In Figure 10, we compare the bandwidth of SSD
and HDD for memory mapping and block-based reading and in
C?* and Java®®. It shows that the Java implementation may reach
78-101% of the performance of the C implementation for reading
from the storage. While WebGraph is being implemented in lower-
level languages [16] to reduce overheads, language-dependent op-
timization may be useful for saturating the storage bandwidth. A
filesystem for prefetching and caching large block sizes (e.g., 64
MB) from storage may also be helpful to prevent sending a large
number of small requests to the storage.

Loading From High-Bandwidth Storage Instead of Process-
ing. Using high-bandwidth storage (Section 5.1), we may reduce
the preprocessing time by loading data of size O(|V|) from storage
instead of paying the processing cost of O(|E|).

As an example, some graph algorithms require the transposed
version of the input graph. By loading the offsets array of the
transposed graph from the storage (that requires a load of O(|V|)
size), only one pass over edges is required for creating the trans-
posed graph, and the O(|E|) computation for creating of fsets is
prevented. Some recent datasets include the of fsets array [24, 25].

Also, WebGraph requires random access to the underlying graph
to extract the degree of vertices. If the of fsets array of the CSX
format is needed for graph partitioning and before graph loading,
the underlying graph should be accessed to extract the offsets array.

Bhttps://blogs.qub.ac.uk/DIPSA/HDD-vs-SSD-vs-LustreFS-2024
Zhttps://github.com/DIPSA- QUB/ParaGrapher/blob/main/test/read_bandwidth.c
Bhttps://github.com/DIPSA-QUB/ParaGrapher/blob/main/test/ReadBandwidth java
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ParaGrapher stores the of fsets array as a binary file to accelerate
graph partitioning without accessing the compressed graph.

File Size Limitation Flexibility. As storage mechanisms (in-
cluding file systems and cloud services) have theoretical and practi-
cal limits on the size of a single file/inode, it helps the end-user to
store the graph dataset as multi-part files and to pass them directly
to the graph loading system without merging.

Integrity Validation. Integrity checking can be done at dif-
ferent levels, including OS secure filesystems, mirroring, and soft-
ware/hardware RAID. However, the graph loading process can vali-
date the integrity of requested edge blocks. Some graph datasets
provide checksum for this purpose?¢ [33].

Efficient Compression. While efficient decompressing of large
graphs is a challenge, there are cases where the efficiency of the
graph compression is also a bottleneck. As an example, when the
execution of graph algorithms should be temporarily suspended,
efficient compression of the processing graph datasets is the key to
minimising storage space [9].

Network-Based Distributed Decompression. In this paper,
we assumed that in a distributed computation model, each machine
performs the decompression independently from the other ones.
Another option is to divide the decompression between machines
and the results to be shared through the network. That brings
network bandwidth as a new factor to the decompression efficiency
model we presented in Section 3 but with an increment in the
decompression bandwidth (d). This decompression model will be
useful for distributed graph processing with overlaps on edges
which are processed by different machines.

7 FURTHER RELATED WORK

Graph Compression. Graph representation may be used to iden-
tify large (bi)cliques to reduce the number of edges that should
be stored [14, 48]. Graph summarization tries to create a group
of vertices and then edges will be either between these group or
written in a correction list [45, 60]. Lossy compression does not
produce the original graph after decompression and techniques in-
cluding frontier sampling [46], query-preserving compression [13],
and importance-based sampling [18] may be applied. Rule-based
compression can be helpful for compression techniques that work
based on the similarity of neighbors [8]. We refer to compression
surveys for further consideration [6, 21, 40].

Graph Loading & Preprocessing. PIGO?” [17] is a parallel
library for loading uncompressed graphs in COO/CSX formats. The
library defines a graph structure and loads the graph completely.
GVEL [51] optimizes conversion of edge lists (COO format) to
CSX. In addition to graph loading, distributed-memory and stream-
ing graph processing require further actions (such as partitioning)

https://blogs.qub.ac.uk/DIPSA/MS-BioGraphs- Validation/
“Thttps://github.com/GT-TDAlab/PIGO
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before performing a particular graph analytic task. EndGraph opti-
mizes load-balance and sorting in distributed preprocessing [37].
GraPU optimizes streaming preprocessing by component classifica-
tion of the impacted vertices and by analytic-based precomputing
to accelerate convergence after merging [53]. LV et al. present a
survey of graph preprocessing methods [38].

Locality Optimizing. Locality optimizing algorithms play an
important role in improving compression ratio of those graph com-
pression methods that try to find common patterns between neigh-
bor lists. Different locality-optimizing algorithms have been sug-
gested [55, 56, 59] and has been evaluated [12, 27, 28]. While dataset-
based locality optimizing algorithms will also result in better perfor-
mance of graph algorithms, algorithm-based locality optimisation
may be used to optimize locality of memory accesses in execution
of graph algorithms [22, 26, 29-32].

