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The bound and resonance states along with corresponding autoionization widths for nitrogen
sulphide (NS) molecule are determined using electron NS* cation scattering calculations. The cal-
culations are performed for 227, 2II and 2A total symmetries using the ab initio R-matrix method

for both bound and continuum states.

Calculations are performed on a grid of 106 points for

internuclear separations between 1.32 and 3 A. The resonance states yield dissociative potential
curves which, when considered together with their widths, provide input for models of different
electron-cation collision processes including dissociative recombination, and rotational and vibra-
tional excitation. Curves and couplings which will lead directly to dissociative recombination are

identified.

PACS numbers: 33.80. -b, 42.50. Hz

I. INTRODUCTION

Sulphur is the tenth and nitrogen is the fifth most
abundant element in the Universe, thus their chemistry
is of key importance for astronomical environments. It
is also known to play a significant role in planetary geo-
chemistry and polymer chemistry. NS emissions are ac-
cessible to astronomical observation and NS was among
the first diatomic molecules to be observed in space [I].
The start of nitrogen sulphide (or more precisely monon-
itrogen monosulphide) chemistry, dates from the discov-
ery of a compound named as “thiazyl” radical (S = N-)
by Demarcay [2]. It was identified inside a polymeric
structure [SN], known as polythiazyl. Later it was
proved that this non-metallic compound has supercon-
ducting properties at low temperatures and the study of
this molecule began to command considerable attention
3.

The situation was not the same for NS* cation. Al-
though it is now known to be ubiquitous in the inter-
stellar medium (ISM), it was only recently detected [4].
A year later, the first detection of NS* in a photodis-
sociation region of the Horsehead Nebula was reported
[5].

A challenge for astrochemistry is to understand the
mechanisms and rates of formation and destruction of
both neutral and cationic molecules. Electron collisions
with cations are a common mechanism that leads to their
dissociation. However, despite its astrochemical impor-
tance, no estimate of the dissociative recombination (DR)
rate of NS is available [4]. Modelling this mechanism
requires the calculation of the doubly excited states of
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the compound neutral system.

To our knowledge, there are no previous studies of e
+ NST scattering and relatively few theoretical studies
on the NST target. These studies mostly concern NS
electronic ground state. O’Hare [6] performed a self-
consistent field (SCF) calculation at the equilibrium ge-
ometry, Re=1.4957 A, and estimated a dissociation en-
ergy of Dy=4.8 eV; other studies of equilibrium geometry
of the X ¥+ state of NST can be found in [7] and ref-
erence within. The low-lying valence states of NS* were
explored by Karna et al. [8] using configuration inter-
action (CI) calculations. Most important for this work
is the more recent study of NST metastable states by
Yaghlane and Hochlaf [9].

The purpose of this article is to provide reliable data
which can be used as input to models capable of giving
good estimates of the DR rate as well as rates for other
important processes such as electron-impact vibrational
excitation. Our study of electron scattering from the
NS* cation uses the R-matrix method to give ab initio
estimates of the bound and continuum states of NS. We
identify Feshbach resonances that can provide a route
to DR by using a model comprising the ionic core in
its ground X !XT state and three lowest excited states,
a?Y ™, b3l and c3A. Besides potential energy curves
(PEC) of the resonances, we provide their autoionization
widths of these doubly excited states; we also provide
PECs for bound, singly excited Rydberg states of NS.
These Rydberg states are significantly more excited than
those computed in the previous study of electronically ex-
cited states of NS [10], where only 2%+ symmetry states
were considered. These highly excited Rydberg states of
neutral NS provide an important component of the DR
mechanism for low-energy electron collisions with cations
such as those encountered in the ISM.

The article starts with a section detailing our calcula-
tions which considers the method, the target model, and
how our scattering calculations are performed. Section
three presents and discusses our results which comprise
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bound states, resonances, widths and effective principal
quantum numbers. Finally, we summarise the main re-
sults of this article in the conclusion with pointers to-
wards future work.

II. CALCULATIONS
A. Method

The R-matrix method is widely used for studies of scat-
tering problems [II]. It was originally formulated for
nuclear physics and given an ab initio variational for-
mulation for electron collision problems in atomic and
molecular physics. A detailed discussion of its applica-
tion to electron-molecule problems can be found in the
extensive review [12].

Our calculations use the UKRmol+ code [13], a new
implementation of the time-independent UK R-matrix
electron—molecule scattering code, which uses the elec-
tronic structure code MOLPRO [I4] to provide target
wave functions.

