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Abstract—Massive multiple input multiple output (M-MIMO)
technology plays a pivotal role in fifth-generation (5G) and beyond
communication systems, offering a wide range of benefits, from
increased spectral efficiency (SE) to enhanced energy efficiency
and higher reliability. However, these advantages are contingent
upon precise channel state information (CSI) availability at the
base station (BS). Ensuring precise CSI is challenging due to
the constrained size of the coherence interval and the resulting
limitations on pilot sequence length. Therefore, reusing pilot se-
quences in adjacent cells introduces pilot contamination, hindering
SE enhancement. This paper reviews recent advancements and
addresses research challenges in mitigating pilot contamination
and improving channel estimation, categorizing the existing re-
search into three broader categories: pilot assignment schemes, ad-
vanced signal processing methods, and advanced channel estima-
tion techniques. Salient representative pilot mitigation/assignment
techniques are analyzed and compared in each category. Lastly,
possible future research directions are discussed.

Index Terms—5G, Massive-MIMO, Pilot Contamination, B5G,
Deep Learning, Pilot Assignment, Channel State Information.

I. INTRODUCTION

Massive multiple input multiple output (M-MIMO) has been
widely regarded as an essential component of fifth-generation
(5G) and beyond communication technologies that enables
several benefits spanning from increased spectral efficiency
(SE) to enhanced energy efficiency and increased reliability.
However, these benefits are contingent upon the presence of
accurate channel state information (CSI) at the base station
(BS). Timely acquisition of CSI at the BS is crucial for
maximizing network throughput. However, acquiring CSI is
often challenging, primarily due to small coherence intervals.

Coherence interval refers to a time duration wherein the
channel response remains frequency-flat and time-invariant.
Generally, the coherence interval is shorter in scenarios char-
acterized by rapid changes in the wireless channel, such as
high mobility, narrow bandwidth, change in the propagation
environment, etc. This limitation results in reusing the same
pilot sequences in adjacent cells, preventing orthogonal dis-
tribution to all users. This introduces coherent interference
into channel estimation, as multiple devices transmit the same
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pilot sequence, making it challenging for the BS to distinguish
each device’s pilot sequences. This phenomenon is called
pilot contamination. Pilot contamination is considered a critical
limiting factor in enhancing SE [1].

Though a comprehensive survey article [2] on mitigating
pilot contamination was published in 2015, most discussed
schemes are now outdated. Therefore, this paper summarizes
the most recent developments in addressing pilot contami-
nation, driven by rapid research progress. It categorizes the
pilot decontamination schemes into three broader categories:
pilot assignment schemes, advanced signal processing methods,
and advanced channel estimation techniques. Pilot assignment
schemes intelligently allocate pilot sequences to minimize
interference and ultimately maximize SE [3], [5], [9]. Advanced
signal processing strategies introduce innovative pilot transmis-
sion and signal processing techniques that effectively mitigate
interference and enhance throughput [13], [14], [17]. Pilot de-
contamination through advanced channel estimation techniques,
such as deep learning, aids in mitigating the mean square error
(MSE) of the channel estimate, eventually improving CSI and
enhancing SE. This paper analyzes these techniques, compares
and contrasts using key features and performance indicators.

II. CHANNEL STATE INFORMATION

The time-frequency is segmented into coherence inter-
vals/blocks, τc, during which channel response remains time-
invariant and frequency-flat. Within each block, a designated
interval, τρ, is reserved for transmitting predefined pilot sig-
nals during uplink transmission. Pilot signals with predefined
patterns are transmitted, enabling the BS to compare the
transmitted and received values, as the received pilot signal
may contain valuable information, such as multi-path fading,
interference, and noise, as it transverses the wireless channel.

A. Pilot Contamination

In M-MIMO systems, the limited coherence block length
constrains the availability of lengthy pilot signals. This limi-
tation restricts the distribution of unique/orthogonal pilot se-
quences among all users, leading to the necessity of reusing
the same pilot sequences in the adjacent cells. The uniformity
of pilot signals originating from devices in various cells creates

ar
X

iv
:2

40
4.

