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Abstract: Long-range and anisotropic dipolar interactions profoundly modify the dynamics of 

particles hopping in a periodic lattice potential. Here, we report the realization of a generalized t-

J model with dipolar interactions using a system of ultracold fermionic molecules with spin 

encoded in the two lowest rotational states. We systematically explore the role of dipolar Ising and 

spin-exchange couplings and the effect of motion on spin dynamics. The model parameters can be 

controlled independently, with dipolar couplings tuned by electric fields and motion regulated by 

optical lattices. Using Ramsey spectroscopy, we observed interaction-driven contrast decay that 

depends strongly both on the strength of the anisotropy between Ising and spin-exchange couplings 

and on motion. These observations are supported by theory models established in different 

motional regimes that provide intuitive pictures of the underlying physics. This study paves the 

way for future exploration of kinetic spin dynamics and quantum magnetism with highly tunable 

molecular platforms in regimes challenging for existing numerical and analytical methods, and it 

could shed light on the complex behaviors observed in real materials. 
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Main Text:  

The t-J model, which arises from the more general Fermi-Hubbard model in the limit of 

large onsite interactions 𝑈, fundamentally describes a competition between motion due to 

tunneling between lattice sites, 𝑡, and spin interactions, 𝐽, due to superexchange emerging from 

virtual tunneling of particles in adjacent lattice sites. The model has long been proposed to explain 

unconventional phases, including high-temperature superconductivity (1–3). In recent years, 

ultracold atoms with contact interactions have emerged as a controllable system to study the 

behavior of this model, but the 𝑡2/𝑈 scaling of superexchange has limited the range of accessible 

phases to 𝐽 ≪ 𝑡 and imposes stringent low temperature requirements (kinetic energy less than 𝐽) 

to observe interaction-induced phase transitions (4–6).  

Adding long-range anisotropic dipolar interactions, where 𝐽 can be tuned independently of 

𝑡, softens the low temperature constraints on phase transitions and generates a generalized t-J 

model that is predicted to produce exotic phases including an enhanced superfluid state (7, 8). 

Magnetic atoms provide access to dipolar interactions which, while relatively weak, have recently 

produced a variety of quantum phase transitions (9, 10) and out-of-equilibrium spin dynamics in 

optical lattices (11–15). Ultracold polar molecules offer the advantage of stronger, tunable dipolar 

interactions (16–21). With electric field (𝑬)-tunable interactions between pseudo-spins encoded in 

rotational states, effective spin models can be implemented with a high degree of controllability 

(22). While two-body loss can limit the ability to study itinerant molecules, large suppression of 

molecular loss has recently been demonstrated, either utilizing strong confinement into lower 

dimensions (23), or collisional shielding with microwaves (24–30) or static electric fields (31–35). 

The extended lifetime of these itinerant molecular samples provides opportunities to combine 

motion with strong dipolar interactions, opening the possibility to study exotic spin-motion 

phenomena. 

Here, we report the realization of a generalized t-J model using ultracold dipolar molecules 

and the exploration of the system’s out-of-equilibrium dynamics with control over the motional 

and spin degrees of freedom. We first studied the motionless case by trapping the molecules in a 

deep three-dimensional (3D) optical lattice. With the molecules pinned in place, we observed that 

the density-normalized Ramsey contrast decay rates depend approximately linearly on the 

magnitude of the interaction anisotropy 𝜒 = 𝐽𝑍 − 𝐽⊥ between spin-exchange (𝐽⊥) and Ising (𝐽𝑍) 

couplings as expected from an XXZ spin model. Next, we allowed the molecules to move freely 

within two-dimensional (2D) layers and found that collisions lead to stronger dependence of 

contrast decay on |𝜒| compared to the pinned molecules. To explain this observation, we present 

a scattering model that predicts an approximately cubic dependence of contrast decay rates on |𝜒|. 
Finally, we present a systematic study of the full spin-motion coupled system by allowing finite 

tunneling between lattice sites and probing the dynamics of the generalized t-J model. By tuning 

𝑡, we observed a peak in the contrast decay rate between the motional extremes in the spin-

exchange dominated regime when molecules are allowed to tunnel in two directions, but not if 

they tunnel only in one direction. Our observations and theoretical understanding of the coherent 

dynamics of a generalized t-J model set an important framework for studying exotic phases of 

itinerant quantum dipoles in the future. 

In our experiment, we prepared degenerate gases of 40K and 87Rb in a crossed optical dipole 

trap and loaded these atoms into the ground bands of a 3D lattice with spacing 𝑎𝑦 = 540 nm in the 

vertical direction and 𝑎𝑥 = 𝑎𝑧 = 532 nm in the radial directions. The atoms were then converted 
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to fermionic KRb molecules (see Supplementary Materials) in their rovibrational ground state |0⟩, 
where |𝑁⟩ is the rotational state with 𝑬-dressed quantum number 𝑁 and projection 𝑚𝑁 = 0 onto 

the quantization axis set by 𝑬. The highest observed average molecular filling fraction was about 

13%. For the spin measurements throughout this work, we used the two lowest rotational states of 

the molecule |0⟩ and |1⟩ as our spin-1/2 manifold, referred to as |↓⟩ and |↑⟩ respectively.  

Heteronuclear molecules intrinsically have field-tunable dipolar interactions that can be 

used to study spin models. The rotational states have induced dipole moments 𝑑↓ = ⟨↓ |𝑑𝑦| ↓⟩ and 

𝑑↑ = ⟨↑ |𝑑𝑦| ↑⟩ and transition dipole moment 𝑑↓↑ = ⟨↓ |𝑑𝑦| ↑⟩, where 𝑑𝑦 is the dipole operator 

along �̂�, the quantization axis set by 𝑬. These dipole moments depend on |𝑬|, with 𝑑↓ ≈ 𝑑↑ ≈ 0 at 

|𝑬| ≈ 0, and induced dipole moments developing at larger values of |𝑬|, as other rotational states 

get mixed into the field-dressed state |𝑁⟩. A schematic of these dipolar interactions, as well as the 

motional confinement provided by optical lattices, is shown in Fig. 1a and Fig. 1b. 

To describe our molecular system (see Supplementary Materials and (7, 8) for more 

details), we introduce �̂�𝜎(𝒓) as the second quantized field operator at position 𝒓 with spin σ. In 

this framework, dipolar interactions are described by 

 
�̂�int = ℎ∫ 𝑑3𝒓∫ 𝑑3𝒓′

[1 − 3 cos2(θ)]𝑎x
3

2|𝒓 − 𝒓′|3
[
𝐽⊥

2
[�̂�+(𝒓)�̂�−(𝒓′) + �̂�+(𝒓′)�̂�−(𝒓)]

+ 𝐽𝑍�̂�𝑍(𝒓)�̂�𝑍(𝒓′) +  𝑉�̂�(𝒓)�̂�(𝒓′) + 𝑊[�̂�(𝒓)�̂�𝑍(𝒓′) + �̂�𝑍(𝒓)�̂�(𝒓′)]] 

(1) 

where �̂�(𝐫) = ∑ �̂�𝜎
†(𝒓) �̂�𝜎(𝒓)σ  is the density, �̂�𝑍(𝒓) = [�̂�↑

†(𝒓)�̂�↑(𝒓) − �̂�↓
†(𝒓)�̂�↓(𝒓)]/2 is the 

local magnetization, and �̂�+(𝒓) = �̂�↑
†(𝒓)�̂�↓(𝒓) (�̂�−(𝒓) = [�̂�+(𝒓)]†) raises (lowers) the spin, all at 

position 𝒓, with 𝜃 being the angle between 𝑬 and 𝒓 − 𝒓′. ℎ𝐽⊥ = 2𝑑↓↑
2 /(4πϵ0𝑎𝑥

3) is the spin-

exchange interaction, ℎ𝐽𝑍 = (𝑑↓ − 𝑑↑)2/(4πϵ0𝑎𝑥
3) is the Ising interaction due to differential dipole 

moments of the two states, ℎ𝑉 = (𝑑↓ + 𝑑↑)2/(16πϵ0𝑎𝑥
3) is the density-density interaction due to 

average dipole moments, and ℎ𝑊 = (𝑑↑
2 − 𝑑↓

2)/(8πϵ0𝑎𝑥
3) is the residual spin-density interaction 

arising from the cross-term of differential and average dipole moments. The relationship between 

dipole moments and 𝐽⊥, 𝐽𝑍, 𝑉, and 𝑊 is illustrated in Fig. 1c. The full Hamiltonian is �̂� = �̂�sp +

�̂�int (see Supplementary Materials) where the single-particle component  �̂�sp is the second 

quantized version of 𝐻0 = −
ℏ2

2𝑚
𝛁2 + ∑ 𝑉L,α sin(

π𝑟𝛼

𝑎𝛼
)2

𝛼=𝑥,𝑦,𝑧 , whose two terms describe the 

kinetic and lattice potential energies respectively (for simplicity, we neglect an external confining 

potential). Here, ℏ = ℎ/2𝜋 is the reduced Planck constant, 𝑚 is the mass of 40K87Rb, and 𝑉L,𝛼 is 

lattice depth in the 𝛼 ∈ (𝑥, 𝑦, 𝑧) direction. 

 In a deep optical lattice, molecules cannot move, and the Hamiltonian becomes a spin 

model of frozen dipoles. In contrast, in the absence of horizontal lattices (𝑉L,𝑥 = 𝑉L,𝑧 = 0), 

molecules are fully itinerant, so the Hamiltonian describes quasi-2D dipolar collisions where the 

motion is confined to two dimensions, but the interaction potential is still in three dimensions (36). 

Between these two extremes, both motion and interactions become discretized on a lattice, and the 

full Hamiltonian reduces to a generalized t-J Hamiltonian, also known as the 𝑡-𝐽-𝑉-𝑊 model (7, 

8) 
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𝐻𝑡𝐽𝑉𝑊 = −ℎ ∑ 𝑡𝑖𝑗[�̂�𝑖𝜎

† �̂�𝑗𝜎 +  ℎ. 𝑐. ] +
⟨𝑖,𝑗⟩,𝜎

 ℎ ∑
𝑉𝑖𝑗

2
[𝐽⊥(�̂�𝑖 ⋅ �̂�𝑗) + 𝜒

𝑖≠𝑗

(�̂�𝑖
𝑍�̂�𝑗

𝑍)

+ 𝑉�̂�𝑖�̂�𝑗 +  𝑊(�̂�𝑖�̂�𝑗
𝑍 + �̂�𝑗�̂�𝑖

𝑍)] 

(2) 

where �̂�𝑖𝜎
† , �̂�𝑖, and �̂�𝑖

𝛼 are discrete versions of the second quantized field operators acting on 

individual lattice site i, with �̂�𝑖 = ∑ �̂�𝑖𝜎
† �̂�𝑖𝜎𝜎  the site occupation, and �̂�𝑖

𝑍 = (�̂�𝑖↑
† �̂�𝑖↑ − �̂�𝑖↓

† �̂�𝑖↓)/2 the 

site magnetization. 𝑡𝑖𝑗 characterizes the rate at which molecules hop between neighboring sites 𝑖 

and 𝑗 (these nearest neighbors are denoted by ⟨𝑖, 𝑗⟩), which depends on the lattice depth in the 

tunneling direction. 𝑉𝑖𝑗 captures the geometric (1 − 3 cos2 𝜃)𝑎𝑥
3/𝑟3 component of the 

interactions. Strong kHz-scale on-site interaction U, rapid on-site two-body loss, and low filling 

fractions prohibit double occupancy of lattice sites and suppress superexchange interactions. The 

spin interaction anisotropy 𝜒 parameterizes rich spin dynamics that were studied at the mean field 

level in (22) and produces one-axis twisting that can be used to generate highly entangled states 

(37, 38). The 𝑬-tunability of the interactions for molecules on neighboring lattice sites in the �̂�-�̂� 

plane is shown in Fig. 1d. We note that 𝑉 is spin-independent and small compared to spin-spin 

interactions and thus not expected to appreciably affect the spin dynamics observed in this work 

(see Supplementary Materials).  

To explore the out-of-equilibrium coherent dynamics of the molecules in different 

interaction regimes and geometries of the generalized t-J model, we measured the Ramsey contrast 

decay using the procedure depicted in Fig. 2a. First, a microwave pulse was applied to prepare an 

equal superposition of the |↓⟩ and |↑⟩ states. In a Bloch sphere picture, the collective Bloch vector 

was prepared in the �̂� direction with maximal length 𝑁mol/2, where 𝑁mol is the number of 

molecules. The system was then allowed to evolve for a variable time 𝑇 before a microwave pulse 

of area 𝜋/2 about variable axis �̂� = cos φ �̂� + sin 𝜑 �̂� was applied. The number of molecules in 

each spin state was then measured (see Supplementary Materials). By repeating the measurement 

several times while varying the phase 𝜑 of the second pulse and taking the standard deviation of 

the fraction in the excited state, the contrast, or the equatorial length of the Bloch vector, 𝐶 =

2

𝑁mol

√⟨∑ �̂�𝑖
𝑋

𝑖 ⟩
2

+ ⟨∑ �̂�𝑖
𝑌

𝑖 ⟩
2

  at wait time 𝑇 was extracted (see Supplementary Materials). The 

contrast can be understood as the dynamic magnetization of the sample, as it characterizes how 

well the spins align with one another given that ⟨∑ �̂�𝑖
𝑍⟩𝑖 = 0 is conserved during the dynamics. 

During the wait time 𝑇, a KDD pulse sequence(39) suppresses single-particle dephasing by 

frequently swapping the populations in the |0⟩ and |1⟩ states (see Supplementary Materials). 

Dynamical decoupling also removes the 𝑊 term in the 𝑡-𝐽-𝑉-𝑊 Hamiltonian. The evolution of the 

contrast can then be fit to a stretched exponential defined by 𝐶(𝑇) = 𝑒−(Γ𝑇)𝜈
 where Γ is the 

dephasing rate and 𝜈 is the stretching parameter. We observe 𝜈 < 1 for all parameters analyzed in 

this work, describing sub-exponential decay, possibly due to glassy dynamics (40) and number 

loss (see Supplementary Materials).   

To examine the effect of field-tunable interactions on spin coherence, we first freeze the 

motional degree of freedom by confining the molecules in a deep 3D optical lattice (𝑡 ≈ 0 in all 

directions). At zero electric field, where the molecules have no induced dipole moment, they 

interact entirely via spin-exchange between the two rotational states, realizing the XY model 

𝐻𝑋𝑌 = ℎ ∑
𝑉𝑖𝑗

2
𝐽⊥(�̂�𝑖

𝑋 �̂�𝑗
𝑋 + �̂�𝑖

𝑌�̂�𝑗
𝑌)𝑖≠𝑗 . The coherent spin dynamics in this regime at low fillings have 
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been studied (16, 17, 41) revealing density-dependent Ramsey contrast decay from long-range 

interactions, with periodic revivals in contrast due to spin exchange between nearest neighbors. 

