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Abstract: 

The Bradford’s law of bibliographic scattering is a fundamental law in bibliometrics and can 

provide valuable guidance to academic libraries in literature search and procurement. However, the 

Bradford’s curves can take various shapes at different time points and there is still a lack of causal 

explanation for it, so the prediction of its shape is still an open question. This paper attributes the 

deviation of Bradford curve from the theoretical J-shape to the integer constraints of the journal 

number and article number, and extends the Leimkuhler and Egghe’s formula to cover the core 

region of very productive journals, where the theoretical journal number of which fall below one, 

𝑓𝑡(𝑋𝑖) = 𝐶 𝑋𝑖
𝛼⁄ < 0. The key parameters of the extended formula are identified and studied by using 

the Simon-Yule model. The reasons for the Groos Droop are explained and the critical point for the 

shape change are studied. Finally, the proposed formulae are validated with the empirical data found 

in the literature. It is found that the proposed method can be used to predict the evolution of 

Bradford’s curves and thus guide the academic library for scientific literature procurement and 

utilization. 
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1 Introduction 

1.1 Introduction 

As one of the three fundamental laws of bibliometrics, the Bradford’s law of bibliographic 

scattering has many potential applications in academic libraries. For example, it can be used to 

determine the core journals or publishers of a certain research area and thus provides guidance to 

the librarians for the procurement of journals and books (Barrantes, Dalton et al. 2023). Besides, it 

can also be used to quickly locate the key WoS research areas or IPC classes for a topic and thus 

provides assistance for the readers/librarians in the literature search (Sheikh, Zahra et al. 2022). 

However, the preparation of the Bradford’s curves takes time, especially for the trivial many journals 

with only one or two relevant papers. Worse still, the scientific literature of a certain discipline or 

research area usually increases exponentially or undergoes different developmental stages (Larivière, 

Archambault et al. 2008), so strictly speaking the Bradford’s curve prepared at any time point cannot 

be used directly many years later without adjustment. There are some mathematical formulae that 

can help predict the shape of Bradford’s curve, but they usually result in a J-shaped curve while in 

practice, the Bradford’s curve can take at least six different shapes, with the most notable being the 

S-shaped curve with the so-called Groos Droop (Groos 1967). It is suggested that there is a lack of 

causal explanation of this bibliometric law and a lack of comprehensive empirical examples 

(Wagner-Döbler 1997). Therefore, the prediction of the evolution of Bradford’s curve is still an open 
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question and merit further investigation. 

This paper tries to attribute the different shapes of Bradford’s curve to the integer constraints 

of journal number and paper number. If the journal productivity 𝑛  goes so high that the 

corresponding theoretical journal number 𝑓𝑡(𝑛) = 𝐶 𝑛𝛼⁄  falls below one, then the actual journal 

number can only choose between zero and one. As a result, the discrete nature of journal number 

causes the core zone to deviate from the theoretical results of Lotka or Simon-Yule model. To 

remedy this problem, this paper proposes two different formulae for the core zone and the trivial-

many zone respectively, and key parameters of the formulae are identified and studied through 

theoretical analysis and Monte Carlo simulation of the Simon-Yule model. The reasons for the Groos 

Droop are explained and the critical point for the shape change are studied. Finally, the proposed 

formulae are validated with the empirical data found in the literature. It is found that the proposed 

method can be used to predict the evolution of Bradford’s curves and thus guide the academic library 

for scientific literature procurement and utilization. 

1.2 Literature Review 

The Bradford’s law was first proposed by Bradford in 1934 (Bradford 1934) but did not receive 

wide recognition until Vickery further develop this theory in 1948 (Vickery 1948). According to 

Bradford’s law, if we arrange journals in descending orders of their productivity and divide them 

into 𝑝  groups with the same number of papers, then the number of journals in each group 𝑛𝑖 

follows 𝑛1: 𝑛2: ⋯ : 𝑛𝑝 = 1: 𝑘: ⋯ : 𝑘𝑝−1 , where 𝑘  is a constant referred to as the Bradford 

multiplier. In addition to the above-mentioned verbal form, the Bradford’s law can also be shown 

as a J-shaped Bradford curve by plotting the accumulated productivity 𝑅(𝑟) of the first 𝑟 journals 

against the natural log of the journal rank 𝑟. The mathematical formula of Bradford’s curve was 

proposed by Leimkuhler in 1967 (Leimkuhler 1967) and the method for determining the parameters 

of this formula was published by Egghe in 1990 (Egghe 1990). In Egghe’s formula, 𝑅(𝑟) =

𝑎log(1 + 𝑏𝑟), where the key parameters 𝑎 and 𝑏 can be calculated from the article number 𝐴, 

journal number 𝑇, and the productivity 𝑦𝑚 of the most productive journal. Although the Egghe’s 

formula matches well with many bibliographies, it corresponds to a J-shaped Bradford’s curve 

which will inevitably deviate from those bibliographies with a Groos Droop (Egghe 1990). 

