
ZSMILES: an approach for efficient SMILES
storage for random access in Virtual Screening
Gianmarco Accordi∗, Davide Gadioli∗, Giorgio Seguini∗, Andrea R. Beccari†, and Gianluca Palermo∗

∗Dipartimento di Elettronica Informatica e Bioingegneria - Politecnico di Milano, Milano, Italy
†EXSCALATE - Dompé Farmaceutici SpA, Naples, Italy

Email: ∗{firstname.lastname}@polimi.it †andrea.beccari@dompe.com

Abstract—Virtual screening is a technique used in drug dis-
covery to select the most promising molecules to test in a lab. To
perform virtual screening, we need a large set of molecules as
input, and storing these molecules can become an issue. In fact,
extreme-scale high-throughput virtual screening applications re-
quire a big dataset of input molecules and produce an even bigger
dataset as output. These molecules’ databases occupy tens of
TB of storage space, and domain experts frequently sample a
small portion of this data. In this context, SMILES is a popular
data format for storing large sets of molecules since it requires
significantly less space to represent molecules than other formats
(e.g., MOL2, SDF).

This paper proposes an efficient dictionary-based approach to
compress SMILES-based datasets. This approach takes advan-
tage of domain knowledge to provide a readable output with
separable SMILES, enabling random access. We examine the
benefits of storing these datasets using ZSMILES to reduce the
cold storage footprint in HPC systems. The main contributions
concern a custom dictionary-based approach and a data pre-
processing step.

From experimental results, we can notice how ZSMILES
leverage domain knowledge to compress ×1.13 more than state
of the art in similar scenarios and up to 0.29 compression ratio.
We tested a CUDA version of ZSMILES targetting NVIDIA’s
GPUs, showing a potential speedup of 7×.

I. INTRODUCTION

The drug discovery process is a lengthy and costly process
for a pharmaceutical company [1]. The process produces
molecules (called ligands), which are more likely to interact
with at least one binding site (called pocket) on a protein
(called the screening’s target) [2]. Ideally, these interactions
inhibit the target’s activity, leading to a favorable therapeutic
effect. The process comprises in-silico, in-vitro, and in-vivo
stages.

Virtual screening is an in-silico stage, which can improve
the success rate [3] of the drug discovery pipeline by selecting
chemical compounds with a higher likelihood of interacting
with the target protein. We screen compounds from a large
dataset to ensure the most likely interactions [4], [5]. Virtual
screening eliminates the molecules with low binding affinity
for in-vitro and later in-vivo testing [6].

In a virtual screening campaign, evaluating the initial com-
pounds’ interaction strength against multiple target proteins
is common. This cartesian product increases the required
computation effort. Moreover, the evaluation of each ligand-
protein pair is independent of the others, making the problem

embarrassingly parallel. For these reasons, supercomputers are
the ideal target for extreme-scale virtual screening campaigns.

One challenge of virtual screening campaigns is the storage
requirement [7], [8], to describe the input chemical library
and the output, which usually decorates the input with the
strength of their interactions. For example, the screening data
of a virtual screening campaign on CINECA’s Marconi100
[8] was approximately 72 TB. Not all screening data is
accessed on a daily basis, but rather, domain experts sample
this chemical space to create a smaller subset. To mitigate
this problem, it is common to encode molecules using the
SMILES format, which describes a molecule using a single
line of ASCII characters. Given the rising popularity of large
virtual screening campaigns and SMILES format, storing them
efficiently is of general interest.

This work presents ZSMILES, a methodology to reduce the
SMILES storage footprint of extreme-scale virtual screening
applications. The proposed approach employs a dictionary-
based compression (and decompression). Leveraging domain
knowledge to reduce SMILES’s storage footprint is one of the
contributions of this paper. Our approach takes advantage of
SMILES format specifications to get better compression. In
particular, we have addressed the dictionary generation and
data preparation phase. Moreover, we have other constraints:
domain experts have to access these databases easily without,
for example, the burden of handling binary characters. Domain
experts must also cut and combine SMILES databases: we
defined the shared dictionary to be input-independent and
SMILES to remain separable. Thus, our approach employs
a single fixed dictionary to compress any set of SMILES and
enhance maintainability and compatibility. SMILES separa-
bility implies each SMILES to be placed on different lines.
ZSMILES’s output still provided each SMILES on the same
input line number. In the following with random access, we
refer to maintaining input SMILES order in output, thus for
SMILES to remain separable. We implemented ZSMILES in
a serial C++ version targeting CPUs. Large virtual screening
experiments are usually accelerated using GPUs. Thus, we
have tested a parallel CUDA version targeting GPUs.

