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Abstract

Alinearlyordered (LO) 9-colouringof ahypergraph assigns to each vertex a colour from the set {0, 1, . . . , 9−
1} in such a way that each hyperedge has a unique maximum element. Barto, Batistelli, and Berg conjectured
that it is NP-hard to find an LO 9-colouring of an LO 2-colourable 3-uniform hypergraph for any constant

9 ≥ 2 [STACS’21] but even the case 9 = 3 is still open. Nakajima and Živný gave polynomial-time algorithms
for finding, given an LO 2-colourable 3-uniform hypergraph, an LO colouring with $∗ (

√
<) colours [IC-

ALP’22] and an LO colouring with $∗ ( 3
√
<) colours [ACM ToCT’23]. Very recently, Louis, Newman, and

Ray gave an SDP-based algorithm with $∗( 5
√
<) colours. We present two simple polynomial-time algorithms

that find an LO colouring with$ (log2 (<)) colours, which is an exponential improvement.

1 Introduction

Given a graph �, the graph 9-colouring problem asks to find a colouring of the vertices of � by colours from the
set {0, 1, . . . , 9 − 1} in such a way that no edge is monochromatic. The approximate graph colouring problem
asks, given a 9-colourable graph �, to find an ℓ -colouring of �, where ℓ ≥ 9. For 9 = 3, the state-of-the-art
results areNP-hardness of the case ℓ = 5 [BBKO21] and a polynomial-time algorithm for finding a colouring with
ℓ = $ (<0.19996) colours, where < is the number of vertices of the input graph� [KT17]. For non-monochromatic
colourings of hypergraphs, it is known that finding an ℓ -colouring of a 9-colourable @ -uniform hypergraph is NP-
hard for any constant ℓ ≥ 9 ≥ 2 and @ ≥ 3 [DRS05], and also some positive results are known for colourings with
super-constantly many colours, e.g. [KS03, KNS01, CS08].

A new variant of hypergraph colourings was identified in [BBB21]. Given a 3-uniform hypergraph� , a colour-
ing of the vertices of � with colours from the set {0, 1, . . . , 9 − 1} is called a linearly ordered (LO) 9-colouring if
every edge 4 of� satisfies the following: if two vertices of 4 have the same colour then the third colour is larger. More
generally, a colouring of an @ -uniform hypergraph� is an LO colouring if every edge of� has a uniquemaximum
colour. (Note that the two definitions coincide for @ = 3.) Barto et al. conjectured that finding an LO ℓ -colouring
of a 3-uniform hypergraph that admits an LO 9-colouring is NP-hard for every constant ℓ ≥ 9 ≥ 2 [BBB21] but
even the case 9 = 2 and ℓ = 3 is open. Nakajima and Živný established NP-hardness for some regimes of the
parameters 9, ℓ , @ [NŽ22, NŽ23] and, very recently, Filakovký et al. [FNO+24] showed NP-hardness of the case
9 = 3, ℓ = 4, @ = 3. More importantly for this paper, Nakajima and Živný also considered finding an LO 5 (<)-
colouring of an LO 2-colourable 3-uniform hypergraph with < vertices and presented polynomial-time algorithms
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version arising from this submission. All data is provided in full in the results section of this paper.
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with 5 (<) = $ (
√

< log log </log <) [NŽ22] and 5 (<) = $ ( 3
√

< log log </log <) [NŽ23]. Very recently, Louis,
Newman, and Ray [LNR24] have given a polynomial-time SDP-based algorithmwith 5 (<) = $∗( 5

√
<) colours.

As our main result, we improve their results by an exponential factor.

Theorem1. There is an algorithmwhich, if given a 3-uniformhypergraph� with< vertices and; edges that admits
an LO 2-colouring, finds an LO log2(<)-colouring of � in time$ (<3 + <;).

In fact we present two different algorithms that return colourings using $ (log <) colours. Both are based on
solving the natural systemof linear equations implied by the existence of anLO2-colouring. In one case, the system
is solved modulo 2, and in the other case, the system is solved over the rationals.

For each edge (F, G, H) of � , we write an equation DF + DG + DH = 1where we initially use equality modulo 2
but as stated above we later use the same system over the rational numbers. Let � be this set of equations, written
as amatrix with; rows and< columns. Thus D is a solution if and only if �D = 1;. Clearly a valid LO2-colouring
gives one solution but in the general case, the system has a large dimensional affine space as its set of solutions and
the desired solution is hard to find.

Some variables might be determined by this linear system of equations and as a preliminary step we fix these
variables once and for all. Thus, we have found the correct colour of a vertex in any LO 2-colouring and we simply
assign this colour. As any vertex given the colour 1 forces the colours of two other vertices in its edges to be 0, these
are now efficiently eliminated. Vertices forced to be coloured 0may reduce the size of some edges from three to two,
but this is not a problem as one of the other two vertices gets a colour larger than 0. From now on we assume that
no variables are fixed to a constant by the system �D = 1;.

2 Algorithm based on equations modulo 2

In this section all linear equations are taken modulo 2. We first prove the following subprocedure of the main
algorithm.

