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We report the discovery of several classes of novel topological insulators (TIs) with hybrid-order
boundary states generated from the first-order TIs with additional crystalline symmetries. Unlike
the current studies on hybrid-order TIs where different-order topology arises from merging different-
order TIs in various energy, these novel TIs exhibit a remarkable coexsitence of first-order gapless
modes and higher-order Fermi-arc states, behaving as a hybrid between the first-order TIs and
higher-order topological semimetals within a single bulk gap. Our findings establish a profound
connection between these novel d-dimensional (dD) TIs and (d − 1)D higher-order TIs (HOTIs),
which can be understood as a result of stacking (d − 1)D HOTIs to dD with d = 3, 4, revealing
unconventional topological phase transitions by closing the gap in certain first-order boundaries
rather than the bulk. The bulk-boundary correspondence between these higher-order Fermi-arcs
and bulk topological invariants acossiated with additional crystallline symmetries is also demon-
strated. We then discuss the conventional topological phase transitions from these novel TIs to
nodal-line/nodal-surface semimetal phases, where the gapless phases host new kinds of topological
responses. Meawhile, we present the corresponding topological semimetal phases by stacking these
unique TIs. Finally, we discuss potential ways to realize these novel phases in synthetic and real
materials, with a particular focus on the feasible implementation in optical lattices using ultracold
atoms.

Introduction.— Topological insulators (TIs) and topo-
logical semimetals (TSMs) have emerged as one of the
most active fields of modern physics over the past
two decades [1–3], attracting significant attention from
researchers in condensed matter physics and artificial
systems[4–10]. One significant property of topologi-
cal phases is the presence of bulk-boundary correspon-
dence, which guarantees the existence of gapless first-
order boundary modes that are associated with certain
bulk topological invariant. These first-order topological
materials have been classifed within the framework pro-
vided by the real K-theory [11] and Altland-Zirnbauer
(AZ) classes [12] for both gapped [13, 14] and gapless
[15–17] systems, based on their fundamental symmetries
including time-reversal T , charge-conjugation C, and chi-
ral symmetry S.

Recent research focus has been extended to higher-
order topological phases with additional crystalline sym-
metries [18–22]. These systems do not feature first-order
even second-order boundary gapless states but instead
exhibit gapless states at higher-order boundaries. For in-
stance, a second-order TI (SOTI) in 3D hosts boundary
gapless modes at 1D hinges (i.e., second-order boundary)
while its 2D surface (i.e., first-order boundary) spectrum
is gapped. By further gapping the gapless hinge states,

a 3D third-order TI (TOTI) can be induced, leading to
the existence of zero-energy modes at 0D corners (i.e.,
third-order boundary). By stacking these HOTIs along
an extra dimension, one can obtain higher-order TSMs
(HOTSMs) with higher-order Fermi-arcs [23–26]. More-
over, hybrid-order TIs [27] with multi-gaps have been also
discovered in metamaterials [28–30], which simultane-
ously host hybrid-order topological boundary modes un-
der different open boundary conditions (OBCs) in various
energy. Building on recent advancements in the afore-
mentioned areas, a natural question arises: Are there
novel types of TIs that host hybrid-order boundary modes
within a single bulk gap? Can we establish bulk-boundary
correspondence in these phases?