We evaluate the impact of domain-specific optimizations
on performance. ZSMILES compression ratios are evaluated
with different optimizations enabled and dictionaries trained
on different datasets of SMILES. We also analyze ZSMILES’s

ar
X

iv
:2

40
4.

19
39

1v
1

 [
cs

.C
E

]
 3

0
A

pr
 2

02
4

H

O

HO 1

1

OCH3

COc1cc(C=O)ccc1O

Fig. 1: Graphical representation of Vanillin on the left, while
on the right, its SMILES representation.

implementations execution times.
The remainder of this article is structured as follows:

initially, we report the background Section II. Subsequently,
we provide a state-of-the-art analysis in Section III. Next,
Section IV outlines the proposed methodology and illustrates
the accelerated approach. Finally, an analysis of the results ac-
quired in section Section V is presented, with the conclusions
given in Section VI. Moreover, abbreviations and technical
terms are explicitly defined when first used to facilitate clear
communication.

II. BACKGROUND

The methodology proposed in this study focuses on
SMILES strings, which can describe molecules using a single-
line notation that encodes only its topological information
using UTF-8 ASCII characters [9]. Therefore, the proposed
approach falls in the category of short-string compression
algorithms. This format provides an excellent balance between
human-readable and computationally parsable notations. The
main idea is to start the molecule description from a terminal
heavy atom and write all the other heavy atoms attached to
the starting one in sequence. It uses round brackets to handle
branches in the molecule structure. When we encounter a
ring, we remove an edge and assign a numerical ID to the
attached atoms, and then we resume the encoding procedure.
Therefore, this numerical ID can identify all the molecule
rings. The SMILES format has additional rules to encode
chemical information, such as upper-case chemical symbols
for non-aromatic atoms and lower-case chemical symbols for
aromatic ones. From a SMILES string, it is possible to add
hydrogens and compute the 3D displacement of their atoms at
runtime.

For example, Figure 1 shows a graphical representation of
the Vanillin, COc1cc(C=O)ccc1O in SMILES format. In this
example, the SMILES representation starts from the bottom
part of the molecule, i.e., from the lowermost carbon. Thus,
our SMILES notation starts with the C (since this carbon
is not aromatic). Following the molecule structure, the next
heavy atom is a non-aromatic oxygen, expanding the SMILES
string to CO. The next atom is an aromatic carbon that
belongs to a ring. To represent it, we remove the edge on
its left (represented by the dashed lines), assign ID 1, and
add the carbon to SMILES notation COc1. Then, we resume
the encoding structure, including two aromatic carbons, i.e.,

COc1cc. At this point, we reach a branch that we need to han-
dle using round brackets. For simplicity, we assume to encode
the right branch first, so our SMILES representation becomes
COc1cc(C = 0) (the = symbol stands for a double covalent
bond). Then, we also encode the left branch, which includes
all the remaining heavy atoms, i.e., COc1cc(C = 0)ccc1O.

Please notice how the SMILES description is not unique; it
depends on how we topologically order the molecule structure.
Moreover, the ring enumeration does not have to be unique.
The only requirement is that nested ring descriptions should
not have overlapping IDs to prevent ambiguities in their
representation.

III. STATE OF THE ART

Dictionary-based compression algorithms [10] work by
parsing the input while attempting to match substrings against
a predefined set within a dictionary. When a match occurs,
the algorithm substitutes the substring in the input with the
correspondent symbol of the dictionary entry: if the latter
is shorter than the former, we have reduced the string size.
The approach used for the dictionary generation substantially
impacts the compression ratio delivered by the algorithm. We
can also compress data by changing the encoding of the output.
Entropy coders, for example, try to reach the lower bound
on the number of bits required to represent the symbols by
leveraging the frequency of input patterns. Huffman coding
and Lempel-Ziv are examples of entropy coders [11].

SMILES compression can be achieved by using state-of-
the-art binary compression tools such as Bzip21, DEFLATE,
and LZ77 [12], or by relying on tools for short string com-
pression like SMAZ2, SHOCO3, and FSST [13]. None of the
previously mentioned tools meet our defined requirements:
readable output, separable SMILES, and a shared dictionary.
In the experimental results, we compare ZSMILES with Bzip2,
as a representative of binary compressors file-based, and
with FSST and SHOCO, as representative of small string
compression.