Turning on static 𝑬 to add Ising interactions realizes the XXZ model 𝐻𝑋𝑋𝑍 = ℎ ∑
𝑉𝑖𝑗

2
[𝐽⊥(�̂�𝑖 ⋅𝑖≠𝑗

�̂�𝑗) + 𝜒 (�̂�𝑖
𝑍�̂�𝑗

𝑍)]. Previous works have studied the coherent dynamics of this model in the presence 

of strong disorder utilizing Floquet engineering on platforms such as nitrogen-vacancy centers in 

diamond (42) and Rydberg atoms (43). This work is the first to utilize polar molecules to probe 

these lattice spin models beyond the pure spin-exchange regime, despite their native tunability. 

Most strikingly, at the Heisenberg point (𝜒 = 0 at |𝑬| = 6.5 kV/cm), the Hamiltonian reduces to 

the isotropic XXX model 𝐻𝑋𝑋𝑋 = ℎ ∑
𝑉𝑖𝑗

2
𝐽⊥(�̂�𝑖 ⋅ �̂�𝑗)𝑖≠𝑗 . At the Heisenberg point, the interactions 

are independent of spin orientation, making all points on the collective Bloch sphere eigenstates 

of the Hamiltonian. As such, there should be no interaction-induced dephasing. Fig. 2b shows 

contrast decay traces and fits to stretched exponentials for average two-dimensional densities of 

roughly 1.5 × 107 cm-2 at two different values of 𝑬 where 𝜒 = 0 (blue circles) and 𝜒 = 102 Hz 

(orange squares, |𝑬| = 12.72 kV/cm). We observed an order of magnitude slower contrast decay 

at the Heisenberg point than at 𝜒 = 102 Hz. 

If interactions limit the coherence time, higher densities should lead to faster contrast 

decay. To extract the effect of many-body processes, the contrast decay measurement is repeated 

for different initial average 2D densities 𝑛 (see Supplementary Materials). We normalize with 

respect to average 2D density rather than 3D density for consistency with the measurements of 

itinerant molecules presented later in this work. The contrast decay rates for each 𝑛 are fit to a 

linear function Γ(𝑛) = 𝜅𝑛 + Γ0, where Γ0 is the single-particle dephasing rate after dynamical 

decoupling and 𝜅 is the many-body dephasing rate. This density-normalization procedure is shown 

in Fig. 2c for 𝜒 = 0 (blue circles) and 𝜒 = 102 Hz (orange squares). Prominently, in the 𝜒 = 0 

case, we measured 𝜅 = 0.07(7) ×  10−6 cm2 s-1, consistent with no density-dependent contrast 

decay, as expected in the XXX model with a single-body dephasing rate, determined from the 

linear slope offset, of Γ0 = 4.3(7) s-1. By contrast, for 𝜒 = 102 Hz, we observed contrast decay 

rates that depend strongly on density, with 𝜅 = 2.6(4) × 10−6 cm2 s-1 and Γ0 = 6(3) s-1. 

Repeating the measurement at several values of |𝑬| in the pinned configuration, we 

observed a roughly linear dependence of 𝜅 on |𝜒|, with a slight dependence on the sign of 𝜒. These 

results are summarized in Fig. 3a. 𝜅 depends approximately linearly on |𝜒| because dephasing 

occurs in our lattice due to couplings with strength proportional to 𝜒 within local clusters of 

molecules. We attribute the observed slower decay in the 𝐽⊥-dominated (𝜒 < 0) regime to periodic 

self-rephasing from spin-exchange within local clusters that is suppressed in the 𝐽𝑍-dominated 

(𝜒 > 0) regime (see Supplementary Materials). We can also model the contrast dynamics using a 

moving-average cluster expansion (MACE) (41) (see Supplementary Materials). In this 

approximation, the dynamics for a given molecule are solved exactly in the presence of its 𝑀 most 

strongly coupled neighbors. The global contrast dynamics are then obtained by averaging these 

“cluster” dynamics for every molecule in the system, with reasonable convergence being obtained 

for clusters as small as 𝑀 = 6. This convergence for small particle number is an indicator of the 

local nature of the spin dynamics under anisotropic dipolar interactions in 3D, whereas the spin 

dynamics for isotropic interactions can depend collectively on all particles in the system in certain 

geometries (44–46). The results of the MACE simulation are included as a gray trace in Fig. 3a, 

showing excellent agreement between theory and experiment for the explored electric field range. 
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This theory comparison confirms that pinned dipolar spin dynamics are well-described by the XXZ 

model. 

Next, we observed modifications to the many-body dephasing rates from collisions of fully 

itinerant molecules. To probe the interplay of motion with spin-dependent dipolar interactions, we 

confined the molecules to 2D layers formed by a vertical lattice of 65Er depth, where Er ≈ ℎ × 1.4 

kHz is the recoil energy for KRb. In these experiments, without any horizontal lattice potential 

(𝑉L,𝑥 = 𝑉L,𝑧 = 0), radial harmonic confinement is provided predominantly by a crossed optical 

dipole trap, which is also maintained for experiments taken in all other lattice configurations. 

Following the same procedure to observe density-normalized dephasing rates as in the pinned 

molecule case, we extracted 𝜅 as a function of 𝜒, shown as green squares in Fig. 3b. In prior work 

(22), the short time mean-field dynamics was shown to be well-described by a XXZ spin model 

with spins pinned in a harmonic oscillator mode space lattice (see Supplementary Materials). At 

longer times relevant for the current measurements, the thermal occupation of our sample enables 

molecules to delocalize in mode space due to mode-changing collisions, invalidating the pinned 

mode lattice picture. While collisional decoherence was previously observed in ultracold 

molecules (22), the dependence on dipolar interactions was not completely understood. To date, 

there has been no prior model for dipolar collisional dephasing of coherent superpositions. 

In this work, we systematically measured that 𝜅 depends more strongly on |𝜒| than in the 

pinned case, and we present a scattering approach to study the 𝑉L,𝑥 = 𝑉L,𝑧 = 0 limit of the 

molecular Hamiltonian to explain our observations. We adopt two methods of theoretical analysis 

(see Supplementary Materials): collisional Monte Carlo simulations and a simplified analytic 

model. Data obtained from Monte Carlo simulations (gray trace in Fig. 3b) show agreement with 

the experimental data (green squares in Fig. 3b), apart from experimentally measured negative 

values of 𝜅. We attribute the observed negative density dependence at small values of |𝜒| to the 

preferential two-body loss of decohered molecules (see Supplementary Materials). The agreement 

between theory and experiment suggests that our theoretical model captures the relevant physics 

from collisional dephasing of molecular superpositions.  

The simplified analytic model provides a more intuitive understanding of the observed 

stronger, approximately cubic, dependence of 𝜅 on |𝜒|. With the molecular spins initially prepared 

in the pure product state |𝑋⟩ = (|↑↑⟩ + |↓↓⟩ + |↑↓⟩ + |↓↑⟩)/2, their first collision would only 

involve states in the symmetric spin sector: |↓↓⟩, (|↑↓⟩ + |↓↑⟩)/√2, and |↑↑⟩, each of which accrues 

a scattering phase shift. Collisions in this sector are predominantly elastic, as Fermi statistics 

suppresses close contact of the molecules, implying that long-ranged dipolar interactions dominate 

these phase shifts. We then expect that completed collisions are slow compared to the dynamical 

decoupling pulses that rapidly flip molecules between |↓⟩ and |↑⟩. The result is that the aligned (↕) 

|↓↓⟩ and |↑↑⟩ spin states will both incur the same scattering phase shift 𝛿↕ proportional to dipole 

length (47): 𝑎𝐷
↕ ∝  𝑑↓

2  +  𝑑↑
2 ∝ 𝑉 +

𝐽⊥

4
+

𝜒

4
. The remaining anti-aligned triplet state (↔) will, in 

general, develop a different phase shift 𝛿↔ proportional to the dipole length 𝑎𝐷
↔ ∝  𝑑↓↑

2  +  𝑑↓𝑑↑ ∝

𝑉 +
𝐽⊥

4
−

𝜒

4
, causing the scattered molecules to decohere. Specifically, we expect a change in 

contrast Δ𝐶 =  2 sin2(𝛿↔ − 𝛿↕) from a single collision, yielding a Δ𝐶 ∝ 𝜒2 dependence for small 

𝛿↔  − 𝛿↕ ∝ 𝜒. The decoherence process from scattering phase shifts is shown schematically in the 

inset of Fig. 3b. Moreover, we care about the rate at which all the molecules dephase, which is 

approximated by the product of the change in contrast for each collision, and the elastic collision 
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rate: 𝜅 = Δ𝐶𝛽𝑒𝑙. For 2D motion, ultracold identical spin-polarized fermionic molecules scatter 

elastically at a rate proportional to their threshold cross section 𝜎 ≈ 8𝜋𝑘𝑎𝐷
2  where 𝑘 is the relative 

momentum of the colliding pair (23, 36, 47). Molecules in superpositions should also elastically 

scatter from both aligned and anti-aligned channels, so that 𝛽el  =  (𝛽↕  + 𝛽↔) / 2 =

 4𝜋ℏ𝑘2 [(𝑎𝐷
↕ )

2
+ (𝑎𝐷

↔)2] /𝜇 where 𝜇 is the reduced mass of the pair. Evaluating the product for 𝜅 

reproduces the dominant 𝜅 ∝ |𝜒|3 scaling seen to arise in the Monte Carlo simulations (see 

Supplementary Materials). Notably, we find that this scaling is sensitive to the trap frequency of 

the tight confining axis, making the approximate dependence on |𝜒|3 relevant to our current 

experiment but not a universal scaling law.  

After our systematic study of the effect of dipolar interactions on spin dynamics in the two 

motional extremes (completely pinned and fully itinerant), we next explored the more complex 

generalized t-J model regime by tuning tunneling within 2D layers. Experimentally, we studied 

the role of motion on contrast by measuring 𝜅 of molecules confined in a deep vertical lattice with 

variable corrugation in the �̂� and �̂� directions, for different values of 𝜒. The measured values of 𝜅 

as a function of tunneling rate 𝑡 in both the �̂� and �̂� directions are plotted in Fig. 4a, with black 

circles, blue squares and orange triangles representing 𝜒 = −205 Hz,  𝜒 = 0 Hz, and 𝜒 = 102 Hz, 

respectively. For 𝜒 = 0 Hz, we observed no density-dependent contrast decay (that is, 𝜅 is 

consistent with 0) over the entire range of 𝑡 explored, as intuitively expected at the Heisenberg 

point. For 𝜒 = 102 Hz, we saw a smooth transition between the two motional extremes, with 𝜅 

gradually decreasing for increasing 𝑡. Interestingly, for 𝜒 = −205 Hz we observed stronger 

decoherence in general with a peak in decoherence rate around 𝑡 = 70 Hz. We note that similar to 

the fully itinerant case, due to the nonlinear dependence of collisional dephasing on |𝜒|, it is not 

surprising that the behavior for 𝜒 = −205 Hz can be qualitatively different than the 𝜒 = 102 Hz 

case. 

To understand the observed peak when 𝜒 = −205 Hz, we first explain the rise in 𝜅 as the 

lattice depth is reduced from the deep lattice case. Intuitively, increasing tunneling will couple the 

internal and external degrees of freedom of the molecules, leading to increased 𝜅. This mechanism 

is well captured by simulations with an extended MACE (EMACE, see Supplementary Materials), 

which adds molecule motion to the standard MACE, and is shown as a light gray (orange) band 

for 𝜒 = −205 Hz (𝜒 = 102 Hz) in Fig. 4a. 

 We next explain the enhanced contrast decay as the lattice depth is increased from zero. 

From a band structure perspective, increasing the lattice depth shrinks the width of each motional 

band, increasing its density of states, leading to more allowed channels for mode-changing 

collisions, generally leading to faster spin decoherence (see Supplementary Materials). A 

schematic showing the increased density of states in a lattice is provided in Fig. 4b. From a 

scattering perspective, in the lattice, molecules move slower due to larger effective mass (48), 

leading to larger phase shifts accrued in each collision, causing faster contrast decay. In addition, 

molecular losses from inelastic collisions increase as the lattice depth is reduced (see 

Supplementary Materials), and the losses are largest for molecules which have already decohered, 

suppressing contrast decay in the remaining sample (see Supplementary Materials). While the 

EMACE simulation qualitatively captures the peak structure, quantitative differences arise owing 

to neglected molecular loss and limited cluster sizes. To further understand the role of mode-

changing collisions and molecular loss in shallow lattices, a two-body simulation based on 

Hamiltonian trotterization (see Supplementary Materials) is included for 𝑡 > 50 Hz as a black 
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(orange) solid line for 𝜒 = −205 Hz (𝜒 = 102 Hz) in Fig. 4a, which agrees well with the 

experimental data with an empirical scaling of 0.75. 

Finally, we studied the role of motional dimensionality on the spin dynamics by measuring 

the dependence of 𝜅 on 𝑡 for molecules allowed to tunnel in only one direction, with the results 

plotted in Fig. 4c. For ease of comparison to other lattice configurations and due to significant 

intertube couplings, we continue to normalize contrast decay by 2D density, giving the same units 

for 𝜅. While the 𝜒 = 0 Hz and 𝜒 = 102 Hz dynamics are almost identical to the 2D case, 

noticeably, the peak in contrast decay around 𝑡 ≈ 70 Hz for 𝜒 = −205 Hz disappears when the 

kinetic dimensions are reduced from two to one. In the one-dimensional (1D), we instead only 

observe a rise in 𝜅 at very shallow lattices (𝑡 ≳ 200 Hz). We attribute the different 𝜒 = −205 Hz 

dynamics in the 1D case to the interplay of the confining harmonic trap with the lattice. The 

combined potential leads to quasi-localization of the molecules owing to potential energy 

differences between neighboring lattice sites (49, 50). Fig. 4e schematically shows this quasi-

localization when tunneling is only allowed in one direction. In the 1D configuration, most of the 

molecules are localized along all three axes of motion (see Supplementary Materials), leading to 

dynamics qualitatively similar to the motionless case as the lattice depth is lowered. In contrast, 

for the 2D case, the additional tunneling dimension allows these particles to delocalize within a 

quasi-1D azimuthal ring. A schematic of this azimuthal tunneling is shown in Fig. 4d.  

An EMACE simulation (gray (orange) band for 𝜒 = −205 Hz (𝜒 = 102 Hz)) shown in 

Fig. 4c shows favorable agreement with experimentally measured values of 𝜅 as 𝑡 is varied in one 

direction. Note that the number of available tunneling sites is smaller in in one dimension than in 

two, enabling more controlled EMACE simulations for shallow lattices in the 1D case than in the 

2D case (see Supplementary Materials). As shown in both the experimental data and EMACE 

simulations, the 1D dynamics remain relatively flat between the pinned and fully itinerant cases, 

consistent with the quasi-localization picture. We attribute the slight disagreement between theory 

and experiment at very shallow lattices (𝑡 ≳ 200 Hz) for 𝜒 = 102 Hz to molecular loss not 

included in EMACE or to the breakdown of the single-band tight-binding model. 