8 CONCLUSION

In this paper, we introduced ParaGrapher, an API and library to
optimize loading large-scale compressed graphs. We presented a
model for loading large-scale compressed graphs based on the
characteristics of storage and the decompression bandwidth.

We evaluated ParaGrapher for 6 real-world and synthetic graphs
with up to 124 Billion edges in comparison to uncompressed formats
in a state-of-the-art graph processing framework. The evaluation
shows that ParaGrapher provides up to 3.2 times speedup for load-
ing graphs and up to 5.2 times speedup for end-to-end execution.

We hope ParaGrapher and the analysis provided in this paper will
be helpful in (i) accelerating research in High-Performance Graph
Processing, in (ii) facilitating a more comprehensive evaluation of
contributions, and in (iii) motivating HPC research on optimizing
the decompression process, especially for fast storage mediums and
high-performance parallel/distributed file systems.

SOURCE CODE AVAILABILITY

Source code of ParaGrapher is available online on https://blogs.qub.
ac.uk/DIPSA/ParaGrapher/.
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APPENDIX - API DOCUMENTATION

this section, we present a high-level review of the functions in

ParaGrapher API. A detailed API documentation is provided in our
GitHub repository, https://github.com/DIPSA-QUB/ParaGrapher/
wiki/API-Documentation.

Most functions have two arguments void** args and int argc

that have been used to pass additional arguments (for sending input
to the library or receiving data from library) that may be required
for particular graph types.

A.1 Initialization

int paragrapher_init();

This function is essential to start using the library. Upon calling
this function, ParaGrapher iterates over its inner files that have
implemented the API for loading different graph formats and creates
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a list of their functions which is used for accessing graphs. The
return value is either @ on success, or -1 on failure.

A.2 Opening A Graph

paragrapher_graph* paragrapher_open_graph(
char* name, paragrapher_graph_type type,
void** args, int argc);

This function opens a graph specified by filename and type (Table 2).

A.3 Getting Info and Setting Configuration

int paragrapher_get_set_options(
paragrapher_graphx graph,
paragrapher_request_type request_type,
void** args, int argc);

This function configures the settings or retrieves configurations
such as library parameters (e.g., buffer size and number of buffers
that control parallelism), number of vertices and edges in the graph,
and status of a read request.

A.4 Accessing Offsets and Weights of Vertices

void* paragrapher_csx_get_offsets(
paragrapher_graphx graph,
void* values,
unsigned long start_vertex,
unsigned long end_vertex,
void** args, int argc);

voidx paragrapher_csx_get_vertex_weights(

BN

The above functions access vertex offsets and weights. The signa-
ture of both functions is the same.

void
paragrapher_csx_release_offsets_weights_arrays(
paragrapher_graph* graph, voidx array);

By calling this function, user informs ParaGrapher that array
(containing vertex weights/offsets) is no longer needed.

A.5 Loading Edges of a CSX Graph

typedef void (*paragrapher_csx_callback) (
paragrapher_read_request* request,
paragrapher_edge_blockx eb,
void* offsets, void* edges,
voidx buffer_id, void* args);

The callback function is defined by the user and called by the Para-
Grapher in loading a subgraph asynchronously after decompressing
each block of edges. This way, the user will start processing the
loaded data without waiting for completion of loading the whole
requested subgraph/graph.

paragrapher_read_request* csx_get_subgraph(
paragrapher_graph* graph,
paragrapher_edge_block* eb,
voidx offsets, void* edges,
paragrapher_csx_callback callback,
void* callback_args, void** args, int argc);

This function starts loading a CSX graph or its subgraph (speci-
fied by eb). Depending on the implementation, load can be done
synchronously (i.e., the edges array is filled by the library) or asyn-
chronously (i.e., the callback function is called multiple times to
pass read block of edges to user).

void csx_release_read_buffer(
paragrapher_read_request* graph,
paragrapher_edge_block* eb,
voidx offsets, void* edges);

This function is used at the end of callback function to inform
the library that the buffer will not be used any further and its
memory can be reused by the library.

void csx_release_read_request(
paragrapher_read_request* request);

This function releases all resources associated with a returned
paragrapher_read_request and should be called upon comple-
tion of the load process.

A.6 Loading Edges of a COO Graph

paragrapher_read_requestx coo_get_edges(
paragrapher_graph* graph,
unsigned long start_row,
unsigned long end_row,
void* edges,
paragrapher_coo_callback callback,
void* callback_args, void** args, int argc);

This function is similar to csx_get_subgraph() but for loading a
COO graph or its subgraph (specified by start_row and end_row)
synchronously or asynchronously.
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A.7 Releasing Graph

int paragrapher_release_graph(
paragrapher_graphx graph,
void** args, int argc)
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This function releases the resources allocated by the library for
accessing a graph and should be called as the last step of access-
ing/loading a graph.



