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Abstract

We take the Christoffel coefficients as an operator and introduce new mappings for quaternionic
products to reach the theory of electrodynamics in general spacetime. With the help of the direc-
tional operator of the covariant derivative, we generalize the quaternioic mechanism to the theory
of gravity and show that the Einstein equation has the freedom to choose the constant term in
agreement with the covariant derivative.
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I. INTRODUCTION

After general relativity succeeded in explaining the
universe, numerous attempts were made to develop ge-
ometric electrodynamics. Most of these attempts were
unsuccessful [1–11]. Our goal now is to attempt this ob-
jective in a significantly different way. We want to incor-
porate the theory of gravity into the mechanism of elec-
trodynamics. This may help us with a higher apprecia-
tion of quantum gravity. Since the realization of quantum
gravity is universally craved by physicists, it is possible to
confirm the results of this work by separating the compo-
nents of Riemann’s curvature tensor. This is because the
realization of quantum gravity, as a worthwhile goal, has
forced us to propose a change in spacetime dimensions
[12–19]. In tackling the enigma, we face local obstacles
from quaternionic production, such as the contraction of
the indices of tangent and cotangent spaces, but the re-
sult is crucially the same regardless of the space chosen.
Such new perspectives will help us change the theory of
gravity. We approach two types of structures, the space-
time metric and the quaternionic metric (quaternionic
production under new metric). With quaternions, the
transition from electrodynamics to gravity is possible, as
will be shown. However, there is a fundamental differ-
ence between the two theories. Systematically, electro-
dynamics is a theory with two components which can
be clarified as the strength tensor in four-dimensional
space. If one extends electrodynamics to gravity theory
using quaternions, there are four components in a four-
dimensional spacetime. Hence, we encounter the concept
of component separation. This change in the structure of
the components leads to equations of motion and finally
to Bianchi’s identity [20–25].
The result of this article could be a modified gravitational
theory (a modification of the Einstein equation), which
formally assumes additional conditions [26–29]. The ad-
ditional conditions added to the Einstein equation are
seen strictly from a pure point of view, never achieved by
the concept of geometry. We will derive Einstein’s equa-

tion with additional conditions and prove its necessity.
The interpretation of Einstein’s historical theorem is one
of the consequences of the theory that has the potential
to be transformative [21, 22, 24]. It is an achievement to
induce the behavior of gauge fields in gravity. The last
theorem is complicated by Riemann’s four-component
curvature tensor. Of course, the theory of gravity has
a gauge-theoretic property similar to that of gauge fields
theory. The definition of the directional covariant deriva-
tive operator is an innovation in the present work. We
will explain its action in a subsection, but presently we
will use its results only.
Clarification- It is necessary to emphasize some defi-

nitions and denotations: (1) The vector and dual spaces
(distinguished by ε and ε⋆) are ordered, and denoted
by ε⋆ ⊗ ε; other orders are not allowed. uα eα ∈ ε
and uα eα ∈ ε⋆; eα and eα are also the tangent and

cotangent unit vectors. (2) The notation of u
αβ···
µν··· :=

u
αβ···
µν··· ê

α× êβ · · ·⊗ êµ× êν · · · shows the multicomponent
member. The notation is changed as follows; the uαβµν
parts are denoted by uαβ

µν . (3) The interaction of indices
occurs only from a vector to the dual space, left to right
and vice versa, anyhow, from a vector space into the dual
one. (4) Metric similarity transformations have no influ-
ence on the physical conditions.
Establishing- Introduction to ”Ast” Mapping: We de-
fine the new mapping (ast product) based on its result
as the only direction-independent action of the vector on
its relevant dual space,

∗ : ε~×ε⋆ ∼ is deffined

Also, the definition of the mapping as an action is:

∗ : ε⋆ ~×ε ∼ is deffined

In this way, ε⋆~×ε and ε ~×ε⋆ lead to invalid results. We
can also represent this with eα × eβ and so on. Now we
follow the classical relation of the Christoffel coefficients;
we define Bµ

ν;α = Bµ
ν,α + Γµ

αβB
β
ν − Γβ

ανB
µ
β and the ast

mapping, and we define the directed gamma operator as
follows;

Γ̂~×ε⋆ → ε⋆, ε ~×Γ̂→ ε,

Here we will not mention the direction of the action.
Therefore, operator Γ̂ obtains a structure of ε⋆ × ε and
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consequently Γ̂ ∝ ε⋆×ε. We point out that the operation
of Γ̂ is the contraction. In summary, Γ̂ is an operator in
the space of indices.
Due to assumption 1, the contraction of the indices oc-
curs up to the allowed cases; Σα êα× êµêν = Σα (δµαê

