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We here present a variable-range hopping model to describe the chirality-induced spin selectivity
along the DNA double helix. In this model, DNA is considered as a one-dimensional disordered
system, where electrons are transported by chiral phonon-assisted hopping between localized states.
Owing to the coupling between the electron spin and the vorticity of chiral phonons, electric toroidal
monopole appears in the charge-to-spin conductances as a manifestation of true chirality. Our model
quantitatively explains the temperature dependence of the spin polarization observed in experiments.

Introduction.— Chirality, a geometrical concept in
which the structure lacks both inversion and mirror sym-
metries, gives a new twist to modern condensed matter
physics [1–3]. Organic molecules and structures, which
are the building blocks of all organisms, commonly ex-
hibit a well-defined chirality. The celebrated chirality-
induced spin selectivity (CISS), a spin filtering effect in
chiral molecules, has been extensively studied over the
past few decades since its discovery in the DNA double
helix [4, 5]. The striking feature of CISS is an achieve-
ment of a large spin polarization even at room tempera-
ture without breaking the time-reversal symmetry [6–10].
Therefore, chirality is essential to emerge spin function-
ality in organic molecules because they consist of light
elements and consequently have longer spin relaxation
lengths [11–14]. The CISS effect has opened new possibil-
ities for employing organic molecules in spintronic appli-
cations with neither the spin-orbit coupling nor magnets
and for realizing enantiomer separation, which could pro-
vide a fundamental understanding on the role of electron
spin in biological processes [15–22]. Despite intensive ef-
forts have been devoted to identifying the key mechanism
of CISS [23–81], the underlying physics still remains a
long-standing mystery.

The temperature dependence of the conductivity of-
ten provides rich insights into the underlying mecha-
nisms of these transport phenomena. Experiments have
demonstrated a long-range charge migration along the
DNA double helix, indicating that DNA is a candidate
for a one-dimensional molecular wire [82–84]. Because
a DNA double helix is not a periodic system due to a
random base-pair sequence, disorder effects essentially
determine the electronic features of DNA. The investi-
gation of the conductivity and its temperature depen-
dence has revealed that electrons in DNA can be con-
sistently described by the variable-range hopping (VRH)
for the charge transport [85, 86]. In this VRH model,
the electron transport is dominated by incoherent hop-
ping between Anderson localized states with emission or
absorption of a phonon that bridges the energy difference
between them, leading to the well-known Mott’s law of
electron transition rate [87–89].

In this Letter, we apply the Mott’s VRH to the elec-
tronic spin transport along the DNA double helix. The
CISS effect is commonly observed at room temperature;
therefore, it is natural to expect that phonons play a
crucial role. In DNA, phonons acquire chirality reflect-
ing its chiral structure, which are the so-called chiral
phonons [90–103]. Thus, it is essential to consider the
coupling between chiral phonons and the spin degrees
of freedom of electrons. This can be accomplished by
the micropolar elasticity theory [104–107], which cap-
tures the rotational nature of chiral phonons [108–113].
We then develop a framework of a random spin resis-
tor network to describe chiral phonon-assisted hopping
and numerically calculate the spin polarization based on
the percolation theory [114–116]. The resultant temper-
ature dependence of the spin polarization quantitatively
explains observations in several experiments [7, 25, 57],
indicating the relevance of both disorder effects and chi-
ral phonons to the spin transport along the DNA double
helix, which in turn will provide clues to the origin of
CISS.

Formulation.— A DNA double helix with a random
base-pair sequence can be regarded as a 1D disordered
system. In this system, the disorder leads to the An-
derson localization, and electron hoppings between these
localized states along the chain are responsible for the
conductivity. Our starting point is the following Hamil-
tonian:

H = He +Hph +He−ph, (1)

where He = −t∑l,α(c
†
lαcl+1α + h.c.) +

∑
l,α vlc

†
lαclα de-

scribes electrons hopping with amplitude t on a 1D lat-
tice with on-site random potential vl at site Rl. vl is
uniformly distributed in the interval [−W,W ], where
W is the strength of the disorder. We can rewrite
He =

∑
i,α εic

†
iαciα in the basis of localized electronic

states |i⟩, i.e., ψi(x) ∼ e−|x−xi|/ξ/
√
ξ with energy εi and

a localization length ξ.
The part Hph describes the chiral phonons reside at

the molecular wire:

Hph =
∑

l

[
p2
l

2M
+
K

2
(ul − ul+1)

2

]
=

∑

q

ℏωqa
†
qaq, (2)
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FIG. 1. Second-order self-energy diagram considered for es-
timating the hopping rate from a localized state (i, α) to an-
other localized state (j, β).

where a†q̄ and aq are the phonon creation and annihilation
operators with q = (q, λ) [q̄ = (−q, λ̄)], which are related
to the displacement vector u(r) =

∑
q

√
ℏ

2ρV ωq
ϵq(aq +

a†q̄)e
iq·r. Here, ρ is the mass density, V is the volume

of the system, ωq is the phonon dispersion, and ϵq is
the displacement polarization vector, which satisfies the
orthonormal condition: ϵ∗qλ ·ϵqλ′ = δλλ′ . Due to the bro-
ken inversion and mirror symmetries with preserving the
time-reversal symmetry, which is the modern definition of
true chirality [1, 3], ωq = ωq̄ ̸= ω−qλ and ϵ∗q = ϵq̄ ̸= ϵ−qλ

hold for chiral phonons [106]. Note that the structural
and the dynamical chiralities are encoded in ωq and ϵq.

For organic molecules which consist of light elements
with negligible spin-orbit interactions, the conventional
electron-phonon coupling does not affect the spin degrees
of freedom of electrons and thus cannot trigger the CISS
effect. To overcome this difficulty, we go beyond the con-
ventional elasticity framework and employ the microp-
olar elasticity theory [104, 105], which captures the ro-

tational nature of chiral phonons [106]. Then, the total
electron-phonon coupling He−ph includes both the con-
ventional type of lattice deformation originating from a
lattice displacement [117] and the novel type originating
from a vorticity, which is the adiabatic limit of a micro-
rotation [106]. We here focus on the latter one given by,

Hsmc =
∑

i,j

∑

α,β

∑

q

gsmc
ij (q)σαβ · (q × ϵq)c

†
iαcjβ(aq − a†q̄).

(3)

The polarization vector ϵq carries the dynamical chirality
of chiral phonons; therefore, enables a coupling between
the vorticity of chiral phonons and the electron spin
dubbed the spin-microrotation coupling (SMC) [107].
σαβ ’s are the Pauli matrices for the electron spin and
gsmc
ij (q) = [gsmc

ji (q̄)]∗ is the coupling strength of SMC.
Note that only transverse components of chiral phonons
contribute to SMC. Therefore, this SMC can be regarded
as a fundamental interaction between chiral phonons and
electron spins. Here and hereafter, we assume that the
global spin quantization axis is chosen along the chiral
axis of the DNA double helix.