In this Letter, we answer these questions positively.
We introduce several novel classes of TIs that exhibit
unique hybrid-order boundary states consisting of both
first-order gapless modes and higher-order Fermi-arc
states within a single bulk gap, which can be seen as a
hybrid between first-order TIs (FOTIs) and HOTSMs.
These phases can be simply generated from the first-
order TIs (FOTIs) by shifting the gapless modes in first-
order boundary Brillouin Zone (BZ) through specific per-
turbations protected by crystalline symmetries. On the
other hand, we can also regard these unique TI phases
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in dD as the stacking (d − 1)D HOTIs along an addi-
tional spatial dimension (d = 3, 4). In this viewpoint,
we reveal unconventional topological phase transitions
(UTPTs) by closing the first-order boundary gap while
maintaining an open bulk gap, i.e., the unconventional
phase transition points are topological crystalline insula-
tors (TCIs) [31]. We emphasize these higher-order Fermi-
arcs can be well described by the bulk topology associ-
ated with related crystalline symmetries. For concrete-
ness, we mainly focus on several 4D models in the main
text: (i) Class A with combined mirror symmetry; (ii)
Class AIII with RT -symmetry ; (iii) Class A with C4T -
symmetry; (iv) Class AIII with C4T -symmetry. In (i), we
find a 4D TI hosts both first-order boundary Weyl cones
and second-order chiral hinge Fermi-arcs located at the
typical hinges determined by the related mirror reflection
symmetries; In (ii), a 4D TI with spin conservation hosts
first-order boundary Dirac cones and second-order hel-
cial hinge Fermi-arcs while Dirac cones will be expanded
into real Dirac nodal-lines and helical hinge states will
be gapped leading to third-order Fermi-arcs after intro-
ducing a spin-orbit-coupling (SOC) RT -symmetry per-
turbation; In (iii), a 4D TI with C4T is similar to the
case (i) but with the difference that the second-order
hinge Fermi-arc are always located at four hinges deter-
mined by more combined mirror-symmetries; (iv) Two
copies of Hamiltonian with opposite sign in (iii) are con-
sidered which supports first-order boundary Dirac cones
and second-order helical hinge Fermi-arcs. By perform-
ing dimensional reduction with kz = 0, the corresponding
3D models and physical pictures are obtained, which are
presented in the Supplemental Materials (SM). The ex-
plicit expressions of the topological numbers associated
with the corresponding crystalline symmetries are pre-
sented. Moreover, we also explore the conventional topo-
logical phase transition (CTPT) from a novel TI in case
(i)/(ii) to a nodal-line/nodal-sphere phase, presenting the
topological response theory of these gapless phases. Fur-
thermore, we discuss the related topological semimetal
phases by stacking these novel TIs along an additional
spatial dimension. Finally, we discuss the possible ways
to realize these novel phases in synthetic and real ma-
terials, including the implemented proposals in optical
lattices using ultracold atoms.

Four-band model in Class AMij .— We now consider
a 4D four-band model with its Bloch Hamiltonian given
by,

H1(k) = H0 + ∆1, (1)

where H0 =
∑

i diΓi + d0Γ0 with the Bloch vector
di = sin ki, d0 = M −

∑
i cos ki (i = x, y, z, w). The per-

turbation ∆1 = bxwΓ0Γ14 + bywΓ0Γ24. Here the Driac
matrices are Γ1 = G31, Γ2 = G32, Γ3 = G33, Γ4 = G20,
Γ0 = G10, Γab = i

2 [Γa, Γb], and satisfy {Γi, Γj} = 2δij .
We mix the notation i ∈ (1, 2, 3, 4) ↔ (x, y, z, w) in the

subscript of Γi and label Gab = σa ⊗σb through the 2×2
identity σ0 and Pauli matrices σi hereafter. As one can
see that H0 is the well-known 4D quantum Hall insulator
(QHI) characterized by the second Chern number (SCN)
C2 [32], harboring |C2| Weyl cones at the origin of the 3D
boundary BZ [33]. Under OBCs along the x (w)-direction
with a chain length L, introducing a non-zero bxw term in
H0 leads to the shifted Weyl cones along the kw (kx)-axis
in the boundary BZ, resulting in the second-order chiral
Fermi-arc hinge states when considering OBCs at x and
y directions. A similar effect is observed when only the
byw term is non-zero, as shown in Fig. 1. We present
the effective boundary Hamiltonian and numeric results
in the SM [34].

