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Abstract

We consider the dynamic wetting and dewetting processes of films and droplets of complex liquids
on planar surfaces, focusing on the case of colloidal suspensions, where the particle interactions can be
sufficiently attractive to cause agglomeration of the colloids within the film. This leads to an interesting
array of dynamic behaviours within the liquid and of the liquid-air interface. Incorporating concepts
from thermodynamics and using the thin-film approximation, we construct a model consisting of a
pair of coupled partial differential equations that represent the evolution of the liquid film and the
effective colloidal height profiles. We determine the relevant phase behaviour of the uniform system,
including finding associated binodal and spinodal curves, helping to uncover how the emerging behaviour
depends on the particle interactions. Performing a linear stability analysis of our system enables us to
identify parameter regimes where agglomerates form, which we independently confirm through numerical
simulations and continuation of steady states, to construct bifurcation diagrams. We obtain various
dynamics such as uniform colloidal profiles in an unstable situation evolving into agglomerates and thus
elucidate the interplay between dewetting and particle aggregation in complex liquids on surfaces.

1 Introduction

The dynamics and equilibration of films and droplets of colloidal suspensions over surfaces is an everyday
process (Kalliadasis & Thiele, 2007). Paints and coatings are a classic example of such liquids. For example,
dispersions containing polymer particles are routinely used as paints (Keddie & Routh, 2010). These are
formulated so that the pigment and other suspended particles remain well dispersed throughout the solvent
liquid. However, this is not always the case; sufficiently strong attractive interactions between the colloids
can lead to agglomeration (Hansen & McDonald, 2013). Such particle ordering within liquid films on
surfaces is of interest due to the resulting pattern-formation having potential uses for structure-creation after
the solvent liquid has evaporated, to leave a dried-on structure. This includes the well-known coffee stain
effect discussed by Deegan et al. (1997) and also a wide variety of other ways that colloidal particles in thin
liquid films can organise themselves (Thiele, 2014).

Particle suspensions are also used in the manufacture of structures on surfaces. For example, inks
containing conductive copper particles are used to form electrical connections via ink-jet printing (Chalmers
et al., 2017b). Another application is to use colloids which assemble naturally to form silicon photonic
bandgap crystals (Vlasov et al., 2001). In nature, bacterial colonies on surfaces are another example of
particles (the bacteria) in a liquid film (Mimura et al., 2000; Trinschek et al., 2018), although in this case the
particles are also active particles.

There is much previous work on droplets wetting, spreading or dewetting from surfaces, discussion of
theories for contact line motion and the dynamical equations used to describe liquids on surfaces, perhaps
the most notable being the thin-film equation, obtained via the lubrication approximation. There are several
excellent reviews on this broad area, including by De Gennes (1985), Oron et al. (1997), Bonn et al. (2009),
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Craster & Matar (2009), Lohse (2022) and Wilson & D’Ambrosio (2023). What is of interest here is the
dewetting behaviour of liquid films and in particular on how this is influenced by (and coupled to) the
aggregation/demixing of colloidal particles suspended in the liquid. Dewetting is the process by which an
initially uniform film on a surface breaks up into droplets, leaving the surface bare in places. For pure liquids,
this has been extensively studied both in experiments, see e.g. Reiter (1992); Seemann et al. (2001), and in
theory; for example, see Thiele et al. (2001); Becker et al. (2003).

Studies of the influence of suspended colloidal particles on the dynamics of liquid films on surfaces
include those of Parisse & Allain (1996, 1997) who observed that the colloids can alter significantly the
shape of the surface of droplets. They also developed a simple model to explain the changes during drying.
One way to model the influence of colloids on droplet dynamics is via particle-based models. Typically,
these have a stochastic dynamics, generally referred to as kinetic Monte Carlo (KMC) models. This effective
dynamics arises because these are coarse-grained models: simulating over the relevant timescales the true
molecular dynamics of even a micron sized droplet containing just a few colloids is just not feasible even
with modern computers, due to the huge numbers of solvent molecules to be simulated. Examples of these
sorts of KMC models include effective two-dimensional (2D) models, such as those of Rabani et al. (2003);
Martin et al. (2004); Vancea et al. (2008), and also fully three-dimensional (3D) models, such as the models
of Sztrum et al. (2005); Kim et al. (2011); Chalmers et al. (2017b); Areshi et al. (2019); see also references
therein.

Such considerations highlight the importance and need for coarse-grained continuum models. Given the
success of thin-film hydrodynamic models, it is natural to seek to incorporate the influences of suspended
colloids into such models. Thiele et al. (2009) gives a review of some of these approaches. Most directly
connected with the KMC models are those that use dynamical density functional theory (DDFT) to construct
coupled partial differential equations (PDEs) for the dynamics of the liquid and the colloids over the surface
(Archer et al., 2010; Robbins et al., 2011; Chalmers et al., 2017a). The real value of the DDFT approach
is that it is based on thermodynamics, building this into the resulting models correctly. The dynamical
equations are based on a free energy functional which incorporates the correct physics. Here, we do not use
a DDFT, but we do enforce that our theory be based on a free energy functional having the necessary terms.

Hydrodynamic models of the thin-film-equation-type can also be constructed based on a free energy
functional (Thiele, 2018; Mitlin, 1993; Kalliadasis & Thiele, 2007; Thiele et al., 2009). Here, we should
also mention the work of Náraigh & Thiffeault (2010), who derived a long-wave model, starting from the full
model-H hydrodynamics. Improvements and applications to various different problems can then generally
be made by either adding additional terms (additional physics) to the free energy functional or by modifying
the dynamical coefficients to take account of any additional kinetic mechanisms the system may have. These
include e.g. the work of Warner et al. (2003); Frastia et al. (2011, 2012); Zigelman et al. (2019) on the
formation of periodic line-deposits by drying colloidal films, or the work in Thiele et al. (2016) describing
liquid films containing surfactant molecules. In Náraigh & Thiffeault (2010) and Thiele (2011), models
consisting of a pair of coupled equations for the dynamics of the film height and the local height averaged
concentration of the colloids were derived. These works, and also Thiele et al. (2013) showed that dewetting
can be triggered by the coupling between the film height and concentration fluctuations. Such fluctuations
are typically thermal in origin; the recent work of Zhang et al. (2019) and Zhao et al. (2022) explain well
how the microscopic (molecular) scale properties of liquid films connect to the mesoscopic scales at which
the thin-film equation operates. The thermal fluctuations lead to a stochastic term in the equations (Grün
et al., 2006), that becomes important in certain regimes, such as when there is the possibility of holes in the
film to be nucleated.

The thin-film hydrodynamic model that we develop here builds on the results in Thiele (2011); Thiele
et al. (2013); Todorova (2013). As derived in these works, the free energy can be rather general, but then
in their subsequent analysis the authors assume that the interactions between the colloids are such that there
is no aggregation and that when the film thickness becomes large the colloids remain well dispersed in the
(bulk) liquid. One can go beyond this by including additional terms to the free energy to incorporate the
effect of the interactions between the colloids. This was the approach taken in Náraigh & Thiffeault (2010)
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and also in the recent study conducted by Diez et al. (2021), where a thin-film model for the decomposition
and dewetting of nanoscale alloys was developed. Their theory is based on a simple Cahn-Hilliard-type
(Hilliard & Cahn, 1958; Cahn, 1965; Langer, 1992) double-well free energy, appropriate to the binary alloys
they consider. But for the colloidal suspensions of interest here, we must go beyond this by including in the
free energy both the logarithmic ideal-gas term (in order to correctly describe the low density limit), as well
as terms describing the effect of the attractions and steric repulsions between the colloids.

It should be mentioned that the thin-film models discussed above, together with the theory we develop
here, all assume that the distribution of the colloids over the surface can be described by a height-averaged
field, i.e. averaging the local concentration of the colloids over the direction perpendicular to the substrate.
This assumption is valid in many cases, but it is not always the case. To include the effect of variations in the
local density of the colloids perpendicular to the substrate one must e.g. take the approach of Maki & Kumar
(2011) who use the thin-film approximation to describe the solvent liquid, but then describe the transport of
the colloids within the film with the full convection-diffusion equation. Alternatively, one can use DDFT
models, such as that of Chalmers et al. (2017a), although this neglects some aspects of hydrodynamic flow
over surfaces.

This paper is organised as follows: In § 2, we discuss how to extend the pair of coupled thin-film
equations from Thiele (2011), to incorporate colloidal interactions and thus allow for the possibility of
particle agglomeration, if the attractive interactions are strong enough. A linear stability analysis of the
resulting equations is conducted in § 3, together with a brief explanation of the bulk (uniform film) phase
diagram. In § 4 we present numerical results from solving the coupled equations for the film height and
concentration profiles over time in one spatial dimension, i.e. assuming that the film is two-dimensional.
Then, in § 5, we present results from numerical continuation of stationary states as the system size is varied,
together with corresponding bifurcation diagrams showing how the various different solutions originate
and are connected. In § 6 we present results from solving the coupled equations over time in two spatial
dimension, i.e. assuming that the film is fully three-dimensional. Finally, in § 7 we present a few concluding
remarks.

2 The thin-film model

Consider the dynamics of a film or droplet of a partially wetting liquid on a flat substrate, which contains
colloidal particles suspended inside the liquid. We introduce a cartesian coordinate system (𝑥, 𝑦, 𝑧) with the
𝑥- and 𝑦-axes pointing along the substrate and the 𝑧-axis perpendicular to the substrate – see Fig. 1. Particles
that can be classified as colloids, i.e. that remain suspended in the solvent liquid, typically have radii 𝑅 in the
range of 1𝑛𝑚 < 𝑅 < 10𝜇𝑚 (Mewis & Wagner, 2012). In our study we assume that the liquid is incompressible
and has constant surface tension 𝛾 and constant viscosity 𝜂. The variables that we use to describe the system
are the liquid film height ℎ(𝑥, 𝑦, 𝑡) and the effective colloid height 𝜓(𝑥, 𝑦, 𝑡) = ℎ(𝑥, 𝑦, 𝑡)𝜙(𝑥, 𝑦, 𝑡), which
both change in the space and time domain. The effective height 𝜓 is the product of the film height, ℎ and the
dimensionless local height averaged colloid concentration, 𝜙.

The governing equations for the dynamics of the coupled fields ℎ and 𝜓 can be written as the following
gradient dynamics system (Thiele, 2011):

𝜕𝑡ℎ = ∇ ·
[
𝑄ℎℎ∇

𝛿𝐹

𝛿ℎ
+ 𝑄ℎ𝜓∇

𝛿𝐹

𝛿𝜓

]
, (1)

𝜕𝑡𝜓 = ∇ ·
[
𝑄𝜓ℎ∇

𝛿𝐹

𝛿ℎ
+ 𝑄𝜓𝜓∇

𝛿𝐹

𝛿𝜓

]
, (2)

where 𝐹 [ℎ, 𝜓] is the free energy of the system and𝑄𝑖 𝑗 , with 𝑖, 𝑗 = ℎ, 𝜓, are the elements of the film mobility
matrix. When there is no slip at the surface, this takes the form (Thiele, 2011):

Q =

(
𝑄ℎℎ 𝑄ℎ𝜓

𝑄𝜓ℎ 𝑄𝜓𝜓

)
=

1
3𝜂

(
ℎ3 ℎ2𝜓

ℎ2𝜓 ℎ𝜓2 + 3𝐷𝜓

)
. (3)
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Figure 1: Illustration of the system we consider. On the top is a sketch of a droplet of a colloidal suspension
deposited on a surface. On the bottom is the cross-section sketch with system size 𝐿𝑥 . ℎ(𝑥, 𝑦, 𝑡) is the film
height and 𝜙(𝑥, 𝑦, 𝑡) is the effective local concentration.