In the weak coupling approach, we evaluate the hop-
ping rate assisted by single phonon processes using per-
turbation theory in Hsmc. By considering the self-
energy diagram of Fig. 1 that describes processes through
which a localized state (i, α) decay to other localized
states (j, β) by emitting or absorbing a chiral phonon,
the second-order perturbation for SMC leads to Fermi’s
golden rule,

1

τ smc
iα

=
2π

ℏ
∑

j,β

∑

q

∣∣gsmc
ij (q)[σαβ · (q × ϵq)]

∣∣2[{1− f(εj) + n(ℏωq)}δ(εi − εj − ℏωq) + {f(εj) + n(ℏωq)}δ(εi − εj + ℏωq)]

=
∑

j,β

Γ0
(iα)→(jβ), (4)

where f(ε) and n(ℏω) are the Fermi and the Bose dis-
tribution functions, respectively. δ(ε) is a delta function
in energy. Here, Γ0

(iα)→(jβ) describes the transition rate
from a state (i, α) to another state (j, β). It is worth
noting that SMC gives rise to emergent terms in τ−1

iα :
∑

β

|σαβ · (q × ϵq)|2

= δαα[q
2 − (q · ϵq)(q · ϵ∗q)] + (q · σαα)[q · Im(ϵ∗q × ϵq)].

(5)

The two factors, (q · σαα) and [q · Im(ϵ∗q × ϵq)], are the
inner products of a time-reversal (T )-odd polar and a
T -odd axial vector (refer to Table I). Therefore, these
factors are both T -even pseudoscalars and belong to

the electric toroidal monopole G0 [118], which mani-
fests true chirality of materials [119]. Remarkably, the
product of these two factors is a unique combination to
construct a scalar quantity τ−1

iα by pseudoscalars associ-
ated with both electron spins and chiral phonons. Since
[q · Im(ϵ∗q × ϵq)] becomes nonzero when phonons exhibit
chirality, the transition rate can acquire a spin depen-
dence through the factor (q·σαα) by this type of electron-
phonon coupling. The diagonal elements of the Pauli ma-
trices survive only for the component in the spin quan-
tization direction, which we take along the chiral axis of
the system. Therefore, the preferred spin orientation is
parallel or antiparallel to the axis, which direction de-
pends on true chirality of the material.
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TABLE I. Symmetry classification and comparison of the
physical quantities appears in the transition rate under the
inversion P and the time-reversal T operations. The symbols
of multipoles follow the literature [118].

P T type Multipole

q − − polar T1m

ϵq − + Q1m

σαβ + −
axial M1mq × ϵq + −

Im(ϵ∗q × ϵq) + −
iq · ϵq + + scalar Q0

σαβ · (q × ϵq) + +

σαβ · q − + pseudo scalar G0
q · Im(ϵ∗q × ϵq) − +

Variable-range hopping.— Before applying the above
microscopic calculations to CISS in the DNA double he-
lix, we introduce the conventional variable-range hop-
ping (VRH) scheme [87–89]. VRH is a model describ-
ing low-temperature conduction in strongly disordered
systems with localized states. To understand the VRH
transport, the first ingredient is the transition rates be-
tween localized states due to the electron-phonon cou-
pling. The incoherent hopping conduction is a result of
many series of such transitions. In a phonon-assisted
hopping process, an electron is transferred from a single-
particle localized state |i⟩ centered at site xi to the lo-
calized state |j⟩ together with emission or absorption of
a phonon that bridges the energy difference |εi − εj | be-
tween the two states. The transition matrix element is
proportional to the spatial overlap of the electronic states
and hence decay exponentially with the range of the hop
as e−2|xi−xj |/ξ.

The hopping rate out of a localized electronic state can
be obtained through Fermi’s golden rule as [86, 120]

1

τVRH
≃ g2

∑

R

e−2R/ξe−∆R/2kBT ν(∆R), (6)

where ∆R ≃ ∆ξ(ξ/R)
d is the typical energy offset to

the nearest state localized within a range R of the ini-
tial state, which is supplied by a thermal phonon, and
∆ξ = 2W (a/ξ)d is the average energy level spacing
within a localization volume ξd. ν(ε) is the density of
states for phonons and g is the strength of the electron-
phonon coupling. There is a competition between the
terms in the exponential and an electron may optimize
its hopping distance to achieve the largest hopping rate.
Then, the hopping range at a given temperature Ropt =
ξ(∆ξ/4kBT )

1/(d+1) can be obtained from the saddle point
of the sum in Eq. (6). Finally, replacing the sum with the
saddle point values gives the well-known Mott’s law for
the electron hopping rate: τ−1

opt ∼ exp
[
−(T0/T )

1/(d+1)
]
,

where kBT0 = 2W (4a/ξ)d.

The criterion, Ropt = a, naturally gives the crossover
temperature: kBTc = Wξ/2a. At high temperatures
T > Tc, electron transport is via the nearest-neighbor
hopping (NNH) and is a simple thermal activation pro-
cess, whereas at low temperatures T < Tc, electrons op-
timize their paths via the VRH mechanism and are more
likely to jump to a remote site [see the inset of Fig. 2].

Random spin resistor network.— We are now ready to
discuss the electronic spin transport by the VRH mech-
anism. Corresponding to many transport experiments of
CISS measurements [5], we here consider the situation
where an electric field is applied along the chiral axis of
the system, driving it into nonequilibrium. In the lin-
ear response regime to the electric field, the steady-state
conductance can be calculated from the percolation the-
ory [114–116]. Then, the problem can be mapped into
an equivalent random resistor network [121–123], where
each pair of sites is connected by a resistance related to
the corresponding transition rate. We here extend this
method to incorporate the spin transport while satisfying
the charge conservation, namely, the Kirchhoff’s law.

The net charge current from a site i with spin α to a
site j with spin β is given by,

Iαβij = Gαβ
ij (V α

i − V β
j ), (7)

where Gαβ
ij = e2

kBT Γ
0
(iα)→(jβ)f(εi) and −eV α

i = eE ·
Ri + δµα

i are the conductance and the spin-dependent
electrochemical potential, respectively. Here, δµα

i is the
nonequilibrium chemical potential at site i with spin α.
In contrast to the previous studies on a random resistor
network, we should reside two spin states at each site.

We next introduce the generalized Kirchhoff’s
law [124–127] and transform it into the charge-spin basis
to correspond with experimental conditions:

∑

j∈Z(i)

GijVj +GiiVi + (Ii)
source = 0, (8a)

where the sum runs over the set of all sites Z(i) connected
to the site i. Here, we have defined the conductance
matrices in the charge-spin basis as

Gij =

[
Gcc

ij Gcs
ij

Gsc
ij Gss

ij

]
, Gii = −

∑

j∈Z(i)

[
Gcc

ij Gsc
ij

Gsc
ij Gcc

ij

]
, (8b)

and the charge/spin voltages and currents as

Vi =

[
V c
i

V s
i

]
=

1

2

[
V ↑
i + V ↓

i

V ↑
i − V ↓

i

]
, Ii =

[
Ici
Isi

]
=

[
I↑i + I↓i
I↑i − I↓i

]
,

(8c)
respectively. Note that the symmetry Gαβ

ij = Gβα
ji in

Eq. (7) guarantees the absence of both charge and spin
currents in equilibrium (with no bias voltage) [128]. Each
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component of Gij is given by

Gcc
ij = G↑↑

ij +G↑↓
ij +G↓↑

ij +G↓↓
ij , (9a)

Gcs
ij = G↑↑

ij +G↓↑
ij −G↑↓

ij −G↓↓
ij , (9b)

Gsc
ij = G↑↑

ij +G↑↓
ij −G↓↑

ij −G↓↓
ij , (9c)

Gss
ij = G↑↑

ij +G↓↓
ij −G↑↓

ij −G↓↑
ij , (9d)

and represents how much a charge or a spin current is
generated by a charge or a spin voltage. Our theory
spontaneously includes driving forces stemming from the
spin accumulation µs

i = −eV s
i in addition to the conven-

tional bias voltage V c
i . As can be seen from the above

definitions in Eq. (9), Gcs
ij and Gsc

ij , which activate mu-
tual conversion between charge and spin, have the form
of

∑
β G

αβ
ij and hence exhibit true chirality [see Eq. (5)].

