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Abstract—Measuring similarity between RDF graphs is es-
sential for various applications, including knowledge discovery,
semantic web analysis, and recommender systems. However,
traditional similarity measures often treat all properties equally,
potentially overlooking the varying importance of different prop-
erties in different contexts. Consequently, exploring weighted
property approaches for RDF graph similarity measure presents
an intriguing avenue for investigation. Therefore, in this paper, we
propose a weighted property approach for RDF graph similarity
measure to address this limitation. Our approach incorporates
the relative importance of properties into the similarity calcula-
tion, enabling a more nuanced and context-aware measures of
similarity. We evaluate our approach through a comprehensive
experimental study on an RDF graph dataset in the vehicle
domain. Our results demonstrate that the proposed approach
achieves promising accuracy and effectively reflects the perceived
similarity between RDF graphs.

Index Terms—Knowledge graph, Resource Description Frame-
work, RDF Graph, Similarity Measure, Weighted Property

I. INTRODUCTION

The analysis and representation of data in the form of RDF
(Resource Description Framework) graphs have become in-
creasingly prevalent in various domains, ranging from seman-
tic web applications to knowledge representation and graph
databases [1], [2]. RDF graphs serve as powerful models for
capturing complex relationships and structured information,
making them essential tools for representing knowledge in a
structured and interconnected manner [3]. These graph-based
structures have proven instrumental in semantic web technolo-
gies, facilitating data integration and providing a foundation
for reasoning and inference [4].

One of the fundamental tasks in RDF data management
and knowledge integration is the assessment and comparison
of RDF graphs for their degree of similarity. Evaluating the
similarity between RDF graphs holds essential significance
across a spectrum of applications, encompassing information
retrieval, knowledge discovery, semantic web analysis, and
recommender systems [5]–[7]. This process serves as a fun-
damental means to identify and link related entities, discover
patterns in data, and enable more accurate and context-aware
decision-making processes.

Contemporary approaches to RDF graph similarity pre-
dominantly focus on structural properties, encompassing the
topology and connectivity of nodes and edges, and often treat
all properties equally [8]–[10]. However, these methodolo-
gies can fall short in fully capturing the intricate semantic
subtleties inherent in the data. Real-world RDF graphs often

include a myriad of properties intricately linked to nodes and
edges, which significantly influence data interpretation and
relevance. It is important to note that within RDF graphs,
the importance of individual properties can vary in different
contexts. In specific scenarios, certain properties may play
a more crucial role than others, depending on the purpose
of the RDF graph comparison. To address this limitation,
we investigate to explore weighted property approaches for
RDF graph similarity measure. Property weights enable the
expression of the relative importance or significance of distinct
properties within the RDF graph, facilitating more nuanced
and context-aware measures of similarity.

In the context of this study, we propose an exploration
of weighted property approaches for measuring RDF graph
similarity, delving into the evolving landscape of RDF graph
similarity measure. Our study incorporates the relative impor-
tance of properties into the similarity calculation, enabling a
more nuanced and context-aware measures of similarity. As
results, we evaluate our approach through a comprehensive
experimental study on an RDF graph dataset in the vehicle
domain. By doing so, we aim to meet the demand for
more accurate and context-sensitive RDF graph comparisons,
particularly in scenarios where property information plays a
important role in data filtering and knowledge discovery

The remainder of this paper is organized as follows: In the
following section, we introduce literature on RDF knowledge
graphs and the approach for measuring similarity. Section II
presents our main works to the formulations and our proposed
method for exploring weighted properties in measuring simi-
larity on RDF graphs. In Section III, we experiment with our
proposed approach based on an RDF knowledge graph in the
vehicle purchase/sale domain. Finally, we conclude the paper
with some ideas for future work in the last section.

II. RELATED WORK

In this section, we will explore RDF data graphs and
examine various methods for measuring RDF graph similarity.
Our aim is to synthesize the advantages and drawbacks of these
similarity measurements.

