
FAT EQUATOR EFFECT AND MINIMALITY IN

IMMERSIONS AND SUBMERSIONS OF THE SPHERE

VICENT GIMENO I GARCIA AND VICENTE PALMER

Abstract. Inspired by the equatorial concentration of measure phe-
nomenon in the sphere, a result which is deduced from the general, (and
intrinsic), concentration of measure in Sn(1), we describe in this paper
an equatorial concentration of measure satisfied by the closed, (compact
without boundary), isometric and minimal immersions x : Σm → Sn(1),
(m ≤ n), and by the minimal Riemannian submersions π : Σm → Sn(1),
(m ≥ n).

1. Introduction

The deep connection between the notions of measure of sets, (in its mean-
ing of Riemannian volume), distance between points and dimension in a Rie-
mannian manifold is illustrated by the concentration of (intrinsic) measure
phenomenon in the sphere Sn(1), (that we consider in this paper equipped
with a metric of constant sectional curvature 1), as we can find it in the
lecture notes [6], (see Theorem A in this Introduction).

From this concentration of measure it can be deduced a particular result,
namely, an intrinsic equatorial measure concentration property satisfied by
the strips around the equators of the sphere, also known as “fat equator
effect”, which can be roughly described by saying that for “very large”
dimension, almost all measure in the sphere concentrates in these strips
surrounding its equators, independently of its width, (see Theorems C and
Theorem 1.2 in this Section).

Now, an interesting question that can be raised from this last result ap-
pears when considering it from an extrinsic point of view, that is, from the
point of view of the submanifold theory. We introduce at this point the
concept of “extrinsic equatorial measure concentration” for submanifolds in
the sphere: we shall study then the relative volume of the intersection of a
closed and minimal submanifold with the above mentioned strips around the
equators of the ambient sphere, concluding, as in the intrinsic case, that for
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“very large” dimension, almost all measure in the submanifold concentrates
in their intersection with the strips of any width surrounding these equators,
(see Theorem 1.4 in this Introduction).

On the other hand, there is a concentration of measure in the dual geomet-
ric setting with respect the isometric immersions given by the Riemmanian
submersions. Namely, we shall prove a concentration of measure satisfied
by the compact manifolds which admits a Riemannian submersion onto the
sphere with minimal fibers. In this vein, such compact manifolds accumu-
lates almost the whole measure on the points which project to the strips of
any width surrounding the equator of the sphere (see Theorem 1.5).

In the lecture notes by V. Milman and G. Schechtman [6] we can find the
following theorem:

Theorem A (Corollary 2.2 in [6]).
If A ⊂ Sn(1) is a domain with vol(A) ≥ 1

2vol(S
n(1)) then, for all ϵ ∈ [0, π2 ],

the ϵ-fattening of A satisfies the inequality

(1) 1 ≥ vol(Aϵ)

vol(Sn(1))
≥ 1−

√
π

8
e−ϵ2(n−1)/2

and hence, for all ϵ ∈ [0, π2 ],

(2) lim
n→∞

vol(Aϵ)

vol(Sn(1))
= 1.

Remark 1.1. Here, the ϵ-fattening of A is defined, using the intrinsic distance
in the sphere Sn(1), as

Aϵ :=
{
x ∈ Sn(1) : distS

n(1)(x,A) < ϵ
}

Theorem A is a consequence of the Levy’s isoperimetric inequality in the
sphere, (see [6]). To see the idea behind the proof of assertions (1) and (2),
let us consider a domain A with vol(A) = a ≥ 1

2vol(S
n(1)) and let us fix

ϵ ∈ [0, π2 ]. Then, applying Levy’s isoperimetric inequality, and having into

account that, fixed ϵ ∈ [0, π2 ], the ϵ-fattening of a geodesic ball Bn,1
r is the

ball (Bn,1
r )ϵ = Bn,1

r+ϵ, for all r ∈ [0, π/2− ϵ), we have the inequality

(3)

vol (Aϵ)

vol (Sn(1))
≥

vol
(
Bn,1

π/2+ϵ

)
vol (Sn(1))

=

∫ π
2
+ϵ

0 sinn tdt∫ π
0 sinn tdt

= 1−

∫ π
π
2
+ϵ sin

n tdt∫ π
0 sinn tdt

To obtain equality (2) from this point, we remark that , given ϵ ∈ [0, π2 ],
in the intervals [0, π2 + ϵ] ⊆ [0, π], the function sin t attains its maximum of
1 in t = π

2 , so, when n → ∞, the function sinn t has a “peak” at π
2 and is
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Figure 1. The ϵ-strip of S2(1) is the ϵ-fattening of the equa-
tor of S2(1)

negligible out of this value. Hence, we have that

(4) lim
n→∞

∫ π
π
2
+ϵ sin

n tdt∫ π
0 sinn tdt

= 0

and

(5) 1 ≥ lim
n→∞

vol (Aϵ)

vol (Sn(1))
≥ lim

n→∞

∫ π
2
+ϵ

0 (sin t)ndt∫ π
0 (sin t)

ndt
= 1

Now, we are going to focus on a particular concentration of measure
phenomenon in the sphere, that we call equatorial, what happens in this
case around any totally geodesic equator Sn−1(1) of the sphere Sn(1), and
which can be deduced from the general concentration of measure described
above. We will take it as a starting point for our definition of the extrinsic
concentration of measure of an immersed submanifold in the sphere.

In order to describe it and to give an idea of its proof, we are going to
consider the particular case constituted by the equator

E = {(x1, . . . , xn+1) ∈ Sn(1) : xn+1 = 0}

together the domain Ωϵ ⊆ Sn(1), (called ϵ-strip around the equator E, see
also figure 1), given by

Ωϵ := {(x1, . . . , xn+1) ∈ Sn(1) : − sin(ϵ) < xn+1 < sin(ϵ)}
where ϵ ∈ [0, π2 ]

We must remark at this point that any equator in the sphere can be
placed in the position of E using the accurated rotation, (an isometry which
preserves volume and distances), so the argument we are going to show
applies in fact for any equator.

Then, we can prove the following
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Theorem B. Given the ϵ-strip Ωϵ around the equator E,

(6)
vol (Ωϵ)

vol (Sn(1))
≥ 1−

√
π

2
e−ϵ2 n−1

2

and hence, for 0 < ϵ < π
2 we have

(7) lim
n→∞

vol (Ωϵ)

vol (Sn(1))
= 1.