Therefore, the interplay between the structural and the
dynamical chiralities serves as the charge-spin converter
in the conductance expression. Note that the imbalance
between G↑↑

ij and G↓↓
ij is essential to realize a finite spin

polarization, which needs not only the spin-microrotation
coupling but also the conventional one [129].

Application to the DNA double helix.— To quantita-
tively study the temperature dependence of the charge
conductance and the spin polarization along the DNA
double helix, we numerically calculate them by applying
a random spin resistor network with the simplified form
of conductances:

Gαβ
ij = Gαβ

0 exp

[
−2|xi − xj |

ξ
− |εi|+ |εj |+ |εi − εj |

2kBT

]
,

(10)
whereGαβ

0 is the spin-dependent prefactor. The most im-
portant parameters in Eq. (10) are the random variables
εi, εj , and |xi − xj |. Due to the exponential spread in
the values of the resistors, the conductance of the entire
network will be determined by the largest conductance
such that the network, which is composed of all resistors
with conductances larger than a critical value, percolates.

Each spin component accumulates in the same amount
at the opposite ends of the system [130]. Then, we here
define the spin polarization P as the difference of the spin
accumulation at the two ends,

P =
µs
1 − µs

N

eV
= −V

s
1 − V s

N

V
. (11)

The temperature dependence of P is shown in Fig. 2.
As decreasing temperature, the underlying mechanism
of electron transport changes from NNH to VRH, which
gives rise to an enhancement of the spin polarization gov-
erned by a universal power law: P ∝ 1/T 3/2 [131]. Fig. 2
is the main result of this Letter and is in good agreement
with the experimental observations [7, 25, 57].

Universal 1/T 3/2-law.— We have clarified that the
spatial profile of the spin accumulation is well described
by a steady-state diffusion equation l2sd∂

2
xµ

s(x) = µs(x)

FIG. 2. Temperature dependence of the spin polarization P
calculated by a random spin resistor network ranging from 100
to 400K with a molecular length of 40 base-pairs. The inset
depicts the charge conductance Gc as a function of inverse
temperature 1/T and shows that Tc = 291K is the crossover
temperature between the nearest-neighbor hopping (NNH)
and the variable-range hopping (VRH). Here, we have used
the parameters: t = 0.065 eV, W = 0.15 eV, and a = 3.4Å.
We have also included the temperature dependence of the lo-
calization length: ξ−1(T ) = 0.18 + 0.70 tanh(T/192)2 Å−1,
which originates from thermal structural fluctuations [86].

with sinh[(x−L/2)/lsd] as a solution, where L = Na and
lsd ∝ T (a/Ropt) are the system and the spin diffusion
lengths [130]. Thus, we have identified the origin of the
temperature dependence of P , which is proportional to
2 sinh[L/2lsd] ∼ l−1

sd , as that of the optimized hopping
range Ropt associated with the crossover from NNH to
VRH. This gives rise to a universal 1/T 3/2-law for d = 1
in the VRH regime.

Finally, we should note that the amplitude of the spin
polarization and its sign depend on the structural and
the dynamical chiralities, the electron-phonon coupling
strengths, and other material parameters, whereas its
temperature dependence relies only on the underlying
mechanism of electron transport. Therefore, we con-
clude that chiral phonon-assisted hopping between local-
ized states is a key physics of the CISS effect along the
DNA double helix.

Conclusion.— In summary, we have proposed a model
to describe the electron charge and spin transport along
the DNA double helix, where DNA is regarded as a 1D
disordered system and chiral phonon-assisted hopping
between localized states is the main mechanism. By
employing the second-order perturbation for the spin-
microrotation coupling, we have elucidated that the
charge-to-spin conductances are described by the electric
toroidal monopole which is a manifestation of true chiral-
ity. In order to conduct numerical calculations, we have
developed a framework of a random spin resister network,
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which enables the observation of the crossover of the un-
derlying physics from the nearest-neighbor hopping to
the variable-range hopping as decreasing temperature.
Our results quantitatively agree with spin polarization
measurements in DNA and indicates that the variable-
range hoping may be crucial to the understanding of the
CISS effect along the DNA double helix. Therefore, our
results give an insight on the relevance of both disorder
effects and chiral phonons to CISS and will motivate fur-
ther research on the temperature dependence of the spin
polarization, which in turn lead to the solution of the
long-standing mystery of its origin.
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DETAILED CALCULATIONS OF THE TRANSITION RATE

I. Spin-Microrotation Coupling

According to the formulation in Ref. [S.1], a fundamental interaction between chiral phonons and electron spins is
given by the following spin-microrotation coupling:

Hsmc =
∑

l

Sl ·Ωl =
ℏ
2

∑

l

∑

α,β

c†lασαβclβ ·Ωl, (S.1)

where σαβ ’s are the Pauli matrices and Ωl is the vorticity at site Rl given by,

Ωl :=
∇× u̇l

2
. (S.2)

We next expand the operators clα in the basis of localized electronic states |i⟩ and the displacement vector in terms
phonon operators as,

clα =
∑

i

ψi(Rl)ciα, ul =
∑

q

√
ℏ

2ρV ωq
ϵq(aq + a†q̄)e

iq·Rl . (S.3)

By substituting these into Eq. (S.1), we obtain

Hsmc =
∑

i,j

∑

α,β

∑

q

gsmc
ij (q)σαβ · (q × ϵq)c

†
iαcjβ(aq − a†q̄), (S.4)

where gsmc
ij is the coupling strength of the spin-microrotation coupling given by,

gsmc
ij (q) =

1

2

ℏ
2

√
ℏωq

2ρV

∑

l

ψ∗
i (Rl)ψj(Rl)e

iq·Rl . (S.5)

In order to proceed the calculations, we assume that the localized wave function ψi is a hydrogenlike form: ψi(R) ∝
e−|R−Rl|/ξ with a localization length ξ and obtain the spatial dependence of gsmc

ij as

gsmc
ij ∝ e−|Ri−Rj |/ξ. (S.6)

Finally, the total electron-phonon coupling including the spin-microrotation coupling in addition to the conventional
one is given by,

He−ph =
∑

i,j

∑

α,β

c†iαcjβ
[
gconvij (q)δαβ(aq + a†q̄) + gsmc

ij (q)σαβ · (q × ϵq)(aq − a†q̄)
]
. (S.7)
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(a)

i, α, iωn j, β, iωn − iνℓ i, α, iωn

D(0)
q (iνℓ)

(b)

i, α, iωn j, β, iωn − iνℓ i, α, iωn

D(+)
q (iνℓ)

(c)

i, α, iωn j, β, iωn − iνℓ i, α, iωn

D(−)
q (iνℓ)

(d)

i, α, iωn j, β, iωn − iνℓ i, α, iωn

D(0)
q (iνℓ)

Supplementary Figure S1. Second-order self-energy diagrams. The solid line with arrow corresponds to electron propagator
and the curly line to the phonon propagator. At the vertices, the coupling strength of the electron-phonon interaction should
be associated. Here, the white circle (◦) corresponds to gconvij (q)δαβ(iq · ϵq) and the black circle (•) to gsmc

ij (q)σαβ · (q × ϵq).