ν +

êµδνα). We assign a Lorentz index of Γ̂µ to the operator
(see appendix).
Metric- According to the definition of ast mapping, the
metric is a mapping of the form;

gup : ε2 × ε⋆ → ε (1)

and

g
down

: ε⋆ ← ε× ε⋆2 (2)

The symbol ”g” is the general metric element and com-
prises ε× ε or ε⋆ × ε⋆. Equations 1 and 2 show that the
metric (with a repeated index) does not obey the rules of
the operator, and it is clear that any other interpretation
of equations 1 and 2 would be wrong for the action of
the metric. It can be shown that the metric effect does
not play a role in the calculation of the components. Fol-
lowing the definition of ast mapping, the operator Γ̂κ is
represented as follows;

Γ̂κ ≡ Σαβ(Γ
α
βκ eβeα)

† = Γα
βκ eαeβ (3)

We have considered the inverted version of Γ̂κ as the
operator due to the compatibility of the Christoffel con-
nections with the role of the operator. Furthermore, ex-
cept for the ”κ” index in Γ̂κ, its other two indices are
repeated and dummy. Anyway, according to assumption
2, Γ̂κ ≡ Γ̂κ eκ (without summation), which is the missing
part of relation equation 3. From this follows (a connec-
tion coefficient of the first kind):

Γα
βκgdown

→ Γµ
βκ gµν ≡ Γβκν,

the mapping is, of course, not an operator. Due to the
specificity of contracting indices, we will remove the in-
dicator from the top of the letters. With the notation
of

eα → < α|

eα → |α >

The above statements and results become easier to un-
derstand with the new representation, because the Γ̂ζ op-

erator yields ”Γ̂κ = Σα,βΓ
α
βκ|α >< β| ≡ Γα

βκ|α >< β|”.
The ast mapping becomes more formal when referring to
the ”bra- ket” representations. Moreover, the represen-
tation corresponding to the ”bra-ket” extends our possi-
bilities for future calculations. The α and β are dummy
indices in the Γα

βκ|α >< β|-operator. They are used,
among other things, for the gamma operator effect;

Γ̂κ ∗ uλ = Γα
βκ |α >< β|λ > uλ = Γα

βκ δβλ u
�
|α >

= Γα
λκuα, (4)

In this process, the box is mated with the alpha vector.
That is, the box takes the alpha index. Hence,

uλ ∗ Γ̂κ = uλΓα
βκ < λ|α >< β| = Γλ

βκu
β . (5)

We emphasize that in changing the uλ notation, the po-
sition of the index λ in ”uλ” is the main, but the name of
the index changes in ”ast” multiplication. However, we
should use the ast mapping relations as simply as possi-
ble.
Quaternions- The relations that exist between the
quaternions’ generators q̂1 = I, q̂2 = J and q̂3 = K hold
under a Euclidean metric and satisfy the following rela-
tions: q̂i·q̂j = δij and q̂i×q̂j = Σkǫijk q̂k. If we add q̂0 = ℑ
(as identity), we obtain the quaternion expressed by the
Lorentz quantities (parameters of the Lorentz index).
They are coupled and are called “q vector”. The Lorentz
quantities (quantities carrying the Lorentz index) are
represented by the quaternions. Thus, we have two rep-
resentations of the Lorentz index: the four-vector and the
q-vector. We will use the notation A, B, · · · to represent
the quaternions and normally, we construct quaternions
from four vectors: A = A0ℑ + Ak q̂

k ≡ (A0, Akq̂
k)q. Bold

letters are used for the space part of the four vectors. The
four-vector representation has the basis of the spacetime
metric, and the Euclidean metric is for the quaternion
representation. This configuration has consequences for
quaternionic products. We also consider the Lorentz in-
dex in coupling the physical parameters to the quaternion
generator. In this way, we can generalize the range of the
coupled quantities from four vectors to tensors.
For the q-vectors Γ̂ and C, the extended Grassman quater-
nion multiplication ” ⊲ ” (with ∗ -product), is defined as
follows [30–33]

Γ̂ ⊲ C = (Γ̂0 ∗ C0 − Γ̂ ∗ CC, Γ̂ ∨ C+ Γ̂ ∧ CC)q, (6)

where ∧ and ∨ are the vector products under the ast
mapping:

Γ̂ ∧ CC = ǫijk(Γ̂i ∗ Cj)q̂k.

and

(Γ̂ ∨ C)k = Γ̂0 ∗ Ck − Γ̂k ∗ C0.

