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Abstract— This paper develops an adaptive traffic control
policy inspired by Maximum Pressure (MP) while imposing
coordination across intersections. The proposed Coordinated
Maximum Pressure-plus-Penalty (CMPP) control policy fea-
tures a local objective for each intersection that consists of
the total pressure within the neighborhood and a penalty
accounting for the queue capacities and continuous green
time for certain movements. The corresponding control task is
reformulated as a distributed optimization problem and solved
via two customized algorithms: one based on the alternating
direction method of multipliers (ADMM) and the other follows
a greedy heuristic augmented with a majority vote. CMPP
not only provides a theoretical guarantee of queuing network
stability but also outperforms several benchmark controllers
in simulations on a large-scale real traffic network with lower
average travel and waiting time per vehicle, as well as less
network congestion. Furthermore, CPMM with the greedy
algorithm enjoys comparable computational efficiency as fully
decentralized controllers without significantly compromising
the control performance, which highlights its great potential
for real-world deployment.

Keywords: traffic signal control; distributed optimization;
Lyapunov minimum drift-plus-penalty

I. INTRODUCTION

A. Background and Motivations
Vehicular traffic in urban areas has surged dramatically

over the past decades [1] and is expected to continue growing
in future [2]. This forecast poses significant challenges to
traffic control [3]. In dense urban road networks, traffic
signals have long constituted effective control instruments
to regulate traffic flows and ensure efficient vehicle move-
ments. In the literature, Traffic Signal Controllers (TSCs)
are often classified into three types: fixed-time, actuated,
and adaptive. Specifically, fixed-time TSCs are the most
commonly used in practice, which allocate a fixed green time
to each movement [4]. The actuated TSCs set green time
in response to real-time traffic volumes, though the control
policy is predefined. Differently, adaptive TSCs optimize the
control actions to maximize the traffic throughput. Early
developments of adaptive signal control relied on central-
ized approaches (e.g., [5], [6], [7]) and thus can hardly
be implemented in real practice due to rapidly increasing
computational and communication costs in large-scale traffic
networks.

The scalability issue of classic adaptive TSCs was ad-
dressed by the Maximum Pressure (MP) control, a decen-
tralized algorithm proposed by [8]. In short, at each time,
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MP selects a signal phase that maximizes its “pressure”, a
measure computed solely using the number of vehicles on
incoming and outgoing lanes associated with the phase. Ac-
cordingly, MP can be solved efficiently without communica-
tion among interactions or central coordination. In addition to
satisfactory performances [9], [10], MP is widely celebrated
for its strong theoretical underpinning. Using the Lyapunov
drift theory, [8] proved that MP guarantees the stability of the
stochastic queuing processes at all intersections. However,
a key assumption for the proof is infinite queue capacity,
which may not hold for dense road networks. To address this
limitation, several recent studies have modified the original
MP algorithm to explicitly consider limited queue lengths
[11], [12]. Another issue with MP is the possibly extensive
time of red lights for certain phases. To remedy this, cyclic
algorithms have been introduced that ensure each phase is
activated at least once within a period [13], [14]. All these
MP variants remain fully decentralized and are shown to
maintain the stability property under certain conditions.

Recently, several studies leveraged the Lyapunov min-
imum drift-plus-penalty control [15], an extension of the
theory that MP is built upon, to tackle the issue of finite
queue lengths. In [16], a finite queue length is enforced
as a constraint, while a queue-length-dependent penalty is
appended to the regular pressure for each intersection in
[17]. Although these algorithms leverage information from
neighboring intersections, they still optimize control actions
for each agent independently, without explicit coordination.
These decentralized approaches may lead to suboptimal per-
formance because the individual intersections do not account
for broader network effects and interdependencies.

To augment the MP framework with coordination and
attention to queue capacity constraints, this paper reformu-
lates the network signal control problem into a distributed
optimization [18], while exploiting the Lyapunov minimum
drift-plus-penalty control to define local objectives and to
prove the network queuing stability. Specifically, each inter-
section aims to maximize the total pressure within its neigh-
bor, penalized by its impact on neighboring intersections.
Consequently, the coordinated signal control policy can be
solved in an online and adaptive manner as per other MP
methods (e.g., [8], [11]) while achieving network-wide global
optimum.