II. Perturbative Hopping Rate

The single-phonon process in Fig. S1 gives rise to the second-order self-energy,

Σ(a)
αα(i, i; iωn) = − 1

β

∑

j,β

∑

q

gconvij (q)gconvji (q̄)δαβ
∑

iνℓ

G
(0)
j (iωn − iνℓ)D

(0)
q (iνℓ), (S.8a)

Σ(b)
αα(i, i; iωn) = − 1

β

∑

j,β

∑

q

gsmc
ij (q)gconvji (q̄)σαβ · (q × ϵq)δαβ

∑

iνℓ

G
(0)
j (iωn − iνℓ)D

(+)
q (iνℓ), (S.8b)

Σ(c)
αα(i, i; iωn) = − 1

β

∑

j,β

∑

q

gconvij (q)gsmc
ji (q̄)σαβ · (−q × ϵq)δαβ

∑

iνℓ

G
(0)
j (iωn − iνℓ)D

(−)
q (iνℓ), (S.8c)

Σ(d)
αα(i, i; iωn) = − 1

β

∑

j,β

∑

q

gsmc
ij (q)gsmc

ji (q̄)|σαβ · (q × ϵq)|2
∑

iνℓ

G
(0)
j (iωn − iνℓ)D

(0)
q (iνℓ), (S.8d)

where g
conv(smc)
ij (q) = gconv(smc)

∑
l ψ

∗
i (Rl)ψj(Rl) =

[
g
conv(smc)
ji (q̄)

]∗
. G

(0)
i (iωn) = 1/(iωn − εi) is the electron- and

D
(0)
q (iνℓ) = 2ℏωq/[(iνℓ)

2 − (ℏωq)
2] is the phonon-propagators; ωn and νℓ are fermionic and bosonic Matsubara fre-

quencies, respectively. We further defined the extra phonon-propagators as D
(±)
q (iνℓ) = ±2iνℓ/[(iνℓ)

2 − (ℏωq)
2]. The

hopping rate τ−1
iα = − 2

ℏ ImΣαα(i, i; iωn → εi + i0) for each diagram is then obtained as

1

τ
(a)
iα

=
2π

ℏ
∑

j,β

∑

q

∣∣gconvij (q)
∣∣2δαβ

[{
1− f(εj) + n(ℏωq)

}
δ(εi − εj − ℏωq) +

{
f(εj) + n(ℏωq)

}
δ(εi − εj + ℏωq)

]
,

(S.9a)

1

τ
(b)
iα

=
2π

ℏ
∑

j,β

∑

q

gsmc
ij (q)gconv∗ij (q)σαβ · (q × ϵq)δαβ

[{
1− f(εj) + n(ℏωq)

}
δ(εi − εj − ℏωq)−

{
f(εj) + n(ℏωq)

}
δ(εi − εj + ℏωq)

]
,

(S.9b)

1

τ
(c)
iα

=
2π

ℏ
∑

j,β

∑

q

gconvij (q)gsmc∗
ij (q)σαβ · (q × ϵq)δαβ

[{
1− f(εj) + n(ℏωq)

}
δ(εi − εj − ℏωq)−

{
f(εj) + n(ℏωq)

}
δ(εi − εj + ℏωq)

]
,

(S.9c)

1

τ
(d)
iα

=
2π

ℏ
∑

j,β

∑

q

∣∣gsmc
ij (q)

∣∣2|σαβ · (q × ϵq)|2
[{

1− f(εj) + n(ℏωq)
}
δ(εi − εj − ℏωq) +

{
f(εj) + n(ℏωq)

}
δ(εi − εj + ℏωq)

]
,

(S.9d)
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where we have used the following relations:

− 1

β

∑

iνℓ

G
(0)
l (iωn − iνℓ)D

(0)
q (iνℓ) =

1− f(εl) + n(ℏωq)

iωn − εl − ℏωq
+
f(εl) + n(ℏωq)

iωn − εl + ℏωq
(S.10a)

− 1

β

∑

iνℓ

G
(0)
l (iωn − iνℓ)D

(+)
q (iνℓ) =

1− f(εl) + n(ℏωq)

iωn − εl − ℏωq
− f(εl) + n(ℏωq)

iωn − εl + ℏωq
. (S.10b)

By converting the sum
∑

q =
∫∞
0

dε ν(ε) and using
∣∣gconvij (q)

∣∣2 ≈ g2e−2|Ri−Rj |/ξ in Eq. (S.9a), we reproduce the
conventional variable-range hopping rate Eq. (6) in the main text as

1

τVRH
≃ g2

∑

R

e−2R/ξe−∆R/2kBT ν(∆R), (S.11)

where R = |Ri −Rj | and we have assumed kBT ≪ εi, εj ,∆R = |εi − εj |.

RANDOM SPIN RESISTOR NETWORK

I. Rate Equation

The rate equation for an electron with a state (i, α) is given by

dfiα
dt

= −
(∑

j

∑

β

Γ(iα)→(jβ)

)
fiα +

∑

j

∑

β

Γ(jβ)→(iα)fjβ =
∑

j

∑

β

(
−Γ(iα)→(jβ)fiα + Γ(jβ)→(iα)fjβ

)
, (S.12)

where fiα is the probability for finding an electron in a state (i, α) and Γ(iα)→(jβ) is the transition rate for a jump
(i, α) → (j, β), which can be calculated, e.g., from Fermi’s golden rule.

The time average of the above equation reads

〈
dfiα
dt

〉

t

=
∑

j

∑

β

〈
−Γ(iα)→(jβ)fiα + Γ(jβ)→(iα)fjβ

〉
t
. (S.13)

Then, the time-averaged net charge flow from site j with spin β to site i with spin α is given by

I(jβ)→(iα) := (−e)
(
−
〈
Γ(iα)→(jβ)fiα

〉
t
+

〈
Γ(jβ)→(iα)fjβ

〉
t

)
. (S.14)

In the absence of an electric field E (in equilibrium) which we denote by the subscript “0”, electron transfer is
random and there is a detailed balance in its time average; therefore, no net charge/spin current survives. Namely,
⟨Γ(iα)→(jβ)fiα⟩0t must be symmetric with respect to the states (i, α) and (j, β):

〈
Γ(iα)→(jβ)fiα

〉0
t
=

〈
Γ(jβ)→(iα)fjβ

〉0
t
. (S.15)

By defining the intrinsic transition rate γ(iα)→(jβ) as Γ(iα)→(jβ) =: γ(iα)→(jβ)(1 − fjβ), the above condition can be
rewritten as

〈
γ(iα)→(jβ)(1− fjβ)fiα

〉0
t
=

〈
γ(jβ)→(iα)(1− fiα)fjβ

〉0
t
. (S.16)

