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ABSTRACT 

 

Based on the Maxwell-Beatty reciprocity theorem, static non-reciprocity has been 

realized by using nonlinearity, but this non-reciprocity has strict restrictions on input 

amplitude and structure size(number of units). Here, we design a robotic metamaterial 

with two components of displacement and rotation, which uses active control to add 

external forces on the units to break reciprocity at the level of the interactions between 

the units. We show analytically and simulatively that breaking reciprocity at the level 

of the interactions directly leads to a strong asymmetric response of displacement in a 

static system, this displacement-specific characteristic not only has no restrictions on 

size, input amplitude, and suitable geometric asymmetry, but also can be transferred 

to rotation by coupling under large deformation. After the evolution from statics to 

dynamics, asymmetric transmission and unidirectional amplification of vector solitons 

are both implemented in this system. Our research uncovers the evolution of static 

non-reciprocity to dynamic non-reciprocity while building a bridge between non-

reciprocity physics and soliton science. 
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1. Introduction 

  

Reciprocity is a fundamental property of linear, time-reversal invariant, and 



spatial-reversal invariant physical systems, in which the excitation and response are 

symmetric [1]. Reciprocity can also sometimes be seen as a hindrance, for example in 

the case of reciprocity, there is no way to tune the response to different levels under 

excitation from different sides. Breaking this limitation of reciprocity is expected to 

achieve full control over static and dynamic responses. In the last few years, there has 

been a surge of interest in breaking reciprocity in mechanical systems[2-6], which 

achieve non-reciprocity primarily through two following schemes. One is to break the 

time-reversal symmetry of the system by adding active time-modulated components, 

which are generally used to achieve dynamic non-reciprocity. Typical examples are 

active metamaterials[7-10] and gyroscopic metamaterials[11, 12], which realize the 

propagation of non-reciprocal waves. The other is to break spatial symmetries of the 

passive structure through nonlinearity, which is usually used to achieve static        

non-reciprocity. For example, in topologically trivial ‘fishbone’ metamaterials[13-15], 

the structure has an asymmetrical response under different side excitation, while in 

topologically non-trivial rotating square metamaterials[13, 16], the response has 

greater asymmetry under different side excitation. This not only proves that breaking 

spatial symmetry is a powerful means to achieve non-reciprocity, but also shows that 

structures with topological properties can achieve more significant non-reciprocity. 

In conventional topological band theory, the principle of bulk-edge 

correspondence (BEC) directly relates the number of topological boundary modes to 

the topological invariants under periodic boundary conditions (PBC)[17, 18]. The 

combination of non-reciprocity and topological band theory extends conventional 

band topology, such as zero modes based on the geometric asymmetry[13] and 

gain/loss induced nontrivial topological phases[19-21], and reveals a new class of 

topological phases characterized by non-Bloch winding numbers[22-24]. Perhaps the 

phenomenon of most interest in this novel spectral topology is the non-Hermitic skin 

effect (NHSE), where eigenstates in a system with broken reciprocity decay 

exponentially from the system boundary, and all eigenstates are localized at the 

boundary of the finite-sized system[25]. In the field of metamaterials, NHSE is 

generally achieved by adding active modulated components, which inevitably 



inject/extract energy into a closed system. 

Recently, the idea of combining active metamaterials and robotics has been 

proposed, and robotic metamaterials that combine local sensing, computation, 

communication, and actuation functions have been designed[26], which can achieve 

more extreme performance and different combinations of performance[27]. The 

concept of robotic metamaterials stems from the "programmability problem"[28], 

whereby shape-changing robots designed in this way are often complex because the 

microprocessors inside each robot need to communicate with all the other 

microprocessors in the lattice. Since then, the design idea of the common command 

instruction has greatly simplified the design of robot metamaterials, when the material 

is loaded externally, each robot only needs to respond to the information passed to 

them by the neighboring unit according to the common instruction[29]. Based on this, 

we design a robotic mechanical metamaterial that uses a distributed active control to 

break reciprocity at the level of the interactions between units, which results in the 

spatial symmetry of the structure being broken. This robotic metamaterial compares to 

conventional active or passive metamaterials, in addition to having a unique function 

that allows standing waves to achieve unidirectional amplification at all 

frequencies[26], our study shows that it also has a range of more extreme properties in 

static behavior, such as the realized non-reciprocity is not limited by structural size, 

the magnitude of input amplitude and geometric asymmetry. In particular, in the 

current study of vector soliton regulation, both active and passive metamaterials 

basically change the bond parameters, either directly or indirectly[30, 31]. Therefore, 

besides using the amplitude gap of vector solitons to realize the unidirectional 

transmission[32], usually unable to achieve asymmetric transmission under excitation 

from different sides. However, the robotic metamaterial we designed is based on the 

perspective of energy injection/extraction into the system, so it can realize both 

unidirectional amplification and asymmetric transmission of vector solitons. 