Incomplete bibliography is first believed to be the reason of the Groos Droop, but further research 

refuted this hypothesis (Qiu and Tague 1990) and it has been proved by Egghe that if the ranking of 

each journal 𝑟 is transformed into 𝑟′ = 𝑟 + 𝑟0 by adding a large constant 𝑟0 > 1 𝑏⁄ , then the new 

curve will concave downwards and thus show a Groos Droop (Egghe and Rousseau 1988). The 

merging of different bibliographies (each with a different maximum journal productivity 𝑦𝑚
(𝑖)

) could 

be one possible reason for the large constant 𝑟0 (Egghe and Rousseau 1988), but it is also likely 

that the large core regions (regions of most productive journals with theoretical journal number 

𝑓𝑡(𝑛𝑖) < 1) of some bibliographies result in the large 𝑟0 (Chen and Leimkuhler 1987). Essentially, 

the 𝑦𝑚 in Egghe’s formula denotes the journal productivity which satisfies 𝑓𝑡(𝑦𝑚) = 𝐶 𝑦𝑚
𝛼⁄ ≈ 1 

(Egghe 1985), rather than the maximum yield 𝑋1  of a journal as claimed by Egghe himself. 

Therefore, there might be a core region of significant few journals, each with a theoretical journal 

number 𝑓𝑡(𝑋𝑖) = 𝐶 𝑋𝑖
𝛼⁄ < 1  ( 𝑖 = 1, 2, ⋯ , 𝑇0 ), and if the total number of these journals 𝑇0 

exceeds the critical value 𝑟0 = 1 𝑏⁄  , then a Groos Droop will emerge. In this paper, the latter 

explanation is adopted and the Egghe’s formula is extended accordingly to predict the evolution of 

Bradford’s curves. 



In the 1990s, the research interest on the Bradford law has gradually shifted from the static 

presentation of data at a particular time point toward the time-dependent, dynamic and evolutionary 

aspects (Oluić‐Vuković 1998). Oluić‐Vuković studied how the increase in productivity of core 

journals affected the shape of the distribution curve in the upper section over an extended time 

interval (Oluić-Vuković 1989). By analyzing the research output of Crotian scholars in different 

subjects, she concluded that the Groos Droop or the S-shaped curve is caused by increase in the 

concentration/dispersal disparity, which can be reflected by the increase in the core/periphery ratio 

(Oluić-Vuković 1991). The dynamic evolution of Bradford curves and the emergence of Groos 

Droop are presented in (Oluić‐Vuković 1992), and other similar empirical studies through the 

temporal partitioning of bibliographies are conducted by Garg (Garg, Sharma et al. 1993), Wagner-

Döbler (Wagner-Döbler 1997) and Sen (Sen and Chatterjee 1998). Meanwhile, stochastic models 

such as the Simon-Yule model have been increasingly employed to study the dynamic characteristics 

of bibliometric laws (Oluić‐Vuković 1997, Oluić‐Vuković 1998). The Simon-Yule model is 

initially introduced by Yule in 1924 for studying the distribution of biologic genera distribution by 

species number, but does not gain widespread recognition until Simon expanded upon this theory 

in 1955 to analyze the frequency distributions of words in writing samples (Simon 1955). In addition 

to employing theoretical methods for precisely solving the constant entry rate 𝛼 of new sources 

(Simon 1955), Monte Carlo simulations are utilized to explore more intricate scenarios, such as the 

declining entry rate 𝛼𝑡  of new sources (Simon and Van Wormer 1963) and the autocorrelated 

growth rate 𝛾 of established journals (also referred to as the aging or obsolescence of older journals) 

(Ijiri and Simon 1977). Chen et al. (Chen 1989, Chen, Chong et al. 1994, Chen, Chong et al. 1995) 

first employed the Simon-Yule model for numerically studying the evolution of Lotka’s law and 

Bradford’s law over time. They found the entry rate of new sources 𝛼𝑡  and the autocorrelated 

growth rate of old journals 𝛾 have significant yet opposite effect on the Bradford curves and thus 

offered an explanation for the various types of Bradford curves (Chen, Chong et al. 1995). Later, 

Oluić‐Vuković also delved into the dynamics of Bradford distribution using the Simon-Yule model, 

but she found that the steady-state solution of this model is too restricted to cope with the variation 

produced in time, thereby limiting its applicability (Oluić‐Vuković 1997, Oluić‐Vuković 1998). In 

this paper, the Simon-Yule model is also utilized to examine the effects of different scenarios on the 

key parameters (e.g., journal number 𝑇0, article number 𝐴0 and maximum productivity 𝑋1 of the 

core region) of the extended Egghe’s formula. However, it is not directly employed to forecast the 

evolution of Bradford curves or to compare them with empirical data. Instead, the key parameters 

are estimated from past empirical data to enhance predictions of Bradford curve evolution in the 

future. 

2 Theoretical Study 

2.1 Simon-Yule Model 

The Simon’s generating mechanism for the Bradford distribution is based on the following two 

assumptions, where the 𝑓𝑡(𝑛, 𝑘)  denotes the number of journals that have published exactly 𝑛 

papers in the first 𝑘 published papers. 

Assumption I: There is a constant probability 𝛼 that the (𝑘 + 1)-th paper is published in a 

new journal – a journal that has not published in the first 𝑘 papers; 

Assumption II: The probability that the (𝑘 + 1)-th paper is published in a journal that has 



published 𝑛  papers is proportional to 𝑛𝑓(𝑛, 𝑡)  – that is, to the total numbers of papers of all 

journals that have published exactly 𝑛 papers. 