Throughout this work, we shall neglect the electron-electron interactions and then, γ(iα)→(jβ) is independent of the
distribution and may be removed from the brackets. Furthermore, in thermal equilibrium, the distribution for different
states are statistically independent, so that ⟨fiαfjβ⟩0t = ⟨fiα⟩0t ⟨fjβ⟩0t and ⟨fiα⟩0t =: f0iα = f(εi) = [eβεi + 1]−1. Here,
the energy εi is measured from the Fermi level. Finally, from the detailed balance Eq. (S.15), we obtain the condition
for the intrinsic transition rate:

γ0(iα)→(jβ) = γ0(jβ)→(iα)e
β(εi−εj), (S.17)

which is also satisfied for the transition rates calculated microscopically in Eqs. (S.9).
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An external electric field modulates both the electron distribution and the intrinsic transition rate as follows:

⟨fiα⟩t = f0iα + ⟨δfiα⟩t := [eβ(εiα−δµα
i ) + 1]−1, γ(iα)→(jβ) = γ0(iα)→(jβ) + δγ(iα)→(jβ). (S.18)

In the linear response regime, the time-averaged net charge flow can be approximated as,

I(jβ)→(iα)/e = ⟨fiα⟩t(1− ⟨fjβ⟩t)γ(iα)→(jβ) − ⟨fjβ⟩t(1− ⟨fiα⟩t)γ(jβ)→(iα)

= (f0iα + ⟨δfiα⟩t)(1− f0jβ − ⟨δfjβ⟩t)(γ0(iα)→(jβ) + δγ(iα)→(jβ))

− (f0jβ + ⟨δfjβ⟩t)(1− f0iα − ⟨δfiα⟩t)(γ0(jβ)→(iα) + δγ(jβ)→(iα))

= Γ0
(jβ)→(iα)f

0
jβ

[
δγ(iα)→(jβ)

γ0(iα)→(jβ)

− δγ(jβ)→(iα)

γ0(jβ)→(iα)

+
⟨δfiα⟩t

f0iα(1− f0iα)
− ⟨δfjβ⟩t
f0jβ(1− f0jβ)

]
+O(E2)

≃ 1

kBT
Γ0
(jβ)→(iα)f

0
jβ [eE · (Ri −Rj) + δµα

i − δµβ
j ], (S.19)

where we have used the detailed balance condition Γ0
(iα)→(jβ)f

0
iα = Γ0

(jβ)→(iα)f
0
jβ and Eq. (S.17) to evaluate the terms

involving δγ(iα)→(jβ). Defining the spin-dependent electrochemical potential at each site as −eV α
i := eE ·Ri + δµα

i ,
the final form of the net charge flow from (j, β) to (i, α) in the linear response to an external electric field is given by,

I(jβ)→(iα) =
e2

kBT
Γ0
(jβ)→(iα)f

0
jβ(V

β
j − V α

i ) = Gβα
ji (V

β
j − V α

i ). (S.20)

Here, we have defined the conductance as

Gβα
ji :=

e2

kBT
Γ0
(jβ)→(iα)f

0
jβ , (S.21)

which is, by definition, also symmetric with respect to the states: Gαβ
ij = Gβα

ji .

II. Reduction to the Percolation Theory

We next must predict a more detailed form for γ(iα)→(jβ). Because we are considering a tunneling process, we know
that the dominant dependence of γ(iα)→(jβ) on Rij := |Ri −Rj | must be exponential,

γ(iα)→(jβ) ∝ e−2Rij/ξ, (S.22)

where ξ is the localization length.
The energy dependence of γ(iα)→(jβ) is less obvious than the R-dependence; and, in fact, a number of different

kinds of behavior seem possible. The simplest situation occurs when kBT is small compared to |εi − εj |, and the
energy difference |εi − εj | is of the order of the Debye energy or smaller. It is then a good approximation to write

γ0(iα)→(jβ) = γ0αβ ×
{
e−2Rij/ξe−(εj−εi)/kBT εj > εi
e−2Rij/ξ εj < εi

, (S.23)

where γ0αβ is some constant which depends on the electron-phonon coupling strength, the phonon density of states,
and other properties of the material. Eq. (S.23) satisfies the detailed balance condition Eq. (S.17).

Combining Eqs. (S.23) and assuming kBT small compared to all energies, we find that the value of Γij in thermal
equilibrium can be written in the relatively simple form:

Γ0
(iα)→(jβ)f

0
iα = γ0αβe

−2Rij/ξ
e(εi+εj−|εi−εj |)/2kBT

[1 + eεi/kBT ][1 + eεj/kBT ]
(S.24)

≃ γ0αβ exp

[
−2Rij

ξ
− |εi|+ |εj |+ |εi − εj |

2kBT

]
. (S.25)

The most important parameters in this expression are the random variables εi, εj , and Rij in the exponential, which
lead to a wide spread in its distribution of magnitude.
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The application of percolation concepts to the random resistor network is straightforward. We here define the
critical percolation conductance Gc for a random network, where the values of the individual conductances vary over
many orders of magnitude, as the largest value of the conductance such that the subset of resistors with Gij > Gc

still contains a connected network which spans the entire system.
Then, the relation to the bond percolation problem is established by the following assumption:

i and j is

{
disconnected (Gij < Gc)
connected with Gij (Gij > Gc)

, ⇐⇒ i and j is

{
disconnected (ηij < ηc)
connected with Gij (ηij > ηc)

, (S.26)

where we have introduced the exponential factors Gij = G0e
ηij and Gc = G0e

ηc . Then, the solution exists only when
a continuous path cross the network from one end to another.

III. Generalized Kirchhoff’s Law

For given network conditions, the current circuit problem can be solved with the Kirchhoff’s law. The generalized
Kirchhoff’s law including spin components is given by,

∑

j∈Z(i)

∑

β

Gαβ
ij (V β

j − V α
i ) + (Iαi )

source = 0, (S.27a)

or equivalently,

∑

j∈Z(i)

[
G↑↑

ij G↑↓
ij

G↓↑
ij G↓↓

ij

][
V ↑
j

V ↓
j

]
+

[
−∑

j∈Z(i)(G
↑↑
ij +G↑↓

ij ) 0

0 −∑
j∈Z(i)(G

↓↑
ij +G↓↓

ij )

] [
V ↑
i

V ↓
i

]
+

[
I↑i
I↓i

]source
= 0, (S.27b)

where the sum runs over the set of all nodes Z(i) connected to the node i. Due to the spin-preserving nature of
the nodes, the incoming current is equal to the outgoing current at each node for both spin components. (Iαi )

source

represent external source currents supplied by the battery.
The above Kirchhoff’s law Eq. (S.27) for each spin component of the charge currents at a node i. For the purpose

of corresponding to the experimental conditions, it would be more prospective to transform it into the charge-spin

basis. To this end, we multiply the above matrix equation by the transformation matrix

[
1 1
1 −1

]
from the left and

obtain the following equation:
∑

j∈Z(i)

GijVj +GiiVi + Isourcei = 0, (S.28a)

where we have introduced the conductance matrices in the charge-spin basis as

Gij =

[
1 1
1 −1

][
G↑↑

ij G↑↓
ij

G↓↑
ij G↓↓

ij

] [
1 1
1 −1

]