B. Contributions

This paper develops a distributed traffic signal control
policy, namely, Coordinated Maximum Pressure-plus-Penalty
(CMPP), which extends the standard MP approach by lever-
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aging communication and coordination across neighboring
intersections. Our key contributions include:

• Expand the per-intersection pressure to a neighborhood
of intersections and augment it with a penalty that
captures queue capacities and continuous green time of
certain vehicle movements.

• Establish the stability of the queuing network under the
CMPP control policy using the Lyapunov optimization
theorem [15].

• Reformulate the network control problem as distributed
optimization and develop two consensus algorithms
based on the alternating direction method of multipliers
(ADMM) and a greedy heuristic.

• Demonstrate the performance of CMPP through simu-
lations of real-world road networks and traffic demand.

II. PROBLEM SETTING AND PRELIMINARIES

A. Road Network, Signal Control, and Queue Dynamics

Consider a directed road network G = (L, I), where I
denotes the set of intersections with |I| = N and L denotes
the set of road links. We further divide L into three subsets:
i) entry links Lentry, where vehicles enter the network; ii)
internal links Linternal that connect intersections inside the
network; and iii) exit links Lexit, from which vehicles leave
the network.

Each intersection features a set of links Li ⊂ L that denote
the traffic movements through it. The tuple (l,m) with l,m ∈
Li defines the movement from link l to link m in intersection
i. Accordingly, the traffic signal control corresponding to
each movement is given by sl,m ∈ {0, 1}. Specifically,
sl,m = 1 indicates that the movement (l,m) is activated (i.e.,
a green light is on) and vice versa. Since multiple movements
can be activated simultaneously without collision, the signal
control action is always defined on phase, a combination
of movements. In this paper, we consider a configuration
of eight typical phases1 as depicted in Figure 1 and use
Φi to denote the set of phases for intersection i with size
Ki = |Φi|. Let ϕi,k ∈ {0, 1} denote the phase control of
k ∈ Φi. Then, ϕi,k = 1 implies sl,m = 1,∀(l,m) ∈ k.

Suppose each movement uses dedicated lanes. Then, the
queue length corresponding to movement (l,m) at time t,
denoted by ql,m(t), can be modeled as follows:

ql,m(t+ 1) = ql,m(t)− yl,m(t)sl,m(t)

+

(∑
k∈Ul

yk,l(t)sk,l(t) + dl(t)

)
rl,m(t),

(1)

where yl,m(t) gives the vehicle outflows and equals the
minimum between the current queue length ql,m(t) and the
capacity of the movement cl,m(t) (the maximum vehicle flow
that can pass the intersection over single green time), i.e.,

yl,m(t) = min{ql,m(t), cl,m(t)}. (2)

Accordingly, yl,m(t)sl,m(t) gives the realized outflow of
under the signal control at time t. On the other hand, the

1In this paper, we consistently allocate green time to right turns.

Fig. 1: Eight phases in a typical intersection.

inflow is determined by the third term in (1), where Ul

denotes the set of upstream links of link l, dl(t) represents
the demand entering the network from link l, and rl,m(t)
is the turning ratio as the proportion of vehicles on link l
moving to link m. Note that dl(t) is only non-zero for entry
links l ∈ Lentry with Ul = ∅.

B. Queuing Stability and Lyapunov Drift Theory

The queuing network stability represented by the vector
Q(t) = [. . . , ql,m(t), . . . ] ∈ R|Λ|

+ , where Λ denotes the set
of all movements in the network, is defined as follows.