This property comes from the concentration of measure stated in Theorem
A in the following way: let us denote as Sn+ the half sphere centered at the
north pole and as Sn− the half sphere centered at the south pole. Then,
the ϵ-strip around the equator can be expressed, in terms of the ϵ-fattenings
Sn+ϵ and Sn−ϵ as the intersection,

Ωϵ = Sn+ϵ ∩ Sn−ϵ
Now, inequality (6) follows applying Theorem A to the ϵ-fattenings Sn+ϵ and
Sn−ϵ and using the fact that vol(Sn+ϵ ) = vol(Sn−ϵ ).The conclusion is that for
“very large” dimension, almost all measure in the Sphere is concentrated
surrounding the equator.

This equatorial concentration of measure just described above is also
known as “fat equator effect” (see [1]) and can be alternatively deduced
by using another concentration of measure, namely, the concentration of
measure around the mean/averaged value of a Lipschitz function defined on
the sphere Sn(1), as it is stated in Corollary V.2 of [6]:

Theorem C (Corollary V.2 in [6]). Let f : Sn(1) → R be a Lipschitz
function, with Lipschitz constant σ. Then there exists an absolute constant
δ such that

(8)
vol({x ∈ Sn(1)/|f(x)−

∫
Sn fdµ

vol(Sn) | ≥ C}
vol(Sn)

≥ 4e−δC2 n+1

σ2

We must remark that Theorem C is deduced from a previous result due
to B. Maurey and G. Pisier, (see Theorem V.1 in [6]). In this theorem it is
proved a concentration of measure of a multivariate and Lipschitz function
which depends on several independent Gaussian variables and it is stated and
proved using probabilistic arguments. The particularization of this result to
functions defined on the sphere Sn(1) is equivalent to the concentration of
measure of the values of any continuous function defined on this sphere Sn(1)
around its Levy mean, (see Lemma 2.3 in [6]), which in its turn is a corollary
deduced from Theorem A.

Then, using the cosinus of the distance function to a fixed point in the
sphere as our Lipschitz function and applying Theorem C we obtain:

Theorem 1.2. Given the ϵ-strip Ωϵ around the equator E, (ϵ ∈ (0, π/2)),
there exists an absolute constant, (in the sense that do not depends on n),
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Figure 2. Two orthogonal equatorial bands which inter-
sects in two small antipodal squares

δ > 0 such that

(9)
vol (Ωϵ)

vol (Sn(1))
≥ 1− 4e−δϵ̄2(n+1)

where ϵ̄ = sin(ϵ) ∈ (0, 1) and hence,

(10) lim
n→∞

vol (Ωϵ)

vol (Sn(1))
= 1.

As the statement of our main result is directly inspired in Theorem 1.2
and for the sake of completeness we will prove this theorem in the Appendix
3.

Remark 1.3. We would like to draw attention to the following observation,
which only apparently constitutes a paradox that would refute the last prop-
erty: let us consider small ϵ > 0. Then, by virtue of the limit (10), as the
dimension increases, the equatorial band occupies more and more area of the
sphere, so that the two complementary big caps to the band have a small
volume compared to the total volume of the sphere.

Let us now consider a rotation of the equatorial strip, (an isometry of
the sphere acting on the strip), in such a way that the image due to this
rotation of the strip is a domain in the sphere that cuts the two previous
big caps. Since the image by the isometry of the band is a domain with
the same area as the band and it occupies a large amount of area of the
sphere, all this area will be concentrated outside the intersection with the
caps, (which have small area). The conclusion is that the entire area of the
band will be concentrated in two small squares, antipodal and disconnected,
which are the result of intersecting the old band prior to the rotation with
the new one, (see picture below).

This fact not only does not contradict the corollary, but we must observe
that, if we take, within one of these small squares, a spherical cap centered
on it and circumscribed in it, we have that, when the dimension tends to
infinity, the volume of this cap tends to zero while the area of the square
tends to infinity.
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As we have mentioned before, we use the equatorial concentration of
measure or “fat equator effect”, as it has been described in Theorem 1.2 to
introduce the notion of extrinsic equatorial concentration of measure of a
submanifold in the sphere. Let us consider x : Σm → Sn(1) be a complete
isometric immersion of the m-dimensional manifold Σm in the sphere Sn(1).
Any totally geodesic equator Sn−1(1) on a sphere Sn(1) can be described in
terms of the intrinsic distance of its points to a given fixed point p, (and, in
this sense, the equator E that has served above to exemplify the phenomenon
of concentration of the equatorial measure, is the set of points that are
distant from the north pole by a distance equal to π

2 ). This description is
given in the following way: given a point p ∈ Sn(1), the equator of Sn(1)
with respect to p is defined as

E(p) :=
{
x = (x1, · · · , xn+1) ∈ Sn(1) : distS

n(1)(p, x) =
π

2

}
,

where

distS
n(1)(p, x) = ∠(p, x) = arccos(p · x)

denotes the intrinsic distance in Sn(1) between the points p and x. Then,
the strip around the equator E(p) is defined as the set:

Ω(p, ϵ) =
{
x ∈ Sn(1) :

π

2
− ϵ < distS

n(1)(p, x) = ∠(p, x) <
π

2
+ ϵ

}
=

{
x ∈ Sn(1) : cos

(
distS

n(1)(p, x)
)
∈ (− sin ϵ, sin ϵ)

}
.

Note that the strip around the equator E, Ωϵ, used in the estimations (6)
and (9), is the strip Ω(pN , ϵ) where pN is the north pole of the sphere Sn(1).

Our main result can be summarized asserting that there is an extrinsic
equatorial concentration of measure when we consider minimal and compact
submanifolds Σm of any co-dimension in the Sphere Sn(1) and it is stated
as follows:

Theorem 1.4. Let x : Σm → Sn(1) be an isometric and minimal immersion
of the closed m-dimensional manifold Σ in the sphere Sn(1). Then, for any
point p ∈ Sn(1) , any ϵ ∈ (0, π/2) and any absolute δ ∈ [0, 12), (in the sense
that do not depends on n), we have

(11) 1 ≥
vol

(
x−1(Ω(p, ϵ))

)
vol(Σ)

≥ 1−
√

1

1− 2δ
e−δϵ̄2(m+1)

where ϵ̄ = sin ϵ ∈ (0, 1). Hence, for each ϵ ∈ (0, π/2),

(12) lim
m→∞

vol
(
x−1(Ω(p, ϵ))

)
vol(Σ)

= 1.

We are going to finish this Introduction presenting a concentration of
measure result of the fiber bundle projecting on the strip Ω(p, ϵ) of a com-
pact without boundary Riemannian submersion π : Σ → Sn(1) when this
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submersion is minimal, namely, when the (compact) fibers π−1(q) ⊆ Σ with
q ∈ Sn(1) are minimally immersed in Σ. This result, which can be considered
a dual property of the extrinsic equatorial concentration of measure given by
Theorem 1.4, comes from both the structural duality of the equations that
govern the geometry of the submersion with respect to the corresponding
equations of the immersions and from the fact that the projection π com-
mutes with the Laplacians ∆Σ and ∆Sn(1) when the fibers of π : Σ → Sn(1)
are minimal submanifolds of Σ.