In this article, we presented a systematic study of the out-of-equilibrium dynamics of a 

generalized t-J system of interacting polar molecules. By increasing molecular filling fractions and 

using single-site detection (6, 17) or spectroscopic signatures (51, 52), it should be possible to 

study equilibrium states of these dipolar Hamiltonians. Using similar experimental techniques, a 

future out-of-equilibrium investigation could probe spin diffusion in lattice-confined polar 

molecules, potentially observing many-body localized states (53). Additionally, if we can isolate a 

single layer (18) and improve detection, the generalized t-J model is predicted to dynamically 

generate highly entangled spin squeezed states with applications to precision measurement (37, 

38). Recently, we demonstrated Floquet engineering of XYZ spin models, including a two-axis 

twisting Hamiltonian (54) which could enable more scalable spin squeezing than that produced 

with native XXZ models. This work further establishes ultracold molecules, whose dipolar 

interactions can be tuned independently of motion, as a versatile platform to study a broad range 

of itinerant spin problems in many-body physics. 
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Figures: 

 

Fig. 1: Field-tunable dipolar interactions between lattice-confined molecules. a) Molecules 

sparsely occupy a deep 3D optical lattice. Sites are shaded white if unoccupied, pink patterned if 

in the |↑⟩ state, and solid orange if in the |↓⟩ state. Molecules interact with induced dipole moments 

and transition dipole moments represented by squiggly lines between lattice sites. b) Lowering the 

lattice depth in the horizontal directions allows tunneling between sites within layers, represented 

by the black arrows 𝑡𝑥, 𝑡𝑧. For most of our experiments 𝑡𝑥 = 𝑡𝑧. c) Molecular interactions arising 

from dipole moments can be rewritten in terms of 𝐽⊥, 𝐽𝑍 , 𝑉, and 𝑊, the spin-exchange, Ising, 

density-density, and spin-density interactions, respectively, which are used in a spin-basis 

Hamiltonian. The interactions set by 𝑑↓
2, 𝑑↑

2, 𝑑↑𝑑↓, and 𝑑↓↑
2 , and their associated Hamiltonian terms, 

are drawn schematically from top to bottom. The two lowest rotational states of the molecules, |↓⟩ 
and |↑⟩, are split by microwave-frequencies 𝜔 (red arrow between the spin levels in top row) 

between 2.2 GHz and 4.2 GHz depending on electric field strength (|𝑬|).  d) Calculated dipolar 

interaction strengths for KRb molecules separated by 532 nm perpendicular to the dipole 

orientations as a function of |𝑬|. Purple represents the spin-exchange interaction 𝐽⊥ arising from 

the transition dipole moment between a |↓⟩ molecule and a |↑⟩ molecule which decreases with 

increasing electric field magnitude, gold represents the Ising interaction 𝐽𝑍 from induced dipole 

moments which increases with increasing field strength, and green represents the interaction-type 

anisotropy 𝜒 = 𝐽𝑍 − 𝐽⊥ which crosses zero around 6.5 kV/cm. Hyperfine structure of the molecules 
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produces interaction strengths that change dramatically with small changes in |𝑬| for small electric 

fields less than 1 kV/cm.  

 

Fig. 2: Dynamical magnetization of interacting pinned molecules. a) Ramsey spectroscopy is 

used to measure the dynamical magnetization of the molecules. The top and middle rows show the 

pulse sequence, and the bottom row shows the orientation of the collective spin in the Bloch sphere 

representation. A 𝜋/2 pulse about the  �̂� axis prepares the molecules in a coherent superposition 

of 1/√2(|↓⟩ + | ↑⟩) . A KDD pulse sequence (shown as the top row) removes single-particle 

dephasing and is repeated a variable number of times 𝑁𝑟𝑒𝑝 to extend the total interrogation time to 

𝑇. A final 𝜋/2 pulse about variable axis �̂� reads out the projection of the Bloch vector orthogonal 

to �̂�. By repeating the measurements varying �̂�, the equatorial length of the Bloch vector, which 

is the Ramsey contrast (dynamical magnetization) 𝐶, at time 𝑇 is extracted. b) Measured contrast 

decay 𝐶(𝑇) for 𝜒 = 0 (blue circles) and 𝜒 = 102 Hz (orange squares) for initial 2D average 

densities of roughly 1.5 × 107 cm-2 of molecules confined in a deep 3D optical lattice. Solid lines 

are stretched exponential fits to the experimental data. Error bars are 1 s.d. from bootstrapping (see 

Methods). c) Extracted Ramsey contrast decay rates versus initial density for 𝜒 = 0 (blue circles) 

and 𝜒 = 102 Hz (orange squares). Solid lines are linear fits to the data whose slopes measure 

density-dependent decoherence rate 𝜅. Error bars are 1 s.e. from fits (stretched exponential fit for 

contrast decay rates, one-body loss for densities).  



 16 

 

 

Fig. 3: Field-tunable density-dependent decoherence rates. a) Density-normalized contrast 

decay rates for pinned molecules tuned with interaction anisotropy 𝜒. Blue circles are experimental 

data extracted from slopes illustrated in Fig. 2c. Error bars are 1 s.e. from linear fits. Gray line is 

a MACE simulation with the same density-normalization procedure as experimental data with no 

scaling. Inset shows the 3D lattice with fully pinned molecules, with white circles representing 

unoccupied sites and red circles denoting sites occupied by a molecule initially in 

1/√2(|↓⟩ + | ↑⟩). b) Same as a) but for molecules confined to 2D layers without horizontal 

corrugation. Green squares are experimental data. Error bars are 1 s.e. from linear fits. Gray shaded 

band is from Monte Carlo coherent collision simulations with no scaling, with the band halfwidth 

representing 1 s.e. of linear fit. Inset shows 2D geometry of the system, with molecules (red circles) 

free to move within 2D layers. Collisional dephasing is shown schematically in the bottom 2D 

layer of the inset, with a collision leading to a relative phase shift 𝛿 = 𝛿↔  − 𝛿↕, making the 

molecules no longer identical after the collision, illustrated as one molecule becoming pinkish and 

the other turning orangish. 
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Fig. 4: Tuning coherent t-J dynamics. a) Density-dependent contrast decay versus tunneling rate 

𝑡 in two directions. Black circles, blue squares, and orange triangles represent experimental data 

for 𝜒 = −205, 0, 102 Hz respectively. Horizontal axis break occurs when transverse lattices are 

turned off (case of Fig. 3b). Error bars are 1 s.e. from linear fits. Light gray (orange) bands are 

EMACE simulations (see Methods) for 𝜒 = −205 Hz (𝜒 = 102 Hz) with no scaling, with the 

band halfwidth representing 1 s.e. of linear fit. Black (orange) solid lines shown for 𝑡 > 50 Hz are 

two-body simulations (see Methods) with a scaling by 0.75 for 𝜒 = −205 Hz (𝜒 = 102 Hz). b) 

Top row shows kinetic energy of two particles in a 3𝐸𝑟 lattice as a function of relative 

quasimomentum 𝑞, and the bottom shows the kinetic energy in the absence of a lattice where 𝑞 =
𝑘. Shaded orange regions show the range of momentum states within a given energy interval, 

showing the increased density of states in a shallow lattice compared to the no lattice case. c) Same 

as a) but for tunneling only in one direction. d) 3D rendering of the single-molecule potential 

energy 𝑈𝑝𝑜𝑡 in the �̂� and �̂� directions arising from a weak 2D optical lattice and a crossed optical 

dipole trap. Colors indicate equipotential surfaces. Due to the site-to-site energy shift, molecular 

tunneling along the radial directions is suppressed, and instead tunneling occurs along azimuthal 

rings. e) Schematic of the localization of molecules within a potential landscape 𝑈𝑝𝑜𝑡 produced by 
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a weak 1D optical lattice in the �̂� direction and a crossed optical dipole trap (equivalently, by 

taking a 1D slice of the 2D lattice potential shown in d) due to site-to-site energy shifts, when the 

motion is also frozen in the other two directions by deep optical lattices. 

 

 

 



 

 

 

 

19 

 

 

 

Supplementary Materials for 
 

Observation of Generalized t-J Spin Dynamics with Tunable Dipolar 

Interactions  
Annette N. Carroll, Henrik Hirzler, Calder Miller, David Wellnitz, Sean R. Muleady, Junyu Lin, 

Krzysztof P. Zamarski, Reuben R.W. Wang, John L. Bohn, Ana Maria Rey, Jun Ye 

 

Corresponding authors: annette.carroll@colorado.edu (A.N.C) and ye@jila.colorado.edu  (J.Y.) 

 

 

The PDF file includes: 

 

Materials and Methods 

Supplementary Text 

 

 

 

 

mailto:annette.carroll@colorado.edu
mailto:ye@jila.colorado.edu


 

 

 

 

20 

Materials and Methods 

Sample Preparation 

We prepared samples of ultracold KRb molecules at each desired value of 𝑬 following the 

procedure of  (22) with the exception that the atomic transfer to the molecular state |0⟩ = |𝑁 =
0, 𝑚𝑁 = 0, 𝑚𝐾 =  −4, 𝑚𝑅𝑏 = 1/2⟩ was performed in a 3D optical lattice instead of a 1D optical 

lattice, with the atoms predominately occupying the ground band in all directions. For the 2D 

measurement, molecules were magneto-associated and then optically transferred to the 

rovibrational grounds state with a vertical lattice of depth 65Er and the transverse lattices depths 

set to 25Er. Before performing Ramsey measurements, the intensities of the transverse lattices 

were adiabatically ramped to depths ranging from 0Er (the fully itinerant case of Fig. 3b) to 65Er 

(the pinned case of Fig. 3a). For the 1D measurements, the molecules were instead produced in a 

vertical lattice and one horizontal lattice of 30Er and another horizontal lattice 25Er before that 

lattice was ramped to the target depth for the measurement. The reduction of depth in each tight 

direction is chosen to keep the temperature in 1D similar to that in 2D in the absence of corrugation 

in the weak direction(s) of approximately 300 nK. In all cases, the polarization of each horizontal 

lattice is tuned to match the ac polarizability of the |1⟩ state to that of the |0⟩ state so that changing 

lattice depths does not change single-particle dephasing rates (55). Additionally, a crossed optical 

dipole trap provides harmonic confinement in all lattice configurations, producing in net (including 

the weak contribution from the vertical lattice) radial trap frequencies of (𝜔𝑥′, 𝜔𝑧′) =

2𝜋 × (36(4), 29(2)) Hz where  �̂�’ = (�̂� − �̂�)/√2 and �̂�’ = (�̂� + �̂�)/√2. 

The experimental 2D average density is computed assuming uniform occupation of 19(1) 

layers, confirmed with layer-selection (see Methods of (22) for procedure), as 𝑛 =
𝑁mol/(19 × 4𝜋𝜎𝑥′𝜎𝑧′), where 𝑁mol is the total number of molecules imaged in both spin states. 

In general, our cloud size is roughly (16, 2.8, 20) 𝜇m, where we measured 𝜎𝑧′ directly from in situ 

imaging and extract 𝜎𝑥′ using the relative ratio between the trap frequencies in the �̂�’ and �̂�’ 
directions. 

To vary the density uniformly across the sample, we follow the procedure of (22). In brief, 

we apply a microwave pulse of area 𝜃 to prepare a superposition of |↓⟩ and |↑⟩. We then apply an 

optical blast using the STIRAP beam resonant with |↓⟩ to remove the |↓⟩ fraction of the population. 

This procedure reduces the density by a factor sin2 𝜃

2
. At |𝑬| = 1 kV/cm where the STIRAP beam 

also couples to |↑⟩, we shelve the |↑⟩ component in the |2⟩ state before applying the cleaning 

optical pulse. 

We perform state-resolved imaging of both spin states following (18,22). In short, to image 

the molecules in |0⟩, we reverse the STIRAP process and image K atoms on Feshbach molecules. 

To convert the measured number of atoms to the real number of molecules, we divide by the 

STIRAP efficiency (70-85% depending on |𝑬|) and the efficiency of imaging K on a Feshbach 

molecule (70%). By applying a 𝜋-pulse to transfer the population in |1⟩ to |0⟩ and repeating the 

imaging procedure, we also can detect the number of molecules in |1⟩. Due to coupling of the 

STIRAP beam to |1⟩ at |𝑬| = 1 kV/cm, to image both states at that field, we shelve |1⟩ in |2⟩ while 

imaging |0⟩. 
 

Lattice Depths and Tunneling Rates 

We calibrated the lattice depths using parametric heating of Rb which measures the gap 

between the ground band and the second excited band (56) and then scaled these frequencies to 

those experienced by KRb molecules (approximately a factor of 1.1) (57). By calculating the 
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expectation of the single particle Hamiltonian for two ground-band Wannier functions of adjacent 

sites for each lattice potential, the nearest-neighbor tunneling rate 𝑡 for a KRb molecule can be 

estimated ranging from 270 Hz at 0.5Er to 0.01 Hz at 65Er. We report these calculated values as 

the primary x-axis in Fig. 4. 

 

Contrast Measurement and Bootstrapping Error 

At long times in non-zero electric fields, while molecule-molecule coherence can be 

preserved, fluctuations in the electric field that scramble phase information can lead to loss of 

molecule-microwave coherence. As such, we follow the procedure of (18) and (22). In short, rather 

than fit a Ramsey fringe, we calculate the number-normalized contrast from 𝜎𝑓(𝑇, 𝑁mol), the 

standard deviation of fraction 𝑓 at time 𝑇 for total molecule number 𝑁mol over approximately 16 

runs, as 𝐶(𝑇, 𝑁mol) = 2√2√𝜎𝑓
2(𝑇, 𝑁mol) − 𝜎0

2(𝑁mol) where 𝜎0(𝑁mol) is the non-zero contrast in 

the absence of molecule coherence due to imaging noise. We determined 𝜎0(𝑁mol) =
 0.120(9) –  4(1) × 10−6𝑁mol by measuring the apparent contrast after 50 ms without dynamical 

decoupling for varied densities. To estimate the error in contrast at each time, we bootstrap the 

sampled set of fractions following the procedure of (22). 

 

Role of Stretching Parameter 

When there is density-dependent contrast decay, decay in deeper lattices tend to be best fit 

with larger values of stretching parameter 𝜈 than in the shallower lattice case. A plot of the mean 

𝜈 versus lattice depth for three interaction cases is provided as Fig. S1. This suggests that sub-

exponential decay is dominated by glassy dynamics, as the loss is small in these deep lattice cases. 

This trend is persistent independent of interaction anisotropy strength 𝜒, except when 𝜒 = 0 where 

it does not obviously correlate with lattice depth, further evidence that 𝜈 is not simply absorbing 

the observed changes in Γ and 𝜅. We also observe that 𝜈 is largely independent of density. 