=

[
G↑↑

ij +G↑↓
ij +G↓↑

ij +G↓↓
ij G↑↑

ij +G↓↑
ij −G↑↓

ij −G↓↓
ij

G↑↑
ij +G↑↓

ij −G↓↑
ij −G↓↓

ij G↑↑
ij +G↓↓

ij −G↑↓
ij −G↓↑

ij

]

=:

[
Gcc

ij Gcs
ij

Gsc
ij Gss

ij

]
, (S.28b)

Gii = −
∑

j∈Z(i)

[
1 1
1 −1

] [
G↑↑

ij +G↑↓
ij 0

0 G↓↑
ij +G↓↓

ij

] [
1 1
1 −1

]

= −
∑

j∈Z(i)

[
G↑↑

ij +G↑↓
ij +G↓↑

ij +G↓↓
ij G↑↑

ij +G↑↓
ij −G↓↑

ij −G↓↓
ij

G↑↑
ij +G↑↓

ij −G↓↑
ij −G↓↓

ij G↑↑
ij +G↑↓

ij +G↓↑
ij +G↓↓

ij

]

= −
∑

j∈Z(i)

[
Gcc

ij Gsc
ij

Gsc
ij Gcc

ij

]

=:

[
Gcc

ii Gcs
ii

Gsc
ii Gss

ii

]
, (S.28c)
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and the charge/spin voltages and currents as

Vi =
1

2

[
1 1
1 −1

] [
V ↑
i

V ↓
i

]
=:

[
V c
i

V s
i

]
, Ii =

[
1 1
1 −1

] [
I↑i
I↓i

]
=:

[
Ici
Isi

]
. (S.28d)

Here, we have used the fact that
1

2

[
1 1
1 −1

]2
=

[
1 0
0 1

]
. As can be seen in the above transformation, the definitions

of charge/spin currents and voltages naturally emerge:

V
c/s
i :=

V ↑
i ± V ↓

i

2
, I

c/s
i := I↑i ± I↓i , (S.28e)

and therefore, charge and spin chemical potentials (or spin accumulation) also appears, µ
c/s
i := (µ↑

i ± µ↓
i )/2.

By definition, the components of the conductance matrix obey the following relations [S.2]:

Gcc
ij = Gcc

ji , Gss
ij = Gss

ji, Gcs
ij = Gsc

ji, (j ̸= i) (S.29a)

Gcc
ii = Gss

ii , Gsc
ii = Gcs

ii , (S.29b)

Gcs
ij = Gsc

ij − 2(G↑↓
ij −G↓↑

ij ), (S.29c)

Gss
ij = Gcc

ij − 2(G↑↓
ij +G↓↑

ij ). (S.29d)

These constrains reduce the number of independent components of Gij .
We can write the matrix equations similar to Eq. (S.28a) for all nodal potentials ranging from V1 to VN and cast

those equations into the following matrix form:



L11 L12 · · · L1N

L21 L22 · · · L2N

...
...

. . .
...

LN1 LN2 · · · LNN







V1

V2

...
VN


+




I1
I2
...
IN




source

= 0, (S.30)

where Lij are 2× 2 matrices and defined as

Lij =





Gii i = j
Gij i ̸= j, j ∈ Z(i)
0 otherwise

. (S.31)

From the conditions Eqs. (S.29a) and (S.29b), the weighted Laplacian matrix,

L :=




L11 L12 · · · L1N

L21 L22 · · · L2N

...
...

. . .
...

LN1 LN2 · · · LNN


 , (S.32)

is symmetric, LT = L.

IV. Sum Rules

In this section, we derive the sum rules which are physically justified by starting from the generalized Kirchhoff’s
law:

∑

j

[
Lcc
ij Lcs

ij

Lsc
ij Lss

ij

] [
V c
j

V s
j

]
+

[
Ici
Isi

]source
= 0. (S.33)

Regardless of how charge currents are generated by a charge voltage through Lcc or by a spin voltage Lcs, charge
conservation law requires them to add up to zero at steady state:

∑

j

(∑

i

Lcc
ij

)
V c
j +

∑

j

(∑

i

Lcs
ij

)
V s
j = 0. (S.34)

This requires two universal sum rules to hold:
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• Sum Rule #1

∑

i

Lcc
ij =

∑

i∈Z(j)

Gcc
ij +Gcc

jj

=
∑

i∈Z(j)

(G↑↑
ij +G↑↓

ij +G↓↑
ij +G↓↓

ij )−
∑

i∈Z(j)

(G↑↑
ji +G↑↓

ji +G↓↑
ji +G↓↓

ji )

= 0, (Gαβ
ij = Gβα

ji ) (S.35)

• Sum Rule #2

∑

i

Lcs
ij =

∑

i∈Z(j)

Gcs
ij +Gcs

jj

=
∑

i∈Z(j)

(G↑↑
ij +G↓↑

ij −G↑↓
ij −G↓↓

ij )−
∑

i∈Z(j)

(G↑↑
ji +G↑↓

ji −G↓↑
ji −G↓↓

ji )

= 0. (S.36)

In equilibrium, there are no spin accumulation: µs
j = 0. Therefore,

• Sum Rule #3

∑

j

Lcc
ij = 0, (S.37)

guarantees that the absence of any charge current at each node in equilibrium with V c
j = const. and V s

j = 0.

Similarly,

• Sum Rule #4

∑

j

Lsc
ij =

∑

j∈Z(j)

Gsc
ij +Gsc

ii

=
∑

j∈Z(i)

(G↑↑
ij +G↑↓

ij −G↓↑
ij −G↓↓

ij )−
∑

j∈Z(i)

(G↑↑
ij +G↑↓

ij −G↓↑
ij −G↓↓

ij )

= 0, (S.38)

also guarantees the absence of any spin current at each node in equilibrium [S.3].

We also note that there are no general sum rules for the spin-to-spin conductance Lss
ij . This is closely related to the

fact that the spin current is not conserved through hopping.
Finally, from the sum rules #3 and #4, the generalized Kirhhoff’s law Eq. (S.33) does not change its form for any

constant shift of the charge voltage V c
j → V c

j + V0:

∑

j

Lcc
ij (V

c
j + V0) +

∑

j

Lcs
ijV

s
j + (Ici )

source =
∑

j

Lcc
ijV

c
j +

∑

j

Lcs
ijV

s
j + (Ici )

source = 0,

∑

j

Lsc
ij(V

c
j + V0) +

∑

j

Lss
ijV

s
j + (Isi )

source =
∑

j

Lsc
ijV

c
j +

∑

j

Lss
ijV

s
j + (Isi )

source = 0.

Therefore, we can chose V c
N = 0 by grounding one end of the circuit.

V. Boundary Conditions and Equivalent Conductance

The next step is to compute the physical quantities such as the charge conductance Gc := I/V . Our starting
point is the weighted Laplacian matrix L associated with a given network, whose entries are the conductances Lij

connecting pairs of nodes. We assume that two nodes at the ends of the system are connected to the battery, which
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fixes the charge voltage difference V between these two nodes. Then, the battery terminals read V c
1 = V and V c

N = 0
and we can compute the observables from L and its relatives.