Bzip2 compresses files using multiple layers ranging from
the Burrows-Wheeler and move-to-front transform [14] to the
Huffman coding [11]. Its compression ratio is high compared
to other algorithms at the expense of time and computation
[12]. Bzip2 compression is stateful, so to decompress one part
of the file, it also has to decompress the previous part; thus,
random access is impossible. Therefore, to meet our use case
requirements, we can use Bzip2 to compress SMILES files line
by line, which makes SMILES compression inefficient since
the input string needs to be larger to reach a good compression
ratio. Nonetheless, the compressed SMILES with Bzip2 are in
binary format, so they are not human-readable.

SHOCO4 is a compression library for short strings. It
provides a way to generate a custom dictionary based on the
application domain. Since it is an entropy encoder, it provides

1Website: https://sourceware.org/bzip2/
2Website: https://github.com/antirez/smaz
3Website: https://ed-von-schleck.github.io/shoco/
4Website: https://ed-von-schleck.github.io/shoco/

https://sourceware.org/bzip2/
https://github.com/antirez/smaz
https://ed-von-schleck.github.io/shoco/
https://ed-von-schleck.github.io/shoco/

SMI

DB

Preprocess

(optional)

Generate

Dictionary
dictionary

.dct

Fig. 2: Graphical representation of the SMILES pre-processing
step.

a non-readable and non-random access output. FSST instead
offers a good compression ratio on small strings within a
dataset while allowing random access to the file. FSST uses a
static symbol table defined from a small chunk of data from the
input file. Since the table is static, it is immutable during the
compression and decompression. FSST constructs a symbol
table for each input; thus, the dictionary is input-dependent.
In addition to that, FSST’s output is non-readable since the
dictionary uses non-printable ASCII symbols, which can cause
problems with third-party tools.

Another work available in the literature which leverages
domain knowledge to achieve better SMILES compression
through data preprocessing was presented by Gupta et al.
[15]. It targets compression using file-wide binary compression
tools such as Bzip2. This approach does not apply to our case
because the compressed file cannot be accessed line-by-line,
which does not guarantee the possibility of random access.

IV. METHODOLOGY

This section introduces the proposed ZSMILES approach.
The main idea is to use a dictionary that associates a common
string pattern to an ASCII character. To compress SMILES,
we substitute all the dictionary patterns in SMILES with the
related characters. We escape in output any characters in the
input SMILES that cannot be encoded using the dictionary.
The first two sections explain two optimizations that hinge on
domain knowledge to improve the quality of the dictionary.
Then, Section IV-C describes how we generate the dictionary
in more detail, and Section IV-D reports the compression and
decompression algorithm. Ultimately, we detail the CUDA
accelerated SMILES compression approach in Section IV-E.

A. Preprocessing

SMILES pre-processing aims to increase the probability
of finding common patterns. SMILES use numbers (IDs) to
identify the opening and closing of rings. Since ring IDs
are not reused, it became more difficult to identify common
patterns. We propose pre-processing the inputs to increase
the reuse of ring enumerations and the probability of finding
common patterns. We can reuse ring IDs in 2 ways: innermost
or outermost. If multiple rings are nested within each other, we
can give the lower ID to the innermost or the outermost. We
chose the innermost approach because the simplest and most
common rings are the inner ones, which have the smaller ID
values.

Take as an example the Dibenzoylmethane SMILES repre-
sentation:
C1=CC=C(C=C1)C(=O)CC(=O)C2=CC=CC=C2

this SMILES have two rings, C1=CC=C(C=C1) and
C2=CC=CC=C2, which have a similar prefix, but with dif-
ferent IDs. Thus, compressing both of them would require the
dictionary to have two entries representing the same prefix.
Instead, if pre-processed, the SMILES becomes:
C0=CC=C(C=C0)C(=O)CC(=O)C0=CC=CC=C0

which now enables the compression of the SMILES by lever-
aging the occurrences of C0=CC=C. It is worth noting that
the pre-processed SMILES remain valid.