19
23

8v
1 

 [
cs

.I
T

] 
 3

0 
A

pr
 2

02
4



a challenge for the BS to distinguish between the desired pilot
signal (from the serving cell) and the interfering pilot signals
(from neighboring cells). This phenomenon, known as inter-
cell pilot contamination, and is recognized as a limiting factor
in enhancing SE. Fig. 1, shows a L cells M-MIMO network
with K users per cell. The kth user, Uk in different cells are
utilizing the same pilot sequence as of kth user, Uk in ith cell,
causing a detrimental impact on kth user CSI in the ith cell.

Fig. 1. Desired and interference signals

III. MITIGATING PILOT CONTAMINATION THROUGH PILOT
ASSIGNMENT SCHEMES

This section explores representative pilot assignment strate-
gies to mitigate pilot contamination in M-MIMO systems.

A. Smart Pilot Assignment Schemes

Smart pilot assignment schemes intelligently allocate pilot
signals to users with the aim of minimizing pilot contamination
to improve SE. Zhu et al. in [3] proposed a pilot scheme that
optimized pilot assignment within a target cell while address-
ing interference from users using the same pilot signals in
neighboring cells, aiming to maximize the minimum Signal-to-
Interference-plus-Noise-Ratio (SINR). Subsequently, the pilot
signal with the least interference from neighboring cells was
assigned to the target cell’s user with the worst channel quality
in a sequential manner until all users were allocated.

Zhu et al.’s scheme was simple but had high complexity
and relied on unrealistic assumptions of uncorrelated Rayleigh
fading, limitations that were addressed by [4]. This paper aimed
to maximize the minimum weighted sum SE for each user in
the target cell. A low-complexity heuristic algorithm prioritized
users with the worst-weighted SE. This algorithm iteratively
assigned low-interference pilots to users with the worst channel
conditions across all cells until all pilots were allocated. In
conclusion, smart pilot schemes are simple and yield favorable
results by intelligently allocating pilot signals across cells.

B. Graph Coloring-based Assignment Schemes

Graph coloring, a technique in graph theory, involves as-
signing colors to vertices (nodes/users) such that adjacent
vertices have distinct colors, aiming to use the fewest colors
possible. This method offers significant advantages in pilot
contamination scenarios: it optimizes the efficient use of limited

pilot signal resources by minimizing the number of colors
(pilots) used and maximizes the separation between vertices
based on defined criteria, such as interference graphs.

Liu et al. [5] proposed a graph coloring-based pilot assign-
ment scheme leveraging interference graphs to minimize inter-
ference between users by assigning distinct pilots to connected
nodes. To efficiently use limited orthogonal pilot sequences,
they employed an iterative method to establish a fair pilot reuse
policy, preventing the overuse of a few pilots. Numerical results
validated the scheme’s effectiveness in achieving higher SE
while maintaining low complexity. However, a drawback of this
paper lies in its consideration of interference as unidirectional,
while the real scenarios involve bidirectional interference.

Zeng et al. [6] introduced a pilot assignment scheme based
on the weighted graph framework that accounts for bidirec-
tional interference. The authors formulated the pilot assignment
problem as an optimization challenge, aiming to maximize the
total throughput across all users. Moreover, they addressed the
pilot assignment problem by employing the max k-cut problem.
Simulation results demonstrated the proposed scheme’s signifi-
cant improvement in SE. However, a prominent limitation is the
high computational complexity of the max-cut problem with an
increasing number of users, thus hindering scalability.

Saeed et al. [7] addressed challenges from Zeng et al. [6] by
introducing an intelligent user scheduling strategy to optimize
M-MIMO systems, effectively tackling pilot contamination and
scalability issues. To address scalability concerns, they intro-
duced a novel approach: rather than assigning orthogonal pilot
sequences to individual devices, they allocated them to clusters
of devices [8]. This enabled multiple devices to efficiently share
the same pilot for periodic data transmission. Furthermore,
they utilized a graph coloring framework and leveraged the
integer linear programming to address pilot assignment chal-
lenges effectively. The proposed scheme substantially reduced
complexity and enabled scalability for M-MIMO systems.

C. Soft Pilot Reuse-Based Assignment Schemes

Soft pilot reuse assignment schemes categorize cell users into
cell-center and cell-edge users. Cell-center users are those in
close proximity to the BS, typically with strong SINR, where
interference minimally impacts their performance. Therefore,
pilot sequences allocated to these users can be reused in every
other cell. Conversely, cell-edge users are located farthest from
the serving BS and experience poorer channel conditions, where
interference significantly degrades their performance. Hence,
orthogonal pilot sequences are assigned uniquely within each
cell’s edge user and are not reused in neighboring cells to
mitigate interference.