To this end, the boundary conditions with the external environment become important. First, the constraints for
intermediate nodes i = 2, 3, · · · ,N− 1, which are not connected to the environment, are given by,

(Ici )
source = 0, (Isi )

source = 0. (S.39a)

Second, the boundary conditions for the charge components stemming from an external battery are given by,

Ic1 = I, V c
1 = V, (S.39b)

IcN = −I, V c
N = 0. (S.39c)

Finally, we further take the following boundary conditions for the spin components:

(Is1)
source = (IsN)

source = 0. (S.39d)

If one wants to correspond to more typical experimental conditions that DNA is directly contacted with a nonmagnetic
electrode such as Au on one side and a ferromagnetic electrode such as Ni on the other side, for example, one should
set the boundary condition for the spin injection as Is1 = αNiI. Here, αNi ≃ 0.23 is the spin polarization ratio of Ni.
In this way, we can represent the injection of a spin-polarized current from a ferromagnetic electrode without adding
extra degrees of freedom.

By combining Eq. (S.30) with Eqs. (S.39), we obtain the following matrix equations:




[
Lcc
11 Lcs

11

Lsc
11 Lss

11

] [
Lcc
12 Lcs

12

Lsc
12 Lss

12

]
· · ·

[
Lcc
1N Lcs

1N

Lsc
1N Lss

1N

]

[
Lcc
21 Lcs

21

Lsc
21 Lss

21

] [
Lcc
22 Lcs

22

Lsc
22 Lss

22

]
· · ·

[
Lcc
2N Lcs

2N

Lsc
2N Lss

2N

]

...
...

. . .
...

[
Lcc
N1 Lcs

N1

Lsc
N1 Lss

N1

] [
Lcc
N2 Lcs

N2

Lsc
N2 Lss

N2

]
· · ·

[
Lcc
NN Lcs

NN

Lsc
NN Lss

NN

]







[
V
V s
1

]

[
V c
2

V s
2

]

...

[
0
V s
N

]




+




[
I
0

]

[
0
0

]

...

[
−I
0

]




= 0, (S.40)

where the unknown quantities are I, V s
1 , V

c
2 , V

s
2 , · · · , V c

N−1, V
s
N−1, and V

s
N. Note that the sum rules #1 and #2 imply

that the 2N equations in Eq. (S.40) are not independent. Hence, from now on, we will skip the (2N− 1)-th equation
related to −I and focus only on the remaining (2N− 1) equations.

In order to solve for the unknown quantities, we rearrange Eq. (S.40) as follows. The first element of each row of L
multiplies V . We carry this term to the right-hand side of each equation. In the first row, we also carry the unknown
input charge current I to the left-hand side. Now these equations take the form:




[
1 Lcs

11

0 Lss
11

] [
Lcc
12 Lcs

12

Lsc
12 Lss

12

]
· · ·

[
Lcs
1N

Lss
1N

]

[
0 Lcs

21

0 Lss
21

] [
Lcc
22 Lcs

22

Lsc
22 Lss

22

]
· · ·

[
Lcs
2N

Lss
2N

]

...
...

. . .
...

[
0 Lss

N1

] [
Lsc
N2 Lss

N2

]
· · · Lss

NN







[
I
V s
1

]

[
V c
2

V s
2

]

...

V s
N




= −V




[
Lcc
11

Lsc
11

]

[
Lcc
21

Lsc
21

]

...

Lsc
N1




. (S.41)

Applying Cramer’s rule, we then obtain expressions for the equivalent charge conductance and the nodal spin voltages
as

Gc
eq = − detL′

detL′′ , V s
i = −V detL′′

i

detL′′ (1 ≤ i ≤ N− 1), V s
N = V

detL′′
N

detL′′ . (S.42)
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Here, we have defined a (2N− 1)× (2N− 1) sub-matrix of L,

L′ =




[
Lcc
11 Lcs

11

Lsc
11 Lss

11

] [
Lcc
12 Lcs

12

Lsc
12 Lss

12

]
· · ·

[
Lcc
1N−1 Lcs

1N−1

Lsc
1N−1 Lss

1N−1

] [
Lcs
1N

Lss
1N

]

[
Lcc
21 Lcs

21

Lsc
21 Lss

21

] [
Lcc
22 Lcs

22

Lsc
22 Lss

22

]
· · ·

[
Lcc
2N−1 Lcs

2N−1

Lsc
2N−1 Lss

2N−1

] [
Lcs
2N

Lss
2N

]

...
...

. . .
...

...

[
Lsc
N1 Lss

N1

] [
Lsc
N2 Lss

N2

]
· · ·

[
Lsc
NN−1 Lss

NN−1

]
Lss
NN




, (S.43a)

and its (2N− 2)× (2N− 2) sub-matrices,

L′′ =




Lss
11

[
Lsc
12 Lss

12

]
· · · Lss

1N

[
Lcs
21

Lss
21

] [
Lcc
22 Lcs

22

Lsc
22 Lss

22

]
· · ·

[
Lcs
2N

Lss
2N

]

...
...

. . .
...

Lss
N1

[
Lsc
N2 Lss

N2

]
· · · Lss

NN




, L′′
i =




[
Lsc
11 Lss

11

]
· · · Lsc

1i

[
Lsc
1i+1 Lss

1i+1

]
· · · Lss

1N

[
Lcc
21 Lcs

21

Lsc
21 Lss

21

]
· · ·

[
Lcc
2i

Lsc
2i

] [
Lcc
2i+1 Lcs

2i+1

Lsc
2i+1 Lss

2i+1

]
· · ·

[
Lcs
2N

Lss
2N

]

...
. . .

...
...

. . .
...

[
Lsc
N1 Lss

N1

]
· · · Lsc

Ni

[
Lsc
Ni+1 Lss

Ni+1

]
· · · Lss

NN




.

(S.43b)

VI. Applications to Spin-Microrotation Coupling

By substituting Γ0
(iα)→(jβ) for the spin-microrotation coupling into the conductances, we obtain the following form

of them:

G↑↑
ij =

e2

kBT

2π

ℏ
∑

q

[{∣∣gconvij (q)
∣∣2 +

∣∣gsmc
ij (q)

∣∣2∣∣(q × ϵq)∥
∣∣2
}
F+
ij (q) + 2Re

{
gsmc
ij (q)gconv∗ij (q)(q × ϵq)∥

}
F−
ij (q)

]
,

(S.44a)

G↓↓
ij =

e2

kBT

2π

ℏ
∑

q

[{∣∣gconvij (q)
∣∣2 +

∣∣gsmc
ij (q)

∣∣2∣∣(q × ϵq)∥
∣∣2
}
F+
ij (q)− 2Re

{
gsmc
ij (q)gconv∗ij (q)(q × ϵq)∥

}
F−
ij (q)

]
,

(S.44b)

G↑↓
ij =

e2

kBT

2π

ℏ
∑

q

∣∣gsmc
ij (q)

∣∣2|(q × ϵq)+|2F+
ij (q) = G↓↑

ji , (S.44c)

G↓↑
ij =

e2

kBT

2π

ℏ
∑

q

∣∣gsmc
ij (q)

∣∣2|(q × ϵq)−|2F+
ij (q), (S.44d)

where we have defined (q × ϵq)± := (q × ϵq)x ± i(q × ϵq)y and used the following relation,

|(q × ϵq)±|2 = |(q × ϵq)x|2 + |(q × ϵq)y|2 ∓ 2Re[(q × ϵq)x(q × ϵ∗q)y]. (S.45)