Definition 1 (Stability of queuing process): The stochas-
tic queuing process Q(t) is strongly stable if

lim sup
t→∞

1

t

t−1∑
τ=0

E{|Q(τ)|} < ∞. (3)

A well-known approach to proving queue stability is the
Lyapunov drift theory (e.g., [8], [16]). Specifically, a stability
condition is constructed with a conditional Lyapunov drift
defined as

∆(Q(t))
△
= E {L(Q(t+ 1))− (Q(t)) | Q(t)} , (4)

where L(Q(t) denotes the Lyapunov function, and a com-
monly used one is

L(Q(t))
△
=

1

2

∑
(l,m)∈Λ

ql,m(t)2. (5)

The Lyapunov drift theory [15] states that if the initial queues
satisfy E{L(Q(0))} < ∞, then a control policy fulfilling the
following condition guarantees the strong stability of Q(t)):

∆(Q(t)) ≤ B − ϵ
∑

(l,m)∈Λ

|ql,m(t)|, (6)

for some constants B ≥ 0, ϵ > 0.

C. Maximum Pressure Control

Maximum Pressure (MP) is a feedback control law that se-
lects the active phase solely based on local queue lengths [8].
At each time step t, a weight variable wl,m(t) is first
computed for each movement (l,m) as

wl,m(t) = ql,m(t)−
∑

p∈Dm

rm,p(t)qm,p(t),



where Dm denotes the set of downstream links from link m.
These weights are then used to compute the pressure of each
phase k per intersection i as follows:

γi,k(t) =
∑

(l,m)∈k

cl,m(t)wl,m(t)sl,m(t).

The MP controller then activates the phase with the maximal
pressure. Let ϕMP

i (t) be the MP control at intersection i at
time t. Then,

ϕMP
i,k(t+ 1) =

{
1, k = argmaxk′∈Φ{γi,k′(t)},
0, otherwise.

(7)

Note that MP policy (7) can be computed independently at
each intersection and thus is fully decentralized. It has also
been proven that the MP policy is equivalent to minimizing
the Lyapunov drift (4) with the Lyapunov function defined
in (5). Further, constants B and ϵ can be found to obtain the
upper bound of the resulting Lyapunov drift. Therefore, the
MP policy is concluded to stabilize the queuing network [8].
Nevertheless, the proof relies on several assumptions. A
critical one is the unlimited queue capacity, which tends to
violate in dense networks with short block lengths. In such
scenarios, the MP controller potentially induces queue spill-
backs or even gridlock [11]. Additionally, the MP policy may
also cause certain phases to be permanently inactivated [19].
These issues have motivated the MP extensions discussed in
Section I-A, as well as the current study.

III. COORDINATED MAXIMUM
PRESSURE-PLUS-PENALTY CONTROL

In this paper, we propose a coordinated adaptive traffic sig-
nal control policy, namely, Coordinated Maximum Pressure-
plus-Penalty (CMPP), that takes advantage of the standard
MP framework while overcoming the aforementioned issues
by enforcing coordination among intersections. We further
prove the strong stability still holds under CMPP control. In
the remainder of this section, we first give a brief review
of the Lyapunov optimization theorem [15], the main theory
used to establish the stability of CMPP (Section III-A), then
describe the CMPP control policy and the corresponding
penalty function (Section III-B), and finally outline the proof
of stability (Section III-C).

A. Lyapunov Minimum Drift-Plus-Penalty Control

The Lyapunov Minimum Drift-Plus-Penalty (LDPP) con-
trol is a prevalent control strategy in communication net-
works and queuing systems [15] with a primary goal to
stabilize the queuing network while minimizing a penalty
function over time. The general LDPP formulation is:

min
π

p̄π

s.t. Qπ(t) is stable,
(8)

where p̄π = lim
T→∞

1
T

∑⊤
t=0 E{pπ(t)} is the long-time average

penalty, and Qπ(t) represents the queuing system under
control policy π. As an extension of the Lyapunov drift

theorem, the Lyapunov Optimization theorem provides the
condition of queuing stability with a bounded penalty:

Theorem 1 (Lyapunov Optimization theorem): Consider
the Lyapunov function L(Q(t)) defined in (5). Suppose
the initial queues satisfy E{L(Q(0))} < ∞, then the
queuing system is strongly stable if there exist constants
B ≥ 0, V > 0, ϵ > 0 and p∗ such that ∀t,

∆(Q(t))+V E{p(t)|Q(t)} ≤ B+V p∗−ϵ
∑

(l,m)∈Λ

ql,m(t).

(9)
Proof: See the proof of Theorem 4.2 in [15].