Fundamentally, RDF data, often based on ontological
model, serves as a framework for structuring information.
RDF facts are defined by triples, each consisting of three
components: a subject, a predicate, and an object. Essentially,
a triple denoted as ⟨subject, predicate, object⟩ signifies that a
given subject is associated with a specific value for a particular
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property [11], [12]. RDF graph data inherently possesses the
ability to make inferences and reason about additional knowl-
edge, particularly when associated with ontologies. Semantic
similarity within RDF graph data refers to the proximity of
two terms1 within the structure of the RDF graph data itself.
The measure of distance between two terms is represented
numerically as a vector, indicating their closeness to each
other [13]. This capacity facilitates the efficient utilization of
RDF graph data for retrieving related elements or discerning
associations between terms.

Several works have explored the concept of weighted prop-
erties for enhancing RDF graph searching. For instance, the
author in [14] suggests a special way to handle and search
weighted RDF graphs, where different properties in the data
are given different levels of importance. This system not
only helps in searching these graphs but also allows you to
see the information you find, making it easier to understand
complicated relationships in the data. Another work by the
authors in [15] introduces a new SPARQL extension that uses
the CONSTRUCT clause to support analytics on weighted
RDF graphs. With this approach, users can perform complex
tasks like calculating PageRank for influence analysis, taking
into account the different weights assigned to properties in
the graph. These approaches recognize the limitations of
traditional methods that treat all properties equally. However,
they differ in how they include weights and the aspects they
focus on. Some papers might delve deep into the theory behind
weighted properties, while others might suggest specific ways
to assign weights or explore practical uses.

Evaluating the similarity between RDF graphs has been
an active area of research for several years, with various
approaches proposed in the literature. Depending on the
structural characteristics of the application context and the
chosen knowledge representation model, researchers and prac-
titioners have introduced various similarity measures [16],
[17]. These approaches can be broadly classified into four
primary categories: (i) path-based, (ii) feature-based, (iii)
information content-based, and (iv) hybrid approaches. (i)
Path-based approaches conceptualize RDF graphs as directed
graphs, with nodes and links representing entities intercon-
nected through hypernym and homonym relationships. This
approach implements a hierarchical organization and assesses
semantic similarities by evaluating semantic relationships, with
the distance and nature of the paths between entities [16]. Such
approaches are commended for their straightforwardness and
reduced computational demands, necessitating only essential
information regarding each entity, thus enabling rapid and
effective similarity evaluations [18]. However, their major
limitation is their dependence on the quality of the graph’s
structure, specifically the completeness, homogeneity, cover-
age, and granularity of defined relationships. (ii) Feature-based
approaches focus on the features or properties of the entities
within the RDF graphs. It involves comparing these features

1A term can represent a concept, subject, predicate, object, or even a set
of triples

to determine how similar or different the entities are. This
approach is often employed when the properties of the enti-
ties carry significant information about their nature or status
[16]. Similarity evaluation can be conducted using various
coefficients for property sets, including the Dice’s coefficient
[19] and Jaccard index [20]. This approach is beneficial as it
assesses both the similarities and differences in the compared
property sets, thus enabling the extraction of a wider range
of semantic knowledge than is possible with the path-based
approach. However, a key challenge in this approach is the
need to carefully balance each property’s contribution. (iii)
Information content-based approaches determine similarity by
calculating the information content of entities and associat-
ing probabilities with their occurrence [17]. This method is
particularly important when the value of the information each
entity carries plays a significant role in assessing similarity.
In this context, entities that appear less frequently in an RDF
graph are deemed more informative than those that are more
common. However, a limitation of this approach is the need for
large RDF graphs that possess a detailed taxonomic structure,
which is essential for accurately differentiating between vari-
ous entities. (iv) Hybrid approaches combine elements of the
above approaches. These strategies might mix path-based and
feature-based methods, or any other combination, to leverage
the strengths of multiple approaches [21]. This is particularly
useful in complex scenarios where a single type of approach
might not be sufficient to capture the nuances of RDF graph
similarity.

In the feature-based approach, the significance assigned to
each property varies, reflecting the distinct roles these prop-
erties play. This variation is crucial as it recognizes that not
all properties contribute equally to the overall assessment of
similarity or differentiation within the RDF graph, depending
on the context for measuring their similarity. Understanding
and appropriately weighting these differences is key to the
effectiveness of this approach, as it directly impacts the
accuracy and relevance of the similarity measures obtained. In
the next section, we will explore our proposition for computing
similarity between RDF graphs.

III. OUR PROPOSITION

We will delve into the formulations surrounding RDF graphs
and our proposed method for measuring the similarity between
these graphs, with a special emphasis on exploring weighted
properties.