Zhu et al. [9] proposed a soft pilot reuse scheme with a multi-
cell block diagonalization precoding scheme for an M-MIMO
system. They categorized users into two groups based on the
interference received from the neighboring cells. By slightly
increasing the number of pilot signals compared to traditional
approaches, their proposed scheme effectively eliminates pilot
contamination experienced by edge users who would otherwise
suffer from severe pilot contamination in conventional schemes.



Simulation results validated the scheme’s ability to improve the
QoS for edge users. However, a notable drawback of this paper
is its increased pilot overhead, ultimately impacting SE.

To overcome the challenge of [9], Li et al. [10] analyzed
the downlink performance of the M-MIMO system considering
both soft pilot and soft frequency reuse techniques. In soft
frequency reuse, the total frequency bands are partitioned into
three sub-bands denoted as F1, F2, and F3. Here, neighboring
cells’ edge users must use different frequency bands while
the remaining bands are uniformly allocated to the cell-center
group. Similarly, the orthogonal pilot sequences are organized
into four sets: P1, P2, P3, and P4. Notably, the pilots for cell-
edge users in the target cell were orthogonal to neighboring
cells’ edge users. Where the cell-center group employed the
same set of pilot sequences across all cells. Numerical results
confirmed the efficacy of the scheme in achieving higher SE.

D. Angle of Arrival-Based Assignment Schemes
Much of the existing research on pilot assignments primarily

centered on large-scale fading coefficients, which are signifi-
cantly dependent on the distance between users and the BS.
In [11], it was proposed to reconsider pilot assignment solely
based on large-scale fading coefficients by introducing the
angle of arrival of pilot signals as a consideration, aiming for
contamination-free estimation and improved spectral efficiency.

Shahabi et al. [11] presented an angle of arrival-based pilot
allocation strategy that effectively combined angular and static
channel information. This paper introduced an optimization
problem and claimed that it had significantly lower complexity
when compared to methods like smart pilot assignment [3].
To achieve this, the pilot assignment problem was formulated
based on the multi-path channel model and the utilization
of users’ angle of arrival distributions. The proposed scheme
achieved faster convergence and lower complexity. However,
the limitation of this paper led to a decrease in uplink perfor-
mance compared to conventional methods.

To address this challenge, Omid et al. [12] proposed an
angle of arrival-based pilot allocation scheme using deep re-
inforcement learning. Firstly, they designed a cost function
that assessed pilot contamination based on user locations and
channel quality. Furthermore, they defined sets of states, ac-
tions, and reward functions based on channel characteristics; the
agent learned a pilot assignment policy that adapted to channel
changes while minimizing the cost function. Numerical results
claimed their method could efficiently track various channel
scenarios and select pilot assignments close to those obtained
through exhaustive searches.

IV. MITIGATING PILOT CONTAMINATION WITH ADVANCED
SIGNAL PROCESSING

This section reviews techniques aimed at enhancing SE using
the latest signal processing advancements.

A. Superimposed Pilots Based Interference Mitigation
In conventional time-multiplexed pilots, a portion of the

coherence block is reserved solely for transmitting pilot sym-
bols, which is essential for extracting CSI. However, this

exclusive allocation of resources can limit the overall capacity
available for transmitting data. In contrast, the superimposed
pilot scheme eliminates the need for a dedicated space for
pilot transmission by embedding pilot information within data
symbols. This allows the receiver to estimate the channel and
extract data using the same symbols. This scheme optimizes
resource utilization and reduces extra signaling overhead.

Lago et al. [13] proposed a pilot decontamination approach
for M-MIMO networks by leveraging superimposed and time-
multiplexed pilots, allowing users to utilize both for channel
estimation. The key concept was to utilize the superimposed
pilots to address the channel estimation errors obtained through
time-multiplexed pilots. Moreover, the proposed scheme out-
performed conventional methods, even in a universal pilot
reuse scenario, and eliminated the need for inter-BS exchange
of user channel statistics, reducing communication overhead.
Numerical results showed significant enhancement compared to
approaches relying solely on time-multiplexed or superimposed
pilots for channel estimation. However, a prominent limitation
persisted due to the continued utilization of time-multiplexed
pilots, causing substantial communication overhead.