B. Dictionary Pre-population

If the input SMILES has a pattern not included in the gen-
erated dictionary, we must escape all its characters, doubling
the required size. Usually, known approaches mitigate this
issue by using compression algorithms that build a dictionary
tailored to the target input file. However, we would like
to use a shared dictionary in our use case, increasing the
chances of missing a pattern. For this reason, we can pre-
populate the dictionary with the printable ASCII characters
used by the SMILES format, thus avoiding escaping. For
example, we use the character @ for chiral specification, the
character / for stereoisomers specification, or the character #
for triple bonds. This conservative choice reduces the number
of characters representing patterns to the extended ASCII
characters. However, when the input SMILES is compliant
with the format, we have the guarantee that the compressed
file does not require more storage than the input one. In
the experimental results, we measured the compression ratio
increment of this optimization.

C. Dictionary Generation

Figure 2 shows how ZSMILES generates the dictionary D,
from an input training set of SMILES. The training set of
SMILES is parsed to find a group of T recurrent substrings of
the inputs that provide the highest coverage of the inputs. The
coverage measures how much of the input is covered by the
available substrings. This problem can, however, be seen as a
knapsack problem [16], whose complexity is NP-complete.

Algorithm 1 is the pseudocode of how dictionaries are
generated. The input is the training set of SMILES, while
the output is the dictionary. The input is parsed by searching
for unique substrings with length in the interval [Lmin, Lmax].
We used a maximum substring length of Lmax because longer
substrings require a lot of time to generate the dictionary.
Lmin was set to 2 to speed up the dictionary generation based
on the previous detailed dictionary pre-population. Line 1
initializes rank, which contains the rank of all substrings
found, while Line 2 initializes D, the compression dictionary.
We define the rank of a pattern p at step t as the product
between its occurrences in the input, times its normalized
length occpattern × normp,t, as in Equation 1:

rankp,t = occp × (lp − overlapp,t) (1)

Where normp,t of pattern p at step t is defined as the
difference between the length lp of p and the overlap with
patterns selected in the previous iteration of the loop in Line 8.

Algorithm 1: Dictionary generation algorithm.
Input: SMILES ← training set
Output: D ← substring dictionary
Parameters: Lmin ← Minimum substring length

Lmax ← Maximum substring length
C ← Initial dictionary values
T ← Dictionary size

1 rank ← {};
2 D ← C;
3 foreach line ∈ SMILES do
4 foreach s ∈ line : Lmin ≤ |s| ≤ Lmax do

5 rank[s] =

{
rank[s] + 1 if s ∈ rank,

1 otherwise
6 end
7 end
8 foreach t ∈ {0, 1, · · · , T} do
9 new word= argmaxrank(s) s ∈ rank;

10 D ← D ∪ { new word };
11 rank ← rank \ new word;
12 foreach s ∈ rank do
13 update rank(s);
14 end
15 end

From Line 3 to Line 7, count the occurrences of all substrings
in the input. From Line 8 to Line 15, we populate D (size T),
and at each iteration, we get the pattern that has the higher
rank. Then, all other ranks are updated based on the pattern
selected at that step.

D. ZSMILES Execution Flow

Figure 3 exemplify ZSMILES compression and decom-
pression process. The flow in the upper part of the diagram
illustrates the compression process: ZSMILES optionally pre-
process the input before compressing and storing it. The
lower part of the diagram instead reports the decompression
process of ZSMILES, which works backward: from storage,
compressed SMILES are decompressed and optionally post-
processed. The dictionary is soft-coded in the ZSMILES exe-
cutable, so we cannot change it once ZSMILES is compiled.

1) Compression Algorithm: We formulate the compression
algorithm as an optimization problem. The input is a single
line from a SMILES file. The output is the compressed
SMILES. The problem is identifying the sequence of sub-
strings in D that gives the best compression ratio of the
input. Dictionary D is represented by a trie [17] to do pattern
matching on the input symbols. We use the Dijkstra algorithm
to get the shortest path from the first char in SMILES up to
the last one. To apply Dijkstra, we need to construct a graph
G of the SMILES: each node n is an input character, and
an edge (n1, n2) represents a substring in D which begins
with character n1 and ends with character n2. The algorithm
scans the graph G to match patterns from the trie of D. At
each iteration i, the Dijkstra algorithm computes the best way

to compress the input from character ni up to the input end,
based on a cost function. Each match (represented by a graph
edge) costs one if it is from a symbol in D. Otherwise, the
cost is two if the symbol has to be escaped with a trailing
space because there was no match in D. The last iteration
calculates the shortest path to compress the input SMILES
and traverses it from the beginning while printing the symbol
of the corresponding pattern match on the output.

2) Decompression: The decompression algorithm is instead
straightforward. During decompression, we use the dictionary
D as a lookup table. For each symbol in each compressed
SMILES, we perform a lookup in D and print out its expan-
sion. If, instead, the value is a space, due to the escaping,
we go to the next symbol in the input and print this symbol
directly.