Note that in the limit 𝜓 → 0 (i.e. no colloids), Eqs. (1) and (2) reduce to the usual thin-film equation for
a pure liquid, with mobility coefficent 𝑄ℎℎ = ℎ3/3𝜂. Note also that 𝜙𝑄ℎℎ = 𝑄ℎ𝜓 = 𝑄𝜓ℎ and 𝐷 = 𝑎2/6𝜋,
where 𝑎 is a molecular length scale, is a dynamical coefficient related to the diffusion coefficient of the
colloids in the liquid. We say more on this below. 𝛿𝐹/𝛿ℎ and 𝛿𝐹/𝛿𝜓 are functional derivatives of the free
energy functional

𝐹 [ℎ, 𝜓] =
∬ [

𝑔(ℎ) + 𝛾
2
|∇ℎ|2 + ℎ 𝑓

(
𝜓

ℎ

)
+ 𝜖ℎ

2

����∇ (
𝜓

ℎ

)����2] 𝑑𝑥𝑑𝑦. (4)

The first term in the integrand, 𝑔(ℎ), is the binding potential, which is the effective interaction between the
liquid-air interface and the solid-liquid interface below it. It results from the molecular interactions in the
liquid and so is short ranged, influencing the system largely in the vicinity of the contact line. The derivative
Π(ℎ) ≡ −𝜕𝑔/𝜕ℎ is the disjoining pressure. In this paper we use (Kalliadasis & Thiele, 2007; Craster &
Matar, 2009; Bonn et al., 2009)

𝑔(ℎ) = 𝐵

ℎ3 − 𝐴

ℎ2 , (5)

where here we take 𝐴 and 𝐵 to be constants. This commonly used approximation may be obtained as the
leading-order terms arising from an expansion of the full binding potential in powers of 1/ℎ (Dietrich, 1988;
Schick, 1990; Hughes et al., 2015, 2017). In particular, the term −𝐴/ℎ2, which dominates for large ℎ and
determines whether the liquid wets the surface or not, originates from integrating over the van der Waals
interactions between molecules. A variety of different approximations for 𝑔(ℎ) are used in the literature.
The main influence of the particular form of 𝑔(ℎ) is to determine the contact angle droplets make with the
surface and whether the wetting transition which occurs as the value of 𝐴 is varied is either continuous or
is a first-order transition (Dietrich, 1988). However, even subtle details such as the nature of the molecular
ordering in the liquid in the vicinity of the surface can influence the form of the biding potential (Hughes
et al., 2017; Yin et al., 2017; MacDowell, 2019; Llombart et al., 2020). In Thiele et al. (2013) the case
where 𝐴 in Eq. (5) is treated as a function of the colloid concentration 𝜙 is considered. Note that Eq. (5) can
be written as 𝑔(ℎ) = 𝐵(1− 𝐴ℎ/𝐵)/ℎ3. In other words, the ratio ℎ̃ ≡ 𝐵/𝐴 is one of the relevant length scales
in our system and is the lengthscale we use in our non-dimensionalisation below. This lengthscale is related
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to the thickness of the equilibrium precursor film, ℎ𝑒𝑞 = 1.5ℎ̃, which corresponds to the minimum of 𝑔(ℎ),
i.e. where 𝑔′(ℎ𝑒𝑞) = 0.

The second term in Eq. (4) describes the surface tension contribution and gives a contribution to the free
energy that is proportional to the area of the liquid-air interface in the long-wave limit. Just the first two
terms in Eq. (4) alone are what one would use to describe a liquid film with no colloids involved and the
dynamical equation that follows from this is commonly used to describe the dewetting of liquid films.

The third and fourth terms in Eq. (4) incorporate the contribution to the free energy of the suspended
colloids. Note that since 𝜙 = 𝜓/ℎ, the third and fourth terms in the integrand of Eq. (4) together are simply
ℎ( 𝑓 (𝜙) + (𝜖/2) |∇𝜙|2), where 𝑓 (𝜙) is a Helmholtz free energy density that depends on the local height-
averaged colloid concentration 𝜙 (Thiele, 2011; Thiele et al., 2013). In other words, we just use a simple
square-gradient approximation for the free energy of the colloids (Hansen & McDonald, 2013). We seek to
model colloids that can agglomerate, i.e. that can exhibit colloidal-demixing into a colloid-rich phase that
coexists with a colloid-poor phase, due to sufficiently strong attractive interactions between the colloids. For
example, depletion interactions due to the presence of non-adsorbing polymers in the system can drive such
phase separation (Mao et al., 1995; Likos, 2001; Hansen & McDonald, 2013). In the limit where the film
thickness ℎ remains constant, our aim is to make these terms lead to a generalised Cahn-Hilliard equation for
the local concentration field 𝜙. Another way to say this is that when ℎ = constant, the colloids are described
by a simple DDFT with a square-gradient approximation for the free energy (Hansen & McDonald, 2013).
Of course, because these terms are coupled to the film height, in general ℎ is not a constant and in particular,
when 𝜓 is spatially varying, then so is ℎ because of this. When the concentration of the colloids is small,
then the colloidal free energy density is just the ideal-gas contribution (Hansen & McDonald, 2013; Thiele,
2011; Thiele et al., 2013, 2016)

𝑓 ≈ 𝑓𝑖𝑑 =
𝑘𝐵𝑇

𝑎3 𝜙 ln(𝜙), (6)

where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the temperature and 𝑎 is a molecular length scale. Note that this
term, combined with the diffusive term involving 𝐷 in the mobility matrix (3), results in the Einstein-Stokes
relation for the diffusion coefficient of the colloids

𝐷 =
𝐷

𝜂

𝑘𝐵𝑇

𝑎3 =
𝑘𝐵𝑇

6𝜋𝑅𝜂
, (7)

when 𝑎 = 𝑅. This construction means that in the limit when ℎ = constant and 𝜓 is small, Eqs. (1) and (2)
yield the diffusion equation for the local colloid concentration. However, in general we cannot assume that
the colloids act as an ideal-gas. This means the Helmholtz free energy density in Eq. (6) must be modified
to take the colloid interactions into consideration. In order to do this, we recall that a virial expansion for the
pressure 𝑝 (strictly, the osmotic pressure of the colloids) is

𝑝 = 𝑘𝐵𝑇
[
𝜌 + 𝐵2𝜌

2 + 𝐵3𝜌
3 + 𝐵4𝜌

4 + · · ·
]
, (8)

where 𝜌 is number density of the colloidal particles (i.e. 𝜌 ∝ 𝜙) and the virial coefficients 𝐵𝑛 are coefficients
that depend on temperature. From the thermodynamic identity

𝑝 = − 𝑓 + 𝜌𝜇, (9)

where the chemical potential of the colloids is (Hansen & McDonald, 2013)

𝜇 =
𝜕 𝑓

𝜕𝜌
, (10)

we can then integrate Eq. (8) to obtain

𝑓 = 𝑘𝐵𝑇𝜌
[
ln(Λ3𝜌) − 1

]
+ 𝐵2𝜌

2 + 1
2
𝐵3𝜌

3 + 1
3
𝐵4𝜌

4 + · · · , (11)
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where Λ is the thermal de Broglie wavelength. Recall that if the colloid particles interact via the pair
potential 𝑢(𝑟), which includes an effective solvent-mediated contribution (Likos, 2001), then the second
virial coefficient is (Hansen & McDonald, 2013)

𝐵2(𝑇) = −2𝜋
∫ ∞

0

[
exp

(
−𝑢(𝑟)
𝑘𝐵𝑇

)
− 1

]
𝑟2 𝑑𝑟. (12)

So, as the attractive interactions between the colloids increases in strength, then 𝐵2 becomes increasingly
negative. At some point, it becomes sufficiently negative to drive aggregation of the colloids, leading
to phase separation into a colloid poor ‘gas’ phase and a colloid rich ‘liquid’ phase. The density in the
aggregated phase is determined by the size of the colloids (i.e. the steric repulsions) and packing effects
which are controlled by the cubic and higher order terms in Eq. (11). For simplicity, here we just include
one higher-order term (the one with coefficient 𝐵4) and assume the following expression for the free energy
of the colloids (recalling 𝜙 ∝ 𝜌):

𝑓 (𝜙) = 𝑘𝐵𝑇

𝑎3 𝜙 ln 𝜙 − 𝛼

2
𝜙2 + 𝛽

4
𝜙4. (13)

Note that if we instead retain the cubic 𝐵3 term, this does not lead to any significant qualitative changes to
the model. The key feature that the model must have, and we enforce, is that the free energy is bounded from
below for 𝜙 > 0 and has two minima, corresponding to the colloidal gas and liquid phases, respectively. Our
main reason for retaining instead the quartic term is that the resulting model has some useful connections
to the Cahn-Hilliard equation (Cahn, 1965). Thus, the parameter 𝛼 ∝ −𝐵2 models the influence of the
attractive interactions between the colloids and the term with coefficient 𝛽 incorporating the effect of the
steric repulsions between the colloids.

Since there is also an interfacial tension between the colloidal-liquid and colloidal-gas phase, we must
have the fourth term in Eq. (4), where the parameter 𝜖 determines the value of this interfacial tension. It
turns out that 𝜖 can often be related to −𝐵2 (Robbins et al., 2011; Hansen & McDonald, 2013), but here we
treat it as an independent parameter in the model.

Recalling that 𝜙 = 𝜓/ℎ, inserting Eqs. (5) and (13) into (4), and scaling all lengths with the length-scale
ℎ̃ ≡ 𝐵/𝐴, as follows

ℎ = ℎ̃ℎ∗, 𝜓 = ℎ̃𝜓∗, 𝑥 = ℎ̃𝑥∗, 𝑦 = ℎ̃𝑦∗, (14)

we can non-dimensionalise the free energy in Eq. (4) to obtain:

𝐹∗ [ℎ∗, 𝜓∗] ≡ 𝐹

𝛾ℎ̃2
=

∬ [
1
2
|∇∗ℎ∗ |2 + 𝐴′

(
1
ℎ∗3 − 1

ℎ∗2

)
+𝐾 ′𝜓∗ ln

𝜓∗

ℎ∗
− 𝛼′

2
𝜓∗2

ℎ∗
+ 𝛽

′

4
𝜓∗4

ℎ∗3 + 𝜖
′

2
ℎ∗

����∇𝜓∗

ℎ∗

����2 ]
𝑑𝑥∗𝑑𝑦∗. (15)

More generally, this can be written as

𝐹∗ [ℎ∗, 𝜓∗] =
∬ [

1
2
|∇∗ℎ∗ |2 + 𝑔∗(ℎ∗) + ℎ∗ 𝑓 ∗

(
𝜓∗

ℎ∗

)
+ 𝜖

′

2
ℎ∗

����∇𝜓∗

ℎ∗

����2 ]
𝑑𝑥∗𝑑𝑦∗, (16)

where 𝑔∗ and 𝑓 ∗ are the dimensionless binding potential and colloid free energy, respectively. Here, these
take the specific form

𝑔∗(ℎ∗) = 𝐴′
(

1
ℎ∗3 − 1

ℎ∗2

)
, (17)

and

𝑓 ∗(𝜙∗) = 𝐾 ′𝜙∗ ln 𝜙∗ − 𝛼′

2
𝜙∗2 + 𝛽

′

4
𝜙∗4. (18)
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As a result, Eq. (15) depends on five dimentionless parameters, namely

𝐴′ =
𝐴

𝛾ℎ̃2
=

𝐵

𝛾ℎ̃3
, 𝐾 ′ =

𝑘𝐵𝑇 ℎ̃

𝛾𝑎3 , 𝛼′ =
𝛼ℎ̃

𝛾
, 𝛽′ =

𝛽ℎ̃

𝛾
, 𝜖 ′ =

𝜖

𝛾ℎ̃
. (19)

From this, we can calculate the functional derivatives of the free energy with respect to film height ℎ and
effective height 𝜓, which are required for the dynamical equations (2). For reference, in Appendix A, we
write down in full these functional derivatives and their gradients. Scaling time as 𝑡 = 𝜏𝑡∗, where

𝜏 =
3𝜂ℎ̃
𝛾
, (20)

we can write the dynamical equations (2) as the following non-dimensional equations

𝜕ℎ∗

𝜕𝑡∗
= ∇∗ ·

[
ℎ∗3∇∗ 𝛿𝐹

∗

𝛿ℎ∗
+ ℎ∗2𝜓∗∇∗ 𝛿𝐹

∗

𝛿𝜓∗

]
, (21)

𝜕𝜓∗

𝜕𝑡∗
= ∇∗ ·

[
ℎ∗2𝜓∗∇∗ 𝛿𝐹

∗

𝛿ℎ∗
+

(
ℎ∗𝜓∗2 + 𝑎

∗2

2𝜋
𝜓∗

)
∇∗ 𝛿𝐹

∗

𝛿𝜓∗

]
, (22)

with dimensionless molecular length scale 𝑎∗ = 𝑎/ℎ̃. It is worth noting that the typical (precursor-film)
velocity in our system, 𝑈 ≡ ℎ̃/𝜏, corresponds to a Capillary number, Ca ≡ 𝜂𝑈/𝛾 ∼ O(1). Henceforth,
we abandon the superscript ‘∗’ on all quantities and deal solely with the non-dimensional variables and
parameters.