A. Formulations

We explore the foundational concepts of RDF, beginning
with an examination of the RDF triple and the RDF graph.
Initially, we will clarify the nature of an RDF triple and
investigate how its three components—the subject, predicate,
and object—contribute to forming significant statements about
various entities. Subsequently, we will examine how these
RDF triples interconnect, creating intricate networks of in-
formation.



Definition 1: An RDF triple is three-tuple of the form t =
⟨s, p, o⟩, where s is the subject, denoting the entity or resource
being described, p is the predicate, representing the property
or characteristic of the subject, and o is the object, expressing
the value or state of that property.

An RDF triple forms a statement or assertion about a
resource, encapsulating a singular unit of information or fact.
For instance, consider the RDF triple ⟨“Tesla Model S”,
“Made by”, “Tesla Motors”⟩. In this structure, the subject is
“Tesla Model S”, which is the entity being described. The
predicate “Made by” acts as the relational link, indicating
the type of relationship that exists between the subject and
the object. Finally, the object “Tesla Motors” completes
the statement, providing the specific detail that the Tesla
Model S is manufactured by Tesla Motors. This triple-based
structure can be used for representing complex networks of
information. By linking various triples, a comprehensive and
interconnected data is formed. By that way, a collection of
RDF triples inherently carries semantic meaning, with each
component — subject, predicate, and object — playing a vital
role in defining the conveyed information. This emphasis on
triples facilitates the representation of complex, semantically
rich data structures in RDF graphs, wherein the interaction of
subjects, predicates, and objects forms a network of meaning-
fully interconnected information [22].

vo: Tesla Model S

vo: 
Electricityvo: Automaticvo: Car

rdf:type

vo: 
transmission

vo: fuel type

2016-01-01

5

vo: 
production

year

vo: price

2016-09-06145 000

white

vo: exterior 
color

vo: release 
date

5

56750€

vo: nb of doors vo: nb
of seats

vo: has nb 
of mileage

vo: Tesla 
Motors

vo: made 
by

Fig. 1. A snapshot of an RDF graph represents information about a vehicle
model (vo note for Vehicle Ontology)

Definition 2: Given that t = ⟨s, p, o⟩ is an RDF triple,
an RDF graph G is defined as a set of such RDF triples t,
i.e., G = {t1, t2, ..., tn}, where the interconnections between
different triples, through shared subjects or objects, represent
the relationships and structures within the graph.

This set-based representation of an RDF graph closely mir-
rors the foundational concepts of graph theory in mathematics.
In traditional graph theory, a graph is typically viewed as
a collection of vertices (nodes) connected by edges (links).
Similarly, in the context of RDF graphs, the vertices can be
equated to subjects and objects, while the edges correspond
to the predicates that establish a connection between these
vertices. For example, Figure 1 illustrates a data graph that

represents information about the “Tesla Model S”, constructed
based on a set of RDF triples. However, a notable distinction in
RDF graphs is the emphasis placed on the triples themselves,
rather than on the vertices and edges in isolation. This repre-
sentation enables the flexible modeling of real-world entities
and their relationships in a way that is both structured and
adaptable. Consequently, RDF graphs are particularly adept
at handling diverse and dynamic data sets, making them a
powerful tool for data integration, knowledge representation,
and information retrieval.

In the field of data analysis and knowledge representation,
similarity measures are essential for identifying and comparing
entities based on their shared characteristics. RDF graphs, a
widely adopted formalism for representing knowledge, have
become a powerful tool for modeling complex relationships
between entities. The effective comparison of RDF graphs
necessitates the use of similarity measures. In the following
section, we will explore our method for measuring similarity,
focusing on the utilization of weighted properties.

B. Weighted Properties

Traditional similarity measures for RDF graphs often assign
equal weight to all properties, which may not always reflect
the true importance of different properties in determining
similarity. To address this limitation, the concept of weighted
properties is employed, involving the assignment of varying
levels of importance or weights to the properties (or predi-
cates) within the RDF triples. This method acknowledges that
properties within RDF graphs do not contribute equally to
the semantic meaning or relevance of the data. A weighted
property, therefore, is a numerical value assigned to a spe-
cific property or relationship between entities in the graphs,
indicating the significance of that property in determining the
overall similarity.