Theorem 1.5. Let π : Σm → Sn(1) be a Riemannian submersion with
minimal fibers of the closed m-dimensional manifold Σ on to the sphere
Sn(1). Then, for any point p ∈ Sn(1) , any ϵ ∈ (0, π/2) and any absolute
δ ∈ [0, 12) we have

(13) 1 ≥
vol

(
π−1(Ω(p, ϵ))

)
vol(Σ)

=
vol (Ω(p, ϵ))

vol (Sn(1))
≥ 1−

√
π

2
e−ϵ2 n−1

2 .

Hence, for each ϵ ∈ (0, π/2),

(14) lim
n→∞

vol
(
π−1(Ω(p, ϵ))

)
vol(Σ)

= 1.

We shall finish this Introduction with some general observations concern-
ing the statements of Theorems 1.4 and 1.5.

Remark 1.6.

(1) In contrast to the intrinsic approach, in the extrinsic case given
by Theorem 1.4, the proof of inequality (11) and equality (12) is
based on the divergence theorem, rather than on the isoperimetric
inequality, (as it is the case of the proof of inequality (6) and equality
(7) in Theorem B, proved as a corollary of Theorem A) or rather than
on probabilistic arguments using the Gaussian distribution, (as it is
done in Theorem 1.2, deduced as a direct application of Theorem
C).

(2) We can recover the intrinsic equality (10) in Theorem 1.2 as a corol-
lary of the extrinsic equality (12) in Theorem 1.4 , taking Σ = Sn(1).
In fact, if Σ = Sn(1), then we can use x as the identity map and
hence,

x−1(Ω(p, ϵ)) = x(Σ) ∩ Ω(p, ϵ) = Ω(p, ϵ)

so, from equality (12), we obtain

lim
n→∞

vol
(
x−1(Ω(p, ϵ))

)
vol(Σ)

= lim
n→∞

vol (Ω(p, ϵ))

vol(Sn(1))
= 1

But it is important to remark that inequality (9) in Theorem 1.2 is
not the same nor it is a consequence of inequality (11) in Theorem 1.4
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nor, on the other hand, does inequality (6) can be derived directly
from (9). Note that the constants δ are not the same in Theorem
1.4 and Theorem 1.2.

(3) When we consider Σ = Sn(1) in Theorem 1.4, we can compare in-
equality (11) with inequality (9) in Theorem 1.2. To do this com-
parison, we must have into account that the constants δ are not the
same in both theorems, (which, on the other hand, limits the scope
of this comparison), and, moreover, that while δ is a fixed constant
in Theorem 1.2, in Theorem 1.4 the values of the constant δ ranges
over the interval [0, 12). If we start our comparison considering the
bound (9) in Theorem 1.2, namely, the bound

vol (Ωϵ)

vol (Sn(1))
≥ 1− 4e−δϵ̄2(n+1)

we can to choose the accurate value of δ = δ0 in Theorem 1.4 in

order to have the bound 1 −
√

1
1−2δ0

e−δ0ϵ̄2(n+1) = 1 − 4e−δ0ϵ̄2(n+1).

This value is δ0 =
15
32 and inequality (11) will be

vol
(
x−1(Ω(p, ϵ))

)
vol(Sn(1))

≥ 1− 4e−
15
32

ϵ̄2(n+1).

(4) It should rest open to obtain, using our techniques, the statement
of an intrinsic concentration of measure for compact and minimal
submanifolds of the sphere, namely, if A ⊆ Σ is a domain with
vol(A) ≥ 1

2vol(Σ), then the ϵ-fattening of A in Σ satisfies the in-
equality

1 ≥ vol(Aϵ)

vol(Σ)
≥ 1−

√
π

8
e−ϵ2(m−1)/2

and hence, for all ϵ ∈ [0, π2 ],

lim
m→∞

vol(Aϵ)

vol(Σ)
= 1

Here, the ϵ-fattening of A in Σ should be defined as

Aϵ :=
{
x ∈ Σ : distΣ(x,A) < ϵ

}
.

In fact, there is a result in this vein given as a Corollary of Theo-
rem 6.9 in [6], where an intrinsic concentration of measure in the line
of Theorem A is stated in terms of the first Dirichlet eigenvalue of
a compact and connected Riemannian manifold. In this sense, and
if we consider a compact and minimal submanifold in the sphere
x : Σm → Sn(1) as a manifold in itself, then, applying Theorem 6.9

we obtain, for any domain A ⊂ Σ with vol(A)
vol(Σ) = a, the following
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concentration of measure

(15)
vol (Aϵ)

vol(Σ)
≥ 1− (1− a2)e−ϵ

√
λ1(Σ) ln(1+a),

where λ1(Σ) is the first (non-zero) eigenvalue for the Laplacian of Σ.

(5) We should note at this point that the concentration of measure (15)
is not related, a priori, with the dimension of the submanifold, so
we can’t conclude the description of the behaviour at infinity of the
volume of the fattenings or the strips around the equators given by
equalities (2), (7), (10) and (11). However, looking again to inequal-
ity (15), the things should change if we could obtain estimations for
λ1(Σ) in terms of the dimension of the submanifold. In this vein, in
problem 100 of [13], S.T Yau conjectured that the first eigenvalue of
a compact minimal embedded hypersurface Σ ⊂ Sn is given by the
dimension of Σ, namely

λ1(Σ) = n− 1.

If Yau’s conjecture is true it would imply, by using inequality (15)
that for any domain A ⊂ Σ ⊂ Sn of a minimal n − 1-dimensional

hypersurface, with vol(A)
vol(Σ) ≥

1
2 there will be two constants c1, c2 ∈ R>0

such that

(16)
vol (Aϵ)

vol(Σ)
≥ 1− c1e

−c2ϵ
√
n−1.

so we should have an intrinsic concentration of measure for Σ which
could be considered a Wirtinger’s type inequality for compact and
minimal embedded hypersurfaces of the sphere, (see [4]).

The rate of decline with respect to the dimension in this result
should be slower than our rate of decrease on the dimension given
by (11) but it should be true for other domains than any extrinsic
fattening of the equator.