In what follows we discuss the topology of this sys-
tem. The initial Hamiltonian H0(k) in class AII respects
T represented as T̂ = Γ13K, where K is the complex
conjugate. In addition, H0 preserves extra crystalline
symmetries, including inversion symmetry I [35] and the
combined mirror reflection symmetries Mij = MiMj ,
where each mirror reflection Mi inverts one of the mo-
mentum components ki [36]. We present all the defini-
tions of the corresponding crytalline symmetries in the
SM [34]. For simplicity, we first consider the case when
only bxw term in ∆1 is numerically small, it breaks T
and only preserves Mxw and Myz symmetries. The sys-
tem now falls into class A and still hosts a non-trivial
C2 with the shifted first-order Weyl boundary states. To
characterize the second-order topology, we can define ex-
tra topological numbers at Mxw/Myz-invariant points
Λxw

a /Λyz
a [37], i.e., named “mirror first Chern number”

(MFCN),

Cij
1m(Λij

a ) = [C+i(Λij
a ) − C−i(Λij

a )]/2, (2)

where C±i denotes the first Chern number defined in 2D
subsystems HΛij

a
1 (kl, km) of the eigenspace E = ±i of M̂ij

[36]. For simplicity and without loss of generality, we
focus on the case when M near 3 hereafter, evaluation
shows that Cxw

1m = −1/Cyz
1m = 1 at Λxw

1 /Λyz
1 = (0, 0), and

Cxw
1m(Λxw

a ) = 0/Cyz
1m(Λyz

a ) = 0 for the rest of the three
Λxw/yz

a points [34]. These results establish the bulk-hinge
correspondence and provide detailed information of the
chiral hinge Fermi-arcs, as depicted in Fig. 1(a). Since
these hinge Fermi-arcs are formed by stacking the 1D
chiral modes HR/L = ±kz along kw axis, once Mxw acts
on one of hinge states, it will transform this states to the
mirror reflection hinge about x = 0 and kw = 0 planes
without changing its chirality; while Myz tranforms one
of the hinge states to its mirror-symmetric hinge about
y = 0 and then changes the chirality of this hinge mode
due to the mirror reflection about kz = 0 plane, causing
±kz → ∓kz. Similar picture also appear when M is in
other parameter regions[34]. When only byw is non-zero,
the system preserves both Mxz and Myw symmetries de-
scribing the existence of second-order chiral Fermi-arcs,
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as depicted in Fig. 1 (b).
When both bxw and byw survive, Mxw and Myz are

broken. For the typical case when bxw = byw, H1 hosts
an extra combined symmetry M(x−y)z = Mx−yMz

with Mx−y being the mirror reflection about the mirror-
invariant line kx = ky[38]. In the same spirit, we can
calculate the MFCNs Ckz

1m at kx = ky, kz = 0, π planes
with C0

1m = −1 and Cπ
1m = 0[34]. As we can see that chi-

ral Fermi-arcs are located at diagonal hinges with mirror
reflection about x = y plane harboring opposite chiral-
ity due to the operation of Mz, as shown in Fig. 1(c).
Similarly, when bxw = −byw, H1 preserves M(x+y)z sym-
metry with C0

1m = 1 and Cπ
1m = 0, enforcing the loca-

tion of Fermi-arcs at anti-diagonal corners with opposite
chirality[34]. If bxw ̸= |byw|, ∆1 breaks T and all the
Mij-symmetries. However, the system still hosts the I-
symmetry which guarantees the second-order Fermi-arc
states as a superposition of the cases where either byw = 0
or bxw = 0. We emphasize that Mij-symmetry is used to
construct this unique TI; it is itself not essential for the
existence of second-order hinge Fermi-arcs. The hinge
states are robust against a Mij-symmetry breaking per-
turbation, as long as the bulk gap is not closed.

To understand this 4D novel phase with both first- and
second-order boundary states, we can treat kw as a pa-
rameter in this H1. The 3D subsystem Hkw

1 (kx, ky, kz)
goes through UTPTs while the gap closing happens in
certain 2D surface BZs instead of the 3D bulk when tun-
ing kw from −π to π. For instance and when bxw > 0,
the 3D subsystems exhibit two distinct phases, which are
normal insulators for kw ∈ (−π, −bxw)∪(bxw, π), and chi-
ral SOTIs for kw ∈ (−bxw, 0) ∪ (0, bxw). The TCIs [31]
at kw = 0, ±bxw serve as the unconventional transition
points between these two phases, as illustrated in Fig.
1(d). Thus this novel 4D TI phase H1 is nothing but
the stacking layers of 3D chiral SOTIs, revealing UTPTs
by tuning kw. We present detailed discussions about the
topology of these 3D subsystems in the SM[34]. On the
other hand, a 3D novel TI with hybrid-order boundary
states can be simply obtained by setting kz = 0, the sys-
tem restores S-symmetry and thus falls into class AIII.
Similar discussions can be found in the SM[34].