3 Linear stability analysis, bulk phase diagram and dispersion relation

3.1 Linear stability analysis

To determine the parameter values for which a uniform film with ℎ = ℎ𝑖 and 𝜓 = 𝜓𝑖 is stable, where ℎ𝑖 and
𝜓𝑖 are constants, we perform a linear stability analysis. To do this, we substitute the following ansatz

ℎ = ℎ𝑖 + 𝜅𝑒𝑖 (𝑘𝑥 𝑥+𝑘𝑦𝑦)+𝜔𝑡 , (23)
𝜓 = 𝜓𝑖 + 𝜒𝑒𝑖 (𝑘𝑥 𝑥+𝑘𝑦𝑦)+𝜔𝑡 , (24)

into the coupled pair of equations (22) and then linearise in the amplitudes 𝜅 and 𝜒, which are assumed
to be small. This corresponds to a sinusoidal perturbation with dimensionless wavevector k ≡ (𝑘𝑥 , 𝑘𝑦)
and dimensionless dispersion relation (growth rate) 𝜔. The aim is to obtain the dependence of 𝜔 on the
wavenumber 𝑘 = |k| and in particular the sign of 𝜔(𝑘). If 𝜔(𝑘) > 0 for any 𝑘 , then the uniform film is
unstable, since this indicates the perturbations in Eq. (24) grow over time. Taking together Eqs. (21), (22),
(23) and (24), Taylor expanding, and then linearising in 𝜅 and 𝜒, we obtain the system

𝜔

[
𝜅

𝜒

]
=

[
𝐶1 𝐶2
𝐶3 𝐶4

] [
𝜅

𝜒

]
= C

[
𝜅

𝜒

]
, (25)

where the matrix C̄ can be written as the product of two matrices, C̄ = Q̄J̄, where the first is the linearised
mobility matrix [c.f. Eq. (3)]

Q̄ = ℎ3
𝑖

[
1 𝜙𝑖

𝜙𝑖 𝜙2
𝑖
+ 𝑎2𝜙𝑖

2𝜋ℎ2
𝑖

]
, (26)

and the second is the following (largely thermodynamic in origin) matrix

J̄ = −𝑘2
[
𝑘2 + 𝑔′′(ℎ𝑖) + 𝜙𝑖 𝐹̄ −𝐹̄

−𝐹̄ 1
𝜙𝑖
𝐹̄

]
, (27)
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where 𝐹̄ = ( 𝑓 ′′(𝜙𝑖)+𝜖 ′𝜙𝑖𝑘2)/ℎ𝑖 =
(
𝐾 ′ − 𝛼′𝜙𝑖 + 3𝛽′𝜙3

𝑖
+ 𝜖 ′𝜙𝑖𝑘2) /ℎ𝑖 , and where we use 𝜕ℎ/𝜕𝑡 = 𝜔𝜅𝑒𝑖 (𝑘𝑥 𝑥+𝑘𝑦𝑦)+𝜔𝑡

and ∇ℎ = 𝑖k𝜅𝑒𝑖 (𝑘𝑥 𝑥+𝑘𝑦𝑦)+𝜔𝑡 , together with corresponding derivatives of 𝜓. The Jacobian matrix coefficients
for our specific 𝑔 and 𝑓 are

𝐶1 = −ℎ3
𝑖 𝑘

2

[
𝑘2 + 𝐴′

(
− 6
ℎ4
𝑖

+ 12
ℎ5
𝑖

)]
, (28)

𝐶2 = 0, (29)

𝐶3 = −ℎ3
𝑖 𝑘

2𝜙𝑖

[
𝑘2 + 𝐴′

(
− 6
ℎ4
𝑖

+ 12
ℎ5
𝑖

)]
+ 𝑎

2𝜙𝑖
2𝜋

𝑘2 [
𝐾 ′ − 𝛼′𝜙𝑖 + 3𝛽′𝜙3

𝑖 + 𝜖 ′𝜙𝑖𝑘2] , (30)

and
𝐶4 = − 𝑎

2

2𝜋
𝑘2 [

𝐾 ′ − 𝛼′𝜙𝑖 + 3𝛽′𝜙3
𝑖 + 𝜖 ′𝜙𝑖𝑘2] . (31)

Note that𝐶3 = 𝜙𝑖 (𝐶1−𝐶4). We also observe that𝐶2 = 0, which originates from the multiple cancellations of
terms that occur when the functional derivates of the free energy are substituted into the dynamical equations
(see Appendix A), and it is an expression of the fact that bulk concentration gradients do not drive osmotic
flow. In order to find the relationship between 𝜔 and 𝑘 , we simply find the eigenvalues of the matrix:[

𝐶1 − 𝜔 𝐶2
𝐶3 𝐶4 − 𝜔

]
. (32)

The first eigenvalue is:

𝜔ℎ = −ℎ3
𝑖 𝑘

2

[
𝑘2 + 𝐴′

(
− 6
ℎ4
𝑖

+ 12
ℎ5
𝑖

)]
, (33)

and the second is
𝜔𝜓 = − 𝑎

2

2𝜋
𝑘2 [

𝐾 ′ − 𝛼′𝜙𝑖 + 3𝛽′𝜙3
𝑖 + 𝜖 ′𝜙𝑖𝑘2] . (34)

It is because 𝐶2 = 0 and 𝐶3 = 𝜙𝑖 (𝜔ℎ − 𝜔𝜓), that we obtain the simple results 𝜔ℎ = 𝐶1 and 𝜔𝜓 = 𝐶4.
By writing the Jacobian matrix as the product of two symmetric matrices (shown in Eqs. (26)–(27)) and

noting also that Q̄ is positive definite allows one to write the linear problem as a generalized eigenvalue
problem and therefore to directly deduce that (i) all eigenvalues are real, and that (ii) the stability thresholds
do not depend at all on the mobility coefficients in Q̄, which is what one must expect, given the overall
gradient dynamics structure in Eq. (2).

Note also that 𝜔ℎ is the dispersion relation that is obtained for a pure liquid film, in the limit 𝜓 → 0.
Moreover, 𝜔𝜓 is the dispersion relation that is obtained when considering just the colloids evolving in a
liquid film that remains constant in thickness for all time. In other words, there is no coupling between
film height fluctuations and colloidal concentration fluctuations at the linear level. It is only at the nonlinear
level that they are coupled. If we were to replace the binding potential in Eq. (5) with one including a
coupling between 𝜓 and ℎ, then our linear decoupling would no longer occur, as in the models of Náraigh &
Thiffeault (2010) and Thiele et al. (2013). Such a coupling may even push an otherwise stable systems over
the instability threshold.

Because of the decoupling just mentioned, the standard pure-liquid-film condition for 𝜔ℎ (𝑘) > 0 also
applies here, i.e. one must have

𝜕2𝑔

𝜕ℎ2

����
ℎ𝑖

= 𝐴′

(
− 6
ℎ4
𝑖

+ 12
ℎ5
𝑖

)
> 0. (35)

The limit of linear stability for the liquid film is thus the locus in the phase diagram of the equation

𝜕2𝑔

𝜕ℎ2

����
ℎ𝑖

= 0. (36)
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Figure 2: Bulk colloid phase diagram in the plane of dimensionless temperature 𝐾 ′/𝛼′ = 𝑘𝐵𝑇/(𝛼𝑎3) versus
colloid concentration 𝜙, for the three values of 𝛽′/𝛼′ = 𝛽/𝛼 = 0.8, 1 and 2. The solid lines are the binodals
and the dashed lines are the corresponding spinodals. The circles identify coexisting colloid concentrations
for the particular temperature 𝐾 ′/𝛼′ = 0.15 and 𝛽′/𝛼′ = 1, that are referred to in § 4.1.

From Eq. (35) we see that this linear stability threshold is simply ℎ𝑖 = 2, i.e. for ℎ𝑖 > 2 the film is linearly
unstable. Note however that when ℎ𝑖 becomes large, the growth rate becomes very small and the unstable
wavenumbers also become very small, i.e. corresponding to large length-scale instabilities.

Similarly, for the colloids to be stable, with 𝜔𝜓 (𝑘) ≤ 0 for all 𝑘 , we must have

𝜕2 𝑓

𝜕𝜙2

����
ℎ𝑖 ,𝜓𝑖

= 𝐾 ′ − 𝛼′𝜙𝑖 + 3𝛽′𝜙3
𝑖 > 0. (37)

The corresponding limit of linear stability is just the locus in the phase diagram of the equation

𝜕2 𝑓

𝜕𝜙2

����
ℎ𝑖 ,𝜓𝑖

= 0. (38)

Owing to the fact that we derive our dynamics from the free energy functional, as we show in the following
subsection, this condition for the spinodal (onset of linear instability) for colloidal phase separation, is
precisely the same as that we obtain from the standard thermodynamic definition of the spinodal.

3.2 Bulk phase diagram for the colloids

When the colloids agglomerate, the system separates into two phases, one with colloid concentration 𝜙𝑎
and the other with concentration 𝜙𝑏. These two phases are in thermodynamic coexistence. The values of
𝜙𝑎 and 𝜙𝑏 vary as a function of the temperature and the other parameters in the model (i.e. 𝐾 ′, 𝛼′ and
𝛽′). A plot of 𝜙𝑎 and 𝜙𝑏 in the temperature versus concentration plane yields the binodal curve. In the
same diagram, we can also plot the spinodal curve from Eq. (38). These two curves meet at a single point
in the phase diagram, namely the critical point (Hansen & McDonald, 2013). The binodal curve separates
the single-phase and two-phase-coexistence regions of the phase diagram, while the spinodal curve is the
linear-stability boundary: i.e. the system is linearly unstable if we choose the parameters so that the system
is initially uniform and inside the spinodal curve. The phase diagram for our model is shown in Fig. 2, and
here we discuss how it is constructed.

The binodal curve (coexisting states) can be determined by considering the thermodynamic requirements
for two different phases to coexist: namely, they must be in thermal, mechanical and chemical equilibrium.
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This means that for phases 𝑎 and 𝑏 the temperature, pressure and chemical potential must be simultaneously
equal

𝑇𝑎 = 𝑇𝑏, 𝑝𝑎 = 𝑝𝑏, 𝜇𝑎 = 𝜇𝑏 . (39)

The first condition is equivalent to the requirement that the value of 𝐾 ′ be the same in both phases – see
Eq. (19). Taking the second and third conditions, using the expressions in Eqs. (9) and (10) for 𝑝 and 𝜇, and
remembering that the density of the colloids 𝜌 ∝ 𝜙, we obtain the following pair of simultaneous equations
to be solved for the two coexisting concentrations 𝜙𝑎 and 𝜙𝑏:

𝜕 𝑓

𝜕𝜙

����
𝜙=𝜙𝑎

=
𝜕 𝑓

𝜕𝜙

����
𝜙=𝜙𝑏

, (40)

and [
𝜙

(
𝜕 𝑓

𝜕𝜙

)
− 𝑓

] ����
𝜙=𝜙𝑎

=

[
𝜙

(
𝜕 𝑓

𝜕𝜙

)
− 𝑓

] ����
𝜙=𝜙𝑏

. (41)

Solving these for fixed 𝛼′ and 𝛽′ and for a range of values of 𝐾 ′ yields the binodal curve. The corresponding
spinodal is obtained from Eq. (38). These are shown in Fig. 2 for three different values of 𝛽′/𝛼′ = 𝛽/𝛼.
We plot the binodal and spinodal curves in the dimensionless temperature 𝐾 ′/𝛼′ = 𝑘𝐵𝑇/(𝛼𝑎3) versus
concentration 𝜙 plane. One can see that 𝐾 ′/𝛼′ and 𝛽′/𝛼′ are the relevant ratios to consider, by simply taking
the spinodal condition obtained from Eq. (38) [see also Eq. (37)] and dividing through by 𝛼′ to obtain the
following expression for the spinodal

𝐾 ′

𝛼′
= 𝜙𝑖 − 3

𝛽′

𝛼′
𝜙3
𝑖 . (42)

From our dynamical equations, we identify the spinodal as a linear-stability threshold. However, from the
thermodynamic point of view, it is the line in the phase diagram at which the isothermal compressibility 𝜒𝑇
diverges. This compressibility can be evaluated as (Hansen & McDonald, 2013)

𝜒𝑇 =
1
𝜙

𝜕𝜙

𝜕𝑝
. (43)

From this expression, together with Eqs. (9) and (10), one can easily show that that the spinodal condition in
Eq. (38) is precisely the line in the phase diagram where 𝜒𝑇 → ∞.