 

Number Loss over Measurement 

As we measure the contrast as a function of time, we also have access to the number loss 

over the measurement, which can be significant. We first fit the number decay in the deep lattice 

at each electric field to an exponential decay, 𝑁mol(𝑇) = 𝑁0𝑒−𝛼𝑇, as the loss is dominated by off-

resonant light scattering (58)  in the pinned case. For other lattice conditions, we fit the number 

decay to a two-body plus one-body model 𝑁mol(𝑇) = 𝑁0𝛼′/(−𝑁0𝛽 + 𝑒𝛼′𝑇(𝛼′ + 𝑁0𝛽)), where 

the one-body rate 𝛼′ is 𝛼 scaled by the relative ratio of lattice depths to the deep lattice case, that 

is 𝛼′ = 𝛼(𝑉H1 + 𝑉H2 + 𝑉V)/(3 × 65) where (𝑉H1, 𝑉H2, 𝑉V) is the lattice depth in recoils in the first 

horizontal direction, the second horizontal direction, and the vertical direction respectively. We 

use the extracted 𝑁0 from the fit to calculate the initial density as 𝑛0 = 𝑁0/(19 × 4𝜋𝜎𝑥′𝜎𝑧′), where 

𝜎𝑥′, 𝜎𝑧′ are the starting cloud sizes. We can also examine the fitted two-body loss rate 𝛽 as a 

function of lattice depth, shown as Fig. S2. Loss is lowest when there is little molecular dephasing 

around 𝜒 =  0 Hz, but it is similar between 𝜒 =  −205 Hz and 𝜒 =  102 Hz where it only 

decreases with increasing lattice depth. We also note that loss is slightly lower in 1D than 2D and 

attribute the difference to a reduction of collisional partners in each tube. 

 

Dynamical Decoupling and Rabi Frequencies 

For our dynamical decoupling, we used a symmetric KDD sequence (39) which consists 

of 10 pulses spaced by 50 𝜇s to make a block of total length 0.5 ms. We used rectangular pulses 
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with Rabi frequencies of approximately 2𝜋 × 100 kHz. We chose to use KDD pulse sequences 

rather than XY8 pulse sequences used in (22)  to be less sensitive to pulse error, and we found that 

KDD with the 20 kHz filter frequency works well to remove single particle dephasing, which can 

be time-dependent due to fluctuations in dc electric fields and motion in the optical trap.  

 

Extended MACE (EMACE) 

To quantitatively model the dynamics of itinerant dipoles, we develop an extended moving-

average cluster expansion (EMACE) method, which accounts for the motion of the molecules, 

including associated collision and loss processes. Detailed description of the EMACE is provided 

in the Supplementary Text. In brief, for each molecule initially localized at a site 𝑖, we solve for 

the itinerant dynamics in a “buffer zone” consisting of lattice sites connected to 𝑖, via the tunneling 

matrix, which may include other initial molecules as well. In addition, for every site in the buffer 

zone, we also include the 𝑀 most strongly coupled neighboring molecules. This technique enables 

us to directly compute the molecular dynamics as the lattice depth is varied. As shown in Fig. 4, 

this method enables us to observe the experimental trends in the contrasts decay rate as the lattice 

depth is lowered in both 1D and 2D geometries as the molecules begin to move in the lattice.  

 

Scattering Theory for 2D Molecules 

Here, we provide a condensed version of the information presented in the Supplementary 

Text regarding the scattering theory presented in this work. In the fully itinerant regime, a 

nondegenerate gas of KRb molecules has its mean kinetic energy per particle much larger than the 

long-range dipole-dipole interaction energy. Decay of the Ramsey contrast is, therefore, primarily 

due to molecule-molecule collisions that decohere the one-body molecular states. The result of 

each collision can be stated concisely: a collision causes each scattering channel to accrue a 

different scattering phase shift, leading to decoherence of the post-collision reduced density matrix 

of each molecule upon tracing over the other.  For two molecules 𝐴 and 𝐵 that have collided, a 

dilute gas makes it highly unlikely that any third molecule then colliding with 𝐵, or its subsequent 

collision partners, would later collide again with 𝐴. This argument is made stronger by the fact that 

subsequent collisions of molecules increase the likelihood of scattering in the singlet channel, 

which is known to lead to large 𝑠-wave losses (18). Our theoretical model proceeds with this 

Markov approximation, which warrants us keeping track of only the single molecule reduced 

density matrices since subsequent collisions with molecule 𝐵, previously entangled with molecule 

𝐴, cannot reduce the purity of molecule 𝐴 (supplementary material of (59)). The interplay of 

motion and coherent collisions is well captured by Monte Carlo simulations of classically itinerant 

molecules in 2D, subject to a collisional decoherence model described below. 

First initializing a thermal ensemble of molecules in a 2D layer, our simulation evolves 

their harmonically confined trajectories in classical phase space with a standard Störmer-Verlet 

integration scheme (60). Pairwise collisions are then sampled from a probability distribution based 

on the joint two-molecule spin states and their relative momenta. If determined to collide 

inelastically, the molecules are assumed to be lost from the trap and discarded from the simulation. 

Conversely, elastic collisions update the individual molecular states by 1) imparting channel-

dependent scattering phase shifts on the joint two-body molecular state, and 2) tracing over a 

molecule to give the resulting one-body reduced density matrices. Such a procedure amounts to a 

noisy quantum channel on each of the scattered molecules, leading to a loss of coherence and 

reduction of the Ramsey contrast. The Ramsey contrast can be extracted from the simulation 

ensemble at any given simulation time step. See the Supplementary Text for further details of our 
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simulation.  The extracted contrast decay rates from our simulations compare favorably with the 

experimental data as shown in Fig. 3b, assuring us that our theory does indeed incorporate the 

relevant physics.   

For a more intuitive understanding of the observed collisional decoherence, we derive an 

analytic model that estimates the contrast decay rate as a function of the electric field. For two 

molecules prepared in an equal superposition of their internal rotational states |↑⟩ and |↓⟩ the 

change in their contrast following a single collision is derived to be 𝛿𝐶 = 2 sin2(𝛿↔ − 𝛿↕). Then 

assuming the gas is dilute enough such that each molecule will suffer, at most, only a single 

collision, we approximate the contrast decay rate Γ as the linear slope over which the contrast 

changes at the elastic collision rate βel = (𝛽↔ +  𝛽↕)/2: Γ = 𝛽elΔ𝐶. These quantities are then 

integrated against a Maxwell-Boltzmann distribution to give a thermally averaged contrast decay 

rate ⟨Γ⟩, and 𝜅 ≈ ⟨Γ⟩/ 𝑛. This model allows a treatment of both quasi-2D and 1D geometries, but 

its simplifications grant it only qualitative power in describing the trends of 𝜅 with electric field 

and 𝜒. The SI provides explicit derivations of the estimated ⟨Γ⟩, in both one and two dimensions.  

 

Two-Body Theory Model in Lattice: 

For shallow lattices, we also model the contrast decay by combining the dynamics of pairs of 

molecules. For a given molecule 𝐴, we first independently compute the two-body dynamics of this 

molecule with each other molecule 𝐵 to get a two-body estimate for the contrast ⟨2�̂�𝐴
𝑋(𝐴,𝐵)

⟩(𝑇), 

where we move into a rotating frame such that ⟨�̂�𝐴
𝑌(𝑇) ⟩  =  0. We then compute the combined 

contrast by multiplying the contrast values for each pair ⟨2�̂�𝐴
𝑋⟩(𝑇), = ∏ ⟨2�̂�𝐴

𝑋(𝐴,𝐵)
⟩(𝑇)𝐵 . This is 

inspired by a scattering picture, where each collision independently reduces the contrast by a given 

fraction and can be more formally related to a trotterization of the Hamiltonian (see Supplementary 

Text for details). Consequently, this approach is valid for shallow lattices, where molecules are 

sufficiently fast such that the dynamics of each pair can be treated independently, while the other 

pairs only lead to background decoherence, akin to a Markovian bath. The results of this simulation 

are shown for tunneling rates greater than 50 Hz in Fig 4a and Fig 4c.  

 

 

Fig. S1: Extracted mean stretching parameter for itinerant molecules. a) Fitted stretching 

parameter 𝜈 averaged over all densities at each molecular tunneling rate 𝑡 in two directions. Black 

circles, blue squares, and orange triangles present experimental data for 𝜒 = −205, 0, 102 Hz 
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respectively. Error bars are averaged errors of 1 s.e. to stretched exponential fit. b) Same as a) but 

for molecular tunneling only in one direction. 

 

 
Fig. S2: Extracted mean two-body loss rate for itinerant molecules. a) Fitted two-body loss 

rate 𝛽 averaged over all densities at each molecular tunneling rate 𝑡 in two directions. Black 

circles, blue squares, and orange triangles present experimental data for 𝜒 = −205, 0, 102 Hz 

respectively. Error bars are averaged errors of 1 s.e. to two-body plus one-body loss model b) 

Same as a) but for molecular tunneling only in one direction. 
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I. COLLISIONAL DECOHERENCE

In the main text, we describe our observation of coherent spin dynamics across a wide range of allowed molecular
motion: from being completely restricted by a deep optical lattice, to being fully itinerant. In this supplemental
document, we present details of our various theoretical models, each of which captures the dominant physics of these
different regimes, along with additional supporting information relevant to the experiment.

We commence discussions with the case of fully itinerant KRb molecules (i.e. no applied lattice potential, VL,α = 0
for all α). In this regime, collisional decoherence of KRb molecules is modeled with a microscopic theory of scattering
on the dipolar interaction Hamiltonian from Eq. (1) of the main text, but handled in first quantization. For an
appropriately applied magnetic field and a sufficiently large electric field, we treat the molecules as rigid rotors [1]
where the dipoles are always polarized along the field axis with mN = 0. Any explicit references to mN will thus be
dropped in what follows. The dominant dipole-dipole interaction potential between molecules A and B is, therefore,
well approximated as

Vdd(r) = ⟨NA, NB |V̂dd(r)|N ′
A, N

′
B⟩ = ⟨NA|d̂A|N ′

A⟩⟨NB |d̂B |N ′
B⟩

1− 3(r̂ · Ê)2

4πϵ0r3
, (1)
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with the dipole matrix elements corresponding to the field-dressed (labeled without tildes) states

⟨N |d|N ′⟩ = d
∑
Ñ,Ñ ′

⟨N, 0|Ñ , 0⟩⟨Ñ ′, 0|N ′, 0⟩
√
(2Ñ + 1)(2Ñ ′ + 1)

(
Ñ 1 Ñ ′

0 0 0

)2

. (2)

In the experiment, only |↓⟩ = |N = 0⟩ and |↑⟩ = |N = 1⟩ are addressed, which we take to be the relevant states for
scattering as well. Utilizing only these states then identifies 4 relevant asymptotic scattering channels:

|⇓⟩ = |↓, ↓⟩ , (3a)

|↔⟩ = |↓, ↑⟩+ |↑, ↓⟩√
2

, (3b)

|⇑⟩ = |↑, ↑⟩ , (3c)

|◦⟩ = 1√
2
(|↓, ↑⟩ − |↑, ↓⟩) , (3d)

where the first 3 states above reside in the symmetric spin sector, while the last is antisymmetric under particle
exchange. Although initially individually prepared as a coherent superposition of |↓⟩ and |↑⟩, interactions over time
could decohere the reduced density matrix of any one molecule. Therefore, the state of a single molecule at any given
time is most generally written in terms of a density matrix:

ϱ =
∑
µ,ν

|µ⟩ ϱµ,ν ⟨ν| , (4)

where Greek indices label ν =⇓,⇑,↔, ◦, and
∑

ν ϱν,ν = 1. Following a collision occurrence, each of the scattering

channels accrues a scattering phase shift that is imparted via the S-matrix, Ŝ. The 2-molecule density matrix following
a collision is then written as

ϱ′ = ŜϱŜ†. (5)

In our model, we treat all inelastic processes as leading to molecular loss, leaving a strictly diagonal S-matrix

Sν,ν = e2iδν(k), (6)

but with complex-valued channel-dependent phase shifts δν(k).
The S-matrix above then treats each channel as effectively separate during a collision, with the only relevant dipole

matrix elements being the diagonal ones:

⟨⇓| V̂dd(r) |⇓⟩ =
d2↓
4πϵ0

(
1− 3(r̂ · Ê)2

r3

)
, (7a)

⟨↔| V̂dd(r) |↔⟩ =
(d↓d↑ + d2↓↑)

4πϵ0

(
1− 3(r̂ · Ê)2

r3

)
, (7b)

⟨⇑| V̂dd(r) |⇑⟩ =
d2↑
4πϵ0

(
1− 3(r̂ · Ê)2

r3

)
(7c)

⟨◦| V̂dd(r) |◦⟩ =
(d↓d↑ − d2↓↑)

4πϵ0

(
1− 3(r̂ · Ê)2

r3

)
, (7d)

having identified the effective dipole moments with the notation

d↓ ≡ ⟨↓| d̂y |↓⟩ = ⟨N = 0| d̂y |N = 0⟩ , (8a)

d↑ ≡ ⟨↑| d̂y |↑⟩ = ⟨N = 1| d̂y |N = 1⟩ , (8b)

d↓↑ ≡ ⟨↓| d̂y |↑⟩ = ⟨↑| d̂y |↓⟩ = ⟨N = 1| d̂y |N = 0⟩ . (8c)
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We also define the dipole lengths [2] for each scattering channel as

a⇓D =
µd2⇓

4πϵ0ℏ2
=

µd2↓
4πϵ0ℏ2

, (9a)

a↔D =
µd2+

4πϵ0ℏ2
=
µ(d↓d↑ + d2↓↑)

4πϵ0ℏ2
, (9b)

a⇑D =
µd2⇑

4πϵ0ℏ2
=

µd2↑
4πϵ0ℏ2

, (9c)

a◦D =
µd2−

4πϵ0ℏ2
=
µ(d↓d↑ − d2↓↑)

4πϵ0ℏ2
, (9d)

where µ is the reduced mass. With low energy collisions off a repulsive potential, most of the collision occurs in the
long-range 1/r3 interaction tail. As such, the collision dynamics is taken to occur on time scales slow compared to
the dynamical decoupling pulses, rendering the effective dipole lengths in channels |⇓⟩ and |⇑⟩ to be time averaged
such that

a
↕
D ≡ ⟨a⇓D⟩t = ⟨a⇑D⟩t =

µ(d2↓ + d2↑)

8πϵ0ℏ2
, (10)

where ⟨. . .⟩t denotes a time averaging over the decoupling pulses. We utilize the dipole length from aligned (direct)

interactions a
↕
D, in place of a⇓D and a⇑D in the remainder of what follows.

To justify our assumption that 2-body collisions are truly the dominant form of dipolar physics, we compare the
thermal energy kBTavg to the average dipolar mean-field energy per particle, computed analytically for a trapped
thermal gas of dipoles as

εmf = − Nmol

6
√
2π

d2max

4πϵ0σ2
⊥aho

F

(√
2σ⊥
aho

)
, (11a)

where aho =
√
ℏ/(mωho,y) is the single-molecule harmonic oscillator length along the tightly confined y-direction,

σ⊥ =
√
kBTavg/(mω2

ho,⊥) is the thermal length in the transverse directions and F (x) is the molecular cloud anisotropy

function [3]. At temperatures of Tavg = 300 nK and molecule numbers of Nmol = 500 seen in the experiment, we
find that εmf/(kBTavg) ≲ 0.01, allowing us to safely ignore beyond two-body scattering processes. We ensure this
approximation is valid in the explored parameter regime by using a conservative estimate where εmf is computed with
the largest induced dipole moment in KRb at any given electric field, d2max = max{d2⇓, d2⇑, d2↔, d2◦}.