Therefore, if there are 𝐴 papers at a certain time point, then the corresponding journal number 

𝑇 is approximately 𝑇 = 𝐴𝛼. Based on Simon’s two assumptions, the steady-state solution of the 

Bradford distribution can be written as (Chen 1989): 

𝑓𝑡(𝑛) = 𝜌𝐵(𝑛, 𝜌 + 1) ≈ 𝜌Γ(𝜌 + 1)𝑛−(𝜌+1) (1) 

where 𝐵 is the beta function, Γ is the gamma function, and 𝜌 is a function of the entry rate of 

new source 𝛼, 𝜌 = 1 (1 − 𝛼)⁄ . From equation (1) it can be noted that the analytical result of the 

Simon-Yule model is in accord with the Lotka’s law as long as 𝜌 ≈ 1. 

In addition to the analytical solutions, Monte Carlo simulations are carried out for the case 

𝛼 = 0.1, and the results are compared with the theoretical results of equation (1), as shown by 

Figure 1. The procedures for conducting the Monte Carlo simulations can be found in Reference 

(Simon and Van Wormer 1963) and thus omitted here. In order to minimize the randomness inherent 

in this stochastic model and more accurately capture the underlying rule, each case is simulated 

𝑁 = 10000 times, and only the means of all these simulations are used as the final outputs. 

From Figure 1, it can be clearly noted that the simulation results can be divided into two zones, 

namely the normal zone (blue circles) and the core zone (red squares). This division is due to the 

fact that the actual journal number 𝑓𝑒(𝑛) must be integers and cannot fall below one, so when the 

journal productivity 𝑛  is so large that the corresponding theoretical journal number 𝑓𝑡(𝑛)  fall 

below one, then the actual journal number 𝑓𝑒(𝑛)  will forcibly choose between zero and one, 

thereby deviating from the theoretical results, as shown by the red squares in Figure 1. Meanwhile, 

it can be noted from Figure 1(b) that although the number of journals of the core region is small, its 

contribution to the number of papers is significant. Therefore, it will be crucial to predict the 

corresponding paper number of each journal 𝑋𝑟 in the core zone in order to depict the Bradford’s 

curve accurately. 

 

Figure 1 Comparisons of the theoretical and numerical results: (a) number of journals 𝑓(𝑛) with 

productivity 𝑛; (b) number of papers 𝑛𝑓(𝑛) by journals with productivity 𝑛 

In order to estimate the journal productivity 𝑋𝑟 of the core region, it will be helpful to figure 

out the journal number 𝑇0  and paper number 𝐴0  first. From Figure 1 it can be noted that the 

journal number 𝑓(𝑛) and paper number 𝑛𝑓(𝑛) of the normal region matches very well with the 



theoretical results, so the total journal number 𝑇1 and total paper number 𝐴1 of the normal region 

can be directly obtained by summing up all the journal and paper number, 𝑇1 = ∑ 𝑓(𝑛)𝑦𝑚
𝑛=1 , and 

𝐴1 = ∑ 𝑛𝑓(𝑛)𝑦𝑚
𝑛=1 , where 𝑦𝑚 is the journal productivity when 𝑓(𝑦𝑚) ≈ 1. According to Equation 

(1), the analytical expression of the 𝑦𝑚 can be derived as: 

𝑦𝑚 = [𝐴(𝜌 − 1)Γ(𝜌 + 1)]
1

𝜌+1 (2) 

After 𝑦𝑚  is calculated, then the total number of journals 𝑇0  and papers 𝐴0  of the core 

region can be calculated by 𝑇0 = 𝑇 − 𝑇1 and 𝐴0 = 𝐴 − 𝐴1. Or, the total number of journals  𝑇0 

and papers 𝐴0 can be directly calculated by: 

𝑇0 ≈ ∫ 𝑇𝑓(𝑛)
+∞

𝑦𝑚

d𝑛 =
𝑦𝑚

𝜌
(3) 

𝐴0 ≈ ∫ 𝑇𝑛𝑓(𝑛)
+∞

𝑦𝑚

d𝑛 =
𝑦𝑚

2

𝜌 − 1
(4) 

where 𝑦𝑚 is calculated by Equation (2).  

 

Figure 2 the journal productivity of the core region as functions of the journal rank: (a) the journal 

productivity 𝑋𝑟; (b) the journal productivity ratio 𝑋1 𝑋𝑟⁄  

In the Simon-Yule model with constant entry rate 𝛼, It is found that the largest paper number 

one journal can have 𝑋1 can be estimated by using the Gumbel’s 𝑟-th characteristic extreme theory 

(Glänzel 2010, Glänzel 2013), which is: 

𝐺(𝑋𝑟) ≈ ∫ 𝑓(𝑖)d𝑖
+∞

𝑋𝑟

=
𝑟

𝐴
(5) 

By solving this equation, it can be derived that the productivity of the most productive journal 

𝑋1 can be written as: 

𝑋1 = [𝐴Γ(𝜌 + 1)]
1
𝜌 = (𝜌 − 1)