 

 

 

 



2. Non-reciprocal robotic metamaterials 

 

The one-dimensional chain consists of a rigid cross-unit with mass m, rotational 

inertia J, and arm length l, and the crosses are connected by shims of length 
hl . Each 

cross is equipped with a local control device, which applies a force related to the 

displacement of neighboring units in the cross, the non-reciprocity at the level of the 

interactions can be achieved when the force and displacement satisfy the appropriate 

relationship. The specific design scheme as follows: the sensor of the local control 

device on the (n-1)-th cross and (n+1)-th cross needs to collect their displacement 

signal 
1nu 
, and finally transmit the collected displacement signal to the control device 

on the n-th cross, the control device adds a rightward force 
1 1( )n n n nF k u u− += −  to the 

n-th cross, as shown in Fig. 1(a). For mathematical modeling of the system, 
nF  is 

modeled as the resultant force of the leftward force 
, 1n nF −

 and the rightward force 

, 1n nF +
, as shown in Fig. 1(b), which satisfy the relation 

, 1 , 1n n n n nF F F+ −− = . It is worth 

mentioning that in order to explain the problem more easily in different cases, 
, 1n nF −

 

and 
, 1n nF +

 can be modeled in any form if the conditions of the resultant relation are 

satisfied. For example, under the PBC, 
, 1 1( )n n n n nF k u u− −= −  and 

, 1 1( )n n n n nF k u u+ += − −  

are selected for the modeling of the equivalent system, a pair of actuation forces 

between neighboring units in Fig. 1 (b) can be equivalent to the interaction force 

generated by the spring connection. The spring will have a special property —— the 

force at both ends of the spring is not equal —— namely, when the n-th node acts on 

the (n+1)-th node, the stiffness is 
nk , while when the (n+1)-th node acts on the n-th 

node, the opposite negative stiffness 
nk−  is presented, the modeling of the equivalent 

system is shown in Fig. 1(c). In this equivalent system, reciprocity at the level  of the 

interactions is violated, which provides conditions for the realization of non-

reciprocal effects. In addition, as shown in Fig. 1(c), shims connecting the crosses are 



modeled as a combination of tension, torsion, and shear springs with stiffness 
lk , k , 

and 
sk , and the tension stiffness 

lk and shear stiffness 
sk  are much greater than the 

torsion stiffness k . 

 

 

Fig. 1. (a) Design of nonreciprocal robotic metamaterials,  (i) is the sensor,  (ii)  is the actuation device, 

and the arrow indicates the loop. (b) Modeling diagram of the system. (c) Modeling diagram of the 

equivalent system under PBC. 

 

3. Static non-reciprocity 

3.1.  Pure displacement framework 

 

First, we discussed the case where the actuation force on the left and right ends is 

also at the center of mass, namely, the structure is in the pure displacement situation 

without rotation angle. The structure can be regarded as a one-dimensional          

mass-spring system, and the control equation of displacement is as follows: 

 2

1 1 1 12
( ) ( 2 ).n

n n n l n n n

u
m k u u k u u u

t
− + + −


= − + + −


 (1) 

In general, the band theory is used to analyze the system under PBC, and the winding 



number of a closed loop formed by branches can effectively represent the number of 

boundary modes of the finite structure. However, due to the possible skin effect in 

non-reciprocity systems, the traditional principle of BEC may fail in systems where 

reciprocity is broken[25, 33]. In our non-reciprocal system, the winding number under 

PBC produces singular results that cannot be used to characterize topological 

properties (see Appendix A for details). Discussion of the specific topological 

properties of non-reciprocal systems will need to be conducted under open boundary 

conditions(OBC). The modeling diagram of the finite structure of the ( 1)N N N  = +  

nodes is shown in Fig. 2(a). Under the condition of satisfying the overall horizontal 

external force balance, namely: 

 1

0,1 , 1 , 1 1,

1

( ) 0,
N

n n n n N NF F F F
−

+ − −+ − − =   

the general formulas of actuation force can be written as 
, 1 1( )n n n n nF k u u− −= − +  and

, 1 1( )n n n n nF k u u+ += − + , so the controlling equation of the finite structure is: 

 2U D U,
N N

m
 

− =  (2) 

where, D
N N 

 is the total stiffness matrix of the finite structure (see Appendix A for 

specific form). The result of solving the 30 nodes is shown in Fig. 2(b), an isolated 

band appears at the zero frequency in the band gap, as shown in the red solid line of 

the figure. For the analysis of this isolated band, Eq. (2) degenerates to D U=0
N N 

 at 

zero frequency, and { }nu  is a geometric series, namely: 

 
0[ ( )] ,n

n nu u g k=  (3) 

where, 
1 2( ) / ( ) / ( )n l n l ng k c c k k k k= = + −  is the local factor of the mode. 



 

Fig. 2. (a) Schematic diagram of the OBC. (b) Spectra of the structures at the OBC. (c) The topological 

invariant changes with 
nk . (d) The distribution diagram of the modes of the finite 

structure( 11N = ), inset is the distribution diagram after linearizing 
nu . 

 

Further analysis of the above phenomenon, in the deformation process, the work 

done by the n-th pair of actuation forces(
, 1n nF +

 and 
1,n nF +

) is: 

 2 2

, 1 , 1 1, 1 ( 1) / 2,n n n n n n n n l nE F du F du k g u+ + + += − = −    

the strain energy required for the shim deformation between the n-th and (n+1)-th 

node is: 

 2 2 2

, 1 1( ) / 2 ( 1) / 2,n n l n n l nU k u u k g u+ += − = −   

namely, 
, 1 , 1 0n n n nE U+ +− = . This shows that the work injected by the actuation force 



between units to the chain is exactly all used for the corresponding shim between 

units. If the control device and the one-dimensional chain are equivalent to a system, 

the system supports a mode that is similar to the zero-energy modes, this corresponds 

well to the previously reported topological zero-energy modes[34, 35]. According to 

the above energy equality relationship, 
, 1n nF +

 and 
1,n nF +

 should be equal to the reaction 

force generated by the tensioned shim, namely, 
, 1 1, 1( )n n n n l n nF F k u u+ + += = − − , for a 

finite structure of N  nodes, write the above formula in matrix form: 

 
( 1)

C U=0,
N N − 

 (4) 

where, 
( 1)

C
N N − 

 is the compatibility matrix (see Appendix A for the specific form). 