Shafin et al. [14] overcame the challenge and introduced
a superimposed pilot framework for M-MIMO systems, sig-
nificantly enhancing its practical application. They developed
an uplink direction of arrival estimation method, effectively
reducing uplink overhead. Additionally, their work compre-
hensively characterized network throughput in a superimposed
pilot-based massive full-dimension MIMO system and validated
analytical results through extensive simulations, and identified
novel design insights, all within a versatile framework.

B. Rate Splitting Strategy for Pilot Decontamination

Rate-splitting multiple access (RSMA) is an emerging strat-
egy for interference mitigation in wireless networks, positioning
itself as a promising paradigm for 6G physical layer transmis-
sion. RSMA divides each user’s message into common and pri-
vate components, with common messages decoded collectively
and private messages decoded individually by the user equip-
ment, followed by transmission and superimposition of the
common message onto the private one. Notably, RSMA offers
robustness to imperfect CSI, showcasing superior throughput
and energy efficiency in multi-user MIMO networks.

In [15], the authors proposed RSMA integration in a single-
cell M-MIMO network, deriving throughput expressions and
establishing capacity lower bounds based on channel hardening
for both common and private data messages. The authors
introduced three power allocation algorithms to maximize
various network utilities for RSMA and conducted extensive
simulations comparing RSMA with No RSMA under diverse
conditions. Results showed RSMA’s superiority in mitigating
pilot contamination and offering improved SE, especially with
imperfect CSI at the transmitter. However, a notable drawback
was that this scheme was designed for cell-based M-MIMO and
lacked applicability to emerging cell-free M-MIMO technology.

Therefore, Mishra et al. [16] proposed an RSMA approach
for cell-free machine-type communication with random access,



where all active users shared the same pilot for channel esti-
mation. They incorporated RSMA with conventional conjugate
beamforming for private data streams to mitigate downlink in-
terference. Initially, the authors first derived achievable through-
put expressions for common and private data messages. Then,
they used these expressions to devise a heuristic precoding tech-
nique for the common message and introduced a novel power
control algorithm based on successive convex approximation.
They provided numerical evidence to show the effectiveness of
RSMA techniques in mitigating pilot contamination.

Cell-free M-MIMO setups in [16] assumed perfect synchro-
nization, which was impractical for distributed networks due to
inevitable signal delays, thus hindering coherent transmission.
Therefore, in [17], the authors examined the data transmission
performance of a cell-free M-MIMO system, considering both
coherent and non-coherent scenarios. Moreover, they derived
a closed-form expression for the sum SE of RSMA-supported
cell-free M-MIMO systems, addressing asynchronous reception
and optimizing power allocation between common and private
messages. Finally, a robust precoding design for common
messages was proposed to improve performance, especially in
mitigating the impact of asynchronous reception. Numerical
results claimed the efficacy of their method in addressing
asynchronous reception.

V. PILOT DECONTAMINATION USING ADVANCED CHANNEL
ESTIMATION METHODS

Deep Learning (DL) offers a promising solution for com-
plex wireless communication challenges, boosting the system’s
performance with low computational complexity in tasks like
resource allocation, channel decoding, and channel estimation.
Xu et al. [18] proposed a DL-based pilot design approach
for M-MIMO systems, addressing the challenge of optimizing
power allocation for each user’s pilot sequence to minimize
the cumulative mean square error in channel estimation. Their
solution involved a deep neural network that mapped the input
data (large-scale fading coefficients) to output data (pilot power
allocation vector). Simulation results claimed that the proposed
scheme surpassed conventional pilot decontamination methods
while having lower computational complexity. One limitation
of the paper was its reliance on unsupervised learning for pilot
power allocation, which may not guarantee optimal solutions.

Therefore, Hirose et al. [19] presented two innovative chan-
nel estimation techniques: one employed a neural network
(NN), and the other utilized a convolutional neural network
(CNN). The NN-based approach relied on fully connected
layers, focusing on extracting spatial information from the least
squares estimated channel. In contrast, the CNN took advantage
of the user’s spatial correlation using sliding convolutional
filters. Their results demonstrated that CNN-based estimation
outperformed the NN-based alternative in accuracy, despite
slightly longer training times for datasets. However, the paper
might have lacked a thorough investigation into the scalability
of the proposed DL-based channel estimation method for M-
MIMO systems with a large number of antennas or users.