Furthermore, we have defined an (anti)symmetric function F±
ij (q) = ±F±

ji (q) by using the Heaviside step function
θ(x) as

F±
ij (q) := [1− f(εj)]f(εi)

[{
1 + n(εi − εj)

}
θ(εi − εj)± n(εj − εi)θ(εj − εi)

]
δ(|εi − εj | − ℏωq). (S.46)
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Then, the resulting conductances in the charge-spin basis are given by,

Gcc
ij = G↑↑

ij +G↑↓
ij +G↓↑

ij +G↓↓
ij

=
e2

kBT

4π

ℏ
∑

q

[∣∣gconvij (q)
∣∣2 +

∣∣gsmc
ij (q)

∣∣2
{
q2 − (q · ϵq)(q · ϵ∗q)

}]
F+
ij (q), (S.47a)

Gcs
ij = G↑↑

ij +G↓↑
ij −G↑↓

ij −G↓↓
ij

=
e2

kBT

4π

ℏ
∑

q

{
2Re

[
gsmc
ij (q)gconvij

∗(q)(q × ϵq)∥
]
F−
ij (q)−

∣∣gsmc
ij (q)

∣∣2q∥[q · Im(ϵ∗q × ϵq)]F
+
ij (q)

}
, (S.47b)

Gsc
ij = G↑↑

ij +G↑↓
ij −G↓↑

ij −G↓↓
ij = Gcs

ji

=
e2

kBT

4π

ℏ
∑

q

{
2Re

[
gsmc
ij (q)gconvij

∗(q)(q × ϵq)∥
]
F−
ij (q) +

∣∣gsmc
ij (q)

∣∣2q∥[q · Im(ϵ∗q × ϵq)]F
+
ij (q)

}
, (S.47c)

Gss
ij = G↑↑

ij +G↓↓
ij −G↑↓

ij −G↓↑
ij

=
e2

kBT

4π

ℏ
∑

q

[∣∣gconvij (q)
∣∣2 +

∣∣gsmc
ij (q)

∣∣2
(∣∣(q × ϵq)∥

∣∣2 − |(q × ϵq)x|2 − |(q × ϵq)y|2
)]
F+
ij (q). (S.47d)

Here, we have also used the relation: |q × ϵq|2 = q2(ϵq · ϵ∗q)− (q · ϵq)(q · ϵ∗q) = q2 − (q · ϵq)(q · ϵ∗q).

TEMPERATURE FITTING

DNA is quite different from inorganic materials in that DNA chains are flexible and have strong structural fluc-
tuations, which may crucially affect the transport properties. Strong structural fluctuations in DNA further localize
electronic wave functions and results in a temperature-dependent localization length due to the thermal nature
of these fluctuations. Then, according to Ref. [S.4], we introduce the temperature-dependent localization length

ξ−1(T ) =: α(T ) = α0 + α1 tanh(T/Td)
2
with α0 = 0.18 Å−1, α1 = 0.70 Å−1, and Td = 192K in the main text.

Supplementary Figure S2. Temperature dependences of (Left) the charge conductance and (Right) the spin polarization without
structural fluctuations for a molecular length of 40 base-pairs.

We have performed numerical Monte Carlo simulations and investigated the temperature dependences of the observ-
ables. Fig. S2 shows the fitting results of the charge conductance Gc and the spin polarization P where electrons obey
VRH without structural fluctuations, ξ−1 = 0.88 Å−1. The red dot-dashed line shows the result of a system where
electrons can only hop to nearest neighbors. The blue dashed line shows the fitting results. We can see that Gc obeys
the Mott’s law Gc ∝ exp

[
−(T0/T )

1/2
]
in the VRH regime and a simple thermal activation behavior Gc ∝ e−T ′

0/T in
the NNH regime, where T0 and T ′

0 are constants with the dimension of the temperature. In the VRH regime, P can
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Supplementary Figure S3. Temperature dependences of the spin polarization without structural fluctuations for various molec-
ular lengths.

be well fitted by P ∝ 1/T 3/2 in the same manner. The deviations from the fitting result occur at the same crossover
temperature Tc = 291K between Gc and P . Therefore, we expect that the crossover of the mechanism of the electron
transport from NNH to VRH observed in Gc is closely related to the temperature dependence of P .

The molecular length dependence of the spin polarization can be also obtained by the same framework. In Fig. S3,
we can see that P shows the same power law behavior: P ∝ 1/T 3/2 in each length except for the case of 2 base-pairs,

where P is given by P2−bps = (G↑↑
12−G↓↓

12)/(G
↑↑
12+G

↓↓
12). Therefore, we expect that the temperature dependence of P in

the VRH regime is universal. On the other hand, our results suggest that the spin polarization decreases with increasing
the length of the system. This seems to conflict with the general trends observed in various experiments [S.5]. The
discrepancy between our results and the experimental ones may stem from the difference in the details of experimental
conditions and the approximations such as the ignorance of overdamped phonons. These problems are left for our
future study.

SPATIAL PROFILE OF SPIN ACCUMULATION

In order to identify the origin of the temperature dependence of P , we have also investigated the spatial profile
of the spin accumulation µs

i/eV = −V s
i /V . Fig. S4 shows the spatial profiles of µs

i/eV and their fitting results by
sinh[(x− L/2)/lsd] for various temperatures. Here, L = Na and lsd are the system and the spin diffusion lengths.

Supplementary Figure S4. (Left) The spatial profile of the spin accumulation µs
i for various temperatures with a molecular

length of 16 base-pairs. The solid line shows the fitting results by sinh[(x−L/2)/lsd], where L = Na and lsd are the system and
the spin diffusion lengths. (Right) The temperature dependence of the extracted spin diffusion length lsd and the optimized
hopping range Ropt in units of the lattice constant.
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In the left panel of Fig. S4, we can see that each spin component accumulates in the same amount at the opposite
ends of the system. At high temperatures, the decay length lsd is longer and the spin accumulation is still visible within
a few sites from both ends of the system, whereas at low temperatures, the amplitude of µs

i at the two ends is larger
than at high temperatures although it decays rapidly. The spatial profile of µs

i is well fitted by sinh[(x − L/2)/lsd],
indicating that the spin accumulation obeys a steady-state diffusion equation: l2sd∂

2
xµ

s(x) = µs(x) with a temperature-
dependent lsd.

Given that P is proportional to 2 sinh[L/2lsd] ∼ l−1
sd , the temperature dependence of P is governed by that of lsd.

Therefore, we have further investigated the temperature dependence of lsd and revealed that lsd also shows a crossover
from NNH to VRH at Tc = 291K, which is depicted in the right panel of Fig. S4. We have performed a temperature
fitting and the result indicates that lsd ∝ T (a/Ropt), where the optimized hopping range Ropt is given by,

Ropt(T ) =





ξ

(
∆ξ

4kBT

) 1
d+1

= a

(
Tc
T

) 1
d+1

T < Tc

a T > Tc

. (S.48)

Thus, we can conclude that the temperature dependence of P is originated from that of Ropt associated with the
crossover of the underlying mechanism of electron transport from NNH to VRH.
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