A. Itinerant collision dynamics in quasi-2D

For collisions that occur in quasi-2D at energies close-to-threshold, the scattering cross sections from a dipolar
potential are well approximated by those obtained in Born approximation [2]. Under this approximation, the diagonal
S-matrix elements are given as [4]

S2D
ν,ν(k

′,k) = e2iδ
2D
ν (k′,k) = 1− 2πi

〈
k′∣∣ ∫ dy|φ0(y)|2 ⟨ν| V̂dd(r) |ν⟩ |k⟩ ρE(Ek), (12)

with
∣∣k′∣∣ = |k| and assuming the wavefunction along y remains in its harmonic oscillator ground state φ0(y). Above,

ρE(Ek) is the density of states with energy Ek, which for our treatment of collisions in free-space here, is absorbed
into the antisymmetrized (A) and symmetrized (S) momentum eigenstates:

|k⟩A = i

√
µ

πℏ
sin(k · ρ)√

2
, (13a)

|k⟩S =

√
µ

πℏ
cos(k · ρ)√

2
, (13b)

appropriate to the triplet and singlet scattering channels respectively. That is to say, the states defined above satisfy
the energy-normalization condition

A
〈
k
∣∣k′〉

A =S
〈
k
∣∣k′〉

S = δ(Ek − E′
k)δ(ϕk − ϕ′k), (14)



28

where ϕk specifies the incident relative momentum direction. We use the notation of ρ = (z′, x′) and k = (kz′ , kx′)
as the in-plane position and momentum coordinates (refer to the main text for the lab-frame axes). Evaluating the
necessary integrals, we obtain the matrix elements analytically as

A
〈
ν;k′∣∣ ∫ dy|φ0(y)|2V̂dd(r) |ν;k⟩A =

kaνD
π

ek
2a2

hoξ−(ϕs)
[√

ξ+(ϕs)e
k2a2

ho cosϕsErfc
(
kaho

√
ξ+(ϕs)

)
−
√
ξ−(ϕs)Erfc

(
kaho

√
ξ−(ϕs)

)]
, (15a)

S
〈
ν;k′∣∣ ∫ dy|φ0(y)|2V̂dd(r) |ν;k⟩S =

kaνD
π

[
4

3
√
π

1

kaho
− ek

2a2
hoξ−(ϕs)

(√
ξ+(ϕs)e

k2a2
ho cosϕsErfc

(
kaho

√
ξ+(ϕs)

)
+
√
ξ−(ϕs)Erfc

(
ahok

√
ξ−(ϕs)

))]
, (15b)

where ξ±(ϕs) = (1± cosϕs)/2 is a function of the scattering angle ϕs = cos−1 k̂ · k̂
′
and Erfc(z) is the complementary

error function. The phase shifts are, therefore, identified as:

e2iδ
2D
ν (k,ϕs) ≈ 1− 2i(kaνD)ek

2a2
hoξ−(ϕs)

[√
ξ+(ϕs)e

k2a2
ho cosϕsErfc

(
kaho

√
ξ+(ϕs)

)
−
√
ξ−(ϕs)Erfc

(
kaho

√
ξ−(ϕs)

)]
, ν =⇓,⇑,↔, (16a)

e2iδ◦(k,ϕs) ≈ 1− 2i(ka◦D)

[
4

3
√
π

1

kaho
− ek

2a2
hoξ−(ϕs)

(√
ξ+(ϕs)e

k2a2
ho cosϕsErfc

(
kaho

√
ξ+(ϕs)

)
+
√
ξ−(ϕs)Erfc

(
ahok

√
ξ−(ϕs)

))]
. (16b)

From the expressions above, we see that the low energy 2D elastic cross section scales as σ2D ∼ k(aνD)2, consistent
with Ref. [2]. With a strong preference for forward scattering at the temperatures considered here (also observed in
Ref. [5] with full scattering calculations), the elastic and inelastic scattering rates are well approximated by

β2D,el
ν (k) ≈ n2D

4πℏ
µ

∣∣∣1− e2iδ
2D
ν (k,0)

∣∣∣2, (17a)

β2D,inel
ν (k) ≈ n2D

4πℏ
µ

(
1−

∣∣∣e2iδ2Dν (k,0)
∣∣∣2) , (17b)

giving the total scattering rate β2D
ν (k) = β2D,el

ν (k) + β2D,inel
ν (k) [6], where n2D is the average 2D planar density. The

expressions above are calculated for identical fermions with the dipoles oriented orthogonal to the plane of free motion.

1. Monte Carlo simulations of itinerant collisional KRb

Equipped with these scattering phase shifts, time traces of the contrast in a fully itinerant sample can now be
generated with numerical Monte Carlo simulations. To do so, we initialize a Maxwell-Boltzmann distributed ensemble
of harmonically confined molecules in 2D, all identically prepared in state |ψ0⟩ = (|↓⟩ + |↑⟩)/

√
2. The molecules are

taken to undergo motion in classical phase space, progressing forward in discrete time steps of ∆t via Störmer-Verlet
symplectic integration [7] in the presence of the background optical dipole trap (ODT). The ODT is well approximated
by a harmonic potential

Vtrap(ρ) =
1

2
m(ω2

ho,x′x′2 + ω2
ho,z′z′2) (18)

with harmonic trapping frequencies ωho,α′ , which will also be relevant to discussions of lattice dynamics later on.
Primes on coordinate labels are to distinguish between the axes set by the ODT, and those imposed by the applied
lattice (see Methods). Alongside the molecular positions ρk and momenta pk, we also keep track of the reduced
density matrix ϱ of each molecule, ignoring the quantum correlations between molecules. We find this tracking of
only single-molecule states a valid assumption since subsequent collisions of a molecule B, previously collisionally
entangled with another molecule A, cannot decrease the reduced density matrix purity of A (supplementary material



29

of Ref. [8]). This statement is true so long as the subsequent collision partners of B, or B itself, do not re-collide with
A, which is a good approximation in dilute gases.

Collisions are sampled using the direct simulation Monte Carlo (DSMC) method [9–11], which exploits the locality
of interactions for computational efficiency. In our implementation, the simulation volume is first partitioned into
discrete grid cells of volume ∆Vcell, into which the simulated molecules are binned based on their positions. Collisions
are then assumed to only occur within each grid cell with probability

Pcoll(k) =
∆t

∆Vcell

∑
ν

ρ2Dν,νβν(k), (19)

which depends on the relative momentum |pr| = |pA − pB | = ℏk, and the appropriately symmetrized 2-body density
matrix ρ = {ϱA ⊗ ϱB}sym of molecules A and B. Curly braces {. . .}sym denote a transformation from the basis
{|↓↓⟩ , |↓↑⟩ , |↑↓⟩ , |↑↑⟩}, into the basis of Eq. (3). If determined to occur, the collision must be assigned as elastic or
inelastic, which is done as follows.

Given that all p-wave (|mpw| = 1, where mpw denotes a 2D partial wave) losses are far suppressed over s-wave
(mpw = 0) ones [12], we will treat all scattering phase shifts in the symmetric sector as real-valued (i.e. we only take
their real parts if complex). As for the antisymmetric channel, scattering of identical fermions in |◦⟩ must necessarily
involve the mpw = 0 partial wave, which could result in short-range inelastic loss. As such, we model scattering in
the antisymmetric sector with a complex phase shift δanti = δ◦ + iηs, comprising a real-valued dipolar part δ◦ (16b),
and an imaginary mpw = 0 contribution iηs. The purely imaginary s-wave phase shift is motivated by the observed
universal short-range loss in KRb [13, 14]. By careful comparison with the experimentally observed number loss rates,
we simply insert an empirically determined imaginary phase shift of ηs = 0.05 that reproduces it. This value implies
about a 20% probability of loss for collisions in the singlet channel. The resultant inelastic scattering rate is then
computed as

β2D,inel
◦ ≈ n2D

4πℏ
µ

(
1− e−4ηs

)
, (20)

so that the total scattering rate in channel |◦⟩ is given as β2D
◦ = β2D,el

◦ + β2D,inel
◦ . The probability that a simulated

collision occurrence is inelastic is then taken to be

Pinel =
ϱ◦,◦β

2D,inel
◦

ϱ⇓,⇓β2D
⇓ + ϱ⇑,⇑β2D

⇑ + ϱ↔,↔β2D
↔ + ϱ◦,◦β2D

◦
, (21)

and treated as resulting in trap-loss of the molecular pair. Trap-loss translates to a discarding of these molecules in
the simulation.

If elastic, however, the collision must modify the reduced density matrix. First, a strong preference for forward
scattering (16) allows us to approximate differential scattering by sampling the scattering angle as ϕs = 0 or π with
equal probability, to produce p′

r = +pr or −pr respectively. We leave consideration of the full angle dependence of
δ2Dν to a future more detailed study. Then taking the symmetrized 2-body density matrix ϱ, we apply only the elastic
scattering phase shifts to it:

ϱ′ =
∑
µ,ν

e2iδ
2D
µ |µ⟩ ϱµ,ν ⟨ν| e−2iδ2Dν . (22)

Then adopting the basis ordering in Eq. (3), we perform a partial trace over the second molecule B which comprises
a sum over projectors onto the single-molecule reduced Hilbert space

trB{. . .} = Π↓B
(. . .)Π†

↓B
+Π↑B

(. . .)Π†
↑B
, (23)

where each projector has the matrix representation

Π↓B
=

⟨↓B |⇓⟩ ⟨↓B |+⟩ ⟨↓B |⇑⟩ ⟨↓B |−⟩( )
1 0 0 0 |↓A⟩
0 1/

√
2 0 −1/

√
2 |↑A⟩

, (24a)

Π↑B
=

⟨↑B |⇓⟩ ⟨↑B |+⟩ ⟨↑B |⇑⟩ ⟨↑B |−⟩( )
0 1/

√
2 0 1/

√
2 |↓A⟩

0 0 1 0 |↑A⟩
. (24b)
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The resulting post-collision reduced density matrix of molecule A is therefore

ϱ′A = trB{ρ′} = Π↓B
ϱ′Π†

↓B
+Π↑B

ϱ′Π†
↑B
, (25)

that will also be the reduced density of molecule B, which completes a simulated collision event. To extract the
contrast within our simulation, we compute the expectation of the Pauli matrix σX , with respect to each single-
molecule density matrix ⟨σX⟩ϱ(t) = tr{σXϱ(t)}. The ensemble averaged contrast is then obtained by taking the mean
value of ⟨σX⟩ϱ(t) over all simulated molecules at any given time t.

2. Loss-induced distillation of single-molecule pure states

FIG. S3. Contrast decay as a function of time from Monte Carlo simulations including loss (solid black curve with ηs = 0.05)
and no loss (dashed red curve with ηs = 0). The simulation treats a gas of Nmol = 400 molecules at temperature Tavg = 300
nK, with applied electric field E = 12.7 kV/cm.

In the collisional regime, we find that 2-body losses in the molecular gas strongly contribute to contrast decay
dynamics. Collisions in the singlet scattering channel introduced by collisional decoherence are key to this mechanism,
as these collisions have a high probability of being inelastic due to the lack of a p-wave barrier. In turn, decohered
molecules have a higher tendency to be inelastically lost from the trap, which erases knowledge of their collision-
generated entanglement from the overall many-body state. Such erasure thus acts to inherently distill quantum
coherence of single molecules in the remaining sample, resulting in a suppression of the contrast decay. However, this
suppression only takes effect on time scales long enough to permit molecules to undergo more than one collision, and
is therefore not captured by a simple rescaling of the contrast decay rate. We see this dynamical-loss effect manifest
in Fig. S3, when comparing the contrast evolution from Monte Carlo simulations in a sample with nonzero singlet
loss (ηs = 0.05), to that with zero singlet loss (ηs = 0). This representative comparison assumes a gas of Nmol = 400
molecules at initial temperature Tavg = 300 nK, with an applied electric field E = 12.7 kV/cm.

In general, the interplay of loss-induced pure state distillation and interaction-induced dephasing could result in a
nonlinear density dependence of the contrast decay. Being a two-body process, the presence of loss might even lead to
a reduction of contrast decay at larger densities. Although not observed in our current simulations, more complicated
density dependences that might arise with more accurate loss models could explain the negative values of κ seen in
Fig. 3b of the main text. We leave further investigations of this mechanism to future work.
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B. Estimation of the contrast decay

To obtain an estimate of the contrast decay rate, we will consider the decoherence affected by a single collision.
Initially prepared in the equal superposition of |↓⟩ and |↑⟩, the joint quantum state of 2-molecules is given as

|ψAB(0)⟩ =
1

2
(|↓⟩+ |↑⟩) (|↓⟩+ |↑⟩)

=
1

2

(
|⇓⟩+

√
2 |↔⟩+ |⇑⟩

)
. (26)

Notably, the state above only involves the symmetric spin sector with purely elastic phase shifts, so the treatment
here ignores losses. Then following the collision procedure in Sec. IA 1, the post-collision reduced density matrix of
the molecules after 1 collision is given by

ϱ′ =

(
1
2

1
4e

−2i(δ↔+δ⇑)
(
e2i(δ⇓+δ⇑) + e4iδ↔

)
1
4e

−2i(δ⇓+δ↔)
(
e2i(δ⇓+δ⇑) + e4iδ↔

)
1
2

)
, (27)

which gives the contrast in terms of phase shifts as

⟨σX⟩ϱ′ = cos(δ⇑ − δ⇓) cos(δ⇑ + δ⇓ − 2δ↔). (28)

See Fig. S4 for a schematic of the different phase shifts
picked up in different scattering channels. Noting the
dipole length dependence of the phase shifts in Eq. (16),
and the equality of Eq. (10), the change in contrast after
a single collision is therefore

∆C = 1− ⟨σX⟩ϱ′

= 2 sin2
(
δ↕ − δ↔

)
, (29)

with δ↕ = (δ⇑ + δ⇓)/2. The contrast decay rate Γ is
then taken to be the linear slope over which the contrast
changes within the time interval ∆T = 1/βel:

Γ ≈ ∆C

∆T
= βel∆C, (30)

where

βel =
1

4
(β⇓ + 2β↔ + β⇑) . (31)

Since still dependent on k, it is more appropriate to con-
sider the thermally averaged contrast decay rate ⟨Γ⟩, ob-
tained by integrating βel(k) and ∆C(k) over the equilib-
rium Maxwell-Boltzmann distribution individually, then
taking their product.