According to the above, ∨ and ∧ add the spatial and
temporal components to the above two commutators;
i) The commutator associated with the product ” ∗ ” is

denoted by [Γ̂, C]∗ = Γ̂ ∗ C− C ∗ Γ̂.
ii) Moreover, we can introduce a new commutator, i.e.
the commutator associated with the multiplication of the
quaternion [B, C]⊲ = B ⊲ C − C ⊲ B containing the product
” ∗ ”, when at least one of them is operator.
Based on the operator rule for the connection coefficients
Γ̂, we introduce a new covariant derivative,

∆µ = ∂µℑ − eΓ̂µ (7)

where ”e” is the coupling coefficient constant with a value
of one. As mentioned earlier, Γ̂µ contains two coupling
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indices. Due to the operators Γ̂’s and the ” ∗ ”-product
∆µ is a semi-complete operator. Equation 7 with the
” ∗ ”-product has the expected effects

∆µ ∗ B
λ
κ = ∂µB

λ
κ − eΓα

µκB
λ
α

=: Bλκ,µ

The multiplications used in this paper refer to the ” ∗ ”-
product. Accordingly, the effect described above dictates
the following action,

[∆µ, (BC)]∗ = B[∆µ, C]∗ + [∆µ, B]∗C (8)

It follows that we have

[∆µ, B]∗ = ∂µB− e[Γ̂µ, B]∗

≡ B;µ (9)

If we define gαβΓ̂β directly, we can write

gαβ∆β ∗ Bλ = gαβBλ,β = gαβBλ;β ≡ B
;α
λ

The covariant derivative is not complete. The incom-
pleteness of the derivative operator is evident from equa-
tions 4 and 5.
µ and ζ are free indices in Γ̂µ ∗ Bζ . This means that

Γ̂µ ∗ Bζ ends up being a second rank tensor; In other

words, Γ̂µ ∗ Bζ ∝ Γα
µζBα actually has the two free in-

dices µ and ζ that can be considered as free indices;
Γα
µζBα ≡ Γα

µζBα |µ, ζ >. Equation 3, and our calcu-
lations in the ”bra-ket” notation show that,

Γ̂ν ∗ Γ̂µ = Γα
νβ |β >< α|Γκ

µλ|λ >< κ|+ Γα
νβ |α >< β|µ >

× Γκ
µλ|λ >< κ|

= Γα
νβΓ

κ
µλ|β > (δλα) < κ|+ Γα

νβ |α > (δβµ)

× Γκ
µλ|λ >< κ|

= Γα
νβΓ

κ
µα|β >< κ|+ Γα

νµΓ
κ
αλ|λ >< κ|,

furthermore

(Γ̂ν ∗ Γ̂µ)
† = (Γα

νβΓ
κ
µα + Γα

νµΓ
κ
αβ)|β >< κ|)†

= (Γα
νβΓ

κ
µα + Γα

νµΓ
κ
αβ)|κ >< β|,

so inverted version becomes

(Γ̂ν ∗ Γ̂µ) ∗ Bζ = Γα
νζΓ

κ
µαBκ + Γα

νµΓ
κ
αζBκ.

It also has the free indices, µ, ν and ζ. Also,

Γ̂ν ∗ (Γ̂µ ∗ Bζ) = Γα
νβ |α >< β| ∗ (|µ, ζ > Γκ

(µζ)Bκ)

= Γα
νζΓ

κ
µαBκ + Γα

νµΓ
κ
αζBκ. (10)

In addition,

Γ̂κ ∗ (Γ̂λ ∗ Bµ) = (Γ̂κ ∗ Γ̂λ) ∗ Bµ.

confirms that ∆µ is an incomplete operator, satisfying
the condition:

∆µ ∗ (BλCκ) = (∆µ ∗ Bλ)Cκ + Bλ(∆µ ∗ Ck).

In particular,

[Γ̂µ, Γ̂ν ]∗ = (Γζ
µλΓ

κ
νζ − Γζ

νλΓ
κ
µζ)(|κ >< λ|).