The R-matrix method is based on the division of space
into an inner and an outer region. The inner region is a
sphere, here with radius of 10 ag, centred on the centre-
of-mass of the NSt target. In the inner region we perform
two separate calculations: a target one which considers
the N interacting target electrons, and an N +1 electron
calculation in which the scattering electron interacts with
all target electrons. Then these two calculations are used
in turn to provide R-matrices on the boundary which
are then used in the outer region to calculate scattering
properties.

In the inner region the (N + 1)-electron system of the
target and the colliding electron are described by the
wave function:

Up( @1 oo saongn) =AY aigp B (1,0, an) X

,J
u; (N +1) Jrzbi,k X3 @y, avg)- (1)

Here ® are the wave functions describing the ith target
state. The wu; ; represent the extra continuum orbitals.
®N and y; are constructed to vanish on the R-matrix
boundary. Hence, the x;, which represent extra config-
urations obtained by placing the scattering electron in
a target orbital, are known as L? configurations. The
wave function of the IV + 1 electron system has to obey
the Pauli principle, which is achieved by the action of A
which represents an anti-symmetrization operator. The
coefficients a; ; . and b; ;, are variational coefficients of ex-
pansions [I5]. To construct the R-matrix on the bound-
ary we used all the solutions of the inner region problem.

Within the framework of the R-matrix method, there
are a variety of different scattering models and proce-
dures that can be used [12]. Close-coupling (CC) expan-
sions are used here which involve including several target
states in Eq. . The use of the CC method is essential
for describing electronic excitation and is also best for
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FIG. 1: Potential energy curves for the ground (X'¥T) and
three lowest excited states (a®%", b3, c¢®A) of NS tar-
get. Comparison is given with the work of Ben Yaghlane and
Hochlaf [9]

studying Feshbach resonances, which is the major goal
of this paper.

B. NST target

A good description of the target is required when cal-
culating the resonant scattering states of a molecule.
A state averaged multi-configuration self-consistent field
(MCSCF) model was used to generate the first four states
of NS*. These were computed with MOLPRO using a
Gaussian-type orbital (GTO) cc-pVQZ basis set. Several
speed and accuracy tests were performed with different
bases to decide the optimal one. The ground state of
NS is X '¥* and the equilibrium bond length was de-
termined at 1.44 + 0.01 A. The low-lying excited states
are all triplets: a®Yt, b3II*, and c3AT. Whilst NST
belongs to the C., point group, both MOLPRO and
UKRmol+ only allow the calculation to be performed in
Cy, symmetry. In this case the molecular orbitals are la-
beled according to their symmetry properties as belong-
ing to one of the four irreducible representations (A1, Ag,
B, and Bs). In the case of a linear molecule in the Cy,
point group, results obtained in the B; and By repre-
sentations are degenerate. The 22 electrons of NSt are
organized in (10,4,4,1) orbitals of which: (4,1,1,0) are
frozen, (4,2,2,0) are used for the complete active space
(CAS) and (2,1,1,1) are used as virtual orbitals in the
scattering calculation. We note that the fewer frozen or-
bitals we consider and/or the larger the CAS, the higher
accuracy we get but, on the other hand, this high accu-
racy requires more computer time.

The NST target potential energy curves we obtained
are plotted in figure[l}] Our calculation is displayed using
solid lines and compared with the calculations by Ben
Yaghlane and Hochlaf [9], displayed using dashed lines.
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FIG. 2: NS2%* bound states: Left panel PECs. Right panel
effective principal quantum numbers. Bound states belong to
series that converge to X !X symmetry of ion. The partial
wave characterizing the Rydberg o-wave electrons is indicated
using colours: blue s, red p, green d.

It can be seen that the agreement with the ground and
first excited potential energy curve of the cation is very
good. The energy gap between the ground state and the
first excited state, which is important for determining
the positions of the resonance states, is the same in both
studies. Slight differences appear for the two higher ex-
cited states, b3II, ¢3A, due to the use of a larger basis
set (aug-cc-pV5HZ basis set) in [9].

C. Scattering calculations

For the scattering calculations, we used the NS* MC-
SCF molecular orbitals and target CAS presented in sec-
tion [[TB] and the same cc-pVQZ basis set. These were
supplemented by continuum orbitals u; ; in order to rep-
resent the scattering electron. A truncated partial wave
expansion around the centre-of-mass with [ < 4 gener-
ated as a GTO expansion [I6] for an R-matrix radius
of 10 ag. Use of an orthogonalisation deletion threshold
of 2 x 1077 resulted in the removal of (10,6,6,4) orbitals
from the continuum. The 4 (6 in Cg, symmetry) target
states shown in Figure [1| were used in the CC model.