Definition 3: A weighted property is defined as a pair (p,
w), where p is the property or relationship between entities, w
denotes the weight assigned to the property, representing its
importance in similarity measure.

By utilizing weighted properties, similarity measures can
more accurately reflect the different levels of importance of
various properties when determining the overall similarity
between RDF graphs. This approach results in similarity
assessments that are both nuanced and sensitive to the specific
context. Consider an example where weighted properties are
used in conjunction with an RDF graph to recommend vehicle
models that align with a user’s preferences. Suppose the user is
seeking vehicles with a budget of less than $10, 000, white
color, automatic transmission, and 5 seats. In this case,
each vehicle model can be represented as an RDF graph, or a
set of RDF triples G as follows:

{(⟨ Tesla Model S, price, 56750⟩, 0.2)
(⟨ Tesla Model S, exterior color, white⟩, 0.2)
(⟨ Tesla Model S, transmission, automatique⟩, 0.2)
(⟨ Tesla Model S, nb of seats, 5⟩, 0.2)
(⟨ Tesla Model S, has nb of mileage, 145000⟩, 0.1)
(⟨ Tesla Model S, fuel type, electricity⟩, 0.1)}



In this example, each vehicle model is represented in an
RDF graph with properties corresponding to the predicates of
triples: budget, color, transmission, seating capacity, etc.
The similarity measure employs these weighted properties
to score each vehicle based on its alignment with the user’s
preferences. Vehicles that closely match the higher-weighted
preferences will receive a higher score, making them more
likely to be recommended to the user. Essentially, this
demonstrates the effective use of weighted properties in an
RDF graph to provide customized vehicle recommendations
tailored to specific user preferences.

By assigning numerical values to each property of entities
in the graph to indicate their importance, weighted properties
offer several advantages in similarity measure. Firstly, they
enhance accuracy by accounting for the different levels of
significance of various properties, leading to more precise
and dependable similarity assessments. Secondly, they provide
context-awareness, as incorporating domain-specific knowl-
edge into weight assignment makes the similarity measures
more aligned to the particular context of the application.
Thirdly, weighted properties impart adaptability, allowing for
the customization of similarity measures to fit various ap-
plications and domains, thus ensuring their flexibility. In the
following section, we will delve into the methodology of mea-
suring similarity using RDF graphs and weighted properties.
This will aim to provide a comprehensive understanding of
the methodology, highlighting its systematic approach and
underlying principles.

C. Similarity Measure Using Weighted Properties

In our work, we have developed a hybrid approach for
measuring RDF graphs similarity , which incorporates a
variety of techniques based on both feature-based and in-
formation content-based approach, drawing inspiration from
the work of Le and colleagues [7]. Consequently, our process
for measuring similarity involves an in-depth comparison of
two RDF graphs, breaking them down into both quantitative
and qualitative components. For triples that have quantitative
objects, we utilize a feature-based similarity approach, which
is particularly effective for comparing the objects of the triples
by evaluating their numerical values. On the other hand, for
triples with textual objects, our focus shifts to comparing
the subjects and predicates using an information content-
based approach. This method entails analyzing the intrinsic
information and meaning within the subjects and predicates,
thereby facilitating a more comprehensive understanding of
their semantic relationships.

Initially, it’s important to note that the objects in these
triples are represented by numeric values. Comparing these
numbers is straightforward and involves measuring the dis-
tance between them. For comparing two distinct objects, the
Euclidean distance is utilized. Consequently, the smaller the
difference between two objects, the greater their similarity. Let
consider two objects, to1 and to2, with their respective vectors
being to1 = {o11, o12, ..., o1d} and to2 = {o21, o22, ..., o2d}.

The semantic similarity between these objects is then defined
as follows:

Sim1(to1, to2) =
1

1 +
√∑d

c=0(o1c − o2c)2
(1)

Subsequently, consider ts1 and ts2 be two qualitative com-
ponent in two triples t1 and t2 whose numerical vectors are
M1 = {m⃗11, m⃗12, ..., m⃗1h} and M2 = {m⃗21, m⃗22, ..., m⃗2l},
their similarity is defined as follows:

Sim2(ts1, ts2) =

∑h
u=1 S̄(m⃗1u, ts2) +

∑l
v=1 S̄(m⃗2v, ts1)

h+ l
(2)