Inspecting Fig. 2, we see that increasing the ratio 𝛽′/𝛼′ moves the critical point to the left and downwards
in the phase diagram. Recall that 𝛽′ is the parameter originating from the steric repulsions between the
colloids and 𝛼′ is related to the strength of the attraction between the colloids. Thus, adjusting the ratio
𝛽′/𝛼′ for fixed 𝐾 ′/𝛼′ varies the value of 𝜙 in the dense colloidal phase, while at the same time also shifting
the critical point. As long as 𝛽′/𝛼′ ∼ O(1), the precise value makes very little difference qualitatively to the
behaviour of our model. Thus, henceforth we fix 𝛽′/𝛼′ = 1 (so that our phase diagram roughly matches some
of the typical colloid phase diagrams displayed in chapter 12 of Hansen & McDonald, 2013, and references
therein) and vary just the ratio 𝐾 ′/𝛼′ = 𝑘𝐵𝑇/(𝛼𝑎3), which is equivalent to either varying the temperature or
the strength of the attraction between the colloids. On the other hand, if modelling a particular experimental
system, then adjusting the values of 𝛽′/𝛼′ and 𝐾 ′/𝛼′ to values different to those used here may be more
appropriate.

3.3 Dispersion relations

Having obtained the dispersion relations (growth rates) in Eqs. (33) and (34), we now discuss the different
possible stability regimes. As mentioned already, the liquid film is unstable for ℎ𝑖 > 2 and for all 𝐴′ > 0,
where we have 𝜔ℎ (𝑘) > 0 for a band of wavenumbers 0 < 𝑘 <

√
2𝑘ℎ, where

𝑘ℎ =

√︁
3𝐴′ℎ𝑖 (ℎ𝑖 − 2)

ℎ3
𝑖

(44)
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is the fastest growing mode, i.e. 𝜔ℎ (𝑘ℎ) is the maximum growth rate. The largest possible value of 𝑘ℎ is
𝑘𝑚𝑎𝑥
ℎ

= 2
√

60𝐴′/125 ≈ 0.124
√
𝐴′, which occurs when ℎ𝑖 = 2.5.

Similarly, the colloids are unstable when the concentration takes a value inside the spinodal, where
𝑓 ′′(𝜙) < 0 (see Eq. (37) and Fig. 2) and also where 𝜔𝜓 (𝑘) > 0 for a band of wavenumbers 0 < 𝑘 <

√
2𝑘𝜓,

where

𝑘𝜓 =

√︄
−(𝐾 ′ − 𝛼′𝜙𝑖 + 3𝛽′𝜙3

𝑖
)

2𝜖 ′𝜙𝑖
, (45)

which is the fastest growing mode, i.e. 𝜔𝜓 (𝑘𝜓) is the maximum growth rate. The largest possible value of
𝑘𝜓 = 𝑘𝑚𝑎𝑥

𝜓
occurs when 𝜙𝑖 = (𝐾 ′/6𝛽′)1/3, which corresponds to a curve in the phase diagram ∝ 𝜙3

𝑖
that

passes through both the origin and the critical point and where

𝑘𝑚𝑎𝑥
𝜓 =

√︄
𝛼′ − (( 9

2 )2𝐾 ′2𝛽′)1/3

2𝜖 ′
. (46)

Thus, we see that in general there are four possible stability scenarios, with four corresponding arrangements
for the dispersion relations 𝜔ℎ and 𝜔𝜓: (a) both the liquid and the colloids are stable [see Fig. 3(a)]; (b)
the liquid film is unstable, but the colloids are stable [see Fig. 3(b)]; (c) the liquid stable, but the colloids
are unstable [see Fig. 3(c)]; and finally, (d) both are unstable [see Fig. 3(d)]. In all cases we set 𝛽′/𝛼′ = 1,
corresponding to the middle of the three phase diagrams in Fig. 2.

When both the liquid film and the colloids are unstable, then there are four possible arrangements of
the dispersion relations, related to the question of whether 𝑘𝜓 > 𝑘ℎ or not and which leads to the fastest
growth rate, i.e. whether 𝜔𝜓 (𝑘𝜓) > 𝜔ℎ (𝑘ℎ) or not. Recall that the fastest growing modes 𝑘ℎ and 𝑘𝜓 each
correspond to initial fastest growing wavelengths 𝜆ℎ = 2𝜋/𝑘ℎ and 𝜆𝜓 = 2𝜋/𝑘𝜓, respectively. Thus, suppose
𝜔𝜓 (𝑘𝜓) < 𝜔ℎ (𝑘ℎ) so that the fastest growing mode is that corresponding to perturbations of the film height.
When 𝑘𝜓 > 𝑘ℎ, then the wavelength of the fastest growing film-height mode is longer than the corresponding
fastest mode in the colloidal demixing. In contrast, when 𝑘𝜓 < 𝑘ℎ, then the wavelength of the fastest film-
height mode is shorter than the fastest colloidal demixing mode. However, when 𝜔𝜓 (𝑘𝜓) > 𝜔ℎ (𝑘ℎ), then
the fastest growing mode is that due to colloidal demixing and this can have a wavelength either longer or
shorter than the fastest growing film-height mode, depending on whether 𝑘𝜓 > 𝑘ℎ or not. All four of these
cases are possible, depending on the choice of parameters in Eqs. (33) and (34). Note that it is the presence
of the two interfacial tensions 𝛾 ∝ 1/𝐴′ and 𝜖 ′ in the denominators of (44) and (45), respectively, that are
the main players in determining the characteristic length scales 𝜆ℎ and 𝜆𝜓.

4 Numerical results

We return to the full non-dimensional system in Eqs. (22), which are a pair of coupled PDEs that are first-
order in time and fourth-order in each spatial variable. As illustrated in Fig. 1, here we consider Cartesian
coordinates in both the case of a single spatial variable 𝑥, representing a two-dimensional colloidal droplet,
and the case of spatial variables (𝑥, 𝑦), representing the three-dimensional situation. To complete the PDE
system, we must supply appropriate initial conditions for the dependent variables ℎ and 𝜓, and for simplicity
in all situations we solve our system with periodic boundary conditions.

To obtain solutions of the full system, we developed independent codes for the two- and three-dimensional
situations in Matlab. For the spatial derivatives we use central finite differences with the periodic boundary
conditions included. We choose a sufficiently large number of spatial discretisation points for a converged
simulation – i.e. we performed convergence tests (not displayed) with varying mesh spacing to check
convergence. In our two-dimensional code we solve in a spatial domain 𝑥 ∈ [0, 𝐿𝑥) with 500 discretisation
points, and in three-dimensions in (𝑥, 𝑦) ∈ [0, 𝐿𝑥) × [0, 𝐿𝑦) with 110 points in either direction. To integrate
in time, we use the variable-step, variable-order solver ode15s from Shampine & Reichelt (1997) which
efficiently allows for integrating over many orders of magnitude in time whilst capturing processes on fast
times-scales. Due to the adaptive nature of ode15s a time-step is not prescribed, but absolute and relative
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Figure 3: Dispersion relation for four cases with 𝐴′ = 1, 𝐾 ′ = 0.15, 𝜖 ′ = 0.4 and 𝑎2 = 100. In case (a),
both the film height and colloids are stable (ℎ𝑖 = 1.9 and 𝜙𝑖 = 0.15). In case (b), the film height is unstable
and colloids are stable (ℎ𝑖 = 2.2 and 𝜙𝑖 = 0.15). In (c) the film height is stable and colloids are unstable
(ℎ𝑖 = 1.9 and 𝜙𝑖 = 0.17). In (d), both the film height and colloids are unstable (ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.17).
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error tolerances were set to 10−9 for all computations. Note that decreasing the tolerances by an order of
magnitude does not qualitatively change our results.

In order to verify our codes and investigate the behaviour of colloidal liquids from our model, we conduct
a series of simulations and compare the results with the theoretical dispersion relations from § 3. For this,
we set initial conditions as flat profiles with perturbations:

ℎ(𝑥, 𝑡 = 0) = ℎ0(𝑥) ≡ ℎ𝑖 + 𝐴𝑖 (𝑥),
𝜓(𝑥, 𝑡 = 0) = 𝜓0(𝑥) ≡ 𝜓𝑖 + 𝐵𝑖 (𝑥), (47)

where 0 ≤ 𝑥 < 𝐿𝑥 . When discretised like the fields ℎ and 𝜓, at each lattice point, the perturbations 𝐴𝑖 (𝑥)
and 𝐵𝑖 (𝑥) are small-amplitude randomly generated numbers uniformly distributed in (−𝜀ℎ, 𝜀ℎ), (−𝜀𝜓, 𝜀𝜓),
where we retain control of the orders of magnitude of the perturbations of the film height and colloid profiles
𝜀ℎ and 𝜀𝜓, respectively. This initial condition corresponds to an initially uniform-height well-mixed liquid
layer deposited on the surface, with the small-amplitude perturbations corresponding to the small variations
that always exist either due to the manner in which such films are deposited on surfaces or due to the thermal
fluctuations that are always present on colloidal scales.

The initial conditions (47) mirror the linear stability analysis ansatz (24), allowing a direct comparison
between analytical and numerical results. The early evolution from near-flat profiles is visually unremarkable,
however the modes of growth become clear upon transformation into Fourier space. For example, even the
wavenumber 𝑘 that corresponds to the fastest-growing mode of wavelength 𝜆ℎ = 2𝜋/𝑘ℎ or 𝜆𝜓 = 2𝜋/𝑘𝜓
can only be distinguished at early times from initially selected noise after Fourier transform. It is thus more
convenient to directly compare the analytical and numerically-evaluated dispersion relations. To do this, we
Fourier transform our variables as ℎ̂ = F (ℎ) and 𝜓 = F (𝜓), where F (·) denotes the Fourier transform, such
that the linearised dynamical equations (22) [c.f. Eq. (25)] become[

𝜕𝑡 ℎ̂

𝜕𝑡𝜓

]
=

[
𝜔ℎ 0

𝜙𝑖 (𝜔ℎ − 𝜔𝜓) 𝜔𝜓

] [
ℎ̂

𝜓

]
. (48)

Noting that the ℎ̂ equation decouples (as discussed in § 3, due to 𝐶2 = 0), we can directly find an analytical
solution. We then solve for 𝜓 in terms of ℎ̂, i.e.

ℎ̂(𝑡) = ℎ̂0 exp(𝜔ℎ𝑡), (49)

𝜓(𝑡) =

(
𝜓0 − 𝜙𝑖 ℎ̂0

)
exp(𝜔𝜓𝑡) + 𝜙𝑖 ℎ̂0 exp(𝜔ℎ𝑡), (50)

where ℎ̂0 and 𝜓0 are the Fourier transformed initial conditions and 𝜙𝑖 = 𝜓𝑖/ℎ𝑖 . From this result, we can
rearrange (50) to obtain the computational 𝜔ℎ and 𝜔𝜓 as

𝜔ℎ =
1
𝑡

ln

(
ℎ̂𝑐 (𝑡)
ℎ̂0

)
, (51)

𝜔𝜓 =
1
𝑡

ln

(
ℎ𝑖𝜓𝑐 (𝑡) − 𝜓𝑖 ℎ̂𝑐 (𝑡)
ℎ𝑖𝜓0 − ℎ̂0𝜓𝑖

)
, (52)

with ℎ̂𝑐 (𝑡) and 𝜓𝑐 (𝑡) being the Fourier transforms of the computed results at any time 𝑡 > 0. The time we end
the simulation must remain within the linear regime for comparison to the linear stability analysis, since at
later times it departs from the linear regime, as the higher-order terms become significant and more complex
evolution of the system occurs. To see when this occurs, it is instructive to consider ln |ℎ − ℎ𝑖 | (equivalently
ln |𝜓 − 𝜓𝑖 |) at a point in the domain, since rearrangement of Eq. (24) gives that

ln |ℎ − ℎ𝑖 | ∼ 𝜔ℎ𝑡 + · · · , (53)

and thus the slope of ln(max|ℎ − ℎ𝑖 |) against 𝑡 gives an approximation of 𝜔ℎ (𝑘ℎ). We discuss these results
in the context of various cases next.
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Figure 4: Results for a case with 𝐴′ = 2, 𝐾 ′ = 0.15, 𝛼′ = 1, 𝜖 ′ = 0.5, 𝑎2 = 2, ℎ𝑖 = 2.2, and 𝜙𝑖 = 0.4. (a)
Dispersion relation calculated numerically via Eqs. (51) and (52) using 𝜀ℎ = 10−7, 𝜀𝜓 = 10−5 (symbols)
compared to the analytic results in Eqs. (33) and (34) (lines). (b) Measure of the evolution [c.f. Eq. (53)].