Lemma 2. There is an algorithm which, if given a hypergraph � with < vertices and; edges that admits an LO
2-colouring and such that implied linear system of equations �D = 1; does not fix the value of any variable, outputs a
subset) of vertices that intersects each edge of size three in zero or two vertices and edges of size two in exactly one vertex.
Moreover, we have |) | ≥ </2. The algorithm runs in$ (<3 + <;) time.

Proof. We first describe a randomised version of our algorithm, and then derandomise it. The set of solutions to
�D = 1; is an affine space and hence a generic solution can be written as D = D0 +∑@

7=1 07D
7 for a basic solution

D0, linearly independent solutions to the homogeneous system D7 , and random field elements (in this case bits) 07 .
The fact that no variable is fixed implies that for each vertex F there is some positive 7 such that D7F = 1.

For the randomised algorithmwe let 07 be random bits and set) to be the set of variables, F, such that DF = 0.
Clearly) satisfies the conclusion of the lemma as in each edge we have an odd number of ones. It is easy to see that
each coordinate of the resulting solution is a random bit and thus, on average,) , contains half the vertices.

Now, we derandomise this algorithm using the method of conditional expectations. Go through the variables
07 in increasing order and fix its value once and for all. Fixing the value of 07 determines the value of some DF while
other values remain undetermined. For each value being determined D7F = 1 and hence one value of 07 gives the
final value 0 and the other gives final value 1. Set 07 such that at least half the determined values are 0. After we
have fixed all 07 this way, we have a final solution with at least </2 zeroes.

The bottleneck of the running time of this algorithm is solving the linear systemof equations. This can be done
in the advertised running time since every equation has$ (1) entries. �

Proof of Theorem 1. Consider the following algorithm.

1. If the hypergraph � has at most, say, 20 vertices, find an LO 2-colouring by brute force.
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2. Otherwise, find the subsets) guaranteed by Lemma 2.

3. Colour) by a smallest available colour (i.e. all future colours are greater than this one). Eliminate all edges
that intersect) .

4. Repeat.

Note that |) | ≥ </2 and thuswithin−4+ log2 < repetitions we reach the first case. Each step adds one colour and
we get two additional colours from the final brute-force colouring for a total of at most log2 < colours. The output
is correct as the first time some vertex in an edge is coloured, for edges with three vertices exactly one more vertex
in the same edge is coloured at the same time, and for edges with two vertices only that vertex is coloured at that
time. The remaining vertex is given a higher colour and hence the edge is correctly coloured. Note that the colours
used in the preprocessing can be reused and resulting edges of size two are eliminated by the) chosen in the first
round. For the time complexity, we again note that it is dominated by the time needed to solve the linear system of
equations. �

Clearly the number 20 can be increased to any constant or even any number that is$ (log <) and the algorithm
remains polynomial time. This decreases the number of colours by an additive factor of up toΘ(1) + log log <.

A slight variant can be obtained by instead counting the number of remaining edges with no coloured vertex.
Once we have nomore such vertices, we colour all remaining vertices with the next colour. For each edge a random
solution D gives the four sets of values (0, 0, 1), (0, 1, 0), (1, 0, 0) and (1, 1, 1) with equal probabilities. Thus the
number of edges decreases, on average, by a factor 4 for each interaction. It is easy to achieve this deterministically
by conditional expectations. We state the conclusion as a theorem.

Theorem 3. There is an algorithm which, if given a 3-uniform hypergraph � with < vertices and ; edges that
admits an LO 2-colouring, finds an LO 1

2 log2 (;)-colouring of � in time$ (<3 + <;).

Remark 4. Our algorithm has some similarity with algorithms for temporal CSPs [BK10]. Note that an LO l-
colouring (whichmeans an LO-colouring, but with no restriction on the number of colours) is a temporal CSP; to
solve it, one finds a subset that could be the smallest colour (by solving mod-2 equations as above), sets that colour,
then continues recursively. The difference is that for an LO l-colouring one does not care about the number of
colours, so one can find any nonempty set of vertices to set the lowest colour to, whereas in our problem we are
trying to find a large set of this kind. We note that the algorithm of [NŽ23] also uses this approach when setting
“small colours”.

Remark 5. We remark that the subprocedure of our algorithm computes the exclusive or of two vectors of bits.
Thus the algorithm runs very fast in practice—onmost architectures hundreds of operations of this kind are done
at one time by (i) packing the bits within a larger word and (ii) using SIMD instructions.

3 Algorithm using Q

In this section we present a more complicated algorithmwhich uses more colours. This might seem pointless, and
indeed itmight be. On the other hand the ideas used are slightly different and hence theremight be situationswhere
the ideas of this section can turn out to be useful. It is also curious to see that we can use the same system of linear
equations, now over the rationals, in a rather different way. The algorithm here is in fact essentially saying that we
can always use the unbalanced case of [LNR24]. As this eliminates many complications and in particular makes it
possible to completely avoid any semi-definite programming, we state all facts needed in the current section rather
than refer to the very similar statements in [LNR24]. As already stated, all arithmetic in this section is over the
rational numbers. In this situation, no variables can be determined as we can set D0 to have all coordinates equal to
1/3.
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We study the homogeneous system �D = 0 and by the assumption of LO 2-colourability it has a solution, E,
with coordinates either − 1

3 or 2
3 . Let us first show how solutions over the rational numbers can be used to find

LO-colourings. This is the same lemma used in the unbalanced case of [LNR24].