In [20], the authors proposed a low-complexity channel
estimation technique for M-MIMO systems by using a deep
neural network (DNN) for denoising before the conventional
least squares operation, enhancing performance through a tai-
lored DNN architecture. To maintain low complexity, they
reconfigured this architecture’s input and output layers and
optimized the number of parameters, substantially reducing it
from millions to just a few thousand parameters. While the
proposed scheme demonstrated favorable outcomes, the paper
might not have fully explored the computational complexity
and resource requirements associated with deploying untrained
DNNs in real-time M-MIMO systems, which could have been
crucial factors for practical implementation.

Lim et al. [21] proposed a method to mitigate pilot contam-
ination in wireless systems using DL. They introduced an NN-
based pilot design to minimize mean square error, augmented
with unsupervised learning to remove the necessity of using
pilot samples during the uplink training phase. Additionally,
they utilized deep residual learning for the channel estimator
to reduce distortion noise caused by pilot contamination and
to reconstruct the original channel. Finally, they introduced a
novel pilot design and channel estimator using transfer learning,
which outperformed conventional linear estimators, even in the
presence of hardware impairments, showing its capability to
mitigate interference without prior knowledge.

VI. DISCUSSION AND RELATIVE MERITS

Pilot contamination is a recognized barrier to improving
SE in M-MIMO systems. Table 1 provides a comparative
analysis of schemes based on major contribution, system
considered, channel assumption, combining/precoding scheme,
computational complexity, pilot overhead, and scalability. The
major contributions of the proposed schemes include enhancing
throughput through intelligent pilot assignment or reuse [3],
reducing pilot overhead [13], and improving channel estimation
via advanced techniques [18]. Moreover, the proposed schemes
are evaluated in two scenarios: cell-free massive MIMO, utiliz-
ing distributed antennas without dedicated cell boundaries, and
multicell massive MIMO, which employs traditional cell-based
structures with coordinated interference control. Furthermore,
most papers consider correlated and uncorrelated Rayleigh fad-
ing channel assumptions. The key difference is that uncorrelated
channels assume an equal signal distribution in all directions,
which is impractical, while correlated channel assumptions
suggest variations in signal presence among different directions.

Different schemes adopt specific combining/precoding tech-
niques based on their complexity and accuracy requirements.
Precoding schemes play crucial roles in signal transmission op-
timization. Match filter (MF), maximum ratio (MR), and zero-
forcing (ZF) methods are foundational techniques. Additionally,
regularized zero-forcing (RZF) and minimum mean squared
error (MMSE) precoding schemes offer advanced capabilities
for improved system performance but exhibit higher complexity
than conventional schemes [2]. Generally, channel estimation
requires a minimum of τp pilot symbols, with τp ≥ K, often
reused in neighboring cells. We categorize pilot overhead as



TABLE I
COMPARATIVE ANALYSIS OF THE PROPOSED SCHEMES.

Ref. No. Major Contribution System Considered Channel Assumption Combining/ Precoding
Scheme

Computational Complexity Pilot
Overhead

Enable Scal-
ability

Mitigating Pilot Contamination through Pilot Assignment Schemes
Zhu et al. [3] Maximize the minimum SINR via pilot

assignment
Uplink Multicell M-MIMO Uncorrelated Rayleigh

fading
MF combining O(K log K) Not addressed Not addressed

Nguyen et al.
[4]

Maximizing SE through optimal pilot as-
signment

Uplink-Downlink Multicell
M-MIMO

Correlated Rayleigh fad-
ing

MR combining O(νN1L2KM3 +

Nα
2 max{2L3K3, F1})

Not addressed Not addressed

Liu et al. [5] Mitigate pilot contamination via pilot as-
signment

Uplink cell-free M-MIMO Uncorrelated Rayleigh
fading

MR combining O(K(K + 2M) +
KM log(2M))

Not addressed Not addressed

Zeng et al. [6] Optimizing pilot assignment using
Weighted Graphs

Uplink-Downlink cell-free
M-MIMO

Uncorrelated Rayleigh
fading

MMSE combining O

(
K2

2
+ K

2
+ τ

)
Not addressed Not addressed

Saeed et al.
[7]