The Fourier transform of the compatibility matrix C  yields 
1 2( ) iqC q c c e= − , when 

the wave vector q changes from 0 to 2𝜋, ( )C q  forms a circle in the complex plane. 

The circle of the complex plane has an obvious spectral winding number, which is 

defined as 
2

1

0
(2 ) 1/ ( ) ( )W i C q dC q



 −=  . Fig. 2(c) shows the change of topological 

invariants with 
nk . When 0( 1)nk g＜ ＜ , the circle goes once around the origin, and the 

topological invariant W=1, in the case of N →+ , 
nu  is an admissible eigenstate 

near the boundary n=N; When ( 1)nk g ==0 , the circle passes through the origin, at this 

point, W is singular, with a topological transition in the one-dimensional chain. When 

0( 1)nk g＞ ＞ , the topological invariant W changes to 0, 
nu  is not an admissible 

eigenstate near the boundary n=N. Fig. 2(d) shows the distribution of displacements 

corresponding to zero frequency for a finite structure with 11 nodes, the insets is the 

linearized displacement distribution diagram. It can be seen that when 
nk  0 , the 

modes are exponentially distributed, and the decay length a is defined as the length 

required to decay a unit in the logarithmic coordinate, namely, 
11/ ln( / )n nu u += , and 

the decay length reflects the decay speed of the boundary mode. When W=1, the 

decay length is positive, and the mode localization is on the left. When W is singular, 



the decay length tends to positive infinity, and the modes are delocalized, which 

appear as body modes. When W=0, the decay length is negative, displacement 

increases exponentially with the increase of the node number, and the mode locality is 

on the right. With the 
nk  symbol unchanged, the modes only localize on a specific 

side of the chain to provide conditions for the implementation of static non-reciprocity. 

 

 

Fig. 3. (a), (b) the simulation results of the left and right excitation at / 0.05n lk k = , respectively. The 

top figure is the excitation schematic diagram, the lower figure is the simulation result, the hollow cross 

not filled with the color is the initial state, and the cross filled by the color is the deformation after the 

excitation. When the left side is excited, the displacement increases from the incentive side to the right 

side. When the right side is excited, the displacement tends to decay from the excitation side to the left 

side. (c) The static non-reciprocity of the displacement. (d) The non-reciprocal susceptibility 
u  

diverges at 0nK = , where /n n lK k k= . 

 

In the simulation software COMSOL creates a chain of N  nodes, without 

general we choose 11N = , and use the built-in probe function to monitor the 



displacement of 
nu , monitor displacement 

nu  to add actuation force on each node, the 

way of actuation force described in Fig. 2(a), but the difference is the start nod (the 

first node for the left incentive and the last node for the right excitation) without 

actuation force. Firstly, the one-dimensional chain is excited on the left, and a 

rightward force 
0 0( )F u  is input at the first node to deform the chain. The results show 

that the displacements of each node tend to increase with the increase of node number, 

as shown in Fig. 3(a). Input a leftward force ( )N NF u  to excite the one-dimensional 

chain, and the displacement decays from the excitation side to the left side, as shown 

in Fig. 3(b). In the case of 
0 NF F= , there is a huge difference between L

Nu  under left 

excitation and R

0u−  under right excitation, which indicates that the displacement 

response has obvious static non-reciprocity, as shown in Fig. 3(c). The displacement 

difference of left and right excitation increases with the increase of excitation 

amplitude and structure size, and the relationship between them is as follows (see 

Appendix A for details) : 
0( )u nu k F = , u  and 

0F present a primary dependence 

relationship, where 
u  is non-reciprocal susceptibility, and it is specifically expressed as 

follows: 

 1

( ) .
( 1)

N N

u n

l

g g
k

k g


−+
= −

−
 (5) 

The variation of 
u concerning to 

nk  is shown in Fig. 3(d), it can be seen that when 

nk  changes from negative to positive, 
u  appears infinite discontinuity at 0nk = , 

which is because W jumps from 1 to 0 with the change of 
nk , the underlying 

mechanism of one-dimensional chain changes from displacement localization on the 

left to localization on the right after delocalization, and the transformation of the 

displacement distribution from the boundary mode to the body mode( 1g → ) leads to 

the divergence of 
u . 

 



3.2.  Geometric linear framework 

 

The excitation mode of the starting node in section 3.1 is transformed into the 

force deviating from the center of mass, as shown in the excitation form in Fig. 4(a). 

In this case, the one-dimensional chain not only has displacement deformation, but 

also has rotation deformation. First, consider the case where the eccentricity distance 

is very small, namely, the angle is very small, the deformation of the structure can be 

approximated as a linear small deformation. Therefore, geometric nonlinearity is not 

considered in the simulation, and the simulation results are shown in Fig. 4(a).  Under 

the left and right excitation respectively, the displacement distribution is consistent 

with Fig. 3(a), which shows obvious non-reciprocity, and the response under left 

excitation is increasing(top figure), response under right excitation is decaying(lower 

figure). However, no matter the left excitation or the right excitation, the angle fields 

all appear to decay inward, and the angle distribution remains symmetric when 

0 NF F= , presenting reciprocity, as shown in Fig. 4(c). 

 

Fig. 4. (a) The top and lower figures are the simulation results of the left and right eccentric excitation, 

respectively, where the scaling factors of the top and lower figures are 1 and 10, respectively. The depth 



of the filling color of the cross represents the magnitude of the x component of its displacement field, 

and the arrow and arc length of the arc above the cross represent the direction and magnitude of the 

angle respectively. (b) The dispersion diagram of the angle. (c) The angle is reciprocal at small 

deformation, and the blue line (left excitation) and the red line (right excitation) are symmetrical in the 

figure. 