Eight-band model in Class AIIIRT without and with
SOC.— We now consider a 4D eight-band model, its
Hamiltonian is given by,

H2(k) = H̃0 + ∆2 + ∆3, (3)

where H̃0 =
∑

i diΓ̃i +d0Γ̃0 with the Bloch vector di (i =
x, y, z, w) are the same as in H0, the perturbations ∆2 =
bxwΓ̃0Γ̃14+bywΓ̃0Γ̃24+bzwΓ̃0Γ̃34, and ∆3 = cxΓ̃61+czΓ̃63.
Here Γ̃1 = G331, Γ̃2 = G332, Γ̃3 = G333, Γ̃4 = G320, Γ̃0 =
G310, Γ̃6 = G100, Γ̃7 = G200, and Γ̃ab = i

2 [Γ̃a, Γ̃b]. Label
Gijk = σi ⊗ σj ⊗ σk hereafter. H̃0 is just a 4D quantum
spin Hall insulator as two copies of 4D QHIs ±H0 with
opposite ±C2 implying the existence of 3D first-order
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FIG. 1. Schematic of the boundary states of H1 with
C2 = −1 when 2 < M < 4. Each first-order 3D boundary
hosts a 3D Weyl cone marked in red/blue carrying right-/left-
chirality while the 1D chiral hinge modes are also marked in
the same way. (a) bxw term shifts the Weyl cone along the
kw direction, causing it to be located at kx+ = (ky, kz, kw) =
(0, 0, bxw) at x = −L/2, while the Weyl cone at x = L/2 is
shifted and located at kx− = (0, 0, −bxw). If we further open
the boundary along the y axis, there will be 1D chiral zero-
energy Fermi-arcs located at the symmetry-protected hinges
for kz = 0. (b) byw term shifts the Weyl cone at y = −L/2 to
the position ky+ = (kx, kz, kw) = (0, 0, byw) and another Weyl
cone at y = L/2 to ky− = (0, 0, −byw). 1D chiral hinge Fermi-
arcs also appear at chosen hinges when OBC along x and y
directions are assumed. (c) The superposition of the cases in
Figs. (a) and (b) with bxw = byz where second-order Fermi-
arcs only appear at two M(x−y)z-symmetric hinges. (d)Phase
diagram of 3D subsystems Hkw

1 with only bxw being non-zero
by varying kw. Here“NI” denotes the normal insulator.

boundary Dirac modes. ∆2 shifts the gapless Dirac cones
in 3D boundary momentum space similar to that case
in H0, resulting in second-order helical Fermi-arc hinge
states. ∆3 behaves like a SOC, where ci expands the 3D
Dirac cone into a nodal line structure at ki = 0 plane at
the boundary normal to j-direction. For instance, non-
zero cx term expands the boundary Dirac cone into a
nodal line at kx = 0 plane in the case of OBC at y/z/w-
direction[34].

In the following we discuss the topology of this model
in details. In AZ classification [12], H̃0 falls into class CII
with T , C and S hosting a Z2 topology[39]. Since H̃0 is
spin conservation with Γ̃5-symmetry, we have [Γ̃5, H̃0] =
0, where ˆ̃Γ5 = G300. We can define a Z2 number through
the spin SCN [40] to characterize the first-order topology
with bulk-boundary correspondence even if T and C will
be broken later[41]. In addition, H̃0 also respects the
following crystalline symmetries, including I, and Mi

leading to the combined symmetries Mij and RiT =
MiIT for i = x, y, z, w[42].