Mitigating pilot contamination and en-
abling scalability in M-MIMO

Uplink Multicell M-MIMO Correlated Rayleigh fad-
ing

MMSE combining O(K(K − C)) Decreased Yes

Zhu et al. [9] QoS improvement through soft pilot reuse Uplink-Downlink multicell
M-MIMO

Uncorrelated Rayleigh
fading

Multicell block diagonaliza-
tion precoding

O(M(K2
e + K2

CS)) Increased No

Li et al. [10] Maximizing SE via soft pilot and fre-
quency reuse

Downlink Multicell M-
MIMO

Uncorrelated Rayleigh
fading

ZF precoding NA Increased No

Shahabi et al.
[11]

Decrease complexity with only a slight SE
variance

Uplink multicell M-MIMO Multi-path channel model Angle of arrival based com-
bining

O

(
K3.5L log

(
KL

ϵ

))
Not addressed Not addressed

Omid et al.
[12]

Suboptimal pilot allocation via reinforce-
ment learning

Uplink multicell M-MIMO Correlated Rayleigh fad-
ing

Direction of arrival based
combining

NA Not addressed Not addressed

Mitigating Pilot Contamination with Advanced Signal Processing
Lago et al.
[13]

Improved channel estimation via superim-
posed pilots

Uplink multicell M-MIMO Correlated Rayleigh fad-
ing

MR, RZF combining NA Not addressed Not addressed

Shafin et al.
[14]

Improved network performance through
superimposed pilots

Uplink-Downlink multicell
M-MIMO

Parametric channel model Direction of departure/arrival
based precoding

NA Zero Yes

Mishra et al.
[15]

Improve channel estimation through rate
splitting

Downlink single cell M-
MIMO

Correlated Rayleigh fad-
ing

MR and common precoder O(N0 max(4, (4K +

1)2(9K + 1)), F2)

Decreased Yes

Mishra et al.
[16]

Enhances SE despite imperfect channel
estimates

Downlink cell-free MTC
M-MIMO

Uncorrelated Rayleigh
fading

Heuristic common precoder NA Decreased Yes

Zheng et al.
[17]

Improve pilot orthogonality in asyn-
chronous reception

Downlink cell-free M-
MIMO

Correlated Rayleigh fad-
ing

MMSE, MR combining NA Not addressed Not addressed

Pilot Decontamination using Advanced Channel Estimation Methods
Xu et al. [18] Improve MSE through learning-based pi-

lot design
Uplink single cell M-MIMO Uncorrelated Rayleigh

fading
NA O(KMn1 + KτnL−1 +∑L−1

l=2
nl−1nl)

Decreased Yes

Hirose et al.
[19]

Improve NMSE of channel through deep
learning

Uplink multicell M-MIMO Correlated Rayleigh fad-
ing

NA NA Not addressed Not addressed

Balevi et al.
[20]

Enhance NMSE of channel via untrained
deep learning

Uplink multicell M-MIMO Kronecker channel model NA O(M2) Not addressed Not addressed

Lim et al.
[21]

Deep residual learning based pilot design
and channel estimator

Uplink multicell M-MIMO Rayleigh and Nakagami-
m channel model

NA O(NepNT NK ×∑M
m=1 nm−1nmF2

N,m)

Not addressed Not addressed

’increased’ for schemes that introduce pilot sequence orthogo-
nality between users of neighboring cells, τp > K, ’decreased’
for schemes where τp < K, fewer pilot symbols than K while
accommodating all users, and ’not addressed’ means a typical
pilot reuse scenario. Lastly, the scalability criterion assesses
the scheme’s ability to accommodate a growing number of
devices in a cell while considering the limitation imposed by
the coherence block length constraint.

Smart pilot assignment schemes [3], [4] offer simplicity and
efficiency but come with high computation costs. Moreover,
graph coloring schemes [5], [7] minimize the use of orthogonal
pilot signals, yet their effectiveness heavily relies on inter-
ference graph criteria. Additionally, soft pilot reuse [9] effi-
ciently assigns orthogonal pilot sequences between cells’ center
and edge users, enhancing performance, but faces challenges
due to high pilot signal overhead. Furthermore, the angle of
arrival [11] considers the signal’s direction as a criterion to
distinguish pilot signals of multiple users, but in multi-path
scenarios, distinguishing between multiple user angles becomes
challenging. Overall, in the ongoing efforts to combat pilot
contamination within wireless communication systems, pilot
assignment strategies have emerged as pioneering solutions and
ongoing research is dedicated to refining their effectiveness [8].