It is clear that the free indices after transposition can

be seen. In this way, (Γζ
µλΓ

κ
νζ − Γζ

νλΓ
κ
µζ)(|κ >< λ|) as

an operator contains the two free indices κ and λ. It
becomes a simplicial [Γ̂µ, Γ̂ν ]

κ
∗ λ which has free λ and κ

indices. Next, we follow the computation of [∆α,∆β ]∗.
We compute the case without torsion,

Γ̂κ;α;β = ∂β∂αΓ̂κ − e∂β(Γ̂α ∗ Γ̂κ)− eΓµ
βα∂µΓ̂κ

− eΓ̂β∂α ∗ Γ̂κ + e2Γ̂β ∗ (Γ̂α ∗ Γ̂κ),

also

Γ̂κ;β;α = ∂α∂βΓ̂κ − e∂α(Γ̂β ∗ Γ̂κ)− eΓµ
αβ∂µΓ̂κ

− eΓ̂α∂β ∗ Γ̂κ + e2Γ̂α ∗ (Γ̂β ∗ Γ̂κ),

consequently

Γ̂κ;α;β − Γ̂κ;β;α = eR̂αβ ∗ Γ̂κ. (11)

Eq.11 means

[∆α,∆β ]∗ = eR̂αβ. (12)

We are in a situation where the four components of the
Riemann’s curvature tensor have become a single opera-
tor with two distinct subspaces. Then, we will look at the
roles of the components. With the action role and equa-
tion 10, and for a space with torsion, the new covariant
derivative satisfies the following commutation relation,
[∆α,∆β ]∗ = eR̂αβ + e2(Γλ

αβ − Γλ
βα)Γ̂λ. But the effect of

R̂αβ on variable Bµ is now,

R̂αβ ∗ Bµ = (∂αΓ̂β − ∂βΓ̂α − eΓ̂α ∗ Γ̂β + eΓ̂β ∗ Γ̂α) ∗ Bµ

= Rλ
µαβBλ|µ, α, β > . (13)

Another result is accessible; [∆µ,A]∗ reach to

[∆µ, A
α
β ]∗ = ∂µA

α
β − gΓλ

βµA
α
λ + gΓα

λµA
λ
β ,

and

[∆µ,A]
α
∗ β = (∂µA− gΓ̂µ ∗ A+ gA ∗ Γ̂µ)

α
β

= ∂µA
α
β − gΓκ

µζi
A

···ζj ···

..ζi−1κζi+1..
< β|~ζi >< ~ζj |α >

−A
..ζj−1κζj+1..

···ζi···
Γζi
κµ < β|~ζi >< ~ζj |α > .

Now, considering relations 9 and 10, we can write:
lemma- The covariance derivative effect is independent
of entering the components.
Since [Γ̂µ, Aν ]∗ + [Aµ, Γ̂ν ]∗ = 0 , we take A to be as the
gauge fields, then the change of the tensor of the field
strength is

Eµν = ∂µAν − ∂νAµ

= ∆µ ∗ Aν −∆ν ∗ Aµ (14)
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II. ELECTRODYNAMICS

In this section we present a mechanism according to
which, first, the components of gauge fieldsA are coupled
with the generators of the quaternions (A→ A). Then, a
coupling between the components of the covariant deriva-
tive and the quaternion generators is established in the
same way. The quaternion variables obtained in this way
help us to reconstruct the strength tensor of the fields.
Due to the semi completeness of the covariant derivative
operator, we will introduce a new quaternion commuta-
tor to obtain the equation of motion and conclude the
theory.
Based on the above, we will define new commonly used
quatrain variables and operators. Starting from the tan-
gent spaces, we introduce the operators and vectors as
q-variables, zt = (ıA0, Aiq̂i) and Dt = (ı∆0,∆iq̂

i). The
position of the indices is important here. A vectors are
the fields; AA is the vector potential and A0 = φ represents
the scalar case. There are two more i.e. zc = (ıA0, Aiq̂

i)
and Dc = (ı∆0,∆iq̂i).
We show that Maxwell’s equations are accessible with
augmented quaternions. The given content confirms the
above definitions of the q-vectors. We emphasize that
the quaternion mapping creates two separate spaces: the
tangent and the cotangent q-vectors. Basically, the mea-
sures of these two spaces are connected by the new matrix
elements, not by the Minkowski metric. Our calculations
show that the law of direct and crossed multiplication be-

tween q-vectors is given by Hµν =







1 ı ı ı
−ı −1 1 −1
−ı −1 −1 1
−ı 1 −1 −1






,

where

Hµν = ηµν +







0 ı ı ı
−ı 0 1 −1
−ı −1 0 1
−ı 1 −1 0






:= ηµν +H

µν
d ,

ηµν = diag(1,−1,−1,−1) is the Minkowski metric. With
the help of the matrix Hµν we define the inverse matrix