 

In order to better analyze and understand the above phenomena, a theoretical 

model of linear small deformation is established. In the modeling of the geometric 

linear framework, the angle 
n  is assumed to be infinitesimal, and the displacement 

nu  and angle 
n  are both approximated as a first-order expansion concerning the 

excitation 
0F , namely: 

 
1 1,(1/ ) .n n l n nu u k F+ +− = −  (6) 

In Eq. (6), the influence of angle is truncated as higher-order infinitesimal, and Eq.(6) 

indicates that the distribution of displacement deformation will conform to the 

distribution of pure displacement in section 3.1.  

For angle deformation, the governing equation is expressed as: 

 2

1 1 1 10 ( 4 )  ( 2 ).n n n s n n nk k l      + − + −= − + + + + −  (7) 

When the band theory is used to analyze the angle (see Appendix B for details), 

because the torsional stiffness k  of the shim is non-zero, this results in (0)  never 

being zero, so that the zero frequency is always in the band gap, as shown in Fig. 4(b). 

This indicates that the angle field corresponds to a no propagating mode at zero 

frequency, and no matter from which side the excitation is carried out, the angle 

distribution will appear to decay inward. The angle control equation Eq. (7) in the 

continuum limit form is: 

 2
2

2 *

1
( ) 0,

d

dX 





− =  (8) 

where 
* 2( ) / (6 )sk l k k   = − , it is the characteristic decay length of the angle 

distribution. Eq. (8) has the spatial symmetry of X X→− , →− , which confirms 



that the angle is reciprocal in the case of linear small deformation. The solution of   

Eq. (8) consists of a linear combination of *exp( / )X   and *exp( / )X − , namely : 

 * */ /

1 2 .
X X

c e c e   −
= +  (9) 

The results of Eq. (9) are shown in the solid line in Figure 4(c), where the solution for 

the left excitation (blue line) and the solution for the right excitation (red line) are 

symmetrically distributed.  

 

3.3.  Geometric nonlinear frame 

 

When the eccentric distance of the force is further increased, the one-

dimensional chain enters the large deformation of the angle, and the linear small 

deformation hypothesis of the upper section is no longer applicable. First, the 

response of the one-dimensional chain with large deformation under left and right 

excitation is simulated in the simulation software. At this time, geometric nonlinearity 

is considered in the simulation, and in order to ensure that the angle deformation is 

within a reasonable range, the moment generated by the actuation force should be of 

the same order of magnitude as k , so 
n lk k  is satisfied in the simulation(our 

simulation model in this section, / 0.002n lk k = ). The simulation results show a 

phenomenon completely different from that in section 3.2, namely, the angle field has 

an asymmetric response, and the comparison between left and right excitation is 

shown in Fig. 5(a). Next, we focus on the angle distribution under left excitation, and 

the simulation results show that the angle distribution is dependent on the end 

displacement deformation 
Nu . When 

Nu  is positive, the angle distributions always 

decay from the left side(excitation side) to the right side, as shown in Fig. 5(b) and 5(c), 

and with the increase of 
Nu , the decay rate is faster, as shown in the inset in Fig. 5(c), 

the angle distribution curve corresponding to Fig. 5(b) (red line) is always below the 

angle distribution curve corresponding to Fig. 5(c) (black line). When 
Nu  is negative, 

the angle distribution is still from the left side to the right side when 
Nu  is small, as 



shown in Fig. 5(d); but when 
Nu  increases to a certain critical point, the angle 

distribution changes to increase from left side(excitation side) to right side, as shown 

in Fig. 5(e). 

 

 

Fig. 5. (a) The top figure shows the simulation results of the left excitation and the right excitation, while 

the lower figure shows that the responses of the left excitation and the right excitation are asymmetrical, 

where the black solid dot is the simulation result and the black solid line is the result of the continuum 

model(Eq.(15)). The black dashed line is the result of the continuum model(Eq.(9)) without taking into 

account geometric nonlinearity, where the responses of the left and right excitation are symmetric. (b) 

and (c) are the resulting diagram corresponding to 0Nu ＞  under left excitation.  (b) and (c) correspond 



to the cases of 50 (mm)Nu =  and 30 (mm)Nu =  respectively, and their angle distribution decays 

from the left to the right, and their distribution curve (black line) is within the gray envelope, where the 

gray envelope(dashed line) corresponds to the angle distribution of 
, 1 0n nf + = . Inset is obtained by 

normalization of the angle distribution in Fig. 5(b) and Fig. 5(c).  (d) and (e) are the resulting 

diagram corresponding to 0Nu ＜  under left excitation. (d) shows that the angle distribution decays 

from the left to the right when 1c

N Nu u −= , and as 
Nu  decreases 2c

Nu − , (e) shows that the angle 

distribution changes to increase from the left to the right. The solid gray lines in both figures are the 

distribution curves of the dominant deformation mode (
1 0c


=

 or 
2 0c


=

). 