(6) The Yau’s conjecture remains unsolved but it is known to be true in
several cases: for instance for homogeneous hypersurfaces (see [7],
[5]) and for certain isoparametric minimal hypersurfaces (see [14]).
On the other hand, Choi and Wang proved in [2] that for compact,
embedded and minimal hypersurfaces Σ ⊂ Sn+1 there exists the
following lower bound in the first eigenvalue

λ1(Σ) ≥
n

2
.

This lower bound is enough to state the concentration of measure
provided by inequality (16) in this particular context, namely, when
we consider compact, embedded and minimal hypersurfaces Σ ⊂
Sn+1. Observe that this concentration phenomena would be attained
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for fattenings of domains of any kind in compact, embedded and min-
imal hypersurfaces of the sphere, in contrast to the results presented
in this paper which would be valid for a specific type of equatorial
domains in the otherwise broader context of minimal and compact
immersions of any codimension in the sphere. Observe moreover
that, as we have noted before, the rate of decline in the concentra-
tion of measure provided by inequality (16) is slower than the rate
of decrease provided by inequality (11).

(7) Note that, when the case of Riemannian submersions π : Σ → Sn(1)
with minimal fibers is considered, and unlike what happens with
minimal and embedded immersions of codimension 1 in the sphere,
(see observation (6) in Remark 1.6), the first eigenvalue of the Lapla-
cian is not bounded from below in general. Let us take for instance
the family of Riemannian manifolds Σδ := (Sn(1) × S1, gSn(1) +
δ2gS1(1)), and the family of Riemannian submersions πδ : Σδ → Sn(1)
given by

(p, q) 7→ πδ(p, q) = p ∀δ ∈ R>0

All these Riemannian submersions are minimal, indeed totally geo-
desic ones, and, as Σδ := (Sn(1), gSn(1))× (S1, δ2gS1(1)) for any δ ∈ R
we have that

λ1(Σδ) ≤ min{λ1(Sn(1), gSn(1)), λ1(S1, δ2gS1(1))} = min{n, 1

δ2
}

so, for any a ∈ (0, n] there is a value of δ such that

λ1(Σδ) < a.

Thence, in contrast to what happens for minimal hypersurfaces em-
bedded in the sphere, there are no lower bounds for the first eigen-
value of a compact manifold which admits a Riemannian submersion
to the sphere with minimal fibers.

1.1. Outline.
The structure of the paper can be outlined as follows: after this Intro-

duction where the notions related with the intrinsic and extrinsic equatorial
concentration in the sphere has been presented, as well as a first glimpse of
our main results, (Theorems 1.4 and 1.5), we shall follow in the following
Section §.2 with the study of the relative position of the closed and minimal
submanifolds in the sphere with respect the equators of this sphere, proving
a two-piece property which is satisfied by these closed and minimal sub-
manifolds. We have proved, using the same techniques, the corresponding
result which is satisfied by the total space Σ of a Riemannian submersion.
In Section §.3, we shall state and prove our main results, and we have added
an Appendix I with a proof of Theorem 1.2, because although we think that
it is a folk result, we have not found a proof of it in the literature of the
field.
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2. A high-dimensional two-piece property for parabolic and
minimal submanifolds of the sphere Sn(1)

We start with the definition of the equator with respect a point in the
sphere Sn(1), and the strip around an equator .

Definition 2.1. Given a point p ∈ Sn(1), the equator of Sn(1) with respect
to p is defined as

E(p) : =
{
x = (x1, · · · , xn+1) ∈ Sn(1) : distS

n(1)(p, x) =
π

2

}
= {(x1, · · · , xn+1) ∈ Sn(1) : p1x1 + · · ·+ pn+1xn+1 = 0}

In its turn, the strip around an equator is defined as:

Definition 2.2. The strip around the equator E(p) is defined as the set:

Ω(p, ϵ) =
{
x ∈ Sn(1) :

π

2
− ϵ < distS

n(1)(p, x) = ∠(p, x) <
π

2
+ ϵ

}
=

{
x ∈ Sn(1) : cos

(
distS

n(1)(p, x)
)
∈ (− sin ϵ, sin ϵ)

}
Hence, as ϵ ∈ (0, π2 ), if we put ϵ̄ = sin ϵ ∈ (0, 1), then

Ω(p, ϵ) =
{
x ∈ Sn(1) : −ϵ̄ < cos

(
distS

n(1)(p, x)
)
< ϵ̄

}
.

With these definitions at hand, it is evident that for any point q ∈ E(p),

distS
n(1)(p, q) =

π

2
= distS

n(1)(−p, q)

where −p denotes the antipodal point of p ∈ Sn(1). It is also evident that
any equator in the sphere Sn(1) is an equator with respect to some p.

Let us consider now x : Σm → Sn(1) a complete isometric immersion of
them-dimensional manifold Σm in the sphere. A natural question that arises
in this context is to ask ourselves about the position of the submanifold with
respect to the equators of the ambient sphere.

In fact, when Σ = S1(1) is a great circle isometrically immersed in the
sphere S2(1), it is not hard to show that then Σ intersects all the equators
of S2(1), (which are the great circles of the 2-dimensional sphere).

When the dimension of the ambient sphere is 3, A. Ros showed in [9] a
Two-piece property, which implies a more general intersection result to that
described above for the two-dimensional case. Namely, every equator of the
3-sphere S3(1) divides each embedded closed (compact, without boundary)
non-totally geodesic minimal surface in exactly two open connected pieces.

Therefore, a natural question which arises in this context is following:
under what conditions, (topological, analytical, curvature restrictions, etc),
it is guaranteed, (for any dimension of the ambient sphere and any co-
dimension of the immersed submanifold), that the submanifold cuts all the
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equators of the ambient sphere, i.e.,

x(Σ) ∩ E(p) ̸= ∅ ∀p ∈ Sn(1)

and hence, will intersect all the ϵ-strips

x(Σ) ∩ Ω(p, ϵ) ̸= ∅, (i.e., x−1(Ω(p, ϵ)) ̸= ∅ ∀p ∈ Sn(1))

Our first result takes the form of a kind of a “high dimensional two-piece
property”, and describes the position of the submanifold with respect the
equators of Sn(1) and their strips, when this submanifold is minimal and
parabolic:

Theorem 2.3. Let x : Σm → Sn(1) be a complete, minimal and isometric
immersion, and let p be any point of Sn(1). Suppose that Σ is parabolic.
Then

• Either x(Σ) ⊆ E(p),
• or, x(Σ) ∩ E(p) ̸= ∅

and hence, in any case, x(Σ) ∩ Ω(p, ϵ) ̸= ∅, (i.e. x−1(Ω(p, ϵ)) ̸= ∅).