E. CUDA Implementation

To reduce ZSMILES compression (and decompression)
overhead, we have developed a CUDA implementation, which
allows us to exploit the computational power offered by
NVIDIA GPUs. Given an input set of SMILES, the com-
pression or decompression is split among groups of CUDA
threads, called blocks, which build up a CUDA grid.

For compression, each block compresses a SMILES. Each
block’s thread looks at different input SMILES’s characters:
for each dictionary element, the thread checks if the cor-
respondent substrings can be matched in the input, starting
from that character. In this way, the block constructs a graph
representation of the SMILES: a substring match creates an
edge, which connects the substring’s first character node with
the node of the last character. We apply weights on the
edges using a cost function in the same way as described
in Section IV-D1. Once a block has a graph representation of
the input SMILES, it scans the graph backward by applying
Dijkstra. The shortest path identified by Dijkstra gives the best
compression ratio of the input SMILES.

For decompression, each block decompresses a SMILES.
Each block’s thread performs a lookup into the dictionary
using an input SMILES character. Therefore, each thread
knows the decompressed string’s dimension for each input
character. Finally, block threads share how many characters
they must write in output in order to know where to start the
writing.

We have set blocks to have the same dimension as a
CUDA warp. A warp is a set of 32 CUDA threads with
specific scheduling properties. In our case, we rely on warps’
synchronization and shuffle CUDA operations for performance
reasons.

V. RESULTS

In this section, we discuss and report the experimental
results of ZSMILES. We provide details of the setup and
data used in Section V-A. Then, we analyze and discuss
ZSMILES based on the compression ratios (Section V-B) and
the performance (Section V-C).

.smi Compression

Decompression

Preprocess

(optional)

Both or

none

.zsmi

.zsmi.smi
Postprocess

(optional)

same

.dct
ZSMI

DB

Store

Read

Fig. 3: Graphical representation of the compression and decompression process in ZSMILES.

A. Experimental Setup

Our experiment used a machine equipped with an AMD
EPYC 7282 16-core processor, 64 GB of RAM, and two
NVIDIA A100 graphics cards.

Since the dictionary generation has to be input-independent,
we need a heterogeneous set of databases. Thus, we used three
datasets that we consider representative: two of them, GDB-
17 [18] and MEDIATE database [19] are public, while one of
them is a set of SMILES from a real case virtual screening
execution [2], that we call EXSCALATE. GDB-17 contains
166 billion small organic molecules. MEDIATE is a dataset
of ligands from commercial compounds to natural products.
We also used a MIXED dataset to construct the dictionary,
combining the first one million ligands from each dataset.
Dataset and additional material will be available on a public
repository on GitHub 5.

B. Compression Ratio

In this section, we report the results of different experiments
on the ZSMILES compression ratio.

Dictionary Optimizations. The first experiment evaluates
the ZSMILES compression ratio with different dictionary gen-
eration mechanisms. In particular, we evaluate the impact of
what has been proposed in Section IV-A and in Section IV-B.
To train the dictionaries used in Table I, we used a sample
of random 50000 SMILES from the mixed dataset, the same
one used to test the compression ratio in the experiment.
The experiment collects ZSMILES compression ratios with all
combinations of optimizations. We compare the compression
ratio of ZSMILES when the dictionary is pre-populated with
all the printable ASCII characters, with the characters of the
SMILES alphabet, or with no characters at all. We expect a
better compression ratio when the dictionary is initialized with
a subset of common characters in SMILES.

Table I reports the experiment’s results. The first column
indicates whether the pre-processing has been done on the
input data. The second column reports the set of ASCII
characters used to pre-populate the dictionary. From Table I,
we can see how, in all cases, the reuse of ring ID has improved
the compression ratio, and we can also see that pre-populating

5Website: https://github.com/elvispolimi/zmsiles

the dictionary with the SMILES alphabet provides a better
compression ratio, up to 0.29.

In the remaining part of this work, we apply pre-processing
before generating all the dictionaries that are initialized with
the SMILES alphabet. These are the proposed optimization
techniques.

Cross-dictionary. The second experiment we conducted
aims to find the best dataset to use for dictionary training.
The experiment analyses the tradeoffs of using the same shared
dictionary for any input set of SMILES. We have evaluated
ZSMILES compression ratios with dictionaries trained on each
available dataset against all others. We expect the compression
to be worse when the training set consists of similar SMILES
and better when we try to compress a dataset using a dictionary
trained on the same one.