Scattering calculations were performed as a function
of bond length, R, on a grid from 1.32 to 2.30 A with
the step 0.01 A and from 2.30 to 3.0 A with a step 0.05
A giving a total of 106 points. Although the Cy, point
group was used for calculation, results were extracted for
2yt 201, and 2A symmetry of the neutral system.

In the outer region the R-matrix was propagated [17]
to 150 ag. Module RESON [I§] was used to automati-
cally detect resonances and fit them to a Breit-Wigner
profile to determine their position (E,) and width (T')
using grids of eigenphase sums computed for each reso-
nance.
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FIG. 3: NS 2IT*, bound states: Left panel PECs. Right

panel effective principal quantum numbers. Bound states be-
long to series that converge to X 'S+ symmetry of ion. The
partial wave characterizing the Rydberg m-wave electron is
indicated using colours: green p-wave, blue d-wave.

III. RESULTS AND DISCUSSION

In this section, we present results for the bound states
and for the autoionizing resonance positions and widths
of the neutral NS molecule.

A. Bound states

Bound electronic states of NS were found using the
method of Sarpal et al. [19]: R-matrices were propagated
to 30 ag and wave functions computed using an improved
Runge-Kutta-Nystrom algorithm [20]. Effective principal
quantum numbers () as a function of internuclear sepa-
ration were calculate from the Rydberg states assuming
as threshold of the ground state of the ion.

Bound states were found for 221, 2II and 2A total
symmetries. These states are a mixture of Rydberg states
which follow the shape of the NS X '¥F state and va-
lence states which do not. Both sets of states are depicted
in our figures. In this section we concentrate characteriz-
ing the Rydberg series but below we also consider those
bound state curves which link with the key, dissociative
resonances at large R.

The curves and the effective principal quantum num-
bers for states we assign as Rydberg-like are shown in
figures and [@ In each figure, the uppermost dashed
black curve gives the X !XT ground state of NST.

If one allocates a dominant partial wave as characteriz-
ing the Rydberg electron of each states, one gets different
Rydberg series for the various total symmetries. Note our
calculations neglect Rydberg series arising partial waves
with ¢ > 4; such states are expected to have quantum
defects close to zero. Below we consider the major (i.e.
low ¢) partial waves for each symmetry.
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FIG. 4: NS 2A™T, bound states: Left panel PECs. Right panel
effective principal quantum numbers. Bound states belong to
series that converge to X !X symmetry of ion. The partial
wave characterizing the & — wave electron of the states is
indicated using colours: red d-wave, blue f-wave.

For 2%% symmetry we consider s, p and d Rydberg
electrons; for 2II symmetry we consider p and d electrons
and for 2A symmetry we consider d and f electrons. In
general the effective principal quantum numbers of the
states show smooth and generally slow variation with R.
However, in places the structure of the Rydberg series are
complicated by the presence of so-called intruder states
which arise from Rydberg series associated with excited
states of the ion. Crossings by these intruder states ap-
pear as local discontinuities in the v as a function of R.

B. Resonance curves

The R-matrix calculation is made in the fixed nu-
clei approximation and hence the PECs are adiabatic.
Resonances were characterised up to approximately 4
eV above the equilibrium energy of the X 'S1 state of
ion, which restricts the internuclear distance range to
R~12-18A.

Figures[5] [6] and [7]shows the resonances that are found
with emphasis on the PECs that can lead to dissocia-
tion as DR occurs along these repulsive PECs. The right
panel of each figure shows the real part of the v for each
resonance as a function of R; being derived assuming
that the resonance is associated with the first, a 331,
excited state. In each figure, the curves can be matched
by their colours. Again we concentrate on states of low £
as higher ¢ states have quantum defects close to zero and,
more importantly, very weak electronic couplings mean-
ing that in general they do not play a significant role in
DR.

Figure [5| shows that the lowest two curves show al-
most constant effective principal quantum number for
R > 1.4 A. The inflection point at R = 1.36 A is due to

4515 7 ] — 3 ‘ —T1—
\ \ -

' "
al \Nstast A RsTEIn
\ St

~— relative toNS* a 5"
451,551 \ e ~— relative to NS* a 'z* b
-451.55 7\ EH == .