4.1 Case when the film height instability is dominant and 𝑘ℎ < 𝑘𝜓
As a first case, we consider a situation where 𝜔ℎ (𝑘ℎ) > 𝜔𝜓 (𝑘𝜓), i.e. the film height instability grows faster
and dominates over any colloidal modes, and also where 𝑘ℎ < 𝑘𝜓, so it is at longer wavelength. The relevant
dispersion relations are shown in Fig. 4(a). Using the results in Eqs. (51) and (52) to numerically-evaluate
the dispersion relations we can verify our numerical scheme through comparison to the analytical results in
Eqs. (33) and (34), which show excellent agreement.

In Fig. 4, we set the system length 𝐿𝑥 = 200, with model parameters selected as 𝐴′ = 2, 𝐾 ′ = 0.15,
𝛼′ = 1, 𝜖 ′ = 0.5, and 𝑎2 = 2, with ℎ𝑖 = 2.2 and 𝜙𝑖 = 0.4, and, as previously mentioned, we fix 𝛽′/𝛼′ = 1
throughout. In Fig. 4(a) we see that the computational result (magenta dots for ℎ and black circles for 𝜓)
lie on the analytical dispersion relation curve, with little error. Errors increase with system length 𝐿𝑥 , since
more growing modes fit in the domain (recall that all possible Fourier modes must satisfy our periodic
boundary conditions), which then couple/interfere at an earlier stage in the dynamics. Through numerical
experimentation we regularly see excellent agreement between the numerical and analytical values for the
film height eigenvalue 𝜔ℎ, whereas for the colloids there can be deviations of the numerical results from the
analytically obtained curve 𝜔𝜓; they do however always follow the correct trend. This comparison makes
for a very sensitive test of the numerics.

Next, we consider the evolution over time of the fastest growing mode through our result in Eq. (53). In
Fig. 4(b) we plot the logarithm of the maximum difference (as a function of position) between the initial and
evolving heights. For this case, the film height instability dominates, which is demonstrated by the slope of
0.0055, matching the value of 𝜔ℎ (𝑘 = 𝑘ℎ) from Fig. 4(a) with negligible error (c.f. the slower maximum
growth rate of the colloids is 𝜔𝜓 (𝑘 = 𝑘𝜓) = 0.0013). Additionally, we can predict that the system exits the
linear regime as being when 𝜀ℎ𝑒𝜔ℎ𝑡 ≈ 1, i.e. around 𝑡 ≈ 3000, which corresponds well with the region where
linearity starts to be lost in Fig. 4(b). Note that the first few points of the curves in Fig. 4(b) do not correspond
to the fastest growing mode. This is because for simplicity we have chosen to quantify the evolution by
considering the maximum change from the initial condition. The randomness of the initial condition (47)
dictates that this does not initially coincide with a location demonstrating the growth of the fastest growing
mode. Thus, different random seeds exhibit minor differences, until the fastest growing mode dominates
over the effect of the choice of randomness. We further note that our result for 𝜓 in Fig. 4(b) shows that
after 𝑡 ≈ 1500 it does not grow with rate 𝜔𝜓 (𝑘𝜓), due to being coupled to ℎ; i.e. after 𝑡 ≈ 1500 the fastest
growing modes for both ℎ and 𝜓 are those with wavenumber 𝑘ℎ.

From the wavenumbers 𝑘ℎ and 𝑘𝜓 of the fastest growing modes in the system, the corresponding
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Figure 5: Panel (a) shows a waterfall plot of the local film height over time and (b) shows the corresponding
local concentration of colloids. Both use a logarithmic scale in 𝑡. Panel (c) shows the final equilibrium
profiles. These are for 𝐴′ = 2, 𝐾 ′ = 0.15, 𝛼′ = 1, 𝜖 ′ = 0.5, 𝑎2 = 2, ℎ𝑖 = 2.2 and 𝜙𝑖 = 0.4. In (c) the dashed
black horizontal lines denote the two coexisting 𝜙 values, indicated in Fig. 2. Panel (d) shows the free energy
of the system against time.

wavelengths 𝜆 = 2𝜋/𝑘 , and the length of the system 𝐿𝑥 = 200, we can predict the number of peaks that
initially form in the system. Using the values of 𝑘ℎ and 𝑘𝜓 in Eqs. (44) and (45), i.e. at the peaks in 𝜔ℎ and
𝜔𝜓, together with the Fig. 4 parameter values, we have 𝜆ℎ ≈ 42 and 𝜆𝜓 ≈ 15, so we expect at early times
approximately 4 peaks in the film height, and 13 for the colloids. This is confirmed in Fig. 5, which displays
the full time evolution of both ℎ and 𝜙.

Having observed the agreement between our analytical and numerical results in the linear regime, it is
interesting to explore the longer-time dynamics of our system. Figure 5 shows an example evolution, where
we display the film height ℎ(𝑥, 𝑡) in Fig. 5(a), the colloidal concentration 𝜙(𝑥, 𝑡) in Fig. 5(b), the final profiles
of the system in Fig. 5(c), and the free energy of the system against time in Fig. 5(d). We can see that the
free energy of the system always decreases over time. At early times we see the exponential growth or decay
of modes as predicted by the linear theory. This corresponds to a decay of the small-wavelength modes, so
the profiles initially appear to become smoother, but longer-wavelength unstable modes grow in amplitude,
so that after some time the system starts forming peaks. As mentioned, the number of peaks is determined
by the fastest growing modes and can be predicted by considering the dispersion relations. In Fig. 5(a) these
peaks become visible at 𝑡 ≈ 2.5 × 103 for the film height ℎ, with the subdominant instability in the colloid
profile taking longer to become visible, at around 𝑡 ≈ 104, as can be seen in Fig. 5(b).

The dynamics after the initial linear growth regime can be complex, with evolution due to capillarity
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of the film height, spinodal decomposition and coarsening of the colloids, as well as dynamics driven by
the coupling between the two. In the case shown in Fig. 5(a), multiple small droplets initially form and
then subsequently coalesce, with translation occurring as a consequence of the coalescence events. The
evolution is somewhat similar to that typically observed for films of a pure liquid evolving from a uniform
film to form droplets and then ultimately a single droplet, as the liquid dewets from a surface. However, the
major difference in the case here is that there are two sudden translations of the droplet around 𝑡 = 2.3 × 107

and 𝑡 = 3.2 × 1010, both of which arise through the coupling to the colloid concentration profile, which
is exhibiting coarsening via Ostwald ripening – i.e. diffusion of colloids from one dense region to another
through the low density regions (Lifshitz & Slyozov, 1961; Wagner, 1961) – to reduce the number of
colloid-rich regions from 3 to 2, and then from 2 to 1.

Consider now the colloid evolution displayed in Fig. 5(b): The phase diagram in Fig. 2 shows that for
a given temperature (𝐾 ′/𝛼′), there are two equilibrium values of 𝜙 that occur in a bulk system. These are
indicated by the circles in Fig. 2, with concentrations 𝜙1 = 0.08 and 𝜙2 = 0.6. Their respective values being
the intersection points between the horizontal temperature line and the corresponding binodal curve. These
are the values that the colloidal concentration wants to evolve towards, with the interfacial tension term in
our model [the term with coefficient 𝜖 in Eq. (4)] penalising interfaces and thus driving the system to have
as few regions of dense/sparse colloids as possible. This is indeed observed, with regions of high density
having a clear plateau that corresponds to the dense state point, and these regions evolving in a similar way
to droplets through translation and coalescence or joining through Ostwald ripening. Whether aggregation
occurs through translation and joining or through the Ostwald mode depends on the state point, size of
the droplets and distance between them. The situations in which each coarsening mode dominates can be
understood and determined using the methods presented in Pismen & Pomeau (2004); Glasner & Witelski
(2005); Glasner et al. (2009); Dai (2010); Pototsky et al. (2014); Henkel et al. (2021).

For visual ease, and to highlight the relation to the phase diagram, we show the final profile of the system
in Fig. 5(c). In this final state we observe that all colloids gather into a single region, with a single droplet
too. Reaching equilibrium is slow for the film height, and even more so for the colloidal coarsening. To
verify this profile as being final, we have separately considered the time evolution of the center of mass
and the free energy, both of which reach a plateau. The approach to equilibrium is faster when considering
a 3D situation (two spatial variables 𝑥 and 𝑦) since aggregation and droplet motion can occur in different
directions, accelerating the process.

4.2 Case when the colloidal instability is dominant and 𝑘ℎ < 𝑘𝜓
A different case that is interesting to compare to the one in the previous subsection is a situation where
both the film height and colloid profiles remain linearly unstable, with the fastest growing mode for the film
height being still at a longer wavelength than that of the colloids, but we swap the relative growth rates
of the instabilities, i.e. 𝜔𝜓 (𝑘 = 𝑘𝜓) > 𝜔ℎ (𝑘 = 𝑘ℎ), so that the colloid concentration fluctuations grow
the fastest. We use the following parameter values to achieve this situation: 𝐴′ = 1, 𝐾 ′ = 0.13, 𝛼′ = 1,
𝜖 ′ = 0.5, 𝑎2 = 10, ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.4. This situation is clear from the dispersion relations displayed in
Fig. 6(a), where once again the analytical and numerical results show excellent agreement. The evolution
of the profiles (not shown) is similar to that displayed in Fig. 5, except the dominant early-time linear-stage
dynamics, which instead corresponds to the growth of colloidal concentration fluctuations. An interesting
feature of the dynamics in this case can be observed from Fig. 6(b), where 𝐿𝑥 = 300. From Eq. (53)
we expect a linear-growth regime at early times, which we do indeed observe, with the dominant colloid
instability growing with a steeper slope than in the case shown in Fig. 4. However, the line in Fig. 6(b) for the
film height has a sharp turn, departing at an early stage from its corresponding slower linear-growth regime.
It is clear that the coupling to the colloidal demixing drives this later growth, which occurs at a rate greater
than the rate predicted by linear analysis and therefore must be due to the nonlinear coupling terms. This
difference to the case displayed in Fig. 4 can be traced back to the top-right zero in the matrix in Eq. (48),
meaning that nonlinear couplings are required for fluctuations in 𝜓 to influence ℎ.
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Figure 6: Results for a case with 𝐴′ = 1, 𝐾 ′ = 0.13, 𝛼′ = 1, 𝜖 ′ = 0.5, 𝑎2 = 10, ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.4. (a)
Dispersion relation calculated numerically via Eqs. (51) and (52) using 𝜀ℎ = 10−7, 𝜀𝜓 = 10−5 (symbols)
compared to the analytic results in Eqs. (33) and (34) (lines). (b) Measure of the evolution [c.f. Eq. (53)].

4.3 Two strongly coupled cases where the long wavelength colloid instability dominates

It is now of interest to consider cases where the coupling between the film height and the local colloid
concentration is stronger. Inspecting the free energy in Eq. (15), we see that terms involving both ℎ and
𝜓 have coefficients 𝐾 ′, 𝛼′, 𝛽′ and 𝜖 ′. To uniformly increase the coupling between the two fields without
changing the colloidal bulk phase behaviour (rather than independently changing the relative strength of
colloidal interactions, interfacial tension, etc.), we increase all of these parameters whilst maintaining the
values of the ratios 𝐾 ′/𝛼′, 𝛽′/𝛼′ and 𝜖 ′/𝛼′ the same. The parameter values we now use are: 𝐴′ = 1, 𝐾 ′ = 11,
𝛼′ = 𝛽′ = 100, 𝜖 ′ = 4000, 𝑎2 = 100 and ℎ𝑖 = 2.5. First, we consider the case 𝜙𝑖 = 0.4. The dispersion
relations (not displayed) show that the colloidal instability dominates at longer wavelength (smaller 𝑘) than
the film height instability. From the dispersion relations in Eqs. (33) and (34) we obtain the fastest growing
wavelengths to be 𝜆ℎ = 52 and 𝜆𝑐 = 115, so in a system of length 𝐿𝑥 = 300 we should observe around three
maxima to initially develop in the colloid concentration profile and six in the film height. This simulation is
displayed in Figs. 7(a)–(c), where we see that the early-time dynamics agrees with this calculation.