Lemma 6. Suppose we have a solution, C, to the homogeneous system where " is the maximal value of the absolute
value of a coordinate and; > 0 is theminimal absolute value. Then we can LO-colour with 2+ log2 ("/;) colours.

Proof. For notational convenience let us instead require that the minimal colour in each edge should be unique.
We can simply reverse the order of the colours at the end. By scaling we can assume " = 1. We use even colours
for positive coordinates and we give F the colour 2ℓ if DF is at most 2−(2ℓ−1) and strictly larger than 2−(2ℓ+1) . For
negative coordinates we use 2ℓ + 1 as the colour if DF is between −2−2ℓ (inclusive) and −2−(2ℓ+2) (non-inclusive).
Let us verify that this gives a correct colouring.

Take an edge (F, G, H) and suppose both F and G get the same colour 2ℓ . Then by the linear equation of the
edge DH < −2−2ℓ and thus H has a colour below 2ℓ . The case of two vertices of odd colour is similar and as the
bound on the number of colours is immediate, the lemma follows. �

Let us choose the vectors (D7)@7=1 giving the solutions to the homogeneous system to be of unit length and
orthogonal. Define C =

∑@
7=1 G7D

7 where G7 are independent normal variables withmean 0 and standard deviation
1. The length of C is very close to

√
@ but to be crude we use that � [‖C‖2] = @ and hence with probability 3

4 the
length of C is at most 2

√
@ .

Let 28 = (D18 , D28 , . . . D@8 ) be the vector of dimension @ given by the 8 th coordinates of each vector D7 . Using this

notation we see that the 8 th coordinate of C is a normal variable with standard deviation ‖28 ‖. Recall thatE is our
assumed solution to �D = 0 with all coordinates either − 1

3 or
2
3 . We can write E =

∑@
7=1 07D

7 for some numbers

07 , and by orthonormality ‖0‖ = ‖E‖ which is at most 2
3

√
<. As

|E8 | = | (28 , 0) | ≤ ‖28 ‖‖0‖,

using that |E8 | is at least 1
3 we conclude that

‖28 ‖ ≥ 1/(2
√
<).

The probability that a normal variable with standard deviation f is of absolute value at most X is at most
2X/(

√
2cf ). We conclude that for a suitable constant 3 theprobability that |C8 | is below 3<−3/2 is atmost1/(2<).

Thuswith probability at least 1/2 the absolute value of any coordinate of C is at least 3<−3/2. Thuswith probability
at least 1

4 , we can apply Lemma 6 with" = 2<1/2 and; = 3<−3/2 and we conclude.

Theorem 7. Using the system of linear equations over the rational numbers we can find, with probability at least 1
4

and in polynomial time, an LO-colouring with$ (1) + 2 log2 < colours.

This algorithm is less efficient compared to the algorithm of the previous section. The main computational
cost is still solving a linear system but this is more complicated over the rational numbers as coefficients are likely
to grow. Our bound for the number of colours is also worse. Heuristically one could hope to have the ratio of
the smallest and largest coordinate of C to beΘ(<) but not better. Thus it is possible that we could eliminate the
multiplicative constant 2 in the theorem but to get substantially fewer than log < colours by this method sounds
unlikely.

As afinal observation in this section let usnote that defining a colouringby the signof thevectorCweget a stand-
ard (non-monochromatic) 2-colouring of the hypergraph. This gives an alternative algorithm to that of [BG21,
BG19].
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4 Concluding remarks

Our algorithms indicate that LO 2-colouring is quite different from many other colouring problems. The key
property thatweuse in our algorithm is that the constraint implies a linear constraint. The analysis of the algorithms
also heavily relies on the fact that we study 3-uniform hypergraphs.

It is tempting to think that theproposedmethodswould extend toother constraint satisfactionproblemswhere
we are guaranteed that a solution must satisfy a linear constraint. We have so far been unable to find an interesting
such example.

Acknowledgement. This paper is a merger of independent work by Håstad and Martinsson, and by Nakajima
and Živný respectively. We are grateful to Venkat Guruswami for noting and informing the authors of the fact that
we independently had found the same algorithm.

References

[BBB21] Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric Promise Constraint Satisfaction Prob-
lems: Beyond the Boolean Case. In Proc. 38th International Symposium on Theoretical Aspects of
Computer Science (STACS’21), volume 187 of LIPIcs, pages 10:1–10:16, 2021. arXiv:2010.04623,
doi:10.4230/LIPIcs.STACS.2021.10.

[BBKO21] Libor Barto, Jakub Bulı́n, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to promise constraint
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