B. CMPP Control and Penalty Function

Let ϕi(t) = [. . . , ϕi,k(t), . . . ]
⊤ ∈ {0, 1}Ki de-

note the signal control of intersection i and xi(t) =

[ϕi(t)
⊤, . . . , ϕi′(t)

⊤, . . . ]⊤ ∈ {0, 1}
∑

j∈Ni∪{i} Kj be the sig-
nal control of the neighborhood centered at intersection i,
where Ni denotes the set of neighboring intersections of i.
At each time t, our proposed CMPP policy decides on the
neighborhood signal control that maximizes the total pressure
in the neighborhood minus a penalty pi(t) defined on the
central intersection, which yields the control action as

xCMPP
i (t) = argmax

x

 ∑
j∈Ni∪{i}

∑
k∈Φj

γj,k(t)

− V pi(t),

(10)

where V > 0 is a weight parameter.
To address the issues of limited lane capacities and ex-

tensive green times, we design the penalty pi,k(t) to depend
on the queue lengths at both intersection i and its neighbors,
as well as the elapsed time since the last time phase k is
activated. The resulting penalty function is given by

pi(t) =
∑

(l,m)∈Λi

(
α(1)h

(1)
l,m(t) + α(2)

∑
p∈Dm

h
(2)
l,m,p(t)

+ α(3)h
(3)
l,m(t)

) (11)

where α(k) is the weight of penalty h(k), and the three
penalty terms are specified as follows:

h
(1)
l,m(t) =

{
1, q̂l,m(t+ 1) > q̄,

0, otherwise,
(12a)

h
(2)
l,m,p(t) =

{
1, q̂m,p(t+ 1) > q̄,

0, otherwise,
(12b)

h
(3)
l,m(t) =

∑
k∈Sl,m

ϕi,k(t)

(
t∑

τ=t−H

ϕi,k(τ)

)
. (12c)

In (12a) and (12b), q̄ denotes a threshold value for the queue
length of each movement (e.g., lane capacity); in (12a),
q̂l,m(t+1) is the predicted queue length as per (1); in (12b),
q̂m,p(t+ 1) gives an upper bound on inflow vehicles to the
downstream lane p of m, i.e.,

q̂m,p(t+ 1) = qm,p(t)− ym,p(t)sm,p(t) + yl,m(t)sl,m(t);



and in (12c), Sl,m is the set of phases that contains movement
(l,m) and H specifies the backward tracing period. Hence,
the first two penalty terms address lane capacities while the
third penalizes continuous green time for certain phases.

C. Stability Analysis

We finish this section by establishing the stability of the
CMPP control policy. The proof is largely inspired by [8]
while evoking Theorem 1. To start with, we introduce the
following assumption, which is also used in [8], to ensure
the traffic demand does not exceed the control capability.

Assumption 1 (Bounded demand rate): The demand rate
vector d = [. . . , dl,m, . . . ]⊤ is bounded such that there exists
a control policy that satisfies

E{al,m(t)} ≤ E{bl,m(t)}+ ϵ ∀(l,m) ∈ Λ, (13)

for some ϵ > 0, where al,m(t), bl,m(t) are respectively total
inflow and outflow of lane l specified as

al,m =
∑
k∈Ul

(yk,l(t)sk,l(t) + dl(t))rl,m(t), (14a)

bl,m = yl,m(t)sl,m(t). (14b)
Now we are ready to present the main theoretical result

of this paper.

Theorem 2 (Stability of CMPP): Suppose Assumption 1
holds and that the initial queues satisfy E{L(Q(0))} < ∞,
then the CMPP with penalty specified in (11) guarantees
strong stability. Further, the long-term average total queue
length is bounded.