Proof. Let K be a connected component of Σ. Since Σ is parabolic, K is a
parabolic manifold as well. Given p ∈ Sn(1), the extrinsic distance function
with respect to p is the function given by

rp : K → R, q 7→ rp(q) : = distS
n(1)(p, x(q))

= ∠(p, x(q)) = arccos(p · x(q))

so, given q ∈ K, with x(q) = (x1, ..., xn+1) ∈ Sn(1), we have that

cos(rp(q)) = p · x(q) = p1x1 + · · ·+ pn+1xn+1

and hence, cos ◦rp is smooth on K. We need the following

Lemma 2.4. Let x : Km → Sn(1) be a complete and minimal isometric
immersion, and let p be any point of Sn(1). Then, for all q ∈ K,

(17) ∆K cos(rp(q)) = −m cos(rp(q))

Proof. Applying Takahasi’s Lemma, (see [11]), we have, as x is minimal,
that

∆Kxi = −mxi ∀i = 1, ..., n+ 1

so we conclude

∆K cos(rp(q)) =p1∆
Σx1 + · · ·+ pn+1∆

Σxn+1

=−m (p1x1 + · · ·+ pn+1xn+1) = −m cos(rp(q))

□

To prove the Theorem, first, let us observe that, if the extrinsic distance
function is constant, cos ◦rp(q) = c ∀q ∈ Σ, then

0 = ∆K cos(rp(q)) = −m cos ◦rp(q) ∀q ∈ K,
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so rp(q) =
π
2 ∀q ∈ Σ and hence, in this case we have that

x(K) ⊆ E(p).

This implies that the extrinsic distance function is a constant function in
K if and only if x(K) ⊆ E(p). Now, let us suppose that x(K) ̸⊆ E(p) and
that x(K) ∩ E(p) = ∅. Then cos ◦rp is not constant on K and, moreover,
as K is connected, if x(K) ∩ E(p) = ∅ then rp(q) ∈ [0, π2 ) ∀q ∈ K or
rp(q) ∈ (π2 , π] ∀q ∈ K. To see this last assertion, let us note that, in case
there are points q1, q2 ∈ K such that rp(q1) ∈ [0, π2 ) and rp(q2) ∈ (π2 , π], then
we can conclude that there are points q1, q2 ∈ K such that cos(rp(q1)) > 0
and cos(rp(q2)) < 0, and therefore,K is not connected becauseK = {q ∈ K :
cos(rp(q)) > 0} ∪ {q ∈ K : cos(rp(q)) < 0}. We can conclude therefore that
cos ◦rp is a bounded non-constant subharmonic, (superharmonic), function
defined on K, which is a contradiction with the parabolicity of K. Hence, if
x(K) ̸⊆ E(p), then x(K)∩E(p) ̸= ∅, which implies that x(Σ)∩E(p) ̸= ∅. □

Note that, given the compact, (and hence, parabolic), and minimal sub-
manifold Σ, we can apply the above theorem 2.3 to conclude the following
corollary:

Corollary 2.5. Let x : Σm → Sn(1) be an isometric and minimal immersion
of a closed, (compact without boundary), m-dimensional manifold Σ in the
sphere Sn(1), and let p be any point of Sn(1). Then

• Either x(Σ) ⊆ E(p),
• or, x(Σ) ∩ E(p) ̸= ∅

and hence, in any case, x(Σ) ∩ Ω(p, ϵ) ̸= ∅, (i.e. x−1(Ω(p, ϵ)) ̸= ∅).

We can show an analogous result for Riemannian submersions on the
sphere, using the fact, alluded in the introduction, that the projection π
commutes with the Laplacians ∆Σ and ∆Sn(1) when the fibers of π : Σ →
Sn(1) are minimal submanifolds of Σ.

In this case, the set π−1(Ω(p, ϵ)) = ∪q∈Ω(p,ϵ)π
−1(q) is the fiber bundle

projecting on the equatorial strip Ω(p, ϵ), and we want to know if this set is
not empty for every p ∈ Sn(1) and ϵ > 0. To show this fact, we will prove
that the “shadow” of the total manifold Σ projected by π on the sphere cuts
all the equators E(p) in the sphere, namely, that

π(Σ) ∩ E(p) ̸= ∅ ∀p ∈ Sn(1)
and hence, will intersect all the ϵ-strips

π(Σ) ∩ Ω(p, ϵ) ̸= ∅
so we eventually have

π−1(Ω(p, ϵ)) ̸= ∅ ∀p ∈ Sn(1)
These questions are answered in the following

Theorem 2.6. Let π : Σm → Sn(1) be a complete, minimal and parabolic
Riemannian submersion, and let p be any point of Sn(1). Then
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• Either π(Σ) ⊆ E(p),
• or, π(Σ) ∩ E(p) ̸= ∅

and hence, in any case, π(Σ) ∩ Ω(p, ϵ) ̸= ∅, (i.e. π−1(Ω(p, ϵ)) ̸= ∅).

The proof of Theorem 2.6 follows the lines of the proof of Theorem 2.3,
when we consider an isometric immersion but now using the function cos(rp)
with rp := dp ◦ π and dp the geodesic distance in Sn(1) to p ∈ Sn . We
take into account in this context that since the fibers of π are minimal
submanifolds, then, (see [12], [3])

∆Σ(f ◦ π)(q) =
((

∆Sn(1)f
)
◦ π

)
(q)

for any smooth function f : Sn → R. Choosing f as the geodesic distance
dp to p ∈ Sn(1) we can state, see Theorem 27 of [8] for instance,

∆Σrp = ∆Σ(dp ◦ π) =
(
∆Sn(1)dp

)
◦ π = (n− 1)

cos(dp)

sin(dp)
◦ π = (n− 1)

cos(rp)

sin(rp)

Hence for any smooth function F : R → R,

∆ΣF (rp) = div(F ′(rp)∇Σrp) = F ′′(rp)∥∇Σrp∥2 + (n− 1)
cos(rp)

sin(rp)
F ′(rp).

By expressing ∇Σr in terms an orthonormal basis of the horizontal distri-
bution and then projecting on the base space using the fact that rp = dp ◦π
we conclude that ∥∇Σrp∥2 = 1 and hence

(18) ∆ΣF (rp) = F ′′(rp) + (n− 1)
cos(rp)

sin(rp)
F ′(rp).

In particular
∆Σ cos(rp) = −n cos(rp),

what is everything needed for the proof of the above theorem.
As in the case of immersions, where we obtain Corollary 2.5 for the com-

pact case as a direct consequence of Theorem 2.3, we have the following
corresponding corollary for compact submersions deduced as a direct appli-
cation of Theorem 2.6:

Corollary 2.7. Let π : Σm → Sn(1) be a complete, minimal and compact
Riemannian submersion, and let p be any point of Sn(1). Then

• Either π(Σ) ⊆ E(p),
• or, π(Σ) ∩ E(p) ̸= ∅

and hence, in any case, π(Σ) ∩ Ω(p, ϵ) ̸= ∅, (i.e. π−1(Ω(p, ϵ)) ̸= ∅).