In Table II are the compression ratios of ZSMILES when
the dictionary is trained on the dataset in the first column and
tested on the dataset in the first row. When the dictionary is
trained on GDB-17, MEDIATE, or EXSCALATE, the average
compression ratios obtained by compressing other datasets
are 0.52, 0.34, and 0.39, respectively. The compression ra-
tio can vary depending on the chosen training dataset. The
dictionary generated on GDB-17 performs poorly on other
datasets, which indicates that GDB-17 consists of homogenous
SMILES. As expected, using a MIXED dataset gave an

TABLE I: Compression ratios of ZSMILES using different
dictionaries.

Pre-processing Pre-population Compression Ratio
Yes Printable 0.32
No Printable 0.35
Yes SMILES alphabet 0.29
No SMILES alphabet 0.32
Yes None 0.33
No None 0.35

TABLE II: Compression ratios of ZSMILES using cross-
dictionaries.

Train
Test GDB-17 MEDIATE EXSCALATE MIXED

GDB-17 0.33 0.60 0.60 0.55
MEDIATE 0.46 0.29 0.29 0.35

EXSCALATE 0.52 0.36 0.31 0.38
MIXED 0.39 0.33 0.30 0.29

https://github.com/elvispolimi/zmsiles

 0

 0.2

 0.4

 0.6

 0.8

 1

ZSM
ILE

S

SH
OCO

FS
ST

Bzip
2

ZSM
ILE

S +
 Bzip

2

SHORT STRING FILE BASED

Co
m

pr
es

si
on

 ra
tio

Fig. 4: Compression ratios of different tools on a mixed
dataset, comparing both short-string and file-based methods.

average compression ratio of 0.32, better than all the others.
For this reason, we chose the MIXED dataset for the following
experiments.

Tools Comparison. Finally, we compare the performance
of ZSMILES with other state-of-the-art solutions: Bzip2 and
FSST, to highlight the benefits of ZSMILES’s preprocessing
optimizations. We compare these tools by measuring the
compression ratio achieved. We use this as a test dataset,
the MIXED one. We compressed the same MIXED dataset
with each tool and trained ZSMILES’s dictionary on the same
dataset: we made this decision because FSST constructs a
static dictionary for each input, thus allowing us to compare
the two approaches fairly. We expected the binary compression
tool to yield the best compression ratio.

Figure 4 compares the compression ratio of ZSMILES with
FSST, SHOCO, and Bzip2 on a MIXED dataset. The proposed
domain-specific optimizations have been employed only by
ZSMILES in this comparison. On the x-axis is the tool’s
name used, while on the y-axis is the achieved compression
ratio. Figure 4 indicates that ZSMILES can provide a good
compression ratio while still producing a readable output. As
expected, Bzip2 is the one that performs better, but it does
not allow random access or reading of the output since it is
binary and the compression is stateful. ZSMILES performs
better than FSST when compressing on the same dataset used
for dictionary training. Using Bzip2 on ZSMILES’s output
can save even more space as it further compresses the data.
It demonstrates the benefits of the preprocessing data step in
ZSMILES for the BZIP2 compression algorithm.

C. Performance

In this section, we analyze ZSMILES compression and de-
compression performance: we report ZSMILES execution time
by varying the maximum pattern length Lmax in compression
and decompression and with different implementations (C++
and CUDA). C++ refers to the serial implementation target-
ing CPUs, while CUDA refers to the parallel one targeting
NVIDIA’s GPUs. All execution times reported here consider
the execution time of the entire ZSMILES application, and

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 6 8 10 12 14 16

N
o
rm

a
liz

e
d
 E

xe
cu

ti
o
n
 T

im
e

Lmax [characters]

C++ CUDA

(a) Compression performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16

N
o
rm

a
liz

e
d
 E

xe
cu

ti
o
n
 T

im
e

Lmax [characters]

C++ CUDA

(b) Decompression performance.

Fig. 5: ZSMILES normalized execution times of the C++ and
CUDA implementation with different Lmax values.

they are normalized to the execution time of the C++ one with
the maximum value of Lmax. We expect the CUDA version
to be faster than the C++ one. We evaluate the execution time
of ZSMILES C++ and CUDA version on the Mixed dataset,
with different values of Lmax: 5, 8, 15.