−
1
𝜌𝑦𝑚

𝜌+1
𝜌 (6) 

whereas the productivity of the 𝑟 -th most productivity journal 𝑋𝑟  is related to 𝑋1  by 𝑋𝑟 =

𝑋1𝑟−1 𝜌⁄ . The comparison of the Gumbel’s 𝑟-th characteristic extreme values with the mean of the 

simulation results are shown in Figure 2, from which it can be noted that though the Gumbel’s 



characteristic extreme theory can be used to predict the largest paper number 𝑋1, it cannot be used 

to estimate the other paper number in the core zone, 𝑋𝑟, 𝑟 = 2, 3, ⋯ , 𝑇0. Therefore, other methods 

must be used and it is assumed in this paper that all other 𝑋𝑟 (𝑟 = 2, 3, ⋯ , 𝑇0). are related to the 

largest paper number 𝑋1 through the following equation: 

𝑋1

𝑋𝑟
= 𝑘(𝑟 − 1) + 1 (7) 

where 𝑘 is the only parameter waiting to be determined. This equation can be derived from the 

Equation (8) of Reference (Chen 1989), by assuming both (𝑟𝑖 − 𝑟1) (𝑟1 + 𝑏)⁄   and − 1 𝑐⁄   are 

relatively small. The validity of this equation can also be directly observed from Figure 2(b), where 

the blue circles denote the simulation results while the blue dashed lines denote the linear fitting 

results. Therefore, the productivity of the 𝑟 -th most productive journals can be derived from 

Equation (7) , and the accumulated productivity of the first 𝑟  most productive journals can be 

written as: 

𝑅𝑐(𝑟) = ∑
𝑋1

𝑘(𝑖 − 1) + 1

𝑟

𝑖=1

(8) 

If there are 𝑇0 journals with 𝐴0 papers in the core region and the numbers of 𝑇0 and 𝐴0 

are known, then the parameter 𝑘 can be calculated from the equation 𝑅𝑐(𝑇0) = 𝐴0. Then Equation 

(8) can be used to predict the evolution of the core regions (𝑟 ≤ 𝑇0) of the Bradford’s curves.  

2.2 Egghe’s formula 

After removing the 𝑇0 journals and 𝐴0 papers of the core region, the rest 𝑇1 journals and 

𝐴1 papers match well with the theoretical results predicted by Equation (1), and therefore, they 

follow the Lotka’s law and their Bradford curve can be predicted with the revised Leimkuhler and 

Egghe’s formula, which can be written as (Egghe 1990): 

𝑅(𝑟1) = 𝑎log(1 + 𝑏𝑟1) (9) 

where the key parameters 𝑎 and 𝑏 are as follows: 

𝑎 =
𝐴1

log(𝑒𝛾𝑦𝑚)
(10) 

𝑏 =
𝑒𝛾𝑦𝑚 − 1

𝑇1

(11) 

where 𝛾  is the Euler’s number, 𝛾 ≈ 0.5772 , 𝑦𝑚  is the journal productivity when the 

corresponding theoretical journal number 𝑓(𝑦𝑚) ≈ 1 . 𝑦𝑚  can be directly calculated from 

Equation (2), but can also be estimated from the following equation if all the values of 𝑋1, 𝑇0 

and 𝐴0 are known: 

𝑦𝑚 ≈
𝑋1

𝑘(𝑇0 − 1) + 1
(12) 

Since the journal productivity of the core region is higher than the normal region, so the journal 

rank of these significant journals are lower than the normal ones. As a result, the Bradford curve of 



the normal region will start at the point (𝑇0,  𝐴0) and every ranking 𝑟1 of the normal region should 

be transformed into 𝑟 = 𝑟1 + 𝑇0, and the accumulated productivity of the first 𝑟 journals 𝑅(𝑟) 

should be transformed into 𝑅𝑛(𝑟) = 𝑅(𝑟1) + 𝐴0. Then the revised Egghe’s formula for the normal 

region can be written as: 

𝑅𝑛(𝑟) = 𝑅(𝑟 − 𝑇0) + 𝐴0 = 𝑎log[1 + 𝑏(𝑟 − 𝑇0)] + 𝐴0 (13) 

The revised Egghe’s formula of Equation (13) can be used to predict the dynamic evolution 

of the normal regions (𝑇0 < 𝑟 < 𝑇) of the Bradford’s curve. Thus, it can be noted that Equations 

(8) and (13) can be used together to predict the dynamic evolution of the Bradford’s curves.  

 

Figure 3 the cause of the Groos Droop and the Bradford’s curve evolution. (a) the cause of the Groos 

Droop; (b) the evolution of Bradford’s curve 

The Bradford’s curve is shown in Figure 3(b), from which it can be noted that the blue circles 

denote the normal zone, whereas the red squares denote the core zone. Meanwhile, the blue dashed 

lines denote the prediction results of Equation (13), whilst the red dotted lines denote the prediction 

results of Equation (8). The three black squares denote the (1, 𝑋1), the (𝑇0, 𝐴0) and the (𝑇, 𝐴) 

respectively. From the above discussion, it can be noted that the three points and two lines are most 

important parts for predicting the Bradford’s curve evolution. 