3. Main results

In the above Section, we have proved in Corollaries 2.5 and 2.7 that, when
the immersion x : Σm → Sn(1) is compact and minimal, (and respectively,
the submersion π : Σm → Sn(1) is compact and minimal), then always there
are points of x(Σ), (or π(Σ)), included in any equatorial strip, some in one
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part of the equator, some in the other part. The question now is to estimate
the “amount” of such points (in x(Σ) or π(Σ)), which are included in these
equatorial strips.

We shall see that, as occurs in the intrinsic case, as the dimension in-
creases, the “greater” the number of points of the sets x(Σ) or π(Σ) within
the equatorial strips. Namely, we observe a measure concentration phenom-
enon satisfied by x : Σ → Sn(1) and π : Σm → Sn(1).

The following first two theorems, (Theorem 3.1 and Theorem 3.2), de-
scribes a “Fat equator effect” in a closed and minimal submanifold in the
sphere, the latter being a refinement of the first with respect to the rate
of measure concentration. Indeed, while in the first theorem this rate is
polynomial, in the second theorem it will be shown that the concentration
of measure grows at an exponential rate, as in Theorem A and its corollary
Theorem B. Although the second theorem improves clearly the first one,
assuming the same hypotheses, we show both in order to make visible the
techniques used in both results.

We shall finish this Section stating and proving in Theorem 3.5 that, when
the total space Σ in a minimal Riemannian submersion π : Σ → Sn(1) is
compact, almost all measure in Σ concentrates in the the fiber bundle of the
fibers projecting on the equatorial strips Ω(p, ϵ) of any width ϵ in the sphere
Sn(1). As we have mentioned in the Introduction, its proof is based in the
same techniques than we have used for the immersions.

Theorem 3.1 (Main I). Let x : Σm → Sn(1) be an isometric and minimal
immersion of the closed m-dimensional manifold Σ in the sphere Sn(1).
Then, for any point p ∈ Sn(1) and any ϵ ∈ (0, π/2) we have

1 ≥
vol

(
x−1(Ω(p, ϵ))

)
vol(Σ)

≥ 1− 1

(m+ 1) sin2 ϵ
.

Hence, for each p and ϵ,

lim
m→∞

vol
(
x−1(Ω(p, ϵ))

)
vol(Σ)

= 1.

Proof.
Given the extrisic distance function rp : Σ → R, we know that

(19)
divΣ

(
cos(rp(q))∇Σ cos(rp(q))

)
=cos(rp(q))

(
∆Σ cos(rp(q))

)
+ ∥∇Σ cos(rp(q))∥2.

Then, since ∆Σ cos(rp(q)) = −m cos(rp(q)), and integrating equation (19)
along Σ, we have, using that Σ is compact, that cos ◦rp is smooth in Σ and
the divergence theorem:
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(20)

m

∫
Σ
cos2(rp) =

∫
Σ
∥∇Σ cos(rp)∥2 −

∫
Σ
divΣ

(
cos(rp)∇Σ cos(rp)

)
=

∫
Σ
sin2(rp)∥∇Σrp∥2

≤
∫
Σ
sin2(rp) = vol(Σ)−

∫
Σ
cos2(rp).

Then

(21) (m+ 1)

∫
Σ
cos2(rp) ≤ vol(Σ).

Which implies, as Σ− x−1(Ω(p, ϵ)) ⊆ Σ,

(22) (m+ 1)

∫
Σ−x−1(Ω(p,ϵ))

cos2(rp) ≤ vol(Σ)

The strip around the equator E(p) is (ϵ̄ = sin ϵ):

Ω(p, ϵ) =
{
x ∈ Sn(1) : −ϵ̄ < cos

(
distS

n(1)(p, x)
)
< ϵ̄

}
.

Since rp(q) := distS
n(1)(p, x(q)), the set x−1(Ω(p, ϵ)) can be written as

x−1(Ω(p, ϵ)) = {q ∈ Σ : −ϵ̄ < cos (rp(q))) < ϵ̄} .

Then for all q ∈ Σ − x−1(Ω(p, ϵ)), we have ϵ̄2 ≤ cos2(rp(q)) and by using
inequality (22) we conclude that

(m+ 1)ϵ̄2
(
vol(Σ)− vol(x−1(Ω(p, ϵ)))

)
≤ vol(Σ),

which finally implies the statement of the Theorem:

vol(x−1(Ω(p, ϵ)))

vol(Σ)
≥ 1− 1

(m+ 1)ϵ̄2
.

□

Theorem 3.2 (Main II). Let x : Σm → Sn(1) be an isometric and minimal
immersion of the closed m-dimensional manifold Σ in the sphere Sn(1).
Then, for any point p ∈ Sn(1) , any ϵ ∈ (0, π/2) and any δ ∈ [0, 12) we have

(23) 1 ≥
vol

(
x−1(Ω(p, ϵ))

)
vol(Σ)

≥ 1−
√

1

1− 2δ
e−δϵ̄2(m+1)

where ϵ̄ = sin ϵ. Hence, for each p ∈ Sn(1) and ϵ > 0,

lim
m→∞

vol
(
x−1(Ω(p, ϵ))

)
vol(Σ)

= 1

Proof.
We need the following



FAT EQUATOR EFFECT AND MINIMALITY 17

Lemma 3.3. Let x : Σm → Sn(1) be an isometric and minimal immersion of
the closed m-dimensional manifold Σ in the sphere Sn(1) and let p ∈ Sn(1).
Then

(24)

∫
Σ
cos2k(rp) ≤

∫
Sm(1) cos

2k(r̃p)

vol(Sm(1))
vol(Σ)

where x̃ : Sm(1) → Sn(1) is a totally geodesic immersion of Sm(1) in Sn(1),
rp is the extrinsic distance function to p given by the immersion x, and r̃p is
the extrinsic distance to p on Sn(1) given by the totally geodesic immersion
x̃. As a consequence, we have the following inequality, for a given t > 0:

(25)

∫
Σ
et cos

2 rp ≤

∫
Sm(1) e

t cos2 r̃p

vol(Sm(1))
vol(Σ)

Proof. Let us apply an inductive argument to prove inequality (24): we are
going to see first that this inequality is true for k = 1. From (20) using that
∥∇Σrp∥ ≤ 1 we conclude inequality (21):∫

Σ
cos2(rp) ≤

1

m+ 1
vol(Σ)

Now, if we consider the totally geodesic submanifold x̃ : Sm(1) → Sn(1), we
conclude the following equality, (in an analogous way to (20), but using now

that ∥∇Sm(1)r̃p∥ = 1, because x̃ is a totally geodesic immersion),

(26)

∫
Sm(1)

cos2(r̃p) =
1

m+ 1
vol(Sm(1)).