In this formula, S̄(m⃗, ts) signifies the similarity between a
word m⃗ and a qualitative component. The function S̄(m⃗, ts)
is calculated as follows:

S̄(m⃗, ts) = max
m⃗u∈M

S̄(m⃗, m⃗u) (3)

where m⃗u ∈ M = {m⃗1, m⃗2, ..., m⃗h} represents the word
vector of ts with each word m⃗i expressed as a numerical
vector. The Term Frequency-Inverse Document Frequency
(TF-IDF) word frequency method is typically employed to
create numerical vectors for each word by estimating its
occurrence probability within a set of triples. However, this
technique exhibits a notable limitation: it does not effectively
capture the nuances and the positional context of words within
the triple sequence. This limitation stems from its reliance on
the frequency of word appearances within a set of triples and
across multiple sets. To remedy this, we propose the use of
Continuous Bag of Words (CBOW) and Skip-gram models,
integrated within the Word2vec pretrained corpus [23], [24].
These models are better equipped to grasp the semantic rela-
tionships and the sequential arrangement of words, providing
a more contextually rich and semantically informed vector
representation.

Finally, the similarity measure between the
two RDF graphs, based on the use of weighted
properties, G1 = {⟨t11, w1⟩, ⟨t12, w2⟩, ..., ⟨t1g, wg⟩} and
G2 = {⟨t21, w1⟩, ⟨t22, w2⟩, ..., ⟨t2g, wg⟩} is determined by
comparing the similarity of each individual triplet as follows:

Sim(G1, G2) =∑q
i=0 Sim1(t1i, t2i) ∗ wi +

∑r
j=0 Sim2(t1j , t2j) ∗ wj∑g

k=0(wk)

(4)

where q represents the total number of triples containing
qualitative objects, and r denotes the total number of triples
with quantitative objects in the two RDF graphs G1 and G2.

To accurately measuring the similarity between RDF graphs,
it is essential to consider the relative importance of each triplet
comparison. This can be achieved by assigning weights w to
each triplet comparison, ensuring that the overall similarity
score reflects the significance of each triple. This approach
is particularly crucial in applications where certain triples
may hold greater relevance than others, such as in knowledge
discovery or semantic similarity analysis.



Having established the theoretical framework for measuring
RDF graph similarity using weighted properties, the next
section will detail our experimental setup, describe the data
utilized, and present the results obtained.

IV. EXPERIMENTS

In this section, we conduct an empirical test of our approach
using an RDF dataset within the vehicle domain [25]. The
dataset chosen for this experiment includes approximately
1000 used vehicle models, with each vehicle model described
by a variety of characteristics represented in a set of RDF
triples. Our goal in applying this approach is to demonstrate
its practicality and efficacy in a domain where diverse vehicle
properties are crucial in determining similarity.

Drawing from the collected instances, we have conducted
experiments and evaluations on four distinct approaches:

• PJ : This approach utilizes the Jaccard index to measure
similarities between sets of triplets, as detailed in Fletcher
and colleagues’ study [26].

• PS: Proposed by Siying Li and colleagues’ study [18],
this hybrid method merges strategies based on informa-
tion content and features. However, it focuses solely on
the objects and predicates of the triplets.

• P0: The approach proposed by [7] involves measuring
similarity using word embedding for textual objects.

• From P1 to P11: Our primary proposed approach con-
sists of applying weighted properties to various aspects
of vehicle models. In this method, we delve into the
significance of different properties in the overall mea-
sure of similarity. Accordingly, we assign a greater
weight to each specified property as follows: P1 =
{Release Y ear}, P2 = {Mileage}, P3 = {Fuel
Type}, P4 = {Color}, P5 = {Number of Doors},
P6 = {Made By}, P7 = {V ehicle Type}, P8 =
{Inspect, Mileage, Color}, P9 = {Inspect, Mileage,
Color, Number of Doors}, P10 = {Inspect,
Mileage, Color, Number of Doors, Number of
Seats}, P11 = {Inspect, Mileage, Color, Number
of Doors, Number of Seats, Made By}.