2.3 Groos Droop 

The Groos is the first to note that when the productivity is low, then the curve with bend 

downward (Groos 1967). The cause of the Groos Droop has been explained by Egghe (Egghe and 

Rousseau 1988) as merging datasets, but it has been shown in this section that it is the existence of 

core region that causes the Groos Droop in the normal region.  

The first and second derivatives of 𝑅𝑐(𝑟) of the core region can be derived from Equation 

(8): 

𝜕𝑅𝑐(𝑟)

𝜕(log𝑟)
=

𝑋1𝑟

𝑘(𝑟 − 1) + 1
(14) 

𝜕2𝑅𝑐(𝑟)

𝜕(log𝑟)2
=

𝑋1(1 − 𝑘)𝑟

[𝑘(𝑟 − 1) + 1]2
(15) 

From Equation (15), it can be noted that when 𝑘 > 1, then 
𝜕2𝑅𝑐(𝑟)

𝜕(log𝑟)2 < 0 and the Bradford’s 



curve of the core region will concave downward, whereas when 𝑘 < 1, then 
𝜕2𝑅𝑐(𝑟)

𝜕(log𝑟)2 > 0 and the 

Bradford’s curve of the core region will concave upward. As the entry rate of new sources 𝛼 

increases, the journal number 𝑇 will increase and the distributions of articles will become more 

dispersed. As a result, the largest journal productivity 𝑋1 will decrease. Meanwhile, it can be noted 

from Equation (8)  and 𝑅𝑐(𝑇0) = 𝐴0  that lower 𝑋1  indicates lower 𝑘  if 𝐴0  is relatively 

constant. Therefore, as 𝛼  increases, the Bradford’s curve of core region will gradually become 

concave upward, as shown by Figure 3.  

Similarly, the first and second derivatives of 𝑅𝑛(𝑟) of the normal region can be derived from 

Equation (13): 

𝜕𝑅𝑛(𝑟)

𝜕(log𝑟)
=

𝑎𝑏𝑟

𝑏(𝑟 − 𝑇0) + 1
(16) 

𝜕2𝑅𝑛(𝑟)

𝜕(log𝑟)2
=

𝑎𝑏(1 − 𝑏𝑇0)𝑟

[𝑏(𝑟 − 𝑇0) + 1]2
(17) 

From Equation (17) it can be noted that when 𝑇0 > 1 𝑏⁄  then 
𝜕2𝑅𝑐(𝑟)

𝜕(log𝑟)2 < 0, the Bradford’s 

curve of the normal region will concave downward and thus show a Groos Droop, whereas when 

𝑇0 < 1 𝑏⁄  then 
𝜕2𝑅𝑐(𝑟)

𝜕(log𝑟)2 > 0, the Bradford’s curve of the normal region will concave upwards and 

thus show a J-shaped curve. As the entry rate of new sources 𝛼 increases, it can be noted from 

Figure 3(a) that the 𝑇0 will gradually fall below 1 𝑏⁄  and thus the Bradford’s curve of the normal 

region will eventually become concave upward, which is similar to the case of the core region.  

The variations of key parameters 𝑇0, 1 𝑏⁄  and 𝑘 with the entry rate 𝛼 are shown in Figure 

3 (b), from which it can be noted that when 𝐴 = 104, the normal region will turn concave upward 

at critical point 𝛼𝑛 ≈ 0.2 whilst the core region will turn concave upward at critical point 𝛼𝑐 ≈

0.3. Therefore, when 𝛼 < 0.2, the whole Bradford’s curve will concave downward, and when 𝛼 >

0.3, the whole Bradford’s curve will concave upward. When 0.2 < 𝛼 < 0.3, the whole Bradford’s 

curve will show a reversed S shape, with the core region concave downward and the normal region 

concave upward. The three shapes of Bradford’ curves are shown in Figure 3 (a). In this particular 

case, since 𝛼𝑛 < 𝛼𝑐, then there is no S-shaped Bradford’s curve. This is because the aging of the 

sources are not considered here so the largest journal productivity 𝑋1 is relatively large. When the 

effect of auto-correlation is considered, as discussed in Section 3, the corresponding 𝑋1  will 

decrease significantly, which results in a lower k and thus a much lower 𝛼𝑐. When 𝛼𝑐 < 𝛼𝑛, then 

the S-shaped Bradford’s curve will appear if 𝛼𝑐 < 𝛼 < 𝛼𝑛 with the core region concave upward 

and the normal region downward. 

2.4 Bradford Dynamics 

Since the analytical expression of 𝑇0 , 𝐴0  and 𝑋1  (Equations (3)、(4)  and (6) ) are all 

known, the core region of Bradford curve at any time can be predicted by using Equation (8). Since 

the key parameters of the normal regions can be derived from the above three factors through 𝑇1 =

𝑇 − 𝑇0, 𝐴1 = 𝐴 − 𝐴0 and Equation (12), the normal region of Bradford curve can be predicted 

by using Equation (13) . From Figure 3 it can be noted that when 𝛼 = 0.1 , then the whole 



Bradford’s will concave downward when 103 < 𝐴 < 104 . The results shown in Figure are in 

accord with the theoretical prediction. The key parameters as functions of the journal paper number 

are shown in Figure 4(b), from which it can be noted that the theoretical results match with the 

numerical ones very well. It can also be noted that all these key factors are linear functions of the 

paper number 𝐴, therefore, Equation (18) will be used for studying the variations of 𝑇0, 𝐴0 and 

𝑋1 for the more complicated scenarios.  

log(𝑌) = 𝑎𝜌 + 𝑏𝜌log(𝐴) (18) 

where the constant 𝑎𝜌 and 𝑏𝜌 are functions of 𝜌. Since 𝜌 is approximately one, then 𝑎𝜌 and 

𝑏𝜌 can be viewed as constants. 