The simulation reaches an equilibrium state, displayed in Fig. 7(c), where the film height and colloid
concentration profiles coarsen into a single drop. The equilibration process is much faster than in the cases
considered in the previous subsections as there are fewer initial wavelengths, and the approach to equilibrium
of the colloids is quicker because the case we consider here in Figs. 7(a)-(c) has all terms in the free energy
that control the colloids multiplied by a factor of 100. The influence of the much stronger coupling can be
observed in Fig. 7(c) where either side of of the droplet (peak in the film height), there are deep depressions
in the film height that correspond in location to the interfaces between low and high density regions of the
colloids. The influence of the strong coupling can also be observed during the evolution in the waterfall
plot in Fig. 7(a), where these depressions appear as deep trenches. It is instructive to compare the equilibria
of Fig. 7(c) with Fig. 5(c). In the latter, there is weak coupling, and hence the system evolves to a state
where there is a droplet sitting on a precursor film at ℎ ≈ 1.5, corresponding to the ideal height based on the
binding potential of our model, and the droplet being of a shape dictated by conservation of mass from that
given by the initial condition and surface tension of the liquid. Similarly, the colloid concentration profile
evolves to plateaus at high and low density phases with values given in the phase diagram in Fig. 2, with a
minimum number of interfaces. By contrast, the highly coupled situation displayed in Fig. 7(c) has distorted
profiles. In particular, we see strong depletion regions where the liquid height is significantly below the ideal
precursor film value, which occurs so as to accommodate the mass of colloidal particles in a single region
within the droplet, and also the required interfaces between high and low density states. However, we would
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Figure 7: Waterfall plots (using linear 𝑡) of (a) the film height, and (b) the local colloid concentration, for
𝐴′ = 1, 𝐾 ′ = 11, 𝛼′ = 𝛽′ = 100, 𝜖 ′ = 4000, 𝑎2 = 100, ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.4. Panel (c) displays the final
equilibrium profiles. Panels (d)–(f) show similar results, but with 𝜙𝑖 = 0.3, corresponding to a decrease in
the total amount of colloids in the system.
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Figure 8: Final equilibrium profiles corresponding to cases where (a) the colloids are stable (and the film
height is unstable) and (b) the film height is stable (with unstable colloids). The parameter values are the
same as those for Figs. 3(b) and (c), respectively.

caution against ascribing too much significance to details of the ordering observed in the precursor film,
since the most natural interpretation of films of this thickness is as a monolayer adsorbed on the surface,
where the thin-film equation is arguably not a good description (Yin et al., 2017).

As mentioned, in Fig. 7(c) we observe that the colloids end up within the single final droplet on the
surface, i.e. the film height and the colloidal concentration profiles are in-phase in the final result. This is not
always the case; the outcome largely depends on the total amount of colloids within the system. In order to
change the final result from being in-phase to anti-phase [an example of the latter is shown in Fig. 7(f)] we
can control the initial colloid concentration to a different location on the phase diagram in Fig. 2. In the case
shown in Figs. 7(d)–(f), we decrease the initial average concentration to 𝜙𝑖 = 0.3, and achieve an anti-phase
final result. We observe that the system is generally anti-phase when the total concentration of colloids is
low (i.e. lower 𝜙𝑖 , corresponding to locations on the left-hand side of the phase diagram within the spinodal
in Fig. 2), and in-phase for higher concentrations (i.e. higher 𝜙𝑖 , corresponding to locations on the right-hand
side within the spinodal). We investigate this matter further in § 5, with the aid of bifurcation diagrams.

4.4 Cases including stability of either film height or colloid profiles

As previously discussed, there are also situations where either a uniform film height or colloid concentration
can be linearly stable. The case where both are stable is obvious, because in this situation any small
perturbations in the initial profiles decay over time and the profiles both become flat. We also analysed some
cases with profiles where one of the film height or colloid concentration profiles is stable, while the other
unstable. Typical dispersion relations for cases like these are shown in Figs. 3(b) and 3(c). Examples of
equilibrium profiles from our dynamic simulations are shown in Fig. 8.

In Fig. 8(a), we have stable colloids and unstable film height. The film height evolves to form a droplet,
while the concentration of the colloids remains roughly the same as the initial concentration 𝜙𝑖 . As a result,
the colloids follow the overall film height, as can be seen in the field 𝜓, so that the colloid profile ends up
in-phase with the film height profile. When the film height is stable, the system does not form a droplet.
However, if the colloids demix, the film height is still affected by the unstable colloids. For example, in
Fig. 8(b), we see that the colloids have separated into high and low density regions, and the interfaces between
these distort the film height such that together the profiles minimise the overall free energy. We also notice
that the computation time for this case is much longer. This is because when the film is stable, the colloids
lose the driving from the film height evolution, so the system reaches equilibrium in a much longer time. To
put this another way: when the film height remains roughly constant, the only process governing the time
evolution of the colloids is diffusive aggregation and this is a much slower process than the liquid dewetting
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Figure 9: Panels (a) and (b) show waterfall plots over time (using log 𝑡) of the film height and the local colloid
concentration, respectively, for 𝐴′ = 1, 𝐾 ′ = 0.13, 𝛼′ = 𝛽′ = 3, 𝜖 ′ = 0.5, 𝑎2 = 2, ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.41.
Panel (c) shows the final equilibrium profiles and (d) shows the dispersion relation for this system.

dynamics.

4.5 Dynamics leading to asymmetrical final profiles

In our explorations of the model, we have also observed cases where the final profiles are asymmetrical. A
typical example is displayed in Fig. 9, which occurs when 𝐴′ = 1, 𝐾 ′ = 0.13, 𝛼′ = 𝛽′ = 3, 𝜖 ′ = 0.5, 𝑎2 = 2,
ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.41. This corresponds to the dimensionless temperature 𝐾 ′/𝛼′ = 0.043, which is lower
than in the cases considered previously. Here, the coexisting colloid concentrations are 𝜙1 = 0.00055 and
𝜙2 = 0.77 (c.f. Fig. 2), so there is a greater difference between these than in the cases considered previously.
The time evolution for a system of size 𝐿𝑥 = 60 is displayed in waterfall plots in Figs. 9(a)–(b), with the
corresponding final profiles in panel (c) and dispersion relations in (d). From the dispersion relations we
see that the colloids mode is by far the fastest growing in the early stages. Thus, in the dynamics we see
this instability dominating the overall dynamics and making the system exit the linear regime relatively
quickly. We also see the colloid concentration variations coupling strongly to the film height ℎ. Compared to
the examples discussed previously, where we observe symmetric final profiles with the colloids distributed
evenly outside the droplet [see e.g. in Fig. 5(c)], in the present case the coupling between ℎ and 𝜙 is much
stronger. Therefore, the colloidal concentration variations are mirrored in the film height variations over the
surface. In Figs. 9(a)–(b) the initial number of peaks that form in ℎ and 𝜙 are accurately predicted by the
dispersion relation. Since the system evolves to minimise the free energy, plots of the free energy always
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decreases over time (not displayed), with each decrease in the total number of colloid agglomerates (bumps)
visible in Fig. 9(b) corresponding to a step-like drop in the total free energy. For some asymmetric cases
we observe that due to small numerical round-off errors the final droplet can very slowly slide at constant
velocity over the smooth surface. Such translations do not change the free energy. The sliding speed depends
on choice of grid spacing and the direction can change with a different set of initial randomness. Of course,
this cannot be a genuine feature, as confirmed with the aid of bifurcation diagrams in § 5.4.

5 System equilibrium and bifurcation diagrams

5.1 Bifurcation diagram for a simple case with small coupling

In the previous sections, we showed examples of the dynamics of our system for a range of different
parameters, and we noticed that the final film height and colloid concentration profiles equilibrate to being
either in-phase (peaks, or high density regions occur at similar positions) or anti-phase (where a peak in the
film height corresponds to a lower density of colloids). We now investigate systematically the dependence
of the equilibrium profiles on the system length 𝐿𝑥 . We do this by producing bifurcation diagrams for some
of the cases previously considered. The bifurcation diagrams are generated using our in-house numerical
codes developed in Matlab employing a spectral method, see, for example, Lin et al. (2018); Blyth et al.
(2018, 2023). Eqs. (21) and (22) are rewritten as a dynamical system for the Fourier coefficients of ℎ and
𝜓, which is truncated at a sufficiently high wavenumber to ensure accuracy. Steady-state solution profiles
correspond to the fixed points of this dynamical system, resulting in a system of nonlinear equations for
the nonzero-wavenumber Fourier coefficients of ℎ and 𝜓. Two additional equations are obtained from
requiring fixed average values of ℎ and 𝜓. Additionally, we pin the solutions such that ℎ has a local
extremum in the middle of the domain, i.e. we impose the condition ℎ𝑥 |𝑥=𝐿𝑥/2 = 0. This necessitates the
introduction of an additional unknown parameter, to maintain consistency between the number of imposed
equations and unknowns. To achieve this, we introduce a fictitious wave speed, 𝑐, resulting in the addition
of terms 𝑐ℎ𝑥 and 𝑐𝜓𝑥 to the right-hand sides of Eqs. (21) and (22), respectively. This speed is trivially
found to be zero in all continuation computations. Various solution branches of the resulting system of
nonlinear equations for different parameter values are obtained by initially starting from small-amplitude
nearly sinusoidal solutions on a domain size close to a cutoff wavelength obtained from the linear stability
analysis. Numerical pseudo-arclength continuation is then performed, initially with respect to the domain-
size parameter, and subsequently with respect to other relevant parameters, see, for example, Tseluiko et al.
(2013); Lin et al. (2016); Engelnkemper et al. (2019); Tseluiko et al. (2020) for more details on numerical
continuation techniques for liquid-film problems.

Our bifurcation diagrams depict the equilibria of our system when varying 𝐿𝑥 and keeping all other
parameters fixed. Each realisation of the equilibrium profiles is represented by a point in each diagram (one
for ℎ and one for 𝜓) corresponding to the 𝐿2-norm of the profile, subtracting the profile average value ℎ𝑖 or
𝜓𝑖 , i.e.

| |ℎ − ℎ𝑖 | | =

√︄∫ 𝐿𝑥

0
|ℎ − ℎ𝑖 |2 d𝑥, (54)

and

| |𝜓 − 𝜓𝑖 | | =

√︄∫ 𝐿𝑥

0
|𝜓 − 𝜓𝑖 |2 d𝑥. (55)

In all the bifurcation diagrams shown here, blue lines represent continuation results starting from the known
initial linear instability in the film height and red lines are similarly from the colloid instability (see § 3),
termed here the film-height mode and the colloid mode. However, due to the coupling between the film
height and the local colloid concentration, an instability in either affects both profiles, and hence both red
and blue lines appear on the bifurcation diagrams for the norm of the equilibrium profile for both ℎ and 𝜓.
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Figure 10: Bifurcation diagrams and final states for cases shown in § 4.1, where 𝐴′ = 2, 𝐾 ′ = 0.15, 𝛼′ = 1,
𝜖 ′ = 0.5, 𝑎2 = 2, ℎ𝑖 = 2.2, and 𝜙𝑖 = 0.4. Panel (a) shows the film height 𝐿2-norm corresponding to two
main branches of solutions for varying system size 𝐿𝑥 . These originate from instabilities in either the film
height (blue) or in the colloid local concentration (red), shown with circles. Squares represent locations
of bifurcation points. Stable and unstable solutions are shown with solid and dashed lines, respectively.
Similarly, (b) shows the 𝐿2-norm of the corresponding 𝜓 profiles. Panels (c) and (d) show equilibrium
profiles from continuation at the final 𝐿𝑥 = 200 point on diagrams (a) and (b): (c) shows the film height
branch [blue lines in (a) and (b)], and (d) the colloid instability branch [red dashed lines in (a) and (b)].
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Sections of the branches corresponding to stable and unstable solutions are shown with solid and dashed
lines, respectively. Bifurcation points to side branches are illustrated using squares.

The bifurcation diagrams displayed do not show all possible branches, and hence not all possible equilibria
of our system, but those included are instructive for understanding the dynamics of our system. Similarly, not
all bifurcation points where the stability of solution branches changes are displayed, but some are illustrated
with squares. In later cases in this section, some significant points where branches collide are discussed.