FIG. S4. A schematic diagram of the differential phase
shifts (29) developed from scattering off the interaction po-
tential Vint(ρ). ρ denotes the distance between the 2 colliding
molecules in 2D. As illustrated, the |↕⟩ (dotted curve) and
|↔⟩ (solid curve) scattering channels adiabatically connect to
different corresponding potential energy surfaces over which
the molecules accrue their scattering phase shifts, δ↕ and δ↔
respectively. The colliding molecules enter each channel with
the same collision energy, where the asymptotic threshold en-
ergies are ignored in this figure for ease of comparison.
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1. Quasi-2D contrast decay

For the analysis in quasi-2D, we utilize the forward scattering phase shifts read off from Eq. 16 as:

e2iδ
2D
ν (k) ≈ 1− 2i(kaνD)Erfc (kaho) e

(kaho)
2

, ν =⇓,⇑,↔, (32a)

e2iδ
2D
− (k) ≈ 1− 2i(ka−D)

(
4

3
√
π

1

kaho
− Erfc(kaho)e

(kaho)
2

)
. (32b)

Utilizing the backward scattering phase shift yields the same result in the derivation that follows. With an average
2D density of n2D ≈ 1.2 × 107 cm−2 and a temperature of Tavg = 300 nK, the thermally averaged contrast decay
rate ⟨Γ⟩ is computed as a function of the electric field E, showing the trend in Fig. S5. Close to the Heisenberg
point, we see from Eq. (29) that the change in contrast scales with χ as ∆C ∼ χ2. The scaling of βel with χ is
more intricate, but if taken to be some polynomial in χ, might have its lowest non-trivial term just be ∼ χ. Under
this naive assumption, we fit a |χ|3 monomial to ⟨Γ⟩ that yields the red-dashed curve in subplot (b). We find that

although the proposed |χ|3 dependence is appropriate to the current experiment, it is sensitively dependent on the
harmonic oscillator length along the tightly confined axis, aho. For smaller aho (tighter confinement), ⟨Γ⟩ follows a

trend closer to χ2, whereas larger aho (weaker confinement) follows |χ|3 more strongly. This variation is illustrated in
Fig. S6, where we fit a monomial in χ (dashed red line) to the theory-predicted contrast decay rates (black solid line)
while floating the exponent on, and coefficient multiplying χ.

FIG. S5. The thermally averaged collisional contrast decay rate ⟨Γ⟩ in quasi-2D, vs (a) the electric field E and (b) the
interaction parameter χ, in a quasi-2D geometry. A fit of ⟨Γ⟩ to a |χ|3 monomial is also included as the red dashed curve. The
temperature is assumed to be Tavg = 300 nK.

In reality, involvement of the antisymmetric spin sector in subsequent collisions will suppress contrast decay at
long times (see Fig. S3 of appendix Sec. IA 1). This suppression is primarily due to 2-body losses, since molecules
that would have otherwise decohered are now lost from the trap and do not contribute to the Ramsey measurement.
The result is the observed stretched exponential behavior, which therefore renders the analytic theory developed here
mostly qualitative.

2. Quasi-1D contrast decay

If the collisions occur in quasi-1D instead, a similar analytic derivation of the contrast decay rate can be performed
utilizing the phase shifts and scattering rates in 1D. To do so, we must once again derive the Born approximated
phase shifts in much the same way as we did in Sec. IA, with diagonal S-matrix elements

S1D
ν,ν(k) = e2iδ

1D
ν (k) = 1− 2πi ⟨k|

∫
d2ρ|φ0(ρ)|2 ⟨ν| V̂dd(r) |ν⟩ |k⟩ , (33)
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FIG. S6. The thermally averaged collisional contrast decay rate ⟨Γ⟩, vs the interaction parameter χ in a quasi-2D geometry,
for 3 values of the harmonic oscillator length: (a) aho ≈ 17 nm, (b) aho ≈ 84 nm, (c) aho ≈ 170 nm. The temperature is
assumed to be Tavg = 300 nK.

where φ0(ρ) are the transverse harmonic oscillator ground states, along with the antisymmetrized (A) and sym-
metrized (S), energy-normalized momentum eigenstates:

|k⟩A = i

√
µ

πℏ2k
sin(kx), (34a)

|k⟩S =

√
µ

πℏ2k
cos(kx). (34b)

Evaluating the necessary integrals results in the quasi-1D elastic scattering rates [15] and phase shifts:

β1D
ν (k) = n1D

ℏk
µ

∣∣∣1− e2iδ
1D
ν (k)

∣∣∣2, (35a)

e2iδ
1D
ν (k) ≈ 1− 2i(kaνD)E1

(
k2a2ho

)
e(kaho)

2

, (35b)

where E1(z) =
∫∞
z
dt′e−t′/t′ is the exponential integral. From the expressions above, we see that the low energy 1D

elastic phase shift scales as δ(k) ∼ k ln(k), consistent with [16]. For the symmetrized channels in which dipole-dipole
interactions remain repulsive, the imaginary part of the complex phase shifts are exponentially suppressed [15], so we
ignore them here as well. Then utilizing the thermally averaged contrast decay rate (30) once more, a gas with a 1D
density of n1D ≈ 1.6× 103 cm−1 at Tavg = 300 nK sees ⟨Γ⟩ is as a function of E and χ as shown in Fig. S7.

II. CORRECTIONS BEYOND THE t-J-V -W MODEL

Correction term Two-body simulations EMACE

next-nearest neighbor tunneling " "

full dispersion " %

external trap 1D only "

higher bands 1D only %

single-molecule loss " %

s-wave losses (on-site and nearest-neighbor) " %

on-site interactions (dipolar + contact) " "

corrected off-site interactions " "

TABLE I. Corrections beyond the t-J-V -W model included in the simulations. The checkmark “"” signifies that the given
correction was included. The cross “%” signifies that the given correction was not included. “1D only” means that the correction
was only taken into account in the 1D simulations, but not in 2D.

The t-J-V -Wmodel describes the fundamental competition between dipolar interactions and motion studied in the
experiment. However, several features of the experiment can lead to corrections beyond the pure t-J-V -W model and



34

FIG. S7. The thermally averaged collisional contrast decay rate ⟨Γ⟩ in quasi-1D, vs (a) the electric field E and (b) the
interaction parameter χ, in a quasi-1D geometry. A fit of ⟨Γ⟩ to a |χ|3 monomial is also included as the red dashed curve. The
temperature is assumed to be Tavg = 300 nK.

thus need to be taken into account in numerical simulations to reproduce the contrast dynamics. These corrections
are summarized in Tab. I that shows which corrections were taken into account in each simulation.

The first four rows describe corrections to the coherent single-molecule dynamics. While in deep lattices (VL ≳
10Er), the single-molecule dynamics is well described by nearest-neighbor tunneling t leading to a cosinusoidal disper-
sion relation, for shallower lattices this approximation breaks down. As a consequence, corrections need to be taken
into account. In the two-body model, we work with single-molecule eigenstates, where the modified dispersion relation
can be taken into account fully. In contrast, when working with localized orbitals in a tight-binding model, we need to

include long-range tunneling of the form tν ĉ
†
i ĉi+ν +h.c. In practice, only nearest and next-nearest neighbor tunneling

terms (ν ≤ 2) are included, since even in the extreme case, third-nearest neighbor tunneling is limited to t3 ≈ 30
Hz for VL = 0.5Er, when nearest neighbor tunneling is almost t1 ≈ 300 Hz and next-nearest neighbor tunneling is
t2 ≈ −70 Hz. As discussed in the main text and below, the external trap is an important correction, especially in
1D, where it can lead to full localization of the molecules. Since it breaks translational invariance, it makes two-body
simulations significantly more costly and is thus only included in the 1D simulations shown in Fig. S9(b) in the
next section. For shallow lattices VL ≲ 5Er, thermal population of motionally excited bands becomes non-negligible,
enhancing delocalization and competing with the external trap. Higher bands population was therefore included in
the two-body simulations for the 1D case where it competes with the trap. In previous EMACE simulations done
without trap and slightly modified sampling, we found only minor corrections due to higher bands, so they have been
excluded in all other cases for numerical efficiency.

In shallow lattices, molecule loss can slow down contrast decay due to a combination of selective loss of decohered
molecules and dynamically decreasing density (see also Sec. IA 2). We include single-body and two-body s-wave
loss in the two-body simulations with a non-hermitian Hamiltonian approximation but neglect it in the EMACE for
simplicity. The s-wave loss is computed both on-site and for adjacent lattice sites.

Both two-body calculations and EMACE simulate the full dipolar Fermi-Hubbard model and thus allow two
molecules to occupy the same lattice site. The on-site interactions are then computed by a combination of dipo-
lar and contact interactions, where dipolar interactions typically dominate. Furthermore, off-site interactions are
modified by the delocalization of Wannier orbitals, allowing molecules to approach each other more closely than point
dipoles trapped in the lattice minima, as derived by Wall et al. [17]. This can lead to a significant increase in interac-
tion strength along the shallow lattice direction by more than a factor of 2. The corrections from the delocalization
of two interacting molecules arise due to a combination of direct (diagonal part of interactions) and exchange (off-
diagonal part, i.e. switch orbitals ) interaction processes . In practice, the exchange processes always have a much
smaller rate than the direct ones and are thus neglected (see also [17]). We include corrections to interactions in a
rectangular cuboid up to distance (3,1,1) for 1D and (2,1,2) for 2D and use the point-dipole approximation beyond
that.
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III. CONFINING POTENTIAL

To understand the role of the confining potential, we can examine its effects in the single-band tight-binding model,
where the single-particle Hamiltonian takes the form

Ĥsp,1 = −t
∑

σ=↑,↓

∑
⟨i,j⟩

ĉ†i,σ ĉj,σ +
∑
i

µin̂i , (36)

where we have chemical potential µi = m
∑

α ω
2
ho,αr

2
i,α/2 incorporates the effects of the confining potential, with

ri,α taken to be the spatial center of lattice site i. When VL,x = 0, the single-particle eigenstates are approximately
localized to a few lattice sites on the trap edges, whereas single-particle eigenstates towards the trap center are
delocalized, and take the form of discretized harmonic oscillator states [18].

This behavior can be largely understood by restrictions on the available lattice sites a particle can tunnel to, owing
to differences in the on-site energies that exceed the available tunneling bandwidth. That is, for nearest-neighbor
tunneling rate t, a particle initially at site i can only tunnel to sites j for which 4t ≲ |µi − µj |. Sufficiently large
differences on the order of the bandwidth or the addition of many-body processes can foster delocalization beyond this
single-particle picture. Nonetheless, we expect this picture to provide a qualitative reference for the observed physics
in the main text, at least away from shallow lattice depths where the effects of higher bands cannot be dismissed. Here,
for example, trap-induced coupling to higher motional bands can help delocalize the particles in the limit VL,x → 0.

Within this picture, the separation between localized and delocalized single-particle eigenstates occurs at distances

rloc ≈
√
4ht/mω2

ho,α from the center of the confining potential [18]. Even for lattices as shallow as VL,x = 5ER, this

sets the localization radius to ∼ 8 lattice sites. When considering the initial, 3D Gaussian distribution of the particles,
this results in ∼ 17% of the particles occupying single-particle eigenstates that are delocalized along the x direction.
When tunneling is enabled in both the x and y dimensions, an even smaller fraction, ≲ 3% of the particles occupy
the single-particle eigenstates that are delocalized in two dimensions at the trap center. Instead, as illustrated in
the main text, most particles occupy single-particle eigenstates that are delocalized along quasi-1D rings of relatively
fixed chemical potential energy that are a constant distance from the trap center. When tunneling is restricted to one
dimension, the majority of the particles in the system remain fully localized at the trap center.

IV. TWO-BODY SIMULATION

In this section, we describe a method to simulate the contrast decay dynamics in shallow lattices Vx,y,z ≲ 10Er,
for which single molecule dynamics dominates over interactions and molecules delocalize quickly. In this case, it is
convenient to describe dynamics in terms of single-molecule eigenstates, i.e. Bloch waves without confining potential,
or more complex states if the dipole trap is taken into account. The resulting physics is very similar to the collisional
physics discussed in Sec. I, motivating a numerical method based on two-particle physics. Analogous to the free-space
scattering simulation, we always consider pairs of molecules in isolation without feedback between different pairs’
dynamics. We then extract the contrast of a single molecule by multiplying the effect of different molecules. The
contrast of the full sample is then computed as the average over all molecules.

Since we work directly with single-molecule eigenstates, this approach allows us to treat shallow lattices even for
fully delocalized molecules in 2D. It further allows us to distinguish the effects of mode-preserving scattering which
leave the motional state unchanged and mode-changing collisions. This supports the scattering intuition for the
shallow lattice contrast dynamics since mode-changing collisions dominate.

A. Method

We start by separating the Hamiltonian into two-body terms

Ĥ =
∑
i>j

Ĥij , (37)

where i and j sum over all molecules. This requires us to keep track of all molecules as if they were distinguishable,
which is a reasonable approximation far from degeneracy.
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We can then compute the contrast as

C(T ) =
2

N

∑
i

⟨ψ0| exp
(
iĤT

)
ŝXi exp

(
−iĤT

)
|ψ0⟩ (38)

≈ 2

N

∑
i

⟨ψ0|

∏
j>j′

exp
(
iĤij′T

)ŝXi
[∏
k>k′

exp
(
−iĤkk′T

)]
|ψ0⟩ (39)

≈ 2

N

∑
n

⟨ψ0|

∏
j

exp
(
iĤjiT

)ŝXi
[∏

k

exp
(
−iĤkiT

)]
|ψ0⟩ (40)

≈ 2

N

∑
i

∏
j

⟨ψ0| exp
(
iĤjiT

)
ŝXi exp

(
−iĤjiT

)
|ψ0⟩ (41)

Here, the first step is a trotterization, which has errors on the order of the commutators of the two-body Hamiltonians[
ĤijT, ĤklT

]
, which are small for short times, or when the two terms approximately commute. In the second step,

we commute all terms Ĥjj′ with j, j′ ̸= i with ŝXi and cancel them with their partner. This step is exact for the
appropriate ordering of terms in step Eq. (39). In the third step, we assume that correlations that are built up by

Ĥji cannot be recovered by evolution induced by interactions with other pairs. This follows the spirit of independent
collisions introduced in Sec. I, where we trace out the other molecule after each collision. In this approximation, the
expectation value can be computed for each pair independently.

Physically, this can be interpreted as follows: Two-particle interactions directly lead to contrast decay due to spin-
motion coupling and coherent contrast oscillation. The contrast oscillations are out-of-phase for different molecule
pairs so that they are also observed as contrast decay. In addition, two-particle interactions also build up correlations.
These correlations lead to direct contrast decay which is also included in the model. We ignore however higher-order
effects, where such built-up correlations modify interactions with a third molecule.

B. Simulation and Losses

The approximate contrast dynamics can thus be computed by only computing two-particle dynamics, avoiding the
normally exponential growth of Hilbert space with molecule number. We assume that each molecule is initially in an
eigenstate of the single-particle Hamiltonian along the shallow lattice direction(s) and in a localized Wannier orbital
in the deep lattice direction(s). We sample the molecules i from the appropriate probability distribution. For each
molecule i, we independently sample surrounding molecules i′. We then compute contrast evolution according to
Eq. (41).

When sampling the molecules i′, we only include those in nearby layers/chains, since far-away molecules barely
affect the dynamics. In particular, for 2D we include molecules up to two layers away, and in 1D we include molecules
up to a cutoff distance of (∆y,∆z) ≤ (3, 3) independently in both directions. In 1D, we sample molecule pairs from the
full eigenstate including the external trap and the first excited band according to a thermal probability distribution.
In 2D, we ignore the dipole trap for simplicity and assume that molecules are evenly distributed among the lowest
band. This speeds up calculations by including quasi-momentum conservation. In 2D, we then estimate the full
contrast dynamics by a local density approximation, i.e. we weigh the dynamics computed at a given density with a
density resolution of 1% with the fraction of the number of molecules at that density.