The Bradford’s curves of the constant entry rate scenario are shown in Figure 4(a), where the 

red squares and blue circles denote the simulation results of the core and normal regions respectively, 

whereas the red dashed lines and blue dotted lines denote the theoretical results of Equations (8) 

and (13) respectively. The three key points of (1, 𝑋1), (𝑇0, 𝐴0) and (𝑇, 𝐴) are also shown as 

black upper triangle, diamond and lower triangle respectively in Figure 4(a). From Figure 4(a) it 

can be noted that the although the core region includes far fewer journals than the normal region, 

its share of representation is significant due to the log scale of x-axis. Therefore, journals with lower 

ranks are better represented in Figure 4(a). 

 

Figure 4 the dynamics of the Bradford’s curve and the variation of the key parameters. (a) the 

dynamics of the Bradford’s curves; (b) the variations of the key parameters 

The simulation and analytical results of the 𝑇0, 𝐴0 and 𝑋1 are shown in Figure 4(b), where 

the hollow symbols denote the simulation results whereas the solid symbols denote the analytical 

ones. From Figure 4(b) it can be noted that the three key factors are all linear functions of the paper 

number 𝐴 in the log-log axis, just as Equation (18) indicates. It is also notable that the analytical 

results match very well with the numerical ones, which verifies the validity of Equations (3)、(4) 

and (6). The analytical result of 𝑇0 is slightly lower than the numerical ones because the 𝑦𝑚 is 

higher than the numerical results.  

3 Numerical Study 

3.1 Decreasing Entry Rate 

If we assume the probability of adding a new journal decreases linearly with the time.  



𝛼(𝑖) = 𝛼𝑠 − 𝑘𝑖 (19) 

where 𝑘 is a constant, 𝑘 = (𝛼𝑠 − 𝛼𝑓) 𝐴𝑓⁄ , where 𝛼𝑓 and 𝐴𝑓 are the entry rate of new sources 

and the total article number in the final state respectively. Then the accumulated journal numbers 

can be written as: 

𝑇 = ∑ 𝛼(𝑖)

𝐴

𝑖=1

= 𝛼𝑠𝐴 −
1

2
𝑘𝐴2 (20) 

According to Equation (20), quadratic fitting of 𝑇 and 𝐴 can be used to determine the value 

of 𝛼𝑠  and 𝛼𝑓 . After the 𝛼𝑠  and 𝛼𝑓  are determined, the 𝛼̅ = (𝛼𝑠 + 𝛼𝑓) 2⁄   can be used to 

calculate the analytical results. 

The Bradford’s curve and variations of key parameters are shown in Figure 5, from which it 

can be noted that the proposed method can still predict the variations of Bradford’s curves well. In 

general, the analytical results of the 𝛼̅ matches well with the simulation results. The numerical 

results of 𝐴0 and 𝑋1 are slightly lower than the analytical ones. Therefore, the decreasing of entry 

rate has an additional negative effect on the increase of 𝐴0 and 𝑋1. 

 

(a) 𝛼 = 0.3~0.2 

 

(b) 𝛼 = 0.2~0.1 

Figure 5 the dynamics of the Bradford’s curve and the variation of the key parameters (a) when the 

entry rate decreases from 0.3 to 0.2; (b) when the entry rate decreases from 0.2 to 0.1. 



From Figure 5, it can also be noted that the effect of decreasing entry rate on the shape of 

Bradford’s curve and the variation of key factors are relatively insignificant. So, it is still possible 

to use the analytical results of constant entry rate 𝛼̅  for predicting the key parameters without 

introducing too much error.  

3.2 Decaying Rate 

Simon's assumption is that only one paper gets published in each time period. He models the 

probability of a journal increasing in size in the next period as being proportional to a weighted sum 

of its past increments. These increments are weighted by a factor that decreases geometrically over 

time, with the rate of decrease denoted as 𝛾. 