Hence, we have

(27)

∫
Σ
cos2(rp) ≤

∫
Sm(1) cos

2(r̃p)

vol(Sm(1))
vol(Σ)

and we have proved that the inequality (24) is true for k = 1.
Assuming that it is true for k > 1, namely, that

(28)

∫
Σ
cos2k(rp) ≤

∫
Sm(1) cos

2k(r̃p)

vol(Sm(1))
vol(Σ),

we see that it holds for k + 1 in the following way: by using lemma 2.4 we
have for any q ∈ Σ that

(29)

divΣ
(
cos2k+1(rp(q))∇Σ cos(rp(q)

)
= cos2k+1(rp(q))∆

Σ cos(rp(q)

+ (2k + 1) cos2k(rp(q))∥∇Σ cos(rp(q))∥2

= −m cos2k+2(rp(q))

+ (2k + 1) cos2k(rp(q))∥∇Σ cos(rp(q))∥2.



18 VICENT GIMENO I GARCIA AND VICENTE PALMER

Then, integrating the above equation along Σ, we have, using that Σ is
compact and the divergence theorem:

(30)

m

∫
Σ
cos2(k+1)(rp) =(2k + 1)

∫
Σ
cos2k(rp)∥∇Σ cos(rp)∥2

−
∫
Σ
divΣ

(
cos2k+1(rp))∇Σ cos(rp)

)
=(2k + 1)

∫
Σ
cos2k(rp) sin

2(rp)∥∇Σrp∥2

=(2k + 1)

∫
Σ
cos2k(rp)

(
1− cos2(rp)

)
∥∇Σrp∥2

≤(2k + 1)

∫
Σ
cos2k(rp)− (2k + 1)

∫
Σ
cos2k+2(rp).

Thence

(31)

∫
Σ
cos2(k+1)(rp) ≤

2k + 1

m+ 2k + 1

∫
Σ
cos2k(rp)

≤ 2k + 1

m+ 2k + 1

∫
Sm(1) cos

2k(r̃p)

vol(Sm(1))
vol(Σ)

On the other hand, same computations than in (30), but when we consider
the totally geodesic immersion of Sm(1) in Sn(1) gives the formula

m

∫
Sm(1)

cos2(k+1)(r̃p) =(2k + 1)

∫
Sm(1)

cos2k(r̃p)− (2k + 1)

∫
Sm(1)

cos2k+2(r̃p)

and hence

(32)

∫
Sm(1)

cos2(k+1)(r̃p) =
2k + 1

m+ 2k + 1

∫
Sm(1)

cos2k(r̃p)

Finally, using (31) and (32) we obtain

(33)

∫
Σ
cos2(k+1)(rp) ≤

2k + 1

m+ 2k + 1

∫
Σ
cos2k(rp)

≤ 2k + 1

m+ 2k + 1

∫
Sm(1) cos

2k(r̃p)

vol(Sm(1))
vol(Σ)

=

∫
Sm(1) cos

2(k+1)(r̃p)

vol(Sm(1))
vol(Σ)

Now, we are going to prove inequality (25): given a fixed t > 0, we have,
applying inequality (24) that

∫
Σ

tk cos2k(rp)

k!
≤

∫
Sm(1)

tk cos2k(r̃p)
k!

vol(Sm(1))
vol(Σ)
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so, applying dominated convergence theorem and the power series expansion
of the exponential function, we have, for a given t > 0:∫

Σ
et cos

2 rp =

∞∑
k=0

∫
Σ

tk cos2k(rp)

k!

≤
∞∑
k=0

∫
Sm(1)

tk cos2k(r̃p)
k!

vol(Sm(1))
vol(Σ) =

∫
Sm(1) e

t cos2 r̃p

vol(Sm(1))
vol(Σ)

□

Now, as we have seen in the proof of Theorem 3.1 we have that for all
q ∈ Σ− x−1(Ω(p, ϵ)),

ϵ̄2 ≤ cos2(rp(q))

and hence, for every t > 0, and for all q ∈ Σ− x−1(Ω(p, ϵ)),

etϵ̄
2 ≤ et cos

2(rp(q))

Therefore, using inequality (27), we conclude

(34)

etϵ̄
2

∫
Σ−x−1(Ω(p,ϵ))

1 ≤
∫
Σ−x−1(Ω(p,ϵ))

et cos
2 rp

≤
∫
Σ
et cos

2 rp ≤

∫
Sm(1) e

t cos2 r̃p

vol(Sm(1))
vol(Σ)

Then we can state that

(35) 1− vol(x−1(Ω(p, ϵ))

vol(Σ)
≤ e−tϵ̄2

∫
Sm(1) e

t cos2 r̃p

vol(Sm(1))
.

Now we need the following

Lemma 3.4. For any 0 < t < m+1
2 ,∫

Sm(1) e
t cos2 r̃p

vol(Sm(1))
≤

√
m+ 1

m+ 1− 2t
.

Proof. Let us define the function

s 7→ F (s) :=

∫
Sm(1) e

s cos2 r̃p

vol(Sm(1))
.

By the dominated convergence theorem we know that F (0) = 1 and

F ′(s) =

∫
Sm(1) cos

2 r̃pe
s cos2 r̃p

vol(Sm(1))
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By using lemma 2.4, the divergence theorem, and that since the immersion
is totally geodesic ∥∇r̃p∥2 = 1 we have

mF ′(s) =
−
∫
Sm(1) cos r̃pe

s cos2 r̃p∆cos r̃p

vol(Sm(1))
=

−
∫
Sm(1) div

(
cos r̃pe

s cos2 r̃p∇ cos r̃p

)
vol(Sm(1))

+

∫
Sm(1)

〈
∇
(
cos r̃pe

s cos2 r̃p
)
,∇ cos r̃p

〉
vol(Sm(1))

=

∫
Sm(1) sin

2 r̃pe
s cos2 r̃p

vol(Sm(1))
+ 2s

∫
Sm(1) sin

2 r̃pcos
2 r̃pe

s cos2 r̃p

vol(Sm(1))

=

∫
Sm(1) e

s cos2 r̃p

vol(Sm(1))
−

∫
Sm(1) cos

2 r̃pe
s cos2 r̃p

vol(Sm(1))
+ 2s

∫
Sm(1) sin

2 r̃pcos
2 r̃pe

s cos2 r̃p

vol(Sm(1))

≤F (s)− F ′(s) + 2sF ′(s).