We first consider the situation when ∆2 plays the role
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FIG. 2. Schematic of the boundary states of H3 when 2 <
M < 4. (a-b)bxw = byw = bzw > 0 and cx = cz = 0, the
system harbors both shifted first-order Dirac points located
at the same positions as in Fig. 1(c) and second-order Fermi-
arcs consisting of helical hinge states (colored in orange) of
3D SOTIs stacked along kw axis. (c-e) bxw = byw = bzw > 0
and cx = cz > 0. The system harbors both shifted first-order
nodal lines and third-order Fermi-arcs consisting of zero-mode
corner states of 3D TOTIs stacked along kw axis.

in, i.e., all ci = 0. ∆2 break T , C, but keep S, I and thus
the system is now falls into calss AIII but still hosts an
unchanged spin SCN. The discussion of the second-order
topology associated with the spin MFCNs [43] is similar
to the cases in H1 when only bxw and byw survive[34].
To conveniently discuss third-order topology later, we
focus on a TI phase with both first- and second-order
boundary states with bxw = byw = bzw for M near 3.
As shown in Fig. 2(a-b), the system hosts the second-
order helical Fermi-arcs where its 3D layers Hkw

2 with
kw ∈ (−bxw, bxw) are SOTIs with helical states propagat-
ing along Mx−y, My−z, and Mz−x symmetric hinges[44]
when considering OBCs along x-, y- and z-directions.
One can also define 3D mirror winding numbers to de-
scribe this second-order topology accordingly[34].

Subsequently, we turn on cx = cz being numeric small,
H3 remains in class AIII harboring shifted 3D Z2 nodal
lines [45–47] on the 3D boundaries when assuming OBC
along x or y directions [Fig. 2(c)]. However, helical
hinge Fermi-arcs have been gapped due to ∆3 breaks Γ̃5
(Mx−y and My−z are also broken), leading to third-
order Fermi-arcs along kw axis[34], as shown in Fig. 2(c-
e). In this case, even though the spin SCN is not well-
defined, one can define a Z2 number as 4D generaliza-
tion of Kane-Mele invariant [45] since H3 remains re-
spect RwT -symmetry[42]. Alternately, we can define an-
other topological number as ν = ν0 − νπ mod 2 at RwT -
invariant lines kw = 0, π with νkw

is a topological number
of the 3D real TI with S [48]. Calculation results show
that ν0 = 1 and νπ = 0 for M near 3 [34]. Meanwhile,
H3 keeps M(z+x)yw = Mz+xMyMw[49], Mz−x, and

I-symmetries. A non-trivial 1D mirror winding number
w1m = 2 defined at kx = −kz and (ky, kw) = (0, 0) asso-
ciated with M(z+x)yw-symmetry [34] guarantees the ex-
act location of third-order Fermi-arc with Mw-symmetry
about kw = 0 consisting of a pair of zero-modes, accu-
mulating at two M(z+x)y-symmetric [combined mirror
reflection about z = −x and y = 0 planes] corners in
a 3D real space cubic spanned in (x, y, z). The bulk-
corner correspondence is established here; Mz−x implies
these two zero-modes live in z = x plane; these Fermi-arc
states are always I-symmetric in (x, y, z, kw) space; see
Fig. 2(d-e). We emphasize that Γ̃5 (RwT ) symmetry
guarantees the existence of second (third)-order gapless
Fermi arcs in class AIII, where these boundary modes are
located at the positions determined by additional crys-
talline symmetries.

             Right chirality;               Left chirality

x
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+

-

(a)

-

+

x

y

zk (b)

FIG. 3. Schematic of the boundary states of H3 when
2 < M < 4 and δ > 0 being numeric small. (a) The sys-
tem harbors both shifted first-order Weyl cones [34] and the
second-order chiral Fermi-arc hinge states. The green dashed
squares denote the 3D TCIs being the unconventional phase
transition points. (b) 3D non-trivial subsystems with fixing
kw host second-order chiral hinge states.

Four-band model in Class AC4T and eight-band model
in Class AIIIC4T without SOC.— We present another 4D
four-band model in class A, with the Hamiltonian,

H3(k) = H0 + ∆4, (4)

with a perturbation ∆4 = δ(cos kx − cos ky)Γ4 breaks
Czw

4 and T individually, but respects Czw
4 T -symmetry

[50]. As shown in Fig. 3, ∆4 shifts the boundary Weyl
cones along kw-direction [34]. Two Weyl cones located on
different boundaries [e.g. y(x) = −L/2 and y(x) = L/2]
are shifted along the same direction when OBC along
y (x)-direction is assumed, resulting in a second-order
Fermi-arc at four hinges once we further open the bound-
ary along x (y) axis. Except the unchanged C2 for the
first-order topolgy, we can define the so-called “rotational
spin first Chern number” (RSFCN) at Czw