In our comprehensive study, we evaluated our approach
against three other methodologies by calculating similarity
scores for each RDF instance of used vehicles against oth-
ers, using a RDF dataset of 1000 used vehicle instances.
Higher similarity scores in measuring RDF graph similarity
indicate better experimental results by reflecting a greater
correspondence between the structures and relationships in the
graphs. When compared to the PS, PJ , and P0 methods,
our approach from P1 to P11 showed notably better results
in terms of similarity scores. The visual representation of
these results is evident in both a heat map (Fig. 3) and
a histogram chart (Fig. 2). The heat map’s yellow color
distribution indicates higher similarity scores for our approach
(P1 to P11) in comparison to other methods, with a consistent
pattern across the map. The histogram chart further confirmed
this, as the similarity score distribution for our approach (P1
to P11) is significantly higher than the others. These findings

Fig. 2. Histogram representing the distribution of similarity scores across
different approaches.

indicate that our approach, particularly P11, achieved the
highest maximum similarity score (409765 out of 100000
comparisons), significantly surpassing other methods. Specif-
ically, P11 is designed to measure RDF graph similarity by
employing weighted properties for various numeric properties
of vehicle models. This approach involves assigning weights
to properties such as Inspect, Mileage, Color, Number of
Doors, Number of Seats, and Made By. The effective
use of weighted properties in P11 enables a more nuanced
and accurate assessment of similarity between vehicle models
based on these properties.

While the use of weighted properties for measuring sim-
ilarity has its advantages, as highlighted in the previous
section III-B, our experimental findings point to a number
of challenges with this approach. The foremost challenge
is the determination of appropriate weights for individual
properties, a process often marred by subjectivity. Individuals
might assign different weights based on their personal opinions
or preferences, leading to variability in results. Additionally,
scalability poses a significant challenge. As the quantity of
properties and the size of RDF datasets grow, managing and
processing these weighted properties becomes increasingly
complex and demands more resources. This complexity could
render the approach impractical for extremely large datasets.
Another critical issue is the inherent subjectivity and potential
for bias in weighting. Since the assignment of weights can
vary greatly depending on individual judgment, it may lead to
inconsistent and potentially biased assessments in measuring
similarity.



Fig. 3. Correlation heat map of similarity measures across 1000 used vehicles
for different approaches (Similarity scores ranging between 0 and 1 imply 0
as entirely distinct and 1 as complete similarity between vehicle items)

V. CONCLUSION AND PERSPECTIVES

In this paper, we conducted an investigation to explore
weighted property approaches for RDF graph similarity mea-
sure. We proposed and validated an approach for measur-
ing RDF graph similarity, emphasizing the role of weighted
properties. Through a comprehensive experimental study on
an RDF graph dataset in the vehicle domain, our approach
demonstrated promising results in improving the accuracy and
utility of RDF graph similarity measures, particularly in the
automotive industry, where it can significantly enhance the
personalization within recommender systems and semantic
search tools. We acknowledge the challenges of our work,
including determining appropriate weights for each property,
addressing subjectivity in the weighting process, and ensuring
scalability for large datasets. These challenges have been
central to our research. Looking ahead, there is potential for
further development and application of this approach in vari-
ous industries. Extending the approach to other domains and
integrating novel and advanced weighted property assignment
techniques are promising directions for future research.

ACKNOWLEDGMENT

This work was funded by the French Research Agency
(ANR) and by the company Vivocaz under the project France
Relance - preservation of R&D employment (ANR-21-PRRD-
0072-01).

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data: The story so far,”
in Semantic services, interoperability and web applications: emerging
concepts. IGI global, 2011, pp. 205–227.

[2] D. Hernández, A. Hogan, and M. Krötzsch, “Reifying rdf: What works
well with wikidata?” SSWS@ ISWC, vol. 1457, pp. 32–47, 2015.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in international semantic
web conference. Springer, 2007, pp. 722–735.

[4] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and
B. McBride, “Rdf 1.2 concepts and abstract syntax,” 2023.

[5] S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, Semantic similarity
from natural language and ontology analysis. Springer, 2015.

[6] A. Petrova, E. Sherkhonov, B. Cuenca Grau, and I. Horrocks, “Entity
comparison in rdf graphs,” in The Semantic Web–ISWC 2017: 16th
International Semantic Web Conference, Vienna, Austria, October 21–
25, 2017, Proceedings, Part I 16. Springer, 2017, pp. 526–541.

[7] N. L. Le, M.-H. Abel, and P. Gouspillou, “Improving semantic similarity
measure within a recommender system based-on rdf graphs,” in Infor-
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