 

To investigate the source of the non-reciprocal effect and the cause of decay and 

increase of two deformation modes, a theoretical model of the geometric nonlinear 

frame is established. Different from the modeling of geometric linear frames, in the 

modeling of the geometric nonlinear frame, the displacement difference of the 

centroid of the cross is modeled as: 

 
1,

1 1( )(2 cos cos ),
2

n n h
n n n n

l

F l
u u l

k
 +

+ +− = − − + − −  (10) 

which is composed of two parts: the deformation of the shim and the change of the 

horizontal projection generated by the rotation of the cross. According to Eq.(10), the 

governing equation of displacement is as follows: 

  
T

0 1( 1)
C U ,..., ,..., ,l n NN N

k l a a a
  −− 

= −  (11) 

where, 
12 cos cosn n na   += − − ,  0, 1n N − . Let 0Na = , the bit displacement 

solution can be written as: 

 

0 ( )  ,
2

N
n h

n i

i n

l
u c g l a

=

= − +   (12) 

where 
0

nc g  is the general solution corresponding to the homogeneous form of 

Eq.(11)(namely, CU 0= ), 
0c  is determined by the boundary conditions; 



0

( / 2)
N n

h i

i

l l a
−

=

+   is the particular solution corresponding to U( ,1) 0N = , in the process 

of solving the particular solution, since 
n lk k , two elements 

1c  and 
2c  in the 

compatibility matrix C are approximated by 
1 2 lc c k= = , under this particular solution, 

0 Nc u= . The governing equation for angle is as follows (see Appendix B for details): 

 2

2 2

2 ln 6
0,

X

l N

s

k lu g g kd

dX k l k








+
− =

−
 (13) 

where, term Xg  is generated due to the addition of actuation forces, and it is the 

addition of this term that makes the symmetry of X X→− , →−  in Eq.(13) no 

longer hold, which makes the angle deformation obtain non-reciprocal effect in 

nonlinear large deformation, which explains the asymmetric response in Fig. 5(a).  

Eq. (13) is further simplified, as 2 / ( )n l nk k k = −  in [1 ]X Xg = +  approaches 0, 

Xg  in eq.(11) is simplified to 1 X+ , and a solvable differential equation is obtained: 

 2

2
( ) 0,

d
aX b

dX


− + =  (14) 

where， 

 2(2 ln ) / ( ),l N sa k lu g k l k=  −   

 2(2 ln 6 ) / ( ).l N sb k lu g k k l k = + −   

Eq. (14) corresponds to the stationary Schrodinger equation with linear potential 

energy, let 2/3( )/ | |aX b a = + , the solution of Eq. (14) can be expressed as: 

 
1 2Ai( ) Bi( ),c c  = +  (15) 

where Ai( )  and Bi( )  are Airy functions. 

Next, two phenomena of decay and increase in left excitation are discussed. In 

the above modeling, the force on the shim between the n-th node and the (n+1)-th 

node is written as: 

 1

, 1 ( ).n n

n n l Nf k u g g+

+ = −  (16) 



When 0Nu ＞ , all the forces on the internode shim are tensions. In this case, 
, 1n nf +

 

always exerts a moment on the cross to make the angle tend to 0, which makes the 

corresponding angle distribution of 0Nu ＞  fall within the envelope formed by the 

angle distribution of 
, 1 0n nf + = , as shown in Fig. 5(b) and Fig. 5(c), so in this case, the 

angle distribution can only decay from the left end to the right end. At the same time, 

with the increase of 
Nu , 

, 1( )n n Nf u+
 also increases, which means an increase of the 

moment that forces the angle to 0, resulting in a faster decay rate, as shown in the 

inset in Fig. 5(c). 

When 0Nu ＜ , the force of each internode shim is all pressure, which meets the 

necessary condition that the angle increases from the left side to the right side —— 

the force of the shim between the (N-1)-th node and the N-th node must be pressure 

(see Appendix B for details). We focus on two critical cases, the first critical is 

( 1) ( )N N − = , and the | |Nu  is small at this time, which is denoting as 1c

Nu − , and 

1c

Nu −  is the critical point at which the angle distribution begins to have increasing 

intervals, as shown in the simulation results in Fig 5(d). The result of Eq.(15) is 

represented by the black solid line corresponding to the continuum model in Fig. 5(d), 

and the decay deformation mode 
1 0c


=

 in Eq. (15) is represented by the gray solid line 

in Fig. 5(d), the trend of the gray solid line is almost consistent with that of the black 

solid line, indicating that the decay mode almost dominates the deformation at this 

time. The second critical is (0) (1) = , when | |Nu  is larger, and the | |Nu  at this 

time is denoting 2c

Nu − , 2c

Nu −  corresponds to the critical where the angle can increase 

monotonously from the left side to the right side, as shown in the simulation results in 

Fig. 5(e). At this time, the increase of deformation mode 
2 0c


=

 dominates the angle 

deformation, as shown in the results of the black solid line and the gray solid line in 

Fig. 5(e). In summary, with the decrease of 
Nu , the transition of angle distribution 

from attenuation to increase is the result of competition between decay and increase 



deformation modes. 

In this section, we not only demonstrate the feasibility of the scheme of 

transferring non-reciprocity from displacement to angle through coupling under large 

nonlinear deformation, but more importantly, we find that the amplitude of the angle 

can also increase with node number under appropriate conditions. In the following 

studies, we try to realize this phenomenon of increasing amplitude in dynamic 

systems. Inspired by the fact that actuation forces can input energy to the one-

dimensional chain in the previous chapter, we attempt to apply this active regulatory 

force to a dynamic system with constant energy to achieve the phenomenon of 

increasing angle amplitude, the soliton system supported by the reverse rotating 

cross/square structure seems to be a good choice. 