To estimate the effect of losses, we include an imaginary s-wave scattering component describing chemical reactions
Im(as) ≈ 700a0 and a single molecule loss rate γ1 = 2.5s−1, both chosen to approximately match the experimentally
observed loss. We then compute the singlet channel dynamics with the non-hermitian Hamiltonian. The norm decay
of this dynamics is a measure of the losses (in the singlet channel). We estimate the total collisional loss rate of

molecule i with all other molecules j, γ
(i)
2 from the short-time dynamics between 1ms and 10ms chosen to avoid fast

short-time decay due to initial doubly occupied sites and long-time saturation of the population. This allows us to
approximate the population time evolution of molecule i as

pi(T +∆T ) = pi(T ) exp
(
−γ1∆T − γ

(i)
2 pi(T )PS(T )T

)
, (42)

with PS(T ) =
1−Ci,bare(T )2

4 the probability to find one pair in the singlet state. Here, we assume that pi(T ) can also
be used to approximate the remaining population of the other molecules. When computing the contrast, we further
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assume that sXi (T ) also decays with single molecule decay rate: sXi (T ) = s
X(0)
i (T ) × exp(−γ1T ), where sX(0)

i is the
contrast computed without including losses.

Finally, we include feedback of the loss into the contrast decay, which decays slower for small particle number, as

Ci,corrected(T +∆T ) = Ci,corrected(T )×
[
Ci,bare(T +∆T )

Ci,bare(T )

]pi(T )

. (43)

Here, Ci,bare is the contrast computed for molecule i [Eq. (41) without the sum].

C. Regime of validity of the two-body model

This simulation is expected to work well in shallow lattices with low filling fractions. For these systems, it is
unlikely that more than two particles approach each other closely at any given time, and the physics is dominated by
individual two-particle collisions, which are here computed in real-time. We note that the trotterization and truncation
to two-body terms made above become exact for short times and for an Ising model of frozen spins, respectively.

One term that is neglected in this model can be understood by considering three particles A, B, and C in a deep
lattice with exchange interactions. Let us focus on ⟨ŝXA ⟩. Then, as discussed above, the interaction ĤAB builds up
correlations of the form ŝYA ŝ

Z
B . This correlation can then be transferred to a correlation between molecules A and C

by ĤBC . Finally, this will feed back into a contrast measurement through ĤAC . This type of interaction is especially
relevant in a deep lattice, where particles A, B, and C stay localized and thus continue to interact strongly with one
another. As a consequence, the two-body approximation should stay valid here only in the Ising case or at short
times.

In the shallow lattice, the picture becomes more complicated: Now, correlations build up not only between the
spin degrees of freedom of different molecules but also between spin and motional degrees of freedom of the same or
different molecules. However, any entanglement between internal and external degrees of freedom is typically only
observed as decoherence of the contrast, and as such should be sufficiently captured by the two-particle model. In
addition, itinerant molecules can now move apart after interactions, such that circular interactions between three
particles as described above become increasingly rare as molecules A and B separate, such that it is unlikely that
molecule C interacts with both of them. However, for finite systems, at long times particles can explore the entire
system, such that the three-particle physics described above becomes relevant again. This is especially relevant in
1D, where the spatial domain that particles can explore before returning to their initial position is relatively small.

D. Mode-changing and mode-preserving collisions

We can use these two-particle simulations to shed light on the difference between mode-changing and mode-
preserving collisions. In particular, two distinct mechanisms can lead to contrast decay. In the absence of collisions
that change the external state, e.g. because such collisions are energetically suppressed, molecules remain in their
initial single-molecule eigenstates. In this case, the coherent dipolar interactions in Eq. (1) of the main text induce
coherent spin dynamics between dipoles pinned in mode-space. The resulting model can be written as a mode-space
spin-model [19] with density-density, density-spin, and spin-spin interactions. These interactions, in particular the
differential between spin-Ising and spin-exchange interaction, set the time scale of dephasing, analogous to the very
deep lattice case.

On the other hand, if interactions are strong enough to couple different motional eigenstates, this leads to collisional
decoherence. E.g. in 2D without transversal lattice, there are always energetically allowed lateral collisions which
conserve the magnitude of relative momentum k, but change its direction. In the Born approximation, the collision
rate is proportional to (as discussed in Sec. I)

β(k) = nσ(k)v(k) ∝ n⟨Ĥdd⟩2kρE(Ek)
2v(k) . (44)

Such collisions then lead to an entanglement of spin and motional degrees of freedom, which leads to irreversible
contrast decay. Notably, all parameters except n can be modified by the lattice.
To quantify the relative importance of both processes, we simulate both the full Hamiltonian and the spin model,

only. The results are shown in Figs. S8. For all parameters, the spin-model contrast is longer lived. Interestingly, at
both weak and strong E-fields, the contrast decay predicted by the spin model almost is only slightly faster at the
shallowest lattices of Vx = Vz = 0.5Er. As the lattice depth is increased, the deviation between both descriptions
increases. Strikingly, at 1 kV/cm, this even leads to a reversal of the order of contrast decay rates: While within
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FIG. S8. Contrast dynamics computed from the two-body model at |E| = 1kV/cm. (a) Simulation of all terms including mode-
changing collisions. (b) Simulation of only spin-model terms. Both simulations are for Nmol = 10, 000 molecules, computed
in a local density approximation and with a y-lattice depth of 65ER. Differently colored and patterned traces correspond to
traces at different lattice depths Vx = Vz in x- and z-direction. (c), (d) Same as (a), (b) for |E| = 12.7kV/cm. Simulations in
a 20× 20 lattice.

FIG. S9. Decay rates predicted by the two-body model. (a) Slope of the contrast decay rate vs molecule number (proportional
to 2D density) for different lattice depth VL,x = VL,z ≤ 10Er in the 2D tunneling scenario. As for experimental data, contrast
decay rates were extracted by a stretched exponential fit. Black circles are in the exchange-dominated case (|E| = 1 kV/cm),
while orange triangles are in the Ising-dominated case (|E| = 12.7 kV/cm). The slope was calculated for molecule numbers
2, 500 < Nmol < 15, 000 in a local density approximation. Each sample is computed for 25×25 lattice sites. (b) Contrast decay
rates in 1D extracted from a stretched exponential fit to the dynamics. Sample temperature Tavg = 250 nK. We include 61
lattice sites in the shallow direction, with an average of 6 molecules per chain. Different points are bootstrapped results from
different disorder realizations.

the spin model contrast decay is predicted to be slowest in the 7ER lattice, contrast decay is actually slowest at
0.5ER when taking all terms into account, consistent with the experimental observation. The increased importance
of mode-changing collisions as lattice depth is increased from zero is attributed to higher density of states and slower
velocity, as can be seen in Eq. (44).

E. Results of the two-body model

We now summarize the numerical results obtained for different lattice depths, E-fields, and molecule numbers in a
way similar to the experimental data: We first fit each numerical time trace with a stretched exponential. We then
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fit these decay rates as a function of molecule number Nmol with a linear function. This slope is proportional to the
experimental quantity κ, which uses the 2D density instead of the total number of molecules. Fig. S9(a) shows the
fitted slope as a function of t for the two different E-fields. We only show shallow lattices with depth less than 10Er,
since the simulations assume that the single-molecule eigenstates form a good basis, which is not true in deep lattices,
where bands get narrow and the interaction energy can be much larger than the effective kinetic energy due to the
band structure. For both electric fields, there is a significant reduction in dΓ/dNmol with decreasing lattice depth,
i.e. increasing t.
We now turn to the 1D scenario in Fig. S9(b). As discussed in the main manuscript, the external trap here leads to

localization of molecules in all 3 dimensions and thus cannot be ignored. We thus compute single molecule eigenstates
including both the lattice and the optical dipole trap. Here, we only show the decay rate at a fixed density of 10%,
which we expect to behave similarly to the density-normalized decay rate κ. In 1D in the presence of an external
trap, we find a strong dependence of the fitted decay rates on the specific positions of all molecules. We compute
the contrast dynamics for 200 molecules in a given environment. We then use bootstrapping to compute average
trajectories and decay rates. The different symbols correspond to 20 bootstrapping samples. As in the experiment,
the simulated decay rate at 1 kV/cm is significantly higher than that at 12.7 kV/cm. The rate at 12.7 kV/cm has no
significant dependence on the tunneling rate. In contrast, and opposite to the scaling in 2D, at 1 kV/cm, the contrast
decay rate increases with decreasing lattice depth. This is qualitatively consistent with experimental observations,
which show the disappearance of the peak as a function of the tunneling rate in 1D.

V. EFFECT OF DENSITY-DENSITY INTERACTIONS

To understand the effect of the density-density interaction V , we simulate the dynamics for the true system pa-
rameters, and for manually setting V = 0 and V = 100 Hz. As can be seen in Fig. S10, the dynamics with the
actual values of V are virtually indistinguishable from the dynamics for V = 0, suggesting that it is unlikely that
the experimentally observed dynamics are arising from density-density interactions. Even when we artificially set
V = 100 Hz in the two-body simulations, the shallow lattice dynamics is barely modified with respect to the actual
V . For intermediate depth lattices of 10ER, however, a very large V could stabilize the contrast.

We attribute the relative insensitivity of the contrast dynamics to V to the fact that V only directly depends on
the local density and not on the spin. As a consequence, V can only coherently modify local densities, which can only
indirectly feed back into the contrast dynamics. In the very deep lattice, where there is no coherent mechanism for
population change, the V term thus becomes a constant and cannot affect any dynamics. For very shallow lattices, in
contrast, where t > V , density interactions are not strong enough to significantly affect motional dynamics. Only in
the intermediate regime, when 0 ≪ t < V could there be an effect of V . In the extreme case, one might consider that
strong repulsive density-density interactions force the molecules to partially localize, thus removing disorder from the
system and enhancing the contrast. This would however require interactions that are both much larger than tunneling
and than the sample temperature. Since V < 20 Hz remains small for all experimental parameters [panel (a)], we
thus conclude that V does not significantly modify the contrast dynamics.

VI. EXTENDED MOVING AVERAGE CLUSTER EXPANSION (EMACE)

A. Moving average cluster expansion (MACE) for stationary dipoles

Here, we describe a method to compute the relaxation dynamics of the t-J-V -W model, inspired by the moving-
average cluster expansion (MACE) for a system of randomly distributed dipoles [20]. First, we introduce MACE
applied to a sparsely filled lattice of stationary molecules. In essence, this method consists of solving the dynamics of
each dipole in the presence of its most strongly coupled neighbors, forming a local cluster of particles. The dynamics
of global observables are then averaged over all possible clusters in the system. Let ia denote the indices of lattice
sites initially populated with a molecule, where a = 1, ..., Nmol labels the particle index. We assume each of these sites
to be populated by a single molecule in the (|↑⟩+ |↓⟩)/

√
2 state. We then form a cluster of M lattice sites, composed

of site ia in addition to occupied sites ia′ with the M − 1 largest absolute couplings |Via,i′a | to ia; that is, we have sets

CM (ia) =
{
ia, ia1

, ..., iaM−1

}
(45)

such that |Via,ia1
| ≥ |Via,ia2

| ≥ ... ≥ |Via,iaM−1
| ≥ |Via,ia′ | for all ia′ /∈ CM (ia). We refer to ia as the nucleus of cluster

CM (ia).
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FIG. S10. Effect of density-density interactions V in the 2D geometry. (a) Magnitude of the density-density interactions V
(blue solid) compared to J⊥ (dashed dotted purple) and JZ (dashed gold) as a function of |E|. (b-e) Contrast decay dynamics
predicted by the two-body model for V given by KRb parameters (blue solid), for V = 0 (orange dotted) V and for V = 100
Hz (green dashed). Panels are for (b) |E| = 12.7 kV/cm, VL,x = VL,z = 1ER; (c) |E| = 12.7 kV/cm, VL,x = VL,z = 10ER; (d)
|E| = 1 kV/cm, VL,x = VL,z = 1ER; (e) |E| = 1 kV/cm, VL,x = VL,z = 10ER. Simulations for Nmol = 5000 in a local density
approximation. For each local density, we simulate dynamics in a homogeneous 25× 25 lattice.

The local Hilbert space for this cluster is given by

H[CM (ia)] =
⊗

i∈CM (ia)

Hi, (46)

where Hi is the local Hilbert space corresponding to lattice site i. We may then solve for the unitary dynamics within
this cluster:

|ψa(T )⟩ = Ûa(T ) |ψa(0)⟩ (47)

where Ûa(T ) = exp{−iĤaT} and Ĥa is our Hamiltonian projected into H[CM (ia)].
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For computing local observables at the cluster nucleus ia, e.g. ⟨Ôa(T )⟩, we utilize the values obtained from the

corresponding cluster wavefunction |ψa(T )⟩. We thus make the replacement ⟨Ôa(T )⟩ ≈ ⟨ψa(T )| Ôa |ψa(T )⟩; the
contrast dynamics are then obtained via

C(T ) ≈ 2

Nmol

Nmol∑
a=1

⟨ψa(T )| ŝXia |ψa(T )⟩ . (48)

Note that, in principle, this is exact in the limit M → Nmol, where the cluster size approaches the total number of
particles in the system. For M < Nmol, we would expect deviations to occur on timescales no sooner than the inverse
of largest neglected couplings, though how such deviations manifest is dependent on the observables of interest as
well as on the expended range of the correlations that develop. As such, we expect that simple, low-order observables
may even be relatively robust to deviations at longer times.

As in Ref. [20], we find that decent convergence of this observable over timescales relevant to the experiment can
be achieved for clusters of size M = 6 for χ < 0, which corresponds to the J⊥-dominated regime; for χ > 0, which
corresponds to the Jz-dominated regime, convergence can be achieved for clusters as small as M = 2. Throughout
the main text, we always utilize a cluster size of M = 8. As noted in the main text, we observe an asymmetry in the
dynamics for χ > 0 and χ < 0, which MACE similarly predicts (see Fig. S11). In fact, the relatively good convergence
of the dynamics with χ > 0 when only considering the pairwise dynamics between neighboring dipoles suggests a
relatively local, few-body character to the dynamics in this region. On the other hand, the need to retain larger
cluster sizes for χ > 0 suggests that the dynamics in this regime are more many-body in nature. In fact, the difference
difference between exchange dominated and Ising dominated dynamics for isotropic spin systems was pointed out
in Refs. [21, 22], where the exchange dynamics can enforce a relatively collective behavior in the system, leading to
scalable entanglement generation, as opposed to the local nature of the Ising dominated dynamics. For the present
case, the anisotropic nature of the 3D dipolar interaction prevents the development of collective symmetry in the
system; nonetheless, over clusters of spins over relatively short length scales can still exhibit a collective enhancement
of their local dynamics. Indeed, via MACE, we observe in Fig. S11 a faint oscillatory character to the dynamics
relative to the Ising-dominated regime.