H̃µν = (Hµν)T =







1 −ı −ı −ı
ı −1 −1 1
ı 1 −1 −1
ı −1 1 −1






= ηµν + H̃

µν
d ,

We also introduce a new tensor i.e. n
ij
k that follows

from the behavior of the quaternions and has the follow-
ing properties: it is antisymmetric with respect to the
exchange of indices, it can participate in the raising and
lowering of indices, it is spatial, but without counting,
and contains a temporal index. The n

ij
k -symbol is used

when its indices are all on the same row. When all in-
dices are in a row, it is similar to the Levi-Civita symbol.
We will see later where the temporal index is located.
Since the product of the quaternions is a quaternion, the
new q-variable in the quaternoin space can be named as

I, so we obtain Dt ⊲ zc = (ıI0, Iiq̂
i) ≡ Ic. Considering the

indices, we obtain

Ic = (ıI0, I)

(using the upper indices), our calculations show that

Ic = (Aν,µ ηµν , Aν,µ H
µν
d )

based on this result and Eq.9, we arrive at

ıI0 = Aν,µ ηµν (15)

and

Ik = Aν,µ H
µν
d

are available with the following definition:

Ik = ıE0k +
1

2
n

ij
k Eij

≡ ıE0k +Dk,

where Eµν is given by Eq.14. The equation of motion is
the directed action of the covariant derivative on the cor-
responding obtained quaternion variables and vice versa.
Due to the incompleteness of the derivative effects, in or-
der to obtain the equation of motion, we must define a
new commutator as follows: [ , ]⊲ : Q×Q→ Q which is
the same as [B, C]⊲ = (ηµν [Bµ, Cν]∗, [B, C]

∨
∗ + [BB, CC]∧∗ ). Due

to the electrodynamics in Minkowski spacetime, the com-
mutator of the motion has the following form (under the

matrix H̃):

[(ıg0ζ∆ζ , g
sζ∆ζ), Ic]

H̃
⊲ = (gµζ Iν;ζη

µν , Iν;µ H̃
µν
d ) = Jc,

Jc = (ıJ0, Jiq̂
i) is the quaternion form of current density.

So the equation of motion expands to,

gµζ Iν;ζη
µν = ıj0,

Iν;µ H̃
µν
d = jk (16)

For any B without upper indices, the equality ∆ ∗ B ≡
[∆, B]∗ holds, and

∆ν ∗ Bµ = Bµ,ν ≡ Bµ;ν (17)

If B carries no upper indices, then ∆ν ∗ B;µ = B;µ;ν and
∆µ ∗ gκλ = 0, ∆µ ∗ g

κλ 6= 0. Therefore, equations 8 and
16 based on equation 17 lead to the following equation:

g0ζ I0 ;ζ − ıgsζE0s;ζ − gsζDs;ζ = ıJ0,

−ıg0ζ(ıE0k;ζ +Dk;ζ)− n l
ks gsζ(ıE0l;ζ +Dl;ζ)

+ıgkζI0 ;ζ = Jk, (18)

and finally, we arrive at

−ıg0ζI0 ;ζ − gsζE0s;ζ = J0,

gsζDs;ζ = 0,

ıgkζ I0 ;ζ + g0ζE0k;ζ − n l
ks gsζDl;ζ = Jk,

g0ζDk;ζ + n l
ks gsζE0l;ζ = 0 (19)
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From the equations of motion, it follows that gsζDs;ζ =
0, which gives a Bianchi identity (without time in-
dex): 1

2n
ij
s gsζEij;ζ →

1
2ε

sijEij;s = 0. Moreover, the

fourth equation is g0ζDk;ζ + n l
ks gsζE0l;ζ = 1

2n
ij
k E

;0
ij +

n sl
k E0l;s = 0 which gives another Bianchi identity:

1
2n

ij
k0 E

;0
ij + n s0l

k E0l;s =
1
2ε

k0ijEij;0 + εks0lE0l;s = 0.

Since n l
ks gsζDl;ζ = 1

2εkslg
sζεlijEij;ζ = gsζEks;ζ , equa-

tion 19 is thus

− gsζE0s;ζ = J0 + ıg0ζI0 ;ζ ,

g0ζE0k;ζ − gsζEks;ζ = Jk − ıgkζ I0 ;ζ

to summarize,

gµζEµν;ζ = Jν , (20)

where

Jν = Jν + ıηνµg
µζ I0 ;ζ . (21)

The above relations are simplified as follows:

I
;0
0 − I ;s

s = ıj0

−ıI ;0
k + ıI

;k
0 − n

j
ki I

;i
j = jk

From Eqs.11 or 12, we get the relation n
j

ki I
;i;k
j =

e
2n

j
ki R̂

ik ∗ Ij and ı(I ;k;0
k − I

;0;k
k ) = ıeR̂k0 ∗ Ik. If we sub-

stitute these points, we obtain

j
;0
0 + j

;k
k = −ıηµνg

µζ I
;ν

0;ζ + ıeR̂k0 ∗ Ik −
e

2
n

j
ki R̂

ik ∗ Ij

= −ıηµνg
µζ I

;ν
0;ζ

+
ıe

2
(n ij

k R̂k0 ∗ Eij − n
j

ki R̂
ik ∗ E0j)

−
e

4
(4R̂k0 ∗ E0k + n

j
ki n

mn
j R̂ik ∗ Emn)

However, it can be seen that n
j

ki n
mn
j R̂ik ∗ Emn =

εkijε
jmnR̂ik ∗ Emn = 2R̂nm ∗ Emn = 2R̂νµ ∗ E

µν − 4R̂0µ ∗
Eµ0. Moreover, the second and third terms are zero be-
cause the equations of motion n

ij
k R̂0k ∗ Eij + n

j
ki R̂

ik ∗
E0j = 0. This result is independent of the physical con-
ditions and has nothing to do with the sources. Substi-
tuting the results, we get

j
;0
0 + j

;k
k + ıηµνg

µζ I
;ν

0;ζ = −
e

2
R̂νµ ∗ Eµν (22)

Now we derive equation 20 and from the fact that

gνκ∆κ ∗ g
µζEµν;ζ = gνκ∆κ ∗ Jν,

we have: gµζEµν;ζ = gνβE
αβ
;α On the other hand, gνβE

αβ
;α

and the action of the derivative operator on the ν set is
proportional to the low index set. From this follows:

gνκ∆κ ∗ gνβE
αβ
;α = Eαβ;α;β . The same logic applies to

the gνκ∆κ ∗ Jν = Jν;κg
κν . With these interpretations of

equation 13, we can write: Eµν;µ;ν = −Eνµ;ν;µ+eR̂µν ∗E
µν ,

and finally, we have

Eµν;µ;ν =
e

2
R̂µν ∗ E

µν (23)

According to equations 22, 23, and the above, the conti-
nuity equation is given as follows:

j
;0
0 + j

;k
k + ıηµνg

µζ I
;ν

0;ζ =
e

2
R̂µν ∗ Eµν ,

But, E ;µ;ν
µν = A ;µ;ν

ν;µ − A ;µ;ν
µ;ν = eR̂µνAν;µ and based

on the relation in 13, we reach E ;µ;ν
µν → −eR λµν

µ Aλ;ν −

eR λµν
ν Aµ;λ = −eR λνµ

ν Eµλ = 0, which means that the
condition J

;ν
ν = 0 as continuity equation is in agreement

with reference [6]. Inserting equation 14, equation 20
becomes

gµζ(∆µ ∗Aν −∆ν ∗Aµ);ζ = Jν ,

similar to the result of [34], or

gµζ∆ζ ∗∆µ ∗Aν − gµζ∆ζ ∗∆ν ∗Aµ = Jν,

but gµζAµ;ν;ζ = gµζ(∆ν ∗∆ζ + eR̂νζ) ∗ Aµ, which gives
us

gµζ∆ζ ∗∆µ ∗Aν − egµζR̂νζ ∗Aµ = Jν + gµζ∆ν ∗∆ζ ∗Aµ.

Since gµζ∆ν ∗ ∆ζ ∗ Aµ = g0ζA0;ζ;ν + gsζAs;ζ;ν and the
given condition that Aκ

;κ = 0 = gκλAλ;κ = g0κA0;κ +

gsκAs;κ, we can derive that gsζAs;ζ = −g0ζA0;ζ . We
obtain the following equation [35–39]:

gµζ∆ζ ∗∆µ ∗Aν − egµζRα
µνζAα = Jν ,

is, by substitution of the Ricci tensor, equivalent to

gµζ∆ζ ∗∆µ ∗Aν − eR α
ν Aα = Jν , (24)

which is

gµζAν;µ;ζ − eR α
ν Aα = Jν .

To reach the final goal (Eq.24), the relation As;s− A0;0 =

A
;ζ
s gsζ − A

;ζ
0 g0ζ must be established, and this is a pre-

condition (due to assumption 4). If the precondition is

satisfied, the continuity equation is j ;0
0 + j

;k
k = 0.