Figure 5 reports ZSMILES execution times. Lmax values
are on the x-axis, while ZSMILES normalized execution
times are on the y-axis. Figure 5a shows ZSMILES’s nor-
malized execution times in compression, while Figure 5a
in decompression. As expected, the CUDA implementation
is faster in compression and decompression than the C++
one. In particular, the CUDA version is only 7× faster in
compression and 2× in decompression. We have investigated
these speedups further and discovered that for these simple
kernels, the bottlenecks are the read-and-write operations on
storage: ZSMILES is memory-bound. Thus, additional C++ or
CUDA optimizations have a reduced impact on performance.

VI. CONCLUSIONS

Virtual screening campaign requires the storage of large
datasets of ligands. They involve trillions of ligands, which
have a big storage footprint. Some examples in the literature
[8] report the burden of storing large chemical spaces of
molecules for extreme-scale campaigns. In this paper, we have
proposed a methodology to store SMILES efficiently, called
ZSMILES, by creating a shared dictionary through heuristics,
data pre-processing, and dictionary pre-population. ZSMILES
uses an efficient dictionary-based compression algorithm,

leveraging SMILES domain knowledge for optimizations and
design. Given the use case, ZSMILES allows random access
to the data and provides a readable output (ASCII format).

ZSMILES can reduce the space required for large datasets
by providing a compression ratio of up to 0.29, showing an
improvement over state of the art approach of ×1.13.

We propose a C++ and CUDA implementation of ZS-
MILES, where the CUDA parallel one achieves a speedup
of 7× in compression and 2× in decompression compared to
the C++ serial implementation.

From experimental results, we have found ZSMILES com-
pression and decompression overhead to be negligible since
kernels are inherently memory-bound.

ACKNOWLEDGMENT

This project has received funding from EuroHPC-JU - the
European High-Performance Computing Joint Undertaking -
under grant agreement No 956137 (LIGATE). The JU receives
support from the European Union’s Horizon 2020 research
and innovation program and Italy, Sweden, Austria, Czech
Republic, and Switzerland.

REFERENCES

[1] M. Schlander, K. Hernandez-Villafuerte, C.-Y. Cheng, J. Mestre-
Ferrandiz, and M. Baumann, “How Much Does It Cost to Research
and Develop a New Drug? A Systematic Review and Assessment,”
PharmacoEconomics, vol. 39, no. 11, pp. 1243–1269, Nov. 2021.

[2] D. Gadioli, E. Vitali, F. Ficarelli, C. Latini, C. Manelfi, C. Talarico,
C. Silvano, C. Cavazzoni, G. Palermo, and A. R. Beccari, “Exscalate:
An extreme-scale virtual screening platform for drug discovery targeting
polypharmacology to fight sars-cov-2,” IEEE Transactions on Emerging
Topics in Computing, vol. 11, no. 1, pp. 170–181, 2023.

[3] G. K. Kiriiri, P. M. Njogu, and A. N. Mwangi, “Exploring different
approaches to improve the success of drug discovery and development
projects: A review,” Future Journal of Pharmaceutical Sciences, vol. 6,
no. 1, p. 27, Dec. 2020.

[4] N. A. Murugan, A. Podobas, D. Gadioli, E. Vitali, G. Palermo, and
S. Markidis, “A review on parallel virtual screening softwares for
high-performance computers,” Pharmaceuticals, vol. 15, no. 1, 2022.
[Online]. Available: https://www.mdpi.com/1424-8247/15/1/63

[5] B. Zhang, H. Li, K. Yu, and Z. Jin, “Molecular docking-based computa-
tional platform for high-throughput virtual screening,” CCF Transactions
on High Performance Computing, pp. 1–12, 2022.

[6] E. H. B. Maia, L. C. Assis, T. A. de Oliveira, A. M. da Silva,
and A. G. Taranto, “Structure-based virtual screening: From classical
to artificial intelligence,” Frontiers in Chemistry, vol. 8, Apr. 2020.
[Online]. Available: https://doi.org/10.3389/fchem.2020.00343

[7] S. LeGrand, A. Scheinberg, A. F. Tillack, M. Thavappiragasam, J. V.
Vermaas, R. Agarwal, J. Larkin, D. Poole, D. Santos-Martins, L. Solis-
Vasquez et al., “Gpu-accelerated drug discovery with docking on the
summit supercomputer: Porting, optimization, and application to covid-
19 research,” in Proceedings of the 11th ACM international conference
on bioinformatics, computational biology and health informatics, 2020,
pp. 1–10.