We begin by presenting the bifurcation diagrams in Figs. 10(a) and 10(b), which correspond to the
dynamical simulations discussed in § 4.1. The parameter values are 𝐴′ = 2, 𝐾 ′ = 0.15, 𝛼′ = 1, 𝜖 ′ = 0.5,
𝑎2 = 2, ℎ𝑖 = 2.2, and 𝜙𝑖 = 0.4. Solution branches corresponding to inhomogeneous profiles begin on the
𝑥-axis at the points corresponding to where the system is first big enough to fit one unstable wavelength.
We can read from Fig. 4(a) the largest wave numbers when the system is unstable (the roots of 𝜔ℎ (𝑘) = 0
and 𝜔𝜓 (𝑘) = 0) as 𝑘ℎ0 = 0.215 and 𝑘𝜓0 = 0.535. Note that 𝑘ℎ0 ≡

√
2𝑘ℎ and 𝑘𝜓0 ≡

√
2𝑘𝜓, which can be

obtained from Eqs. (44) and (45), respectively. The corresponding wavelengths are 𝜆ℎ0 = 2𝜋/𝑘ℎ0 = 29.2
and 𝜆𝜓0 = 2𝜋/𝑘𝜓0 = 11.7, and are accurately captured in the bifurcation diagrams, Figs. 10(a) and 10(b),
corresponding to the circular blue and red points on the 𝑥-axis, where the norms equal zero.

As 𝐿𝑥 is increased, the equilibrium profiles change. For ℎ in Fig. 10(a), we see that profiles on the
two different branches originating from either the film-height or colloid instability are very similar, since
both norm lines lie very close to each other. However, for 𝜓 in Fig. 10(b), the norms are very different
and correspond to very different profiles. To illustrate this, we plot representative profiles for the points at
𝐿𝑥 = 200 in Figs. 10(c) and 10(d). In Fig. 10(c) the 𝜓 profile is largely flat with a small central bump,
whereas in Fig. 10(d) the 𝜓 profile has a larger central bump and shoulders extending into the flat-film region,
being significantly different from the flat solution, and thus has a much larger 𝐿2-norm. This substantial
difference is seen in Fig. 10(b), where the 𝐿2-norm at 𝐿𝑥 = 200 on one branch is roughly twice the value
on the other. Additionally, we see in the representative profiles in Figs. 10(c) and 10(d) that the maxima
in both ℎ and 𝜓 occur together, which is the case all along these solution branches. Hence, for this set of
parameter values, we conclude that profiles of any system length 𝐿𝑥 have the colloids located in-phase with
the centre of the droplet. We note that the solutions of the colloid mode branch are linearly stable, whereas the
solutions of the thin-film mode branch are all linearly unstable. In addition, there are a number of bifurcation
points on the thin-film branch. Although we have not checked the nature of all these bifurcation points, our
preliminary analysis shows that most likely they correspond to transcritical bifurcations. The side branches
passing through these points are not shown here, as the solutions of these branches are linearly unstable. We
note also that the equilibrium profiles in Fig. 10(d) agree well (up to horizontal translation) with the final
profiles after the dynamic evolution of our hydrodynamic model in Fig. 5, giving confidence to both results.

5.2 Bifurcation analysis for a case with strong coupling

In § 4 we noted that the system can evolve to situations where the colloid local concentration profile can
end up being either in- or anti-phase with the film height. We now investigate how this is manifested in
the bifurcation diagrams showing the various possible equilibrium solutions, and how the transition occurs.
First, we display in Figs. 11(a) and 11(b) bifurcation diagrams for the (stronger coupling) set of parameters
used in Figs. 7(d)–(f), where the final profiles correspond to the film height and the colloid concentration
profiles being anti-phase.

In Figs. 11(a) and 11(b) the two blue lines are branches of solutions corresponding to instabilities in the
film height. The first, as in Fig. 10, corresponds to one wavelength (single droplet) in the system and the
second, starting at double the wavelength of the first branch, corresponds to profiles of two wavelengths (two
droplets). As a result, the starting point of the second film height branch is at twice the value (system length
𝐿𝑥) of the starting position of the leftmost branch. An example of a single wavelength solution on the first
branch is shown in Fig. 11(c), and an example of a two wavelength solution is shown in Fig. 11(d) (recall that
the domain is periodic in 𝑥). In the bifurcation diagram, we also display (red line) the continuation along the
colloid mode branch, that crosses the first film-height branch at the first bifurcation point, which turns out
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Figure 11: (a)–(b) Bifurcation diagram for parameters as in Figs. 7(d)–(f), where now a second blue line
branch corresponding to a double-droplet profile is depicted. The solid lines correspond to stable solutions,
whereas the dashed lines correspond to unstable solutions. (c)–(e) Equilibrium profiles from the film height
mode (c) first film height branch and (d) second film height branch; (e) equilibrium profiles from the colloid
film mode.
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to correspond to a transcritical bifurcation (as can be more clearly seen in the inset, discussed in more detail
later). The starting point of this branch is located to the left, at smaller 𝐿𝑥 , of the second film mode branch
and they do not intersect. This corresponds to an anti-phase profile, with a representative example shown
in Fig. 11(e). This profile is the same as the one shown in our dynamical simulation in Fig. 7(f) with the
droplet at a different location since in dynamical simulation we used a randomly perturbed initial condition.

The eigenvalues corresponding to solution branches displayed in Figs. 11(a)–(b) (not displayed) show
that the part of the first blue film height branch before the first bifurcation point is stable, and so is indicated
as a solid line, while the rest of the branch is unstable, indicated as a dashed (blue) line. The second blue
film height branch is entirely unstable, so is all dashed.

The red colloid branch starts out unstable until reaching the leftmost turning point, except for the small
part near where it crosses the film height branch at the transcritial bifurcation point. This part is magnified in
Fig. 11(a) in the top inset and the stable part is highlighted by the thicker red solid line. The branch becomes
stable for a very small section between the turning point and the first bifurcation point on the film-height
branch (corresponding to a transcritical bifurcation). The colloid branch is stable from the leftmost turning
point until 𝐿𝑥 = 219.5, where it becomes unstable again for a very short section (see the bottom inset).

When we increase the total average colloid concentration, the zero (neutral wavenumber) in the dispersion
relation for the colloids shifts to smaller 𝑘 , making the starting point for the branch of solutions corresponding
to the colloid instability to shift to larger 𝐿𝑥 (smaller 𝑘 corresponds to larger wavelengths). A sufficient
increase can make the colloid branch start to the right of the second film height branch. For such model
parameters (here changing 𝜙𝑖 from 0.3 to 0.4 and keeping all other values the same), as we increase the
system size 𝐿𝑥 , we find that the colloid-mode branch now crosses the second film height branch, as shown in
the corresponding bifurcation diagrams displayed Figs. 12(a)–(b). In such a case, the colloid-mode branch
crosses the second film height branch at a pitchfork bifurcation point. We show the profiles at the intersection
point in Fig. 12(f). Note that at this point the solution has the period equal to half of the domain size, but
this symmetry is broken on the colloid branch away from this pitchfork bifurcation point.

To obtain the equivalent colloid-mode branch for lower 𝜙𝑖 , we can take an already computed equilibrium
solution for 𝜙𝑖 = 0.3 (for instance at 𝐿𝑥 = 200), continue the solution in 𝜙𝑖 to the desired value 𝜙𝑖 = 0.4 at
the same 𝐿𝑥 , and use this to then continue forward and backward in 𝐿𝑥 , to generate the full colloid mode
solution branch displayed in Figs. 12(a)–(b) (red line). Doing this, on continuing backward in 𝐿𝑥 we find
that this branch meets the second branch of the film height bifurcation curve at a pitchfork bifurcation point,
rather than the flat state (horizontal axis of our figures). We also use continuation to take the system forwards
to 𝐿𝑥 = 300. Again, the eigenvalue plot (not displayed) suggests that the first branch of the film height mode
is stable until the first bifurcation point in Figs. 12(a)–(b), and the entire second branch for the thin film is
again unstable.

From Figs. 12(a)–(b), we can see that the main branch of the colloids mode (thicker red line) intersects
the first branch of the film height curve through the first bifurcation point (which turns out to correspond
to a transcritical bifurcation), and lands on the first bifurcation point of the second film-height branch at a
pitchfork bifurcation. We show the profiles from each branch at 𝐿𝑥 = 300 in Figs. 12(c)–(e). The profiles
from the film height branches (shown in Figs. 12(c) and (d)) are similar to the anti-phase case because the
parameters related to the film height have not changed. However, from the colloid branch (Fig. 12(e)) we see
from the profiles that the film height and colloid concentration profiles are now in-phase. We now explore
this transition between anti-phase to in-phase further.

5.3 Transition from anti-phase to in-phase solution profiles

With the two sets of bifurcation diagrams in Figs. 11 and 12, we understand that there is a fundamentally
different structure between the anti-phase and in-phase cases. Critically, the transition occurs depending on
whether the colloid mode begins at higher or lower 𝐿𝑥 than the second film-height branch, or, equivalently,
the largest value of 𝑘 that the colloids are linearly unstable compared to half the value for the film (or twice
the wavelength). This change modifies the structure of the bifurcation diagram to enable an intersection with
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Figure 12: Bifurcation diagrams and profiles for an in-phase case, parameters as in Fig. 11 but with 𝜙𝑖 = 0.4.
(a)–(b) show bifurcation diagrams for the 𝐿2-norm of the film height and colloidal profiles, respectively.
Note that there are many other branches in the bifurcation diagram; those displayed correspond to the one-
and two-wavelength solutions as predicted by our linear stability analysis. The solid lines correspond to
stable solutions, whereas the dashed lines correspond to unstable solutions. Panels (c)–(e) show profiles on
the three displayed branches at 𝐿𝑥 = 300: (c) shows the profile on the first film height mode branch, (d) on
the second film height mode branch, and (e) and anti-phase profile on a colloids branch that terminates on
the second film height branch. (f) shows the profile when the colloids mode branch terminates on the second
film height branch.
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Figure 13: Transition between anti-phase to in-phase at 𝐿𝑥 = 200. (a) Turning point in the maximum
difference in film height. (b)-(d) Profiles for 𝐿𝑥 = 200 at 𝜙𝑖 = 0.3, 𝜙𝑖 = 0.4 and the critical concentration
𝜙𝑖 = 0.367, with other parameters as in Fig. 11.
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Figure 14: Bifurcation diagrams for the same parameters as in Fig. 9. Panel (a) shows the 𝐿2-norm for ℎ,
while (b) shows this for 𝜓. The red dashed line is the solution branch corresponding to unstable equilibria
with symmetrical profiles. The red solid line is for the stable equilibria, which to the right of the red square
are asymetrical. The blue dashed line corresponds to the unstable thin film branch of solutions.

the second film-height branch or not. The transition thus occurs at this point. Starting from a high value
and decreasing 𝜙𝑖 , eventually the start point of the colloid branch collides with the start point of the second
film-height branch and the connecting branch is annihilated below this critical value.

Another way to visualise the transition is to plot the maximum difference in film height against the initial
concentration 𝜙𝑖; see Fig. 13(a) for 𝐿𝑥 = 200. We observe a clear turning point, located at 𝜙𝑖 = 0.367
(the middle red point) and this is the critical concentration for the system to go from anti-phase to in-phase.
In the 𝐿𝑥 = 200 profiles displayed from the colloids branch, we can see a clear height difference between
drops. In Fig. 13(b) (corresponding to the left red point in Fig. 13(a)), the droplet in the middle is taller,
with the colloid concentration higher in the second smaller droplet (wrapping around the two sides due to
periodicity), making the system anti-phase. On the other hand, in Fig. 13(d) (corresponding to the right red
point in Fig. 13(a)), the drop with the most colloids in is taller, and hence in-phase. In Fig. 13(c) we plot the
profile of the system when the concentration is at the turning point of Fig. 13(a) (where 𝜙𝑖 = 0.367), where
the heights of both droplets are the same.

5.4 Bifurcation diagrams for a case with asymmetrical solutions

In § 4.5 we described an example situation with asymmetrical final profiles. Here, we map out the bifurcation
diagram for this case, displayed in Fig. 14. From noting that the neutral wavenumber in the dispersion relation
in Fig. 9(d) for the colloids is much bigger than that for the film height, we can predict that the starting
point for the colloid branch is at a much smaller wavelength (i.e. much smaller system size) than the one
for the film-height branch. Arguably the most interesting feature that we observe in Fig. 14 is the pitchfork
bifurcation point on the first colloid branch, indicated by a red square. The side-branch that bifurcates from
this point is displayed as a red solid line. Interestingly, the solutions on this side-branch are stable and
asymmetrical. The profiles for 𝐿𝑥 = 60 for both the symmetrical and asymmetrical colloid branches are
shown in Figs. 15(a) and (b), respectively.