Proof: As per (10), the control action for intersection i
is determined by the total pressure within the neighborhood.
Hence, we redefine the Lyapunov function as follows:

L(Q(t))
△
=

1

2

∑
i∈I

∑
j∈Ni∪{i}

∑
(l,m)∈Λj

ql,m(t)2

=
1

2

∑
(l,m)∈Λ

κl,mql,m(t)2, (15)

where κl,m is a positive integer indicating how many times
ql,m for each movement (l,m) ∈ Λ is counted in L(Q(t)).
According to Theorem 4.2 in [15], the stability condition
(9) also applies to this general form of Lyapunov function.
Following a similar derivation in [8], [15], we derive the
upper bound on the corresponding Lyapunov drift as

∆(Q(t)) ≤ B − ϵ
∑

(l,m)∈Λ

κl,mql,m(t)

≤ B − ϵ′
∑

(l,m)∈Λ

ql,m(t), (16)

where ϵ′ = ϵmax(l,m)∈Λ κl,m scales the original ϵ in
Assumption 1 by the maximum copy of queues in L(Q(t)),
and B is a constant that satisfies

B ≥ 1

2

∑
(l,m)∈Λ

κl,mE
{
(al,m(t)− bl,m(t))2|Q(t)

}
, (17)

where al,m and bl,m are defined in (14a), (14b). Under
Assumption 1, both terms are bounded and thus B exists.

Note that the penalty defined in (11) has an upper bound

pmax = Mmax

(
α(1) +Dmaxα

(2) + α(3)H
)
, (18)

where Mmax = maxi∈I |Λi| is the maximum number of
movements at each intersection, and Dmax = maxm∈L |Dm|
is the maximum number of downstream lanes for each lane.

Combining (17) and (18), we finally obtain the upper
bound on the drift-plus-penalty as

∆(Q(t))+V E{p(t)|Q(t)} ≤ B+V pmax−ϵ′
∑

(l,m)∈Λ

ql,m(t),

(19)

which yields the strong stability as per Theorem 1.
Following [15], we proceed to show the long-term average

total queue length is also bounded. To this end, we sum (19)
over time τ = 0, . . . , t− 1 and yield

E{L(Q(t))} − E{L(Q(0))}+ V

t−1∑
τ=0

E{p(t)|Q(t)}

≤ Bt+ V pmaxt− ϵ′
t−1∑
τ=0

∑
(l,m)∈Λ

ql,m(t). (20)

Rearranging the inequality and dropping E{L(Q(t))} ≥
0, 1

t

∑t−1
τ=0 E{p(t)|Q} ≥ 0, we arrive at

1

t

t−1∑
τ=0

∑
(l,m)∈Λ

κl,mql,m(t) ≤ B + V pmax

ϵ′
+

E{L(Q(0))}
ϵ′t

,

Taking t → ∞, we finally get the upper bound on the total
queue length as

lim
t→∞

1

t

t−1∑
τ=0

∑
(l,m)∈Λ

ql,m(t) ≤ B + V pmax

ϵ′
.

This concludes the proof.

IV. SOLUTION ALGORITHM FOR CMPP

The key difference between CMPP and MP is the scope
of local problems. Specifically, CMPP not only solves each
intersection’s own control action but also those of its neigh-
bors. Therefore, CMPP can no longer be solved indepen-
dently at each interaction but requires coordination among
neighboring intersections.

For notation simplicity, we drop the time index t in this
section. Let z = [. . . , ϕ⊤

i , . . . ] ∈ {0, 1}K be the control
actions of all intersections and define an incidence matrix
Mi ∈ {0, 1}(

∑
j∈Ni∪{i} Kj)×K that transfer z into zi =

Miz that corresponds to xi. Accordingly, the CMPP policy
prescribed in (10) is equivalent to solving the following
optimization problem:

max
z

∑
i∈I

fi(xi) (21a)

s.t. xi − zi = 0, ∀i ∈ I, (21b)



where the local objective is defined as

fi(xi) =

 ∑
j∈Ni∪{i}

∑
k∈Φj

γj,k(t)

− V pi(t).

Problem (21) is a distributed optimization with consensus
constraints [18], though the binary decision variables xi and
z bring particular challenges to the solution procedure. In
what follows, we detail two consensus algorithms that solve
(21) efficiently at each time step. The first is based on the
alternating direction method of multipliers (ADMM) [20]
and the other is a greedy heuristic with a majority vote.