Let 𝑦𝑗(𝑘) be the change in size of the 𝑗th journal during the 𝑘th time interval, where 𝑦𝑗(𝑘) 

is either unity or zero (the journal either experiences a unit increment in size or remains the same 

size during any given time interval). Then the size of the 𝑗th firm at the end of the 𝑘th interval is 

simply ∑ 𝑦𝑗(𝜏)𝑘
𝜏=1  The expected increment in size of the 𝑗th firm during the (𝑘 + 1)th interval is:  

𝑝[𝑦𝑗(𝑘 + 1) = 1] =
1

𝑊𝑘
∑ 𝑦𝑗(𝜏)

𝑘

𝜏=1

𝛾𝑘−𝜏 (21) 

where 𝑊𝑘 is a function of time that is the same for all journals, 𝑊𝑘 = ∑ 𝑤𝑗(𝑘)𝑇
𝑗=1 , where 𝑤𝑗(𝑘) =

∑ 𝑦𝑗(𝜏)𝑘
𝜏=1 𝛾𝑘−𝜏, and 𝛾 is the fraction that determines how rapidly the influence of past growth on 

new growth dies out.。 

Figure 6 illustrates the impact of the decaying rate 𝛾 on the dynamics of Bradford’s curves 

and the variations of key parameters. It's evident that the aging term notably increases 𝑇0, causing 

the normal region to become more concave downward. The aging term also markedly reduces 𝑋1 

by undermining the Mathew effect. As old article sources lose their appeal for new papers, the 

"success breeds success" effect diminishes, resulting in a significant decrease in 𝑋1, as depicted in 

Figure 6(a). Consequently, while the article number 𝐴0  in the core zones remains relatively 

unchanged, 𝑇0 needs to increase to compensate for the reduction of 𝑋1. This expansion of the core 

region enlarges its share of the Bradford’s curve, tending to shape it into a J-shape due to the 

reduction of 𝑘 and 𝑋1, as discussed in Section 2.3. Additionally, with the significant increase in 

𝑇0, it's more likely that 𝑇0 will exceed 1 𝑏⁄ , further contributing to the concave downward shape 

of the normal region. In summary, the decaying rate facilitates the Bradford’s curve to adopt an S-

shaped form more easily. 

 



(a) 𝛼 = 0.1, 𝛾 = 0.95 

 

(b) 𝛼 = 0.1, 𝛾 = 0.95~1.0 

Figure 6 the dynamics of the Bradford’s curve and the variation of the key parameters. (a) when the 

entry rate is 0.1 and the decaying rate is 0.95; (b) when the entry rate is 0.1 and the decaying rate 

increases from 0.95 to 1.0 

3.3 Varying Decaying and Entry Rate 

Figure 7 illustrates the impact of changing decaying and entry rates on Bradford’s curve. In 

real-world scenarios, both the entry rate of new sources and the decaying rate often fluctuate. For 

instance, the entry rate might linearly shift from 0.3 to 0.1, while the decaying rate linearly shifts 

from 0.95 to 1.0. Observing Figure 7, it becomes apparent that increasing the decaying rate and 

decreasing the entry rate generally exert opposite effects on Bradford’s curve.  

When the entry rate 𝛼  decreases and the decaying rate 𝛾 varies or remains constant, the 

largest journal productivity 𝑋1 also diminishes due to reduced Mathew effect. Consequently, the 

core region is likely to exhibit a J-shaped curve, resembling scenarios with constant 𝛼 and varying 

or constant 𝛾. However, the total article number 𝐴0 in the core region significantly deviates from 

analytical results, while the total journal number 𝑇0 in the core region remains relatively consistent 

with analytical predictions—similar to scenarios involving decreasing 𝛼 and opposite to scenarios 

with 𝛾. As a result, the normal region of Bradford’s curve becomes less concave downward, with 

its starting point on the y-axis notably lower, resembling trends seen with decreasing entry rates 

rather than decaying rates. Notably, all three key factors continue to exhibit linear relationships with 

article number, suggesting Equation (18) remains viable for predicting them. 

 



(a) 𝛼 = 0.3~0.1, 𝛾 = 0.95 

 

(b) 𝛼 = 0.3~0.1, 𝛾 = 0.95~1.0 

Figure 7 the dynamics of the Bradford’s curve and the variation of the key parameters. (a) when the 

entry rate decreases from 0.3 to 0.1 and the decaying rate is 0.95; (b) when the entry rate decreases 

from 0.3 to 0.1 and the decaying rate increases from 0.95 to 1.0. 

4 Empirical Study 

4.1 Dataset of Croatian Chemistry Research 

The research output in chemistry of authors from Croatia was used by Oluić‐Vuković for the 

preparation of full bibliographic references for a ten-year period (Oluić‐Vuković 1992). Only 

articles published in journals were taken into consideration and the dataset comprises 2543 papers 

published in 416 journals over a 10-year interval. The journal productivity of the first few (less than 

10) most productive journals was directly taken from Figure 1 of Reference (Oluić‐Vuković 1992) 

whilst the productivity of the other journals was directly taken from Tables 4 and 6 of Reference 

(Oluić‐Vuković 1998). Data taken from the figures were adjusted to comply with the total number 

of journals and articles obtained from the Table 2 of Reference (Oluić‐Vuković 1992).  

In order to predict the dynamics of the Bradford’s curve, the first step is to predict the variation 

of total article number 𝐴(𝑡) with time 𝑡. Logistic regression analysis (Verhulst 1838) is applied to 

the empirical data so that the total article number 𝐴(𝑡) at any time can be predicted, as shown in 

Figure 8(a). After that, the total journal number 𝑇 and the entry rate of new sources 𝛼 can be 

estimated by plotting the total journal number 𝑇 against the total article number 𝐴 and applying 

the linear fitting of 𝑇 = 𝐴𝛼, as shown in Figure 8(b). After the point (𝑇, 𝐴) is determined for any 

time, then linear regression of Equation (18) is employed to determine the three key parameters 

of 𝑇0, 𝐴0 and 𝑋1 in the log-log axis, and the fitting results are shown in Figure 9(a). Then the key 

points of (𝑇0, 𝐴0)  and (1, 𝑋1)  at any time can be determined. Finally, based on the three key 

points, Equations (8) and (13) can be used to determine the Bradford curve for the core region 

and the normal region respectively, and the results are shown as the red dashed lines and blue dotted 

lines in Figure 9(b) respectively. 