 

4. Dynamic non-reciprocity 

 

In the study of dynamic behavior, we select a long chain with 201N =  nodes, 

whose active regulatory force is applied in the same way as in Fig. 5(a), but unlike 

static loading, the dynamic excitation is shock excitation. The governing equations of 

dynamic modeling are as follows: 

 2 2

2 2
(2 ) 2 ,l l h n

u u u
m k k l l k

t X X X




   
− − + = −

   
 (17) 

 2 2 2
2 2

2 2 2
(6 ) 2 [ ( ) ] 0.

2

h
l s

lu
J k k l l k l

t X X X


  
  

   
+ + + + + − =

   
 (18) 

The left side of the equation system corresponds to the governing equation of vector 

solitons, while the right side of the equation group has a perturbative term 2 n Xk u−  . 

Numerical solutions of Eqs. (17) and (18) show that the amplitude of the pulse 

solitons increases with the increase of the node number when the left side is excited, 

as shown in Fig. 6(a). A schematic diagram of solitons in structural propagation is 

shown in  Fig. 6(c). Then we also carry out shock excitation on the right side, and 

finally draw the spatiotemporal diagram of soliton propagation under left excitation 

and right excitation as Fig. 6(b). From the spatiotemporal diagram of the right 



excitation, it can be seen that the amplitude of the soliton is decreasing. Different 

from the rule that the amplitude of the soliton is continuously increasing with a stable 

form under the left excitation, the amplitude of the soliton under the right excitation is 

not continuously decreasing to 0, but suddenly transforming into a strongly dispersive 

wave when it is below a specific amplitude. In addition, even before the solitary wave 

distortion, the solitary wave corresponding to the left and right excitation are 

asymmetrical, because the perturbative term breaks the spatial symmetry of the Eqs. 

(17) and (18). 

 

 

Fig. 6. (a) Under the left excitation, the amplitude of the soliton increases in the propagation process, and 



5/ 6 10n lk k −=  . (b) Solitons maintain a stable form under the left excitation, and the amplitude 

increases during propagation (top figure). under the right excitation, the amplitude of soliton decreases 

during the propagation process, and maintains a stable form when the amplitude is greater than the 

amplitude gap. When the amplitude is reduced to the amplitude gap, the non-dispersive solitary wave 

transforms into a strongly dispersive linear wave (lower figure). (c) Deformation schematic diagram of 

numerical solution in structure. (d) A comparison diagram of the skin effects of defective structure(no 

active regulatory force at nodes 100-th to 110-th) and perfect structure. 

 

As a soliton system with constant energy, this means that the energy change of 

the system will all come from the perturbation term, and the energy change of the 

soliton when it is transferred from the n-th node to the (n+1)-th node is: 

 
2

, 1 2 2 ( ) .n n n n

u u u
E k l dT ck l dT

X T X

+ +

+

− −

  
 = − =

     (19) 

The result of Eq. (19) shows that the energy of solitons increases(decreases) when 

0( 0)c c＞ ＜ . As shown in Fig. 6(a), the increase of soliton amplitude is accompanied 

by the decrease of width, which means that the amplitude and energy value may not 

meet the positive correlation. In Appendix C, we prove the positive correlation 

between the amplitude and energy value, namely, / 0dA dE＞ . Therefore, according 

to the modeling of Eq. (19), it can be obtained that when solitons propagate from left 

to right( 0c＞ ), the active regulatory force injects energy to the chain, thereby 

increasing the amplitude of the solitons, while the right excitation ( 0c＜ ) is opposite. 

The soliton solution needs to satisfy a restriction condition that the soliton amplitude 

should be greater than the amplitude gap gap

pA , the existence of the amplitude gap 

leads to the sudden distortion when the soliton amplitude is less than gap

pA  under the 

right excitation. At the same time, due to solitons having a permanent form, even if 

there are structural defects(some units have no active regulatory force), the solitons 

excited in our active system can realize unidirectional amplitude amplification with a 

stable form, as shown in Fig. 6(d). 

 



5. Conclusion 

 

To conclude, we propose a robotic metamaterial with two components of rotation 

and displacement, which has more extreme properties and different combinations of 

functions. Specifically, in the static behavior, the addition of active control breaks the 

spatial symmetry of the structure, which induces a topological nontrivial phase, thus 

achieving unidirectional amplification and asymmetric response in displacement. 

Then we demonstrate the feasibility of transferring non-reciprocal effects from 

displacement to angle under nonlinear large deformation, which lays a foundation for 

the study of dynamic behavior. In the dynamic behavior, amplitude unidirectional 

amplification and asymmetric transmission have been extended to soliton systems. 