To determine the position of the time index in the new
tensor n ij

k , it is sufficient to define:

Gµν =
1

2
εµναβEαβ ,

so that Gµν
;ν = 0. For the case µ = 0 the second equation

of motion in Eq.19 is now valid:

G0k
;k =

1

2
ε0sijEij;s, (25)

and for the case µ 6= 0 we get the fourth equation of
motion in Eq.19

G
lζ
;ζ =

1

2
εl0ijEij;0 + εli0jE0j;i = 0 (26)

which gives the position of the time index in the compar-
ison.
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III. GEOMETRY

In this section, the gauge fields are replaced by the
Christoffel connections A to Γ. This change does not
affect the definition of the covariant derivative opera-
tor. Using the same method of the previous section
and multiplying the four components of the Riemann’s
curvature tensor into two two-component subspaces, we
define the quaternion variables as zc = (ıΓ̂0, Γ̂iq̂

i) and

Dc = (ı∆0,∆iq̂i). It is clear that Γ̂
0 = g0ζΓ̂ζ , and this is

a general case. If we set the above points and emphasize
the position of the indicators, we can write

Ic = (Γ̂ν,µη
µν , Γ̂ν,µH̃

µν
d )

With the help of these preliminary remarks, and similar
to the relation in 15, we arrive at the definitions

ıI0 = Γ̂ν,µη
µν

and

Ik = Γ̂ν,µH̃
µν
d ,

which are written in the short form

Ik = ıF0k +
1

2
n

ij
k Fij

= ıF0k +Dk

The new notation Fµν (Eq.14), is only to visually sepa-
rate the variable of this part from that of the previous
part, i.e., Eµν . Therefore, all the previous relationships
and their placements are maintained with this transfor-
mation. Thus, the relation in 18 will be the equation of
motion for the new fields Fµν . By entering the quater-
nion current density and separating the main equations
into real and imaginary components, we have

−ıg0ζI0 ;ζ − gsζF0s;ζ = J0,

gsζDs;ζ = 0,

ıgkζ I0 ;ζ + g0ζF0k;ζ − n l
ks gsζDl;ζ = Jk,

g0ζDk;ζ + n l
ks gsζF0l;ζ = 0 (27)

The relationship between the dynamics of the geometric
tensor and the sources is clear and obvious. Compar-
ing the results from the previous section, it is clear that
the properties of the gauge field strength tensor apply to
both components of Riemann’s curvature tensor. These
performances emphasize that the Christoffel connections
have the gauge property. Equations 25 and 27 give the
source less equations:

1

2
ε0kijR̂ij;k = 0.

and from equation 26

1

2
εl0ijR̂ij;0 + εli0jR̂0j;i = 0 (28)

Eq.28 represents the Bianchi identities and can be de-
rived from Ĝµν = 1

2ε
µναβR̂αβ . For the Bianchi iden-

tities, the sub-components of the released space behave
independently. But in the second relation, which is inde-
pendent of the source, the behavior of the second Bianichi
identity is intertwined with the basis of the subcompo-
nents. The remaining two relations of the basic equation
of motion (Eq.27) are as follows:

gµζR̂µν;ζ = Jν, (29)

which Jν in Eq.29, still gives the current density as Eq.21.
together with R̂ ;µ;ν

µν = 0 and the condition J
;ν
ν = 0.

Besides the gauge condition, the precondition

ηνµg
µζ I0 ;ζ = 0,

is also conceivable.
A new tensor, Gκλ

µν , can be introduced here:

Gκλ
µν =

1

4
εκλαβεµνθπR

θπ
αβ ,

which gets its special form:

Gκλ
kν = −

1

2
δλνR

αβ
αβ +R λα

να .

On the other hand, if we use the equation of motion
(Eq.27)

Gκλ
µν;κ =

1

4
εκλθπεµναβR

αβ
θπ;κ = 0

=
1

2
εαλθπεµναβJ

β
θπ −

1

2
δλν R;µ

+Rλα
να;µ, (30)

R is the Ricci scalar. As far as we know

εαλθπεµναβJ
β
θπ = −δαα det





δλµ δλν δλβ
δθµ δθν δθβ
δπµ δπν δπβ



J
β
θπ

= (4− 1)!(−2δλµJ
β
νβ + 2δλνJ

β
µβ − 2δλβJ

β
µν)