In Fig. 15(b), we display an asymmetrical profile, corresponding to the colloids being slightly gathered
together at one end of the droplet, with not enough of them in the system to span equally to the other end of
the droplet. Note that this equilibrium profile is almost the exact replicate of the final equilibrium obtained
from our dynamical simulation, shown in Fig. 9(c). Note too, however, that with different random seeds,
we may observe equivalent profiles that are either translations or a mirror image of the equilibrium profiles
shown in Fig. 9(c), i.e. in our dynamical simulations, where the centre of the droplet ends up and on which
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Figure 15: Profiles for a system of length 𝐿𝑥 = 60 and corresponding to the bifurcation diagrams in Fig. 14.
Panel (a) shows the unstable symmetrical solution on the first colloid branch and (b) shows the stable
asymmetrical solution on the side branch bifurcating from the first colloid branch.

side of the droplet the colloids gather depends on the random initial conditions. To confirm the stability of
the asymmetrical state calculated in the bifurcation diagram for 𝐿𝑥 = 60, we set it as an initial condition for
our dynamical code, finding that over time it does not change, i.e. it is indeed stable.

6 Three-dimensional droplets

As discussed at the start of § 4, our model equations apply to systems of three-dimensional droplets, i.e. consist
of thin-film equations for the film height and colloid local concentration depending on two spatial variables
𝑥 and 𝑦. Our computer code for this case again uses finite differences, but now extended to two spatial
variables. This increase in complexity of the code results in the numerical simulations taking considerably
longer, but are still manageable on a personal computer for the system sizes discussed here. To benchmark
this code, we run simulations with a very narrow domain width 𝐿𝑦 in the 𝑦-direction together with an
initial condition that mimics our simulations from the previous section. We find the results agree with high
accuracy, up until 𝐿𝑦 becomes sufficiently large that the expected effects of the additional dimension begin
to develop.

In Fig. 16 we show the dispersion relations for a system with parameters 𝐴′ = 4, 𝐾 ′ = 0.15, 𝛼′ = 1,
𝜖 ′ = 0.2, 𝑎2 = 50, ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.4, showing both the film height and the colloids are linearly unstable.
Thus, at this state point we should expect both dewetting of the film and also demixing of the colloids within
the film. An example of the three-dimensional film height and colloid concentration dynamics corresponding
to this set of parameters is shown in Fig. 17. We set the system size to be 𝐿𝑥 = 𝐿𝑦 = 55, with 110 discretisation
points in either direction and apply periodic boundary conditions. The initial condition is similar to that used
in the previous section, being flat profiles with small amplitude random perturbations, consisting of uniformly
distributed random numbers for each (𝑥, 𝑦) location, for both ℎ and 𝜓, with amplitudes 𝜀ℎ = 𝜀𝜓 = 10−5.

From the dispersion relations shown in Fig. 16 we can read off that the wavelengths corresponding to
most unstable wavenumbers are 𝜆ℎ = 25 and 𝜆𝜓 = 10.5. With the length of the domain being 55, this means
that at early times we are likely to observe two wavelengths in the film height, since this is closest to the
most unstable liquid height mode, and to observe five wavelengths of the most unstable colloidal demixing
mode. This can indeed be seen in Figs. 17(a) and 17(b), which are for the early time 𝑡 = 200, by taking a
visual slice in either the 𝑥- or 𝑦-direction. In the 𝜓 profile the five wavelengths are obvious, but in ℎ the
two wavelengths are slightly harder to see, due to the coupling with the colloids. However, by looking at the
large-scale period of red-yellow fluctuations in a given slice, the two wavelengths can be discerned.
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Figure 16: Dispersion relation for parameters 𝐴′ = 4, 𝐾 ′ = 0.15, 𝛼′ = 1, 𝜖 ′ = 0.2, 𝑎2 = 50, ℎ𝑖 = 2.5 and
𝜙𝑖 = 0.4, relevant to the simulation presented in Fig. 17.

After the initial phase corresponding to the linear regime, the profiles begin to coarsen in a similar
fashion to the cases where ℎ and 𝜓 depend on one spatial variable discussed previously. By the time 𝑡 = 500
the profiles have started to coarsen, forming four separated liquid droplets [Fig. 17(c)], which eventually
coalesce into a single droplet by the final displayed time 𝑡 = 1100, in Fig. 17(e). In a similar fashion, the
colloid profiles coarsen in Figs. 17(d) and (f), but with the coupling to the liquid film height affecting the
dynamics and creating obvious regions of colloids located in-phase with the drops.

The time taken for this three-dimensional simulation to reach the final state is considerably shorter than
for similar corresponding two-dimensional cases, because the extra spatial dimension gives to the coarsening
process an additional degree of freedom in which to occur. The coarsening is the slowest process in the
whole dynamics and so speeding this up speeds up the overall dynamics. The local colloidal concentration
𝜙 can be inferred from inspecting the 𝜓 profiles relatively easily. However, to avoid having to do this, we
also plot this field 𝜙(𝑥, 𝑦, 𝑡 = 1100) in Fig. 18, which shows that at most points in space the local colloid
concentration takes the two coexisting bulk values predicted by calculating the phase diagram in Fig. 2. This
also shows that although the dewetting process has been largely completed, the colloidal coarsening still has
some way to go. The colloidal dynamics is very slow after this stage because the colloids have to diffuse
through the thin precursor film layer to further coarsen.

7 Concluding remarks

Here, we have developed a low-order thin-film model for the dynamics of colloidal fluids on planar surfaces.
We have used our model to form an understanding of the manner in which colloidal demixing (i.e. agglom-
eration) can influence and couple to liquid-film dewetting processes. Our model is based on that of Thiele
(2011), which we have extended by adding additional terms to the free energy (4) in order to incorporate the
effects of colloidal particle interactions. In particular, to incorporate the influence of attractive interactions
between the colloids, which can drive demixing of the colloids within the film.

After non-dimensionalising the model, we have performed a linear stability analysis, uncovering an
interesting partially-decoupled dispersion relation that is responsible for the early stage evolution of the
system. The analytically determined eigenvalues from the linear stability analysis of initially uniform films
demonstrate a rich array of situations depending on whether either the liquid film or the colloids are stable,
and the relative wavelength of disturbance that initially grows in either the film height or in the colloid local
concentration profile. The decoupling in the dispersion relation does not occur if one assumes (in contrast

30



0 10 20 30 40 50
0

10

20

30

40

50

2

3

4

5

6

7

0 10 20 30 40 50
0

10

20

30

40

50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 17: Simulation of a square system of size 𝐿𝑥 = 𝐿𝑦 = 55 with periodic boundary conditions and
parameters 𝐴′ = 4, 𝐾 ′ = 0.15, 𝛼′ = 1, 𝜖 ′ = 0.2, ℎ𝑖 = 2.5 and 𝜙𝑖 = 0.4. Shown are (left) the film-height
profiles ℎ and (right) the local colloid effective height profiles 𝜓 at the times (a,b) 𝑡 = 200, (c,d) 𝑡 = 500, and
(e,f) 𝑡 = 1100. The system exhibits coupled dewetting and demixing of the colloids within the film.
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Figure 18: The colloidal local concentration profile 𝜙 at the time 𝑡 = 1100, corresponding to the coupled
dewetting and colloidal demixing (agglomeration) dynamics displayed in Fig. 17.

to our assumption here) that the binding potential 𝑔(ℎ) in the free energy (4) is also a function of the local
colloid concentration 𝜙. In this case, even when there is no colloidal demixing, the coupling between film
height and colloid concentration fluctuations can trigger dewetting (Thiele et al., 2013).

We also determined the bulk phase diagram by analysing the thermodynamics of the system. All
thermodynamic quantities are determined by the assumed free energy functional (4), and this also governs
the properties of the eventual equilibrium states of the system in the long-time limit. By deriving the
model based on a free energy functional which incorporates the necessary physics, ensures that there is a
consistency between equilibria of the model and the thermodynamics, which are implicit in the specified
free energy functional. This general approach of starting from the free energy, can be a very fruitful and
straight-forward way to develop thin-film models incorporating a wide range of physics (Thiele, 2011). Just
a few examples of phenomena that can be incorporated into such models in this way include: evaporation
leading to pattern formation (Frastia et al., 2011, 2012), evaporation in confined spaces (Hartmann et al.,
2023), surfactant molecules in the bulk and on the surface of films (Thiele et al., 2016), freezing and
melting (Sibley et al., 2021) and elastic substrates (Henkel et al., 2021; Kap et al., 2023). An interesting
future direction would be to incorporate different couplings between the the film height and the solute
concentration, building on the present work and also that of Thiele et al. (2013), to investigate more general
situations where 𝐶2 ≠ 0 [see Eq. (48)], so coupling between modes leading to instability could become even
richer than the cases investigated here. Additionally, by assuming a constant surface tension and viscosity,
our model neglects the possibility of Marangoni forces and the slow dynamics that one should expect when
the local colloid concentration becomes high. These would also be interesting areas for future work. For the
situations investigated here, replacing the constant viscosity with a function that depends on the local colloid
concentration will have no real qualitative effect, other than to change some of the overall timescales for the
dynamics. However, when evaporation is present, the local colloid concentration can become sufficiently
high that locally the viscosity 𝜂 → ∞, which can be important in determining the drying patterns left by
evaporating colloidal suspensions (Rabani et al., 2003; Martin et al., 2004; Frastia et al., 2011, 2012; Robbins
et al., 2011). It should also be mentioned that dynamical effects such as slip at the surface or the diffusion of
colloids over almost-dry surfaces can also by incorporated easily into this whole class of models (Yin et al.,
2017).

A matter worth commenting on is what we might expect to observe if we were to choose parameters
and/or the initial conditions so as to have a greater scale separation between the precursor film thickness and
the typical height of of droplets. While it is not possible to comment on all possible scenarios in this regime,
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in general, we do expect similar features to persist. However, to see for instance the coarsening dynamics, we
would need significantly greater computational time. We do envisage some situations that are not captured
in our bifurcation diagrams: for instance, with lager volume droplets we expect even more intricate transient
states and perhaps also equilibria. Recall that generically, as the system size in such systems is increased,
there is space for either more droplets of the size we describe or for fewer larger droplets, so increasing the
number of solution branches in the bifurcation diagrams. We leave this for future work on this subject.

We have used finite difference methods to develop Matlab codes for solving our model. In order to
verify the code, we conducted numerous tests to compare the computational and theoretical results, which
all showed good agreement. We then investigated the dynamics of the model in a variety of situations,
including showing bifurcation diagrams for various cases. In particular, we investigated how varying the
average concentration of the colloids can change the final state of the system from in-phase to anti-phase,
and we also discovered cases with asymmetrical final solutions. Bifurcation diagrams helped us understand
these situations better, which also cross checked the simulation results. From the dynamics, we can see
how the parameters we select and the corresponding theoretical relations that arise affect the dynamics
and final results of the simulation. Moreover, we have developed a code for three-dimensional droplets,
again exhibiting excellent agreement to the theoretical predictions for the linear behaviour and the two-
dimensional code. As expected, the evolution of the system is much faster in three-dimensions due to the
additional dimension, although the computer simulation times are typically significantly longer due to the
much larger number of grid points required.

Here, our intention has been to develop a general model for incorporating the influence of colloidal
agglomeration and demixing on the dynamics of thin films of liquids. Thus, agreement with specific
experiments such as those of Howard et al. (2023), where colloidal aggregation in drying thin films was
observed in experiments on carbon-nanotube suspensions, is at best only qualitative. To match better specific
experiments, additional effects need to also be added to the model. For example, to match these particular
experiments quantitatively, the evaporation (Wilson & D’Ambrosio, 2023), the colloid (non-spherical) shape
(Durán-Olivencia et al., 2016), droplet shape (Wray & Moore, 2023), surface roughness (Savva & Kalliadasis,
2009), influence on 𝑔(ℎ) of molecular ordering at the surface and the nature of the wetting transition (Hughes
et al., 2017), possibly gravity (Moore & Wray, 2023), and the surfactants (Kalogirou et al., 2012) also present
in the film need to be included in the model. As future work, such effects could easily be incorporated, though
we would suggest systematically incorporating each different one in turn, separately. Finally, the effects of
internal flow from droplet orientation (Edwards et al., 2018) and of shielding in multiple droplet systems
(Wray et al., 2021) would be interesting to investigate within an augmented model of the type considered
here.
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A Functional derivatives

The functional derivatives can be analytically determined, or found using the Maple software (we did both),
and may be written as

𝛿𝐹
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These have corresponding gradients
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