[8] D. Gadioli, E. Vitali, F. Ficarelli, C. Latini, C. Manelfi, C. Talarico,
C. Silvano, C. Cavazzoni, G. Palermo, and A. R. Beccari, “Exscalate:
an extreme-scale virtual screening platform for drug discovery targeting
polypharmacology to fight sars-cov-2,” IEEE Transactions on Emerging
Topics in Computing, vol. 11, no. 1, pp. 170–181, 2022.

[9] D. Weininger, “Smiles, a chemical language and information system. 1.
introduction to methodology and encoding rules,” Journal of Chemical
Information and Computer Sciences, vol. 28, no. 1, pp. 31–36, 1988.
[Online]. Available: https://doi.org/10.1021/ci00057a005

[10] T. Gagie and G. Manzini, Dictionary-Based Data Compression.
Boston, MA: Springer US, 2008, pp. 236–240. [Online]. Available:
https://doi.org/10.1007/978-0-387-30162-4 108

[11] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[12] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compres-
sion techniques: Review, comparison and analysis,” in 2017 Second
International Conference on Electrical, Computer and Communication
Technologies (ICECCT), 2017, pp. 1–8.

[13] P. Boncz, T. Neumann, and V. Leis, “Fsst: fast random access string
compression,” Proc. VLDB Endow., vol. 13, no. 12, p. 2649–2661, jul
2020. [Online]. Available: https://doi.org/10.14778/3407790.3407851

[14] G. Manzini, “An analysis of the burrows—wheeler transform,” J.
ACM, vol. 48, no. 3, p. 407–430, may 2001. [Online]. Available:
https://doi.org/10.1145/382780.382782

[15] S. Scanlon and M. Ridley, A Fully Reversible Data Transform
Technique Enhancing Data Compression of SMILES Data. Springer
Berlin Heidelberg, 2013, p. 54–68. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-40511-2 5

[16] H. Kellerer, U. Pferschy, and D. Pisinger, Introduction to NP-
Completeness of Knapsack Problems. Springer Berlin Heidelberg,
2004, p. 483–493. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-24777-7 16

[17] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, no. 9, p. 490–499,
sep 1960. [Online]. Available: https://doi.org/10.1145/367390.367400

[18] L. Ruddigkeit, R. van Deursen, L. C. Blum, and J.-L. Reymond,
“Enumeration of 166 billion organic small molecules in the chemical
universe database gdb-17,” Journal of Chemical Information and
Modeling, vol. 52, no. 11, pp. 2864–2875, 2012, pMID: 23088335.
[Online]. Available: https://doi.org/10.1021/ci300415d

[19] G. Vistoli, C. Manelfi, C. Talarico, A. Fava, A. Warshel, I. V. Tetko,
R. Apostolov, Y. Ye, C. Latini, F. Ficarelli, G. Palermo, D. Gadioli,
E. Vitali, G. Varriale, V. Pisapia, M. Scaturro, S. Coletti, D. Gregori,
D. Gruffat, E. Leija, S. Hessenauer, A. Delbianco, M. Allegretti,
and A. R. Beccari, “Mediate - molecular docking at home: Turning
collaborative simulations into therapeutic solutions,” Expert Opinion
on Drug Discovery, vol. 18, no. 8, p. 821–833, Jul. 2023. [Online].
Available: http://dx.doi.org/10.1080/17460441.2023.2221025

https://www.mdpi.com/1424-8247/15/1/63
https://doi.org/10.3389/fchem.2020.00343
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1007/978-0-387-30162-4_108
https://doi.org/10.14778/3407790.3407851
https://doi.org/10.1145/382780.382782
http://dx.doi.org/10.1007/978-3-642-40511-2_5
http://dx.doi.org/10.1007/978-3-642-40511-2_5
http://dx.doi.org/10.1007/978-3-540-24777-7_16
http://dx.doi.org/10.1007/978-3-540-24777-7_16
https://doi.org/10.1145/367390.367400
https://doi.org/10.1021/ci300415d
http://dx.doi.org/10.1080/17460441.2023.2221025

	Introduction
	Background
	State of the Art
	Methodology
	Preprocessing
	Dictionary Pre-population
	Dictionary Generation
	ZSMILES Execution Flow
	Compression Algorithm
	Decompression

	CUDA Implementation

	Results
	Experimental Setup
	Compression Ratio
	Performance

	Conclusions
	References