 

Figure 8 the dynamics of the Bradford’s curve and the variation of the key parameters. (a) the 

dynamics of the Bradford’s curves; (b) the variations of the key parameters 

 

Figure 9 the dynamics of the Bradford’s curve and the variation of the key parameters. (a) the 

dynamics of the Bradford’s curves; (b) the variations of the key parameters 

From Figure 9(b) it can be noted that the Bradford’s curve gradually turns from J-shape into S-

shape, and this transition is well captured by the analytical prediction. 

4.2 Dataset of Solar Power Research 

The bibliographies on solar power research for the year 1971, 1974, 1977, 1980, 1983 and 

1986 for the paper published in journals from Engineering Index were prepared by Garg et al. (Garg, 

Sharma et al. 1993). The data used in the following analysis are directly taken from the Tables 1~7 

of Reference (Garg, Sharma et al. 1993).  

Similar to the case of the Croation Chemistry Dataset, the prediction of the dynamics of the 

Bradford’s curve also includes the following four steps: 

1. Applying the logistic regression fitting to the empirical data of cumulative article number vs 

time (obtained From Table 7) to obtain the prediction of article number of the desired intervals, 

as shown in Figure 10(a). 

2. Applying the quadratic fitting of Equation (20) to the journal and article pairs to obtain the 

estimated journal number 𝑇 and entry rate of new sources 𝛼 at any article number 𝐴, as 

shown in Figure 10(b).  



3. Applying the linear fitting of Equation (18) to the empirical data of 𝑇0, 𝐴0 and 𝑋1 in the 

log-log axis to obtain their predictions at any article number 𝐴, as shown in Figure 11(a). 

4. Applying the Equations (8) and (13) to draw the Bradford’s curve of the core region and 

normal region respectively, as shown in Figure 11(b). 

 

Figure 10 the dynamics of the Bradford’s curve and the variation of the key parameters. (a) the 

dynamics of the Bradford’s curves; (b) the variations of the key parameters 

 

Figure 11 the dynamics of the Bradford’s curve and the variation of the key parameters. (a) the 

dynamics of the Bradford’s curves; (b) the variations of the key parameters 

From Figures 9(b) and 11(b) it can be noted that though our suggested method can roughly 

predict how Bradford’s curves change over time, there are still some errors present. This is because 

Bradford’s law inherently contains uncertainties or errors. Our numerical analysis shows that the 

number of articles for each journal rank has a large standard deviation, making it practically 

impossible to precisely predict the shape of Bradford’s curve. Additionally, our method involves 

several fitting procedures, introducing errors in the process. Thus, while our approach can give a 

general idea of how Bradford’s dynamics might unfold, it cannot accurately forecast the number of 

articles for each journal at any given time. 

Another issue with our method is that the first derivatives of the core region (Equation (14))  

and the normal region (Equation (16)) differ at the point  (𝑇0, 𝐴0). This leads to the analytical 

curve being jagged at the intersection point, whereas the numerical simulation results show 

smoothness throughout. One potential solution to this problem is to propose a more complex 

formula for the normal region, but this would inevitably complicate the entire method. Given the 



difficulty in precisely predicting Bradford’s curve dynamics, this aspect is not explored further in 

our research. 

5 Conclusion 

In this paper, we delve into how integer constraints, specifically the limits imposed by the 

number of journals 𝑇  and articles 𝐴 , affect the shape of Bradford’s curve. We categorize 

Bradford’s curve into two zones: the core zone and the normal zone, based on whether the integer 

effect plays a significant role. Utilizing the Simon-Yule model, we derive analytical results for key 

parameters and distributions under constant entry rate conditions. Then, we formulate theoretical 

equations for each zone and analyze the reasons behind the diverse shapes of Bradford’s curves. 

Monte Carlo simulations help us explore how decreasing entry rates of new sources and decay rates 

impact the curve's shape and key parameters. Finally, we validate our approach using empirical data 

from Croatian Chemistry and Solar Power datasets, demonstrating its ability to predict Bradford’s 

curve dynamics. From our findings, we draw several conclusions: 

1. Bradford’s curve should be divided into distinct zones based on the significance of integer 

constraints, each requiring separate formulae. 

2. The shape of Bradford’s curve can take on four different forms, determined by the second 

derivatives of the core and normal zones.  

3. Key parameters such as the maximum productivity 𝑋1, journal number 𝑇0, and article number 

𝐴0 play crucial roles in shaping Bradford’s curves, with entry rate and decay rate changes 

influencing these parameters. 

4. Despite some errors, our proposed four-step method can effectively predict general trends in 

Bradford’s curves. 

These insights can guide academic libraries in procuring and utilizing scientific literature 

effectively. 
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