A. ADMM

ADMM features a decomposition-coordination algorithm
that achieves the global optimum by iteratively solving local
sub-problems [20]. Although developed for convex optimiza-
tion with continuous variables, ADMM shows a satisfactory
performance in solving (21) in our experiments.

To obtain ADMM-based updating rules of each intersec-
tion, we first construct the augmented Lagrangian of (21)

L(x, z,λ) =
∑
i∈I

(
fi(xi)− λ⊤

i (xi−zi)−
ρ

2
||xi−zi||22

)
,

where λi is the dual variable introduced for each consensus
constraint (21b), and ρ > 0 is a penalty parameter. We then
derive the following iteration rules that are executed by each
intersection independently. Namely, in each iteration, each
intersection i ∈ I performs

xk+1
i = argmax

xi

fi(xi)− x⊤
i λ

k
i − ρ

2
∥xi−zki ∥22, (22a)

(z)k+1
i = argmax

(z)i

∑
j∈Ni∪{i}

(
(λk

j )i + ρ(xk+1
j )i

)⊤
(z)i,

(22b)

λk+1
i = λk

i + ρ(xk+1
i − zk+1

i ). (22c)

In (22b), (z)i ∈ {0, 1}Ki , different from zi, denotes the sub-
sequence in z that corresponds to the control of intersection
i. The same notations apply to (λj)i, (xj)i.

Note that (22a) and (22c) are directly derived from the
general updating rules of ADMM, while (22b) requires some
additional decomposition, which is delineated in Appendix I.

B. Greedy Heuristic

Although ADMM can solve the subproblems efficiently in
a distributed manner, it still requires quite a few iterations
to reach a consensus, which may take extensive computation
time in large networks. Hence, we develop another greedy
algorithm with much lower computational complexity. The
core idea is to perform a majority vote in the neighborhood
of the intersection with the minimum local objective when
a conflict emerges. Accordingly, in each consensus iteration,
at least one intersection determines its control action, which
yields a computational complexity of O(|I|). The algorithm
is detailed in Algorithm 1.

Algorithm 1 Greedy algorithm for CMPP
Input: fi(xi) Output: x∗

i

1: Initialize: Set IDET = ∅.
2: while |IDET| < N do
3: ∀i ∈ I \ IDET, locally solve optimal control actions

x∗
i = argmax

x
fi(x),

given x∗
j ,∀j ∈ IDET.

4: Compute local objectives f∗
i = fi(x

∗
i ), ∀i ∈ I.

5: ∀i ∈ I \ IDET,
6: if the consensus conditions (xi)i = (xj)i, (xi)j =

(xj)j , ∀j ∈ Ni hold then
7: Add i and j,∀j ∈ Ni to IDET.
8: end if
9: ∀i ∈ I \ IDET,

10: if f∗
i < f∗

j , ∀j ∈ Ni then
11: Determine x∗

i by majority vote of neighbors.
12: Add i to IDET.
13: end if
14: end while

Similar to ADMM, the greedy algorithm can be im-
plemented in a distributed fashion. Specifically, Lines 5-
8 and Lines 9-13 can be conducted in parallel, where the
addition of intersections in Lines 7 and 12 are first performed
on local copies of IDET. These updates are then merged
to update the global IDET. Although the greedy algorithm
lacks an optimality guarantee, it demonstrates satisfactory
performance in simulations, as will be shown in Section V.

V. SIMULATION EXPERIMENTS

We evaluate the performance of our proposed CMPP con-
troller against several benchmarks using CityFlow, an open-
source traffic simulator for large-scale signal control [21].

A. Simulation Environment

The simulation scenario is constructed based on the
road network and traffic patterns in the midtown area of
Manhattan, see Figure 2. In total, the network has 290
intersections and features an average demand of 9600 veh/h.
Each simulation is run for 4000 sec and the temporal demand
pattern is illustrated in Figure 3. The free-flow travel speed
is set to 30 km/h and the signal is updated every 20 sec.

B. Benchmarks and Evaluation Metrics

Besides CMPP, we implement three benchmark con-
trollers: i) fixed-time (FT), where the signal plan is prede-
fined; ii) classic MP; and iii) capacity-aware backpressure
(CA-BP) proposed in [11] that largely resembles MP but ac-
counts for the effect of limited queue capacity. The results of
CMPP using the above two solution algorithms are referred
to as CMPP-ADMM and CMPP-Greedy, respectively.