A T ~— relative to NS* d ’5*
i3c+

TLONSTalT_A4 25k -

4516+

~
3 stx's*t
g o 7\‘*“—\‘ ]
= i
] ” .
T usies PO B N B
>
&3 i
e
g L ]
5 4517 -
1 sk i
-451.75 = JUESURSS
\ | 4
4518 ! \ ! ! ) S R T R
93 16 2 24 28 3 13 14 15 16 17 18
R (A) R (A)

FIG. 5: NS YT symmetry relative to resonances curves (left
panel) and effective principal quantum numbers (right panel)
for some specific curves of special interest for DR.

the NSt ¢3A curve, which for R < 1.36 A crosses below
the a3Y state. The v for the highest, black curve in Fig.
had to be given special consideration. It showed strong
variation with R when taken relative to the a3X* state.
Assuming this resonance to be an intruder we plotted
its effective principal quantum number relative to both
the b3® and c3A states but again found strong varia-
tions with R. Finally, we took v relative to the d°%+
curve, as calculated by Ben Yaghlane and Hochlaf [9];
this curve is the extra one shown on this figure. This
showed much flatter variation although there is a pro-
nounced slope which is possibly caused by the fact that
this is not a like-for-like comparison.

The 2II Rydberg states curves presented in figure
mostly showing little variation in v as for R > 1.4 A.
However, the %Il symmetry shows avoided crossings be-
tween the green with turquoise curves, and the turquoise
and blue curves. The approximately constant behaviour
of v with R is maintained with the corresponding change
of colours. In the figure [7] the effective principal number
shows an inflexion point at R < 1.36 A due to the cross-
ing of NS* ¢3A curve below the a®¥ one. The effective
principal number corresponding to the NS** 3 2A state
shows a strong variation with R and a shift at R = 1.6
A. A comparison with a higher excited curve might show
an effective quantum number with a flatter dependence
on R.

Figure |8 shows the PECs with 2YX+ symmetry of neu-
tral NS in an adiabatic representation. However, fol-
lowing the colours one can see the diabatic states. The
curves situated above the PEC of the ion ground state
are the resonances and those below it represent bound
states. Dissociative PECs of importance for DR com-
prise of a resonant state in the continuum which cross
the ion ground state to become bound states where they
then, in the diabatic picture, pass through the Rydberg
series associated with the ion ground state. The PECs
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FIG. 7: NS ?A symmetry resonances curves (left panel) and
effective principal quantum numbers (right panel) for some
specific curves of special interest for DR.

are smooth except in a vicinity of avoided crossings. Fig-
ures [9 and [10] show similar curves for both 21T and 2A
symmetry respectively. These curves are the ones which
form the input for a model of DR.

C. Widths and quantum defects

Complex quantum defects u = « + i were obtained
from the fitted position and width using the formulae:
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FIG. 8: NS resonance and the bound states extension for
the 221 molecular symmetry as a function of internuclear
distance.
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FIG. 9: NS resonance and the bound states extension for the
2T molecular symmetry as a function of internuclear distance.

where the effective principal quantum number v = n—q,
E; is the energy of the threshold to which the Rydberg
series converges and Ry is the Rydberg constant.

The widths are presented in figure[TT]as functions of R;
the symmetry is marked on each graph. One may see how
the behaviour of widths change when avoided crossings
occur. In general, we expect the width of a resonance
to decrease as the number of open channels decreases
which occurs when a resonances passes through a state
of the ion. Note that the widths should vanish once the
resonance states cross the ion ground state and become
bound.
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IV. CONCLUSIONS

Resonance positions and auto-ionization widths were
calculated for e-NST system depending on the internu-
clear separation. The Rydberg series that converge to

ion ground state were computed together with the corre-
sponding effective principal quantum numbers. The use
of a dense grid produces numerous resonances and bound
states in great details, which facilitate the identification
of dissociative states and singly excited Rydberg mani-
folds. Figures [8 [0} and [I0] summarize our results and
provide the curves and electronic couplings which will
provide the input for future nuclear dynamics (dissocia-
tive recombination and ro-vibrational transitions) stud-
ies. To our knowledge, this is the first time when rele-
vant molecular data sets were calculated to study elec-
tron induced reactive elementary processes in NST. The
data produced in this work will be used for calculating
dissociative recombination and ro-vibrational transition
cross sections and rate coefficients relevant to the astro-
chemistry of sulphur and nitrogen, using stepwise Mul-
tichannel Quantum Defect Theory, that has proven its
power for many diatomic and polyatomic molecular sys-
tems [21H26].
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