4 T -invariant
2D momenta (kx, ky) = (0, 0), (π, π) which may be used
to characterize the second-order topology [34]. In addi-
tion, we can easily construct the spin conservation verion
of H3 with eight-band as H4(k) = σ3⊗H3, which respects
Czw

4 T and S and thus falls into class AIII. The system
now hosts the first-order boundary Dirac modes and the
second-order helical hinge Fermi-arcs. By setting kz = 0,
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we obtain the corresponding 3D unique TI. All these sim-
ilar discussions about the second-order topology associ-
ated with additional crystalline symmetries are presented
in Ref.[34].

CTPTs and Novel TSMs.—By enlarging the parame-
ters in ∆1/∆2 of H1/H2, we can study the CTPT goes
through a phase transition from this unique TI phase to
a non-trivial nodal-line/sphere metallic phase and then
finally becomes a trivial insulator. Such 4D nodal struc-
tures, including nodal-line, spin-nodal-line, and nodal-
sphere, are characterized by the first Chern number
(FCN) C1, spin FCN C1s, and 1D winding number w1
respectively. The corresponding topological responses
based on current works [51–53] are also discussed [34].
On the other hand, we can obtain serveral new classes of
TSMs with hybrid-order boundary Fermi-arcs by stack-
ing the above TI phases along an extra spatial dimension
u, as is commonly done, i.e., M → M ′ = M − cos ku,
For instance, when M = 4, H1(M ′)/Hkz=0

1 (M ′) hosts
a pair of 5D/4D nodal surfaces/lines characterized by
double charges νD = (C2/w3, C1), where w3 denotes
the 3D winding number; H3(M ′)/Hkz=0

3 (M ′) hosts a
pair of hybrid-order 5D/4D monopoles characterized by
C2/w3. Two spin copies of these nodal-structures of
H2(M ′)/H4(M ′) can be also extended accordingly[34].

Discussion and outlook.— In this work, we establish
a valuable framework for understanding the origin of
the distinctive properties of these novel TIs, demon-
strating that these unique TIs can be seen as a higher-
dimensional stacking effect of low-dimensional HOTIs
undergoing UTPTs along an additional spatial dimen-
sion. In other words, each kind of dD HOTI corre-
sponds to a (d + 1)D unique TI phase for d ≥ 2. The
related nodal structures and their topological responses
are also studied when H1/H2 becomes a gapless phase.
Furthermore, the corresponding TSMs with novel nodal-
structures can be obtained by stacking these TIs going
through CTPTs along an extra spatial dimension. Note
that these unique topological phases, especially for mod-
els with d ≥ 4, could be experimental studied in sythetic
matter, as could be realized in metamaterials[54–57], in
electric circuits[58, 59], or in optical lattices with cold
atoms[60–63], etc. In particular, we can utilize the cold-
atom setup proposed in our previous work [41] to realize
the 4D model H̃0 in Eq. (3), including the implementa-
tion of other models mentioned in this work in a similar
manner [34]. For the 3D model in H1 with kz = 0, Hkz=0

0
as a 3D strong TI in low-energy limit has been predicted
[64] and realized [65] in real materials, such as Bi2Se3
and Bi2Te3 families, one can consider to induce ∆1 term
in these materials by magnetization or light-induced Flo-
quet drivings [66].

We highlight that these novel topological phases can
also be generalized to non-Hermitian [67, 68] and Flo-
quet systems [69, 70]. The field-theoretical descriptions
of these phases in the bulk is one of interesting directions.

An intriguing and open question is the direct calculation
of the effective action in the bulk. Take H1 as an ex-
ample, the presence of shifted first-order boundary Weyl
cones implies the possibility of an additional term beyond
the (4 + 1)D Chern-Simons action in its 4D parent sys-
tem. We provide a relevant discussion in the SM [34] and
will address it in the future. Overall, our work further
open the door of investigating novel topological phases
in the synthetic and real materials.
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