Due to the limit of space, we only report key performance
metrics in this paper, including i) the average vehicle travel
time, ii) the average vehicle waiting time (with speed less
than 0.1m/sec), iii) the number of vehicles traveling in the



(a) Region of interest. (b) Road network in the simulator.

Fig. 2: Simulated traffic network based on Midtown Manhattan.
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Fig. 3: Traffic demand over simulation horizon.

network at each time step, and iv) the average computation
time for the control action at each time step.

C. Main Results

This section reports the main simulation results of CMPP
and benchmark controllers. After extensive parameter tuning,
we use the penalty weights α(1) = 4, α(2) = 2, α(3) = 0.1
and the history horizon H = 3. Since the weight for each
penalty component is specified, V is simply set to 1.
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Fig. 4: Average vehicle travel time [sec].

1) Average Travel Time: Figure 4 presents the average
vehicle travel time. As expected, the FT controller performs
the worst because it fails to adapt to the varying traffic
dynamics. All other adaptive controllers achieve at least
40% improvement compared to the FT baseline, while the

MP controller leads to the longest average vehicle travel
time among the four. Since the Manhattan network is quite
dense with particularly short blocks along the avenues (the
horizontal roads in Figure 2b), queue spillovers are observed
frequently in the movements from horizontal roads to vertical
roads; see an example illustrated in Figure 5.

Fig. 5: Example of queue spillover under MP.

The spillover issue is partially addressed by CA-BP thanks
to its specific attention to lane capacity, which ultimately
results in slightly better performance than MP. Yet, CA-
BP does not coordinate among neighboring intersections
and thus tends to produce suboptimal control. The proposed
CMPP control, on the other hand, outperforms all the bench-
marks regardless of its solution algorithms. The additional
12% saving from the MP controller is largely due to the
coordination across intersections, which effectively prevents
spillovers at high demand levels.

2) Average Waiting Time: A more significant difference
can be observed in Figure 6, which compares the average
vehicle waiting time among the tested controllers. In addition
to the expected extensive waits under FT, MP also results
in quite a long waiting time, followed by CA-BP. This
phenomenon is likely attributed to the second issue of MP
discussed in Section II-C: since pressures at the current
time step are the only metrics used to determine the phase
activation, some phases may endure a long red time.

3) Network Congestion: Figure 7 depicts the number of
vehicles traveling in the network over the simulation horizon.
Since the demand is relatively stable (see Figure 3), it also
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Fig. 6: Average vehicle waiting time [sec].

reflects the congestion level. In other words, an effective
traffic signal controller should be able to maintain the vehicle
number below a certain threshold.

Since the network is empty at the beginning of the
simulation, all controllers present the same increase before
500 sec. Afterward, the curve of FT grows faster than the
others, demonstrating more severe congestion in the network.
Both MP and CA-BP closely match CMPP until 2000 sec,
from which the two curves start to deviate and increase
at different rates. In contrast, both CMPP controllers well
control the congestion and stabilize the number of vehicles in
the network around 2000 in the second half of the simulation.
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Fig. 7: The number of vehicles in the network.

4) Computation Time: Table I reports the average com-
putation time of each time step. As expected, MP achieves
the highest efficiency thanks to its simple computations.
CA-BP takes a slightly longer time because of the more
complex expression of pressure. The two CMPP algorithms
show drastically different computational efficiencies. Since
the ADMM algorithm normally requires up to 10 consensus
iterations to converge, each update requires up to 90 sec. Yet,
its computational efficiency is expected to further improve
with more computational resources and better-tuned stopping
criteria. Nevertheless, ADMM can hardly outperform MP
and CA-BP given the consensus iterations. On the other
hand, the greedy algorithm shows a comparable computa-
tional efficiency with MP. On average, it takes 1.5 sec to
complete each control update.

5) Consensus Mechanism: We end this section by com-
paring the consensus mechanism of ADMM and greedy
algorithms. As discussed above, while ADMM enforces con-

TABLE I: Average computation time for each signal update.