B. Extended cluster method for itinerant dipoles

We now develop an extended-MACE (EMACE) to describe the dynamics for a system of non-stationary dipoles.
In this scheme, we solve for the t-J-V -W dynamics of a dipole that is allowed to tunnel within a “buffer zone” of
sites surrounding its initial position, while under the influence of the most strongly coupled neighbors at each lattice
site. The other dipoles in this modified cluster are stationary, though in principle individual buffer zones may be
constructed for each dipole in the cluster at the expense of added computational complexity.

Consider the adjacency matrix A that describes the links between nearest-neighbor sites on the lattice, so that Aij

is 1 (0) depending on whether lattice sites i and j are nearest-neighbors; the single-band tight-binding Hamiltonian
matrix for a single particle with only nearest-neighbor hopping is then given by −tA. For molecule a initially at site
ia, we first form a buffer zone of lattice sites i that are connected to ia by up to r applications of Aij , i.e. the set

Br(ia) =
{
i | (Ar′)i,ia = 1 for r′ ≤ r

}
. (49)

For each index i ∈ Br(ia), we now consider a cluster CM (i) (see Eq. (45)) of site indices such that CM (i) contains
the M − 1 initially occupied sites i′a with the largest absolute couplings |Vi′a,i| to lattice site i. We then form the
composite cluster CM,r(ia) =

⋃
i∈Br(ia)

CM (i), and consider the corresponding local Hilbert space

H[CM,r(ia)] =
⊗

i∈CM,r(ia)

Hi. (50)

As in MACE, we solve for the unitary dynamics of this cluster, obtaining the cluster wavefunction |ψa(T )⟩ =

Ûa(T ) |ψa(0)⟩, utilizing our Hamiltonian projected into H[CM,r(ia)]. In this way, the molecule initially at site ia
is allowed to tunnel to any sites in the buffer zone Br(ia), while also subject to the influence of the surrounding
dipoles most strongly coupled to those sites.
For computing the contrast, in general we must consider the entire ensemble at once, as the indistinguishable

nature of the itinerant particles prevents us from computing the contrast associated with a specific initial molecule.
However, given the sparse filling considered here in conjunction with the restricted nature of the buffer zone, we can



42

!(
#)

%|'|	#
FIG. S11. MACE dynamics comparison for different E. MACE dynamics E = 1.0 kV/cm (red) and 12.7 kV/cm (black) for
stationary dipoles. Time axis scaled by the interaction strength |χ| as well as the 3D particle density n over considered system
size. Results shown for Nmol = 500 particles.

associate the contribution to the contrast from each buffer zone as the contrast associated with any particles initially
populating sites in Br(ia). Assuming that the total particle number Na of the buffer zone remains conserved, then
we may compute the contrast of the system via

C(T ) ≈ 2

Nmol

Nmol∑
a=1

∑
i∈Br(ia)

1

Na
⟨ψa(T )| ŝXi |ψa(T )⟩ , (51)

where the factor of 1/Na prevents any over-counting associated with multiple molecules inhabiting Br(ia). We note
that while the clusters are constructed using the nearest-neighbor adjacency matrix, the unitary dynamics within
each cluster may in principle include an arbitrary dispersion, and we generally consider tunneling elements beyond
nearest-neighbor, when relevant.

The surrounding dipoles are fixed in space, which constitutes an uncontrolled approximation in this scheme. In
Fig. S12, we provide benchmarks of the contrast decay for the t-J-V -W model with small numbers of particles, where
we compare EMACE to the corresponding exact solutions. We choose a cluster sizeM equal to the number of particles
in the system, as well as choose r sufficiently large so that the nucleus of each cluster is able to tunnel over all sites in
the system connected to its initial location by the tunneling matrix. Thus, the only approximation made in EMACE
is that the non-nuclear particles in each cluster remain stationary. We observe that, for the considered Hamiltonian
parameters, there is essentially no difference between the contrast computed via exact diagonalization or via EMACE,
providing substance to this approximation.

In practice, there are many additional modifications and subtleties we must make to the above scheme to enable
feasible simulations of the system. First, the size the Hilbert space H[CM,r(ia)] is typically still too large to solve
via exact diagonalization methods except for very small r, and the long-ranged, 3D nature of the dipolar interactions
makes tensor network approaches to the dynamics difficult. However, in the presence of an external confining potential,
which we can model via an on-site chemical potential term in the Hamiltonian,

∑
i µin̂i, many lattice sites in the

buffer zone may not be physically relevant for the corresponding single-particle dynamics, e.g. if the site differs too
much its in potential energy from the initial site. When constructing buffer zones, we thus limit the allowed difference
in tunneling energies between the initial site of the molecule and other sites in the buffer zone to some threshold, i.e.
|µia − µi| ≳ ∆. Our modified buffer zone than can be described via

Br(ia; ∆) =
{
i | (Ar′)i,ia = 1 for r′ ≤ r; |µia − µi| ≤ ∆

}
. (52)

If we examine only the single-particle eigenstates of a molecule tunneling in the presence of a confining potential,
∆ = 4t is sufficiently large so that buffer zone does not exclude relevant sites that the particle might hop to. In
the main text, we utilize ∆ = 2t to further minimize the required computational resources. While this begins to
artificially constrain the allowed sites to which a given dipole might hop to, it remains large enough so that the typical
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FIG. S12. Comparisons between EMACE and exact dynamics. (a,b) EMACE dynamics (solid) for varying small numbers of
molecules Nmol, compared to analogous exact dynamics (dashed). We simulate the system in an L×L×L lattice with periodic
boundary conditions with L = 12, where we average the results over 4 × 103 random initial configurations of the molecules,
which are distributed uniformly over the system. Results are shown for tunneling along 1D in a VL,x = 1ER lattice. We
choose EMACE convergence parameters such that the buffer zone includes all available tunneling sites, and the cluster includes
all particles in the system. We show results for E = 1.0 kV/cm (left) and 12.7 kV/cm (right). (c,d) Analogous results for
VL,x = 10ER. Time axis scaled by the interaction strength |χ| as well as the 3D particle density n over considered system size.

(a) (b) (c)

t (Hz)

R

FIG. S13. Cluster formation in EMACE. Examples of lattice sites included in a typical cluster in the case of (a) 1D tunneling
and (b) 2D tunneling, for a 5ER lattice in each case. Buffer zones consist of large sections of contiguous lattice sites in each
case. 1D example is taken near center of confining potential, where particles are relatively delocalized, and thus exhibit large
buffer zones in the corresponding cluster. (c) Average figure of merit R (see Eq. (54)) for clusters constructed for EMACE
at each lattice depth. Dark symbols denote values for EMACE convergence parameters used throughout the main text, with
Nmax = 20 and Mmax = 15. Lighter symbols denote values for a less stringent construction using Nmax = 30 and Mmax = 12,
resulting in a significantly lower figure of merit for most lattice depths.

probability for a particle to occupy one of these neglected sites at late times remains < 10%. Of course, many-body
processes might further expand the allowed tunneling region, but we exclude this complexity here. We also do not
consider the role of higher bands, which become relevant for sufficiently shallow lattices or sufficiently large variations
in the site-to-site chemical potential. Lastly, we assume that the adjacency matrix element Aij is strictly 0 for lattice
sites along deep axial or deep radial directions.

The next modification we make is to limit the total amount of dipoles in each cluster to some value Mmax. For
sufficiently large buffer zones, including the M spins maximally coupled to each lattice site leads to untenable Hilbert
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space sizes. We thus exclude dipoles from this collection for which the mean coupling to the entire cluster is negligible,
i.e. we form modified clusters

CM,r(ia;Mmax) =
{
ia, ia1

, ..., iaMmax−1

}
⊆ CM,r(ia) (53)

such that |
∑

i∈Br(ia;∆) Vi,ia1
| ≥ |

∑
i∈Br(ia;∆) Vi,ia2

| ≥ ... ≥ |
∑

i∈Br(ia;∆) Vi,iaMmax−1
| ≥ |

∑
i∈Br(ia;∆) Vi,ia′ | for all

ia′ /∈ CM,r(ia;Mmax).
To ensure that the chosen value ofMmax does not begin to artificially modify the dynamics, we can in principle check

the convergence of our simulations by varyingMmax. However, owing to the relatively computationally intensive nature
of these calculations, as well as expected variations in the convergence for different parameter regimes, we instead
define a proxy quantity to estimate the convergence of our approximation. Specifically, for each cluster we compute

R[CM,r(ia;Mmax)] =

∑
ia′∈CM,r(ia;Mmax)

∣∣∣∑i∈Br(ia;∆) Vi,ia′

∣∣∣∑
ia′∈CM,r(ia)

∣∣∣∑i∈Br(ia;∆) Vi,ia′

∣∣∣ . (54)

The numerator of this expression denotes the sum of the absolute mean couplings of each dipole in the reduced cluster
CM,r(ia;Mmax) to the entire buffer zone, whereas the denominator denotes the analogous quantity when summed over
each dipole in the full cluster CM,r(ia). Thus, R[CM,r(ia;nmax)] denotes the fraction of the absolute mean couplings
that are retained by our reduced cluster, and we take this as figure of merit for determining how small we can afford
to make Mmax without significantly altering the desired observables.

For our calculations in the main text, we utilize r such that the maximum number of buffer zone sites is Nmax ≤ 20,
and also set a maximum cluster size of Mmax = 15 (always taking clusters of M = 8 for each lattice site in the buffer
zone). In Fig. S13, we plot R[CM,r(ia;Mmax)] for both Mmax = 15, Nmax = 20 — as used throughout our simulations
in the main text — and Mmax = 12, Nmax = 30. We can see that while the former consistently yields R ≳ 0.90, the
latter leads to much smaller R ∼ 0.5 for certain tunneling strengths and thus indicates the removal of many dipoles
that may contribute significantly to the contrast decay dynamics.

For our final modification, we note that, especially in 2D, it is likely that multiple molecules will initially occupy
the buffer zone. For a total number of dipoles Mmax in the cluster, of which Na reside in the corresponding buffer
zone, the corresponding dimension of the cluster Hilbert space scales as ∼

(
2Nmax

Na

)
× 2Mmax−Na ; to further limit the

size of the corresponding Hilbert space that we must consider, we make the further assumption that all dipoles, other
than the nucleus of the cluster, remain stationary, so that the corresponding cluster Hilbert space dimension now
scales as ∼ 2(Nmax −Na)× 2Mmax−1. One potential concern with this approximation is that, particularly in the case
of 1D tunneling, these fixed particles will restrict the number of available lattice sites in the buffer zone by blocking
access. However, our consideration of extended range tunneling still allows for the nuclear particle to “leapfrog” over
any stationary particle, though this will be energetically suppressed by the dipolar interaction.

We note that throughout the main text, we utilize a 3D Gaussian particle distribution matching that described in
the experiment, distributed over a lattice of 180× 30× 150 sites, with the center of the confining potential located at
the center of our lattice along each dimension. Our results for each E field and lattice depth are drawn from 200−2000
randomly sampled clusters, depending on the associated statistical noise in the mean contrast decay curve. For each
lattice depth and E field, we perform EMACE calculations for a range of particle numbers Nmol ∼ 2000− 4000.

C. Comparison to experimental contrast decay traces

To gain further insight into the quantitative disagreement between EMACE simulations and experimental obser-
vations of κ versus 2D tunneling when χ = -205 Hz shown in Fig. 4a of the main text, we present contrast decay
traces for theory (red lines) and experiment (black circles with fit results as black lines) for similar densities of n ≈
4×106 cm−2 at four different horizontal lattice depths in Fig. S14. As seen in the panels of Fig. S14, the discrepancy
between theory and experiment at intermediate and shallow lattices is a real effect and not simply an artifact from
the fitting process to extract κ. Nonetheless, the EMACE simulations qualitatively capture the peak in κ observed
experimentally, as shown in Fig. 4a of the main text.

VII. FURTHER EXPERIMENTAL DATA

A. Temperature dependence of κ in 1D

By compressing the lattice harder in the two tight directions, we increase the temperature in the loose direction.
Using a (0,65,65) Er lattice instead of (0, 30, 30) Er lattice roughly doubles the temperature. We find that the higher
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FIG. S14. Contrast time trace comparison between experimental measurements and EMACE simulations for χ = -205 Hz and
n ≈ 4×106 cm−2, with black circles experimental data, black dashed line stretched exponential fit to experimental data, and red
solid line EMACE simulation for a) VL,x = VL,z = 10Er b) VL,x = VL,z = 7Er c) VL,x = VL,z = 5 Er and d) VL,x = VL,z = 2
Er. Error bars for experimental points are 1 s.d. from bootstrapping.

temperature increases the density-dependent contrast decay rates in both the spin-exchange dominated and the Ising
dominated cases, consistent with a collisional dephasing picture. We also scanned the dependence of the dephasing on
corrugating lattice depth in the (X,65,65) Er configuration and found that the faster decoherence rates in the shallow
lattice cases smoothly connect to the deep lattice case regardless of the tight lattice depth. The results are shown in
Fig. S15.

B. κ vs 2D tunneling for additional electric fields

We also examined the density-dependent contrast decay for 2D tunneling for two additional electric fields: 2.7
kV/cm corresponding to χ = -151 Hz and 4.56 kV/cm corresponding to χ = -77 Hz. The full data set is shown as a
3D plot in χ and tunneling rate t in Fig. S16. For visual simplicity, we assigned an artificial tunneling rate of 290 Hz
for 0 Er depths. Interestingly, for the χ = -151 Hz case, in addition to the peak that we observed in the χ = -205 Hz
case, we also observed a dip in contrast when t is around 220 Hz. We note that due to saturation of induced dipole
moments, the maximum realizable χ is approximately the measured χ = 102 Hz.
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[6] G. Quéméner and J. L. Bohn, Dynamics of ultracold molecules in confined geometry and electric field, Phys. Rev. A 83,

012705 (2011).

https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://www.cambridge.org/highereducation/books/modern-quantum-mechanics/DF43277E8AEDF83CC12EA62887C277DC#overview
https://doi.org/10.1103/PhysRevA.88.063405
https://doi.org/10.1103/PhysRevA.83.012705
https://doi.org/10.1103/PhysRevA.83.012705


47

[7] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the störmer–verlet method, Acta
Numerica 12, 399–450 (2003).

[8] J. L. Beckey, N. Gigena, P. J. Coles, and M. Cerezo, Computable and operationally meaningful multipartite entanglement
measures, Phys. Rev. Lett. 127, 140501 (2021).

[9] G. A. Bird, Phys. Fluids 13, 2676 (1970).
[10] R. R. W. Wang, A. G. Sykes, and J. L. Bohn, Linear response of a periodically driven thermal dipolar gas, Phys. Rev. A

102, 033336 (2020).
[11] R. R. W. Wang and J. L. Bohn, Viscous dynamics of a quenched trapped dipolar fermi gas, Phys. Rev. A 108, 013322

(2023).
[12] W. G. Tobias, K. Matsuda, J.-R. Li, C. Miller, A. N. Carroll, T. Bilitewski, A. M. Rey, and J. Ye,

Reactions between layer-resolved molecules mediated by dipolar spin exchange, Science 375, 1299 (2022),
https://www.science.org/doi/pdf/10.1126/science.abn8525.
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