This discovery links the skin effect and soliton science, and provides a new platform 

for the comprehensive regulation of solitary waves. We anticipate that these new 

characteristics will be expected to be used in crawling robots to overcome the effects 

of manufacturing errors and dissipation in the operating environment. 
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Appendix A: Modeling of the pure displacement framework 

 

To solve the dispersion relation of displacement under PBC, consider the 

solution of Eq.(1) in the form of Bloch wave, namely, 
( )( ) i qn t

nu u q e −=
～

, and substitute 

Eq.(1) to get: 

 2 ( ) ( ) 2 .iq iq

l n l n lm k k e k k e k −− = − + + −  (A-1) 

The spectrum of PBC is shown in Fig. A. When 0nk  , the branches of the PBC form 

a loop geometry. For a reference point   within the closed loop, the point gap can be 

well defined, and the corresponding point gap has a spectral winding number 

characteristic, which is expressed as: 

 1 1
( ) ( ),

2 ( )C
W dC q

i C q


 
=

−  (A-2) 

where, ( ) ( ) ( ) 2iq iq

l n l n lC q k k e k k e k−= − + + − . For static problems, the reference point 

is 0 = , When 0nk = , the loop degenerates into a straight line, where W(0)=0, but 

when 0nk  , the integral curve passes through the singularity of the integrand 

function( (0) 0C = ), as shown in Fig. A(a) and Fig. A(c), and the integral 

corresponding to Eq. (A-2) is singular, namely, W(0) cannot characterize the 

topological properties of 0nk ＜  and 0nk ＞ . 

 

 

Fig.  A Spectra of structures under PBC 

 

OBC can be expressed as the left side exerting a rightward force 

0,1 0 1( )nF k u u= − + , and the right side exerting a leftward force 
, 1 1( )N N n N NF k u u− −= − + . 



The schematic diagram of finite structure modeling is shown in Fig. 2(a) in section 

3.1. The governing equation of the one-dimensional chain is written as: 

 ..

0 0 1( ) ( ) ,l n l nmu k k u k k u= − + + −  (A-3-a) 

 ..

1 1( ) ( ) 2 , [1, 1],n l n n l n n l nmu k k u k k u k u n N+ −= − + + −  −  (A-3-b) 

 ..

1( ) ( ) .N l n N l n Nmu k k u k k u−= + − −  (A-3-c) 

Eq. (A.3) can be written in matrix form: 

 2U D U,
N N

m
 

− =  (A-4) 

where, 

 
1 2

2 1 2 1

2 1 2 1

2 1 2 1

                          ...            0

 0       ( + )     ...          0

D  0  ...     ( + )      ...      0

 0    ...          ( + )        0

 0                  ...   

N N

c c

c c c c

c c c c

c c c c
 

−

−

= −

−

1 2

.

                 c c

 
 
 
 
 
 
 − 

  

Eq.(A-4) is numerically solved to obtain the spectrum diagram of the finite structure. 

In the band gap, an isolated band appears at zero frequency, which is shown in        

Fig. 2 (b) in section 3.1. According to the analysis in section 3.1, the zero-frequency 

mode can be reduced to a mode similar to the zero-energy mode, and the governing 

equation can be reduced to:
, 1 1( ),     [0, 1].n n l n nF k u u n N+ += − −  −  Write the above 

formula in matrix form: 

 
0 1 2

1 1 2

1 2( 1)

1 1 2

      ...                   0

  0         ...            0

C   0  ...        ...        0

 0    ...                 0

  0   ...                     

N N

N

N

u c c

u c c

c c

u c c

u

 − 

−

− 
 

−
 
  = −
 

− 
 
 

0

1

1

1 2

 

 

 0,

  

N

N

u

u

u

uc c

−

  
  
  
   =
  
  
  −   

 (A-5) 

where,
( 1)

C
N N − 

is the compatibility matrix. 

In the pure displacement frame, the governing equations of statics are as follows: 

 
1 0 0 1BC-L: 0 ( ) , 0 ( ) ( ) ,l l n N l n Nk u u F k k u k k u−= − + = + − −  (A-6) 

 
0 1  BC-R: 0 ( ) ( ) ,  0 ( ) ,l n l n l N N Nk k u k k u k u u F−= − + + − = − +  (A-7) 



 
1 10 ( ) ( ) 2 ,  [1, 1].l n n l n n l nk k u k k u k u n N+ −= − + + −  −  (A-8) 

Assuming that the envelope of the displacement field has a small gradient, a 

continuous displacement field ( )u X  is introduced such that ( )n nu u X= . Perform a 

Taylor expansion of 
1 ( 1)n nu u X =   at 

nX : 

 2

1 2

1
( ) .

2
n n

n n

X X X X

u u
u u X

X X


= =

 
  +

 
 (A-9) 

Substitute Eq.(A-9) into Eq.(A-8) : 

 2

2 *

1
0,

u

d u du

dX dX
− =  (A-10) 

where * / (2 )u l nk k =  is the characteristic decay length of the displacement field 

distribution under the continuum limit. Eq. (A-10) is a second-order linear differential 

equation whose solution consists of a linear combination of *exp( / )X   and 

*exp( / )X − , namely: 

 * */ /

1 2 ,X Xu C e C e −= +  (A-11) 

where, 
1C  and 

2C  are integral constants determined by the boundary conditions     

(Eq. (A-6) or Eq. (A-7)). The results of the continuum model are shown in the red 

solid line in Fig. 2 (d) of section 3.1. 

When the left side is excited, the boundary condition BC-L is selected, and the 

displacement generated by the 0-th node is L

0 0 / [ ( 1)]lu F k g= − − . According to the 

geometric distribution law, L

0 / [ ( 1)]N

N lu g F k g= − − . When the right side is excited, 

the boundary condition BC-R is selected, and finally the 0-th displacement 

R 1

0 0 / [ (1 )]N

lu g F k g− −= − −  is obtained. The output displacement difference between 

the left excitation and the right excitation is: 

 
L R

0 0 01
[ ] ,

( 1) (1 )

N N

N u

l l

g g
u u u F F

k g k g


−

−
 = + = − + =

− −
 (A-12) 

where, 
u  is non-reciprocal susceptibility. 