Control Method Time [sec]

Max Pressure 0.3
Capacity-Aware BP 1.8
CMPP (ADMM) 90.2
CMPP (Greedy) 1.5

sensus by directly handling consensus equality constraints
(see (21b)), the greedy algorithm achieves almost the same
performance as ADMM with much higher computational
efficiency. As shown in Figure 8, although both algorithms
converge to the same global optimum, ADMM takes more
iterations to converge and thus requires a longer computation
time. On the other hand, the greedy algorithm is observed to
often converge to the globally optimal solution even though it
has no rigorous optimality guarantee. Hence, it is worthwhile
to further explore whether the same result holds in general
traffic networks.
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Fig. 8: Example of consensus iterations under ADMM and
Greedy algorithms.

VI. CONCLUSION

This paper developed Coordinated Maximum Pressure-
plus-Penalty (CMPP) control, a novel coordinated traffic sig-
nal control policy, and demonstrated its superior performance
through extensive simulations. Inspired by Maximum Pres-
sure (MP) control, CMPP adaptively updates traffic signals
without predicting how traffic propagates over the network
in future time steps and thus enjoys a high computational ef-
ficiency. Meanwhile, CMPP addresses existing issues of MP
by enforcing coordination across intersections. In particular,
it defines each local control problem over a neighborhood
rather than a single intersection and introduces a penalty
function that captures queue capacities and continuous green
times. The resulting control policy was further proved to
guarantee the queuing network stability by evoking the
Lyapunov optimization theorem.

To solve CMPP, we reformulated it as a distributed opti-
mization problem and proposed two consensus algorithms.
Our experiments show that CMPP outperforms benchmark
controllers, regardless of its solution algorithm, in both indi-
vidual vehicle travel and network congestion. The ADMM-
based method usually requires a much longer computation



time to converge. In contrast, our simulations show that
the greedy heuristic achieves comparable computational ef-
ficiency as fully decentralized controllers (e.g., MP) without
a considerable compromise of the control performance.

Although this paper focuses on a signal specification of
the penalty function, the CMPP control framework offers
flexibility in designing the penalty to tackle various control
scenarios and objectives. Yet, additional scrutiny is needed
to extend the stability result for general penalty functions.
Additionally, more complex vehicle behaviors (e.g., dynamic
rerouting) and signal coordination strategies (e.g., offset) can
be integrated into future studies on CMPP.

APPENDIX I
ADMM UPDATE OF z

The original ADMM iterative rule to update z is given by

zk+1 = argmin
z

N∑
i=1

([
λk
i

]⊤
zi −

ρ

2
∥xk+1

i − zi∥22
)
. (23)

Following [20], we rewrite z as a vector of N elements,
each of which corresponds to the control of one intersection.
Let Ni = |Ni| be the number of neighbors and M(i, j)
denote the j-th neighbor of intersection i. Accordingly, (23)
is expanded as

zk+1 = argmin
z

N∑
i=1

[
(λi)i, . . . , (λi)M(i,Ni)

]  (zk)i
...

(zk)M(i,Ni)



− ρ

2

∥∥∥∥∥∥∥∥∥


(xk+1

i )i
(xk+1

i )M(i,1)

...
(xk+1

i )M(i,Ni)

−


(zk)i

(zk)M(i,1)

...
(zk)M(i,Ni)


∥∥∥∥∥∥∥∥∥

2

2

= argmin
z

N∑
i=1

∑
j∈Ni∪{i}

(λk
i )

⊤
j (z)j

− ρ

2

(
∥(xk+1

i )j∥22 − 2(xk+1
i )⊤j (z)j + ∥(z)j∥22

)
= argmin

z

N∑
i=1

∑
j∈Ni∪{i}

(
(λk

i )j + ρ(xk+1
i )j

)⊤
(z)j .

This allows us to further decompose the update and distribute
it to each intersection i as follows:

(z)k+1
i = argmin

(z)i

∑
j∈Ni∪{i}

(
(λk

j )i + ρ(xk+1
j )i

)⊤
(z)i.
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