:= S
λ
µν ,

so Eq.30 becomes

−
1

2
δλν R;µ +Rλα

να;µ + S
λ
µν = 0, (31)

if one now sets Sλµν := T
λ
ν;µ and that based on the equa-

tion 9, − 1
2δ

λ
ν R;µ+Rλα

να;µ = [∆µ,
1
2δ

λ
ν R+Rλα

να]∗, one
finds a more completely form of 31,

−
1

2
δλν R+Rλα

να = −Tλν + C
λ
ν

certainly

C
λ
ν;µ = 0 (32)
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is like the famous case Cλν = −Λgλν. It turns out that
Cλν = fλν(g) (for example (eκg)λν , g is the matrix for the
metric). Cλν , is a geometrical quantity, not matter. How-
ever, it can be considered as general background matter
and can be absorbed by the tensor Tλν and become zero.
In the case of lower indices,

−
1

2
gλβgβν R+ gλβR α

β να = −gλβTβν + gλβCβν (33)

or

Rλν −
1

2
gλν R+ Cλν = Tλν (34)

In the last equation, the characters of geometry and mat-
ter are separated. The fact that in Einstein’s theory of
gravitation Einstein’s term (in agreement with the co-
variant derivative) is not the only way to choose Cλν is
another result of this mechanism. We must also consider
some constants that indicate the spacetime constraints
to solve the equation of gravity. It is a question of find-
ing the constant from equation 34, because it is not a
unique quantity. For any kind of principal change in the
constant of equation 34 (constant in agreement with co-
variant derivative), we naturally enter a new universe.
Among the possible options for the constant Cλν , equa-
tion 34 makes a perturbation theorem. What can be
obtained, however, is the non-uniqueness of Einstein’s
famous theorem.

IV. DISCUSSION

Here, we have used a quaternion mechanism to form
new vectors. We have given q-vectors as physical
quantities-such as events in the manifold of spacetime-
corresponding to the position of the Lorentz indices and
coupled to the generators of quaternion algebra. By in-
troducing the operator Γ̂µ and the mapping ”ast” (∗-
product), we then succeeded in obtaining the theory of
gauge fields in a general spacetime. If we introduce the
new antisymmetric tensor n

ij
k and use the equations of

gauge theory motion, we obtain the Bianchi identities.
We have also shown that the Bianchi identities are phys-
ical relations, not mathematical structures. As we pro-
ceeded, we replaced the gauge fields with the Christoffel
coefficients and followed the improved quaternion mech-
anism to access the theory of gravity. Our calculations
have shown that with this substitution and with more
degrees of freedom for Riemann’s curvature tensor, the
gravitation theory is still followed and that the Einstein
constant term is a necessity for the equation of motion.
The results of gravity are much higher than those of
electrodynamic theory, and the reason for this difference
is Riemann’s curvature four-component tensor. As for
the Bianchi identities in gravity, we have concluded that
the identities are part of the equations of motion. Per-
haps the most important result after the derivation of the

equation of gravity is the formalization of the constant
term (as Einstein’s constant term) in the Einstein equa-
tion. We have also established that the constant term
is exclusively geometric. Having decomposed the four-
component Riemann’s curvature tensor into one with two
component subsections, another result of this work is to
emphasize the independent behavior of the two compo-
nent subsections of the curvature tensor. The result of
the present work is a commentary on [27, 28] and many
other references and matches the physical data with the
solutions of the Einstein equation, with many corrections
to the Einstein theory of gravity using the unprincipled
modification approach to the Einstein equation (modifi-
cations that do not apply to equation 32). By separating
the components of the Riemann’s curvature tensor, we
can also develop a new approach to quantum gravity.
The conclusion of this article is that any type of manip-
ulation in Einstein’s equation is not correct and must be
compatible with the condition, “Covariant derivative is
equal to zero”.

V. CONCLUSIONS

We demonstrate that, proving gravitational issues,
such as dark matter, Einstein’s equation can’t take any
additional terms. Modifying Einstein’s equation is pos-
sible only by vanishing covariant derivative terms.
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VII. APPENDIX

After defining the Christoffel coefficients Γα
κβ , accord-

ing to assumption 3 and using the ”bra-ket” notation,
we can write:

1

2
gµα(gµβ,κ + gκµ,β − gβκ,µ)

= gµα(gµβ,κ + gκµ,β − gβκ,µ)eαeµ × eµeκeβ

= Γα
κβ eαe

κeβ = eα (Γα
κβ eκ) eβ, (35)

this occurs when κ is selected. Actually, to define a
gamma operator in the space of indices, we need to choose
either κ or β. Now, if we choose the Γ̂κ operator, then we
do not have summation on κ while there is summation
on α and β. In this way, we will have

Γ̂κ = (Γα
βκ) |β >< α| := Γ̂κ (36)
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