Additionally, introducing the superimposed pilot schemes
[14], [13] has addressed the issue of pilot signal length by
transmitting pilots alongside data, significantly mitigating pilot
contamination. Furthermore, RSMA [16], [17] has effectively
reduced interference by segregating pilot signals into common
and private components, allowing users to decode their data
with minimal interference from other users’ pilots. Overall,

superimposed pilots and RSMA significantly reduce pilot over-
head, ultimately increasing spectral efficiency. However, both
schemes require advanced signal processing techniques, conse-
quently necessitating high-end hardware support [16].

Furthermore, the increasing utilization of advanced machine
learning techniques like DL and CNN is playing a growing
role in enhancing pilot design and channel estimation accuracy.
A DL-based pilot design approach [18] showed promise in
optimizing power allocation, but concerns persist regarding
its reliance on unsupervised learning. Another [19] introduced
NN and CNN-based channel estimation techniques, with CNN
demonstrating higher accuracy but potential scalability issues.
Additionally, a low-complexity DNN-based channel estimation
method [20] was presented, with concerns about computational
complexity. Lastly, a DL-based approach [21] to mitigate pilot
contamination was proposed, showing superior performance
even in the presence of hardware impairments, highlighting
its interference mitigation potential without prior knowledge.
These combined advancements emphasize the dynamic evolu-
tion of pilot contamination mitigation strategies, with a clear
focus on optimizing SE and efficient resource utilization.

VII. POSSIBLE FUTURE RESEARCH AREAS

Future research into resource-efficient pilot schemes, such
as time-multiplexed pilots [3], [7], superimposed pilots [13],
and rate splitting [16], could continue evolving due to their
potential to effectively mitigate interference. These schemes
offer opportunities to optimize the allocation of resources for
both pilot and data transmission, thereby reducing overhead and
maximizing throughput. Further exploration of these techniques



enables researchers to delve into the integration of the afore-
mentioned schemes and fine-tuning resource management for
optimal efficiency, thereby improving SE.

The increasing demand for wireless connectivity, coupled
with the need for a growing number of orthogonal pilot se-
quences for channel estimation, presents a challenge due to the
coherence block length constraint [7]. In forthcoming research,
it is imperative to prioritize the advancement of intelligent user
scheduling schemes [8] to effectively manage the projected
exponential growth in the number of devices in the coming
years. These intelligent scheduling schemes will reduce pilot
overhead, address pilot contamination, and enable scalability,
ultimately improving the system’s throughput.

In the future, incorporating reinforcement learning [12] into
pilot assignments entails the creation of an adaptive framework
where an agent adjusts pilot assignments based on real-time
network conditions, including mobility, interference, and chan-
nel quality. The agent’s actions, guided by a reward function,
aim to optimize throughput and minimize interference. Training
methods, such as Q-learning, can be utilized to balance explo-
ration and exploitation, enabling effective pilot assignments.

Furthermore, advanced research should focus on joint pilot
design and channel estimation techniques [21], using spe-
cialized deep neural network architectures and optimization
algorithms to concurrently optimize pilot sequences and es-
timate channels in dynamic wireless environments. This re-
search would create real-time, adaptable solutions seamlessly
integrating pilot optimization and channel estimation to address
dynamic fading channels and interference challenges.

VIII. CONCLUSIONS

M-MIMO is crucial for 5G and beyond technologies and
offers increased SE but relies on accurate channel informa-
tion, while pilot contamination remains a significant challenge.
Pilot contamination arises from short coherence intervals in
dynamic wireless environments, causing interference to/from
neighboring cells and reducing SE. This paper briefly discusses
various mitigation strategies, such as intelligent pilot allocation
schemes, interference mitigation schemes, and advanced tech-
niques like deep learning, with the aim of reducing interference
and enhancing SE. Future research may explore adaptive pilot
assignment with reinforcement learning, resource-efficient pilot
schemes, joint pilot design, and channel estimation to optimize
SE and adapt to dynamic wireless conditions.
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