Appendix B: Modeling of eccentric excitation cases 

 

(i) Geometrically linear case 

 

The governing equation of angle is: 

 2
2

1 1 1 12
( 4 )  ( 2 ).n

n n n s n n nJ k k l
t




     + − + −


= − + + + + −


 (B-1) 

Set n  as the Bloch wave solution of the form ( )( ) i qn t

n q e   −=
～

, and the dispersion 

relation of the corner is as follows: 

 2 2( 4)  ( 2),iq iq iq iq

sJ k e e k l e e − −− = − + + + + −  (B-2) 

k  is non-zero, which will result in 
0

( )
q

q
=

 never being  zero, namely, the band gap 

is always open. 

 

(ii) Geometric nonlinear case 

 

In the case of left excitation, the governing equation from the 1-th node to the 

(N-1)-th node is: 

 
1 1

1, , 1

2

1 1

0 ( 4 )

    ( ) sin

      (sin sin 2sin ) cos ,

n n n

l n n n n n

s n n n n

k

k f f l

k l

   



   

+ −

− +

+ −

= − + +

− +

+ + −

 (B-3) 

where,  

 

, 1 1 1[ ( )(2 cos cos )],
2

h
n n l n n n n

l
f k u u l  + + += − + + − −  (B-4) 

, 1n nf +  is the tension provided by the shim between the n-th node and the (n+1)-th node. 

Substituting Eq. (12) into Eq. (B-4), , 1n nf +  is reduced to: 

 1

, 1 ( ),  [0, 1]n n

n n l Nf k u g g n N+

+ = −  −  (B-5) 

Substituting Eq. (B-5) into Eq. (B-3), after a continuous angle field ( )X  is 

introduced such that ( )n nX = , the governing equation of the angle is obtained: 



 2

2 2

2 ln 6
0.

X

l N

s

k lu g g kd

dX k l k








+
− =

−
 (B-6) 

The governing equation for the N-th node can be written as: 

 2

1 1

1 1

0 ( 3 )  (sin sin )

      [ ( )(2 cos cos )] sin .
2

N N s N N

h
l N N N N N

k k l

l
k u u l l

    

  

− −

− −

= − + + −

− − + + − −
 (B-7) 

According to Eq. (B-5), the tension provided by the shim between the (N-1)-th node 

and the N-th node is 
1

1, ( )N N

N N l Nf k u g g −

− = − , and Eq. (B-7) is transformed into: 

 2

1,

 ( / )3 ( )
+( ) .

sin ( ) sin

s X N
N N

N

d dXk k l kN
f

l N l

 


 
=

−

 −
= −  

 
 (B-8) 

The angle distribution can only have increasing intervals in two cases, one is that 

( )N  and ( / )
X N

d dX
=

 are greater than 0(as shown in Fig. 5(e)), and the other is 

that ( )N  and ( / )
X N

d dX
=

 are less than 0, but the occurrence of these two cases 

require 
1, 0N Nf − ＜ , namely, the force of the shim must be pressure. 

 

Appendix C: Dynamics modeling 

 

The governing equations of the dynamics are as follows: 

 2

1 1 1 12

1 1

( ) ( 2 )

              ( )(cos cos ),
2

n
n n n l n n n

h
l n n

u
m k u u k u u u

t

l
k l  

− + + −

− +


= − + + −



+ + −

 (C-1) 

 2

1 12

1 1

1 1

2

1 1

( 4 )

             ( ) sin

             (4 2cos cos cos )( ) sin
2

              (sin sin 2sin ) cos ,

n
n n n

l n n n

h
l n n n n

s n n n n

J k
t

k u u l

l
k l l

k l




  



   

   

+ −

+ −

+ −

+ −


= − + +



− −

− − − − +

+ + −
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Eqs.(C-1) and (C-2) are normalized as follows: / (2 )U u l= , / (2 )X x l= , /lT t k m=  

2/ lK k k l = , /s s lK k k= , /n n lK k k= , 
2 2 /ml J = , 1 / (2 )hl l = + . The continuum 



models of Eqs.(C-1) and (C-2) is: 
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In the case of 0nK = , the soliton solution corresponding to Eqs. (C-3) and (C-4) 

is: 
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where， 
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is the amplitude of the pulse soliton, 
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is the width of the pulse soliton, and c is the wave speed. The soliton solution requires 

that WP must be real, namely, 2 2( sc K K −＜ ), which means that Eq. (C-7) has a 

minimum value: 
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where, gap

pA  is the amplitude gap. 

The total energy for the n-th pair of crosses can be expressed as: 
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 (C-10) 

Eqs. (C-5) and (C-6) are substituted into Eq. (C-10) to obtain the energy carried by 

the soliton: 



 2
2 2 2

2

2 2 2 2
2 2

2 2 2 2 2 2

2

2

364
( ) ( ) [ 36 ]

3

36 (1 ) 36 (1 )2
        [ + ]

3 ( / ) ( / )

36 (1 )2
        .

3

l l

l s

s s

K
E c e X dX W k l k l K

c

K c K c
W k l k l

K K c c K K c

K c
Wk

c




 

 




  

+

−

= = +

− −
+

− − − −

−
+



 
(C-11) 

The relationship between ( )pA c  and ( )E c  is shown in Fig. C. 

 

Fig. C  Diagram of the relationship between energy and amplitude 

 