Thence, for s < m+1
2 ,

F ′(s)

F (s)
≤ 1

m+ 1− 2s

Integrating the above inequality between 0 and t we conclude that

lnF (t) ≤ ln

√
m+ 1

m+ 1− 2t
.

and the lemma is proved. □

Taking now t = δ(m+1) with 0 ≤ δ < 1
2 , the above lemma and inequality

(35) we conclude that

(36) 1− vol(x−1(Ω(p, ϵ))

vol(Σ)
≤ e−δϵ̄2(m+1)

√
1

1− 2δ
.

and the theorem is proved. □

Finally, we prove that, in a Riemannian submersion of the sphere, the
measure concentrates in the fiber bundles which projects inside its equatorial
strips:

Theorem 3.5. Let π : Σm → Sn(1) be a Riemannian submersion with
minimal fibers of the closed m-dimensional manifold Σ on to the sphere
Sn(1). Then, for any point p ∈ Sn(1) , any ϵ ∈ (0, π/2) and any δ ∈ [0, 12)
we have

(37) 1 ≥
vol

(
π−1(Ω(p, ϵ))

)
vol(Σ)

=
vol (Ω(p, ϵ))

vol (Sn(1))
≥ 1−

√
π

2
e−ϵ2 n−1

2 .

Hence, for each ϵ,

(38) lim
n→∞

vol
(
π−1(Ω(p, ϵ))

)
vol(Σ)

= 1.
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Proof. Since π : Σ → Sn(1) is a Riemmanian submersion we have that

∥∇Σrp(x)∥ = ∥∇Σ (dp ◦ π) ∥ = 1, x ∈ Σ− {π−1(p)} ∪ {π−1(−p)}

where dp is the distance function on Sn(1) to p. Let us denote by DR the
sublevel sets of rp, namely

DR := {x ∈ Σ : rp(x) < R} = π−1(BR(p))

where BR(p) is the geodesic ball of radius R of Sn(1) centered at p. By the
coarea formula the function t 7→ U(t) = vol(Dt) has derivative

U ′(t) =

∫
∂Dt

1

∥∇Σrp∥
= vol(∂Dt)

for any t ∈ (0, π). Now, we consider the function E : Σ → R given by

q ∈ Σ 7→ E(q) =

∫ rp(q)

0

V (t)

V ′(t)
dt

where V (t) = vol(Bt(p)), and V ′(t) = d
dtV (t) = vol(∂Bt(p)). As E = E(rp)

is a radial function, we have, using equation (18), that

∆ΣE = 1.

Hence by using the divergence theorem we can deduce that

U(t) =

∫
Dt

∆ΣE =
V (t)

V ′(t)

∫
∂Dt

∥∇rp∥ =
V (t)

V ′(t)
U ′(t).

Thence,
d

dt

(
U(t)

V (t)

)
= 0

for all t ∈ (0, π). This implies that for any R ∈ (0, π)

vol(π−1(BR(p)))

vol(BR(p))
= lim

R→π

vol(π−1(BR(p)))

vol(BR(p))
=

vol(Σ)

vol(Sn(1))
.

Finally the theorem follows by using

vol(π−1(Ω(p, ϵ)))

vol(Σ)
=
vol(π−1(Bπ

2
+ϵ(p)))

vol(Σ)
−

vol(π−1(Bπ
2
−ϵ(p)))

vol(Σ)

=
vol(Bπ

2
+ϵ(p)))

vol(π−1(Bπ
2 +ϵ(p)))

vol(Bπ
2 +ϵ(p)))

vol(Σ)
−

vol(Bπ
2
−ϵ(p)))

vol(π−1(Bπ
2 −ϵ(p)))

vol(Bπ
2 −ϵ(p)))

vol(Σ)

=
vol(Bπ

2
+ϵ(p))

vol(Sn(1))
−

vol(Bπ
2
−ϵ(p))

vol(Sn(1))

=
vol(Ω(p, ϵ))

vol(Sn(1))
,

and the Theorem follows by using Theorem B.
□
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Appendix I: Proof of theorem 1.2

Our theorem 1.2 is a consequence of Corollary V.2 in [6] where it is proved
a concentration of measure around the averaged/mean value of a Lipschitz
function defined on the sphere Sn(1). To apply this result in our present
context, we shall define, given a point p ∈ Sn, the function fp : Sn(1) → R+

as

q 7→ fp(q) := cos(dp(q)) = ⟨p, q⟩
where dp(q) := distS

n(1)(p, q) = arccos(⟨p, q⟩) is the distance in the sphere
from p to q. The function fp is a Lipschitz function with Lipschitz constant
1 because given two points q, s ∈ Sn, we have that

∥fp(q)− fp(s)∥ = ∥cos(dp(q))− cos(dp(s))∥ = ∥⟨p, q⟩ − ⟨p, s⟩∥

= ∥⟨p, q − s⟩∥ ≤ ∥q − s∥ = distR
n+1

(q, s) ≤ distS
n
(p, q).

Moreover since ∆Sn cos(dp) = −n cos(dp) by using the divergence theorem
we conclude that the mean of fp in Sn(1) is

⟨fp⟩ = ⟨cos(dp)⟩ :=
∫
Sn cos(dp)

vol(Sn)
= 0.

Now, let us consider the strip, (putting ϵ̄ := sin ϵ),

Ω(p, ϵ) = {q ∈ Sn(1) : cos (dp(q)) ∈ (− sin ϵ, sin ϵ)} = {q ∈ Sn : | cos(dp(q))| < ϵ̄}
so

vol(Ω(p, ϵ)) = vol({q ∈ Sn : | cos(dp(q))| < ϵ̄})
= vol(Sn(1))− vol({q ∈ Sn : | cos(dp(q))| ≥ ϵ̄})

Now, applying corollary V.2 of [6] to the Lipschitz function fp = cos ◦dp
with Lispchitz constant σ = 1, we have that

vol({q ∈ Sn : | cos(dp(q))| ≥ ϵ̄})
vol(Sn)

≤ 4e−δϵ̄2(n+1)

and hence

vol(Ω(p, ϵ))

vol(Sn)
=

vol(Sn(1))− vol({q ∈ Sn : | cos(dp(q))| ≥ ϵ̄})
vol(Sn)

= 1− vol({q ∈ Sn : | cos(dp(q))| ≥ ϵ̄})
vol(Sn(1))

≥ 1− 4e−δϵ̄2(n+1)

and the theorem is proved.
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