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FLOW BY GAUSS CURVATURE TO THE MINKOWSKI PROBLEM

OF p-HARMONIC MEASURE

CHAO LI AND XIA ZHAO

Abstract. The Minkowski problem of harmonic measures was first studied by Jerison

[19]. Recently, Akman and Mukherjee [1] studied the Minkowski problem corresponding

to p-harmonic measures on convex domains and generalized Jerison’s results. In this

paper, we prove the existence of the smooth solution to the Minkowski problem for the

p-harmonic measure by method of the Gauss curvature flow.

1. Introduction and main results

The classical Minkowski problem is one of the core problems in Brunn-Minkowski

theoretical research in convex geometry. In differential geometry, the classical Minkowski

problem requires the construction of a strictly compact convex hypersurface Ω with a

specific Gaussian curvature. More precisely, the classical Minkowski problem is to given

a finite Borel measure µ on the unit sphere Sn−1, under what necessary and sufficient

conditions does there exist a unique (up to translations) convex body (compact, convex

subsets with non-empty interiors) Ω such that the surface area measure SΩ of Ω is equal

to µ? The existence and uniqueness of solutions to the classical Minkowski problem have

been solved. The solution of the Minkowski problem identified the conditions

(i) the measure µ is not concentrated on any great subsphere; that is,
∫

Sn−1

|〈ζ, ξ〉|dµ(ξ) > 0, for each ζ ∈ S
n−1,

(ii) the centroid of the measure µ is at the origin; that is,
∫

Sn−1

ξdµ(ξ) = 0,

on the measure as necessary and sufficient conditions for existence and uniqueness.

In recent years, the research of Minkowski problem has made a series of rich results.

Since Lutwak [27] introduced the concept of Lp-surface area measure, it has sparked a

wave of research on Lp-Minkowski problems. With varying values of Lp-Minkowski prob-

lems give rise to several intriguing variant problems. When p = 1, the Lp-Minkowski

problem is the classical Minkowski problem; when p = −n, the Lp-Minkowski problem

is the centro-affine Minkowski problem [34]; and when p = 0, the Lp-Minkowski prob-

lem is the well-known log-Minkowski problem [3, 4, 9, 10]. In recent years, the study

of Minkowski problems has also led to some similar variant problems, such as Orlicz-

Minkowski problem [14, 11, 12], dual Minkowski problem [16, 24, 33], weighted Minkowski
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problem [13, 22, 23], Gaussian Minkowski problem [17], Minkowski problem of electro-

static capacity [20, 35], Minkowski problem of torsional rigidity [7, 15] and Minkowski

problem of chord measures[28, 32]. For more research on Minkowski problem, we can

refer to the reference by Böröczky, Ramos and Figalli [5], which introduces the continu-

ity method and variational method of Minkowski problem solving, as well as the latest

development of Minkowski problem.

Minkowski problem has important research significance in convex geometry and the

study of Minkowski problem has promoted the development of fully nonlinear partial

differential equations [2]. In addition, the solution of Lp-Minkowski problem has proved

the Lp affine Sobolev inequality [29], affine Moser-Trudinger inequality and affine Morrey-

Sobolev inequality [6] play a key role.

In this paper, we will continue to study the Minkowski problem of a class of neglected

measures, namely, the Minkowski problem of harmonic measures. The study of Minkowski

problem of harmonic measure can be traced back to Jerison [18] pioneering work. Let Ω

be a convex subset of Rn that contains the origin 0. Harmonic measure for Ω at 0 is the

measure ω on ∂Ω such that for all continuous functions f on ∂Ω,

u(0) =

∫

∂Ω

fdω,

where u solves the Dirichlet problem:
{
div (∇u) = 0 in Ω,

u = f on ∂Ω.
(1.1)

(If Ω is unbounded, then suppose further that f tends to zero at infinity and u is the

unique solution that tends in zero at infinity.) Thus, for any convex open set Ω containing

the origin we can define a measure µ on Sn−1 by µ(Ω) = ω
(
g−1
Ω

)
for all Borel sets Ω ⊂ Sn−1

(i.e., g∗(dω) = dµ). Here, g−1
Ω denotes the inverse of the Gauss map gΩ : ∂Ω → S

n−1,

where gΩ(x) is the outer unit normal at x ∈ ∂Ω. Harmonic measure has total mass 1, so,

the problem of prescribing harmonic measure on a convex domain can be stated:

Problem 1.1. Given a probability measure µ on Sn−1, find a convex open set Ω such that

g∗(dω) = dµ.

Meanwhile, Jerison [18] also studied the existence and uniqueness of the solution for

sufficiently large integer n for Problem 1.1 by the method of continuity. Then, Jerison

[19] further proves the existence, uniqueness and regularity of Problem 1.1 for all non-

negative integer n. As a generalization of harmonic measure, p-harmonic measure has

received extensive attention. In contrast to surface measures, harmonic measures, ca-

pacitary measures, due to the different choices of p-harmonic functions, the definition of

p-harmonic measure on the boundary of the convex domain is not unique. Recently, Ak-

man and Mukherjee [1] show that the choice of p-harmonic functions can be maintained

because the characteristics at the boundary are similar for all p-harmonic measures. Let

1 < p < ∞, for any convex set Ω ⊂ Rn, the p-harmonic measure ωp supported on ∂Ω

associated to a function u = uΩ is given by

ωp(E) =

∫

∂Ω∩E

|∇u|p−1dHn−1,
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for any measurable E ⊆ Rn, where, u vanish on ∂K and is non-negative and p-harmonic

in a neighborhood of it. Here, ωp is the p-harmonic measure with respect to a function

u = uΩ ∈ W 1,p(Ω ∩ N) given by dωp = |∇u|p−1dHn−1
x∂Ω, where u is p-harmonic in

Ω ∩N , and satisfies




div (|∇u|p−2∇u) = 0 in Ω ∩N,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

where N is a neighbourhood of ∂Ω, thus, u ∈ W 1,p(N) upon zero extension. Up to

possible reduction, the choice of N is made so that ∇u 6= 0 in Ω ∩N and

‖u‖L∞(N̄∩Ω) + ‖∇u‖L∞(N̄∩Ω) < ∞,

we also assume that ∂N is C∞. For a general bounded convex setK, ifK = Ω̄ for a convex

domain Ω, then µK = µΩ; if the interior of K is empty, i.e. K = ∂K, then µK = (gK)∗ ωp,

where ωp is the p-harmonic measure with respect to a function u = uK ∈ W 1,p(N) with

N being a neighbourhood of K, then, dωp = |∇u|p−1dHn−1
xK, where u is p-harmonic in

N and satisfies 



div (|∇u|p−2∇u) = 0 in N\K,

u ≥ 0 in N,

u = 0 on K.

Thus, in general, µK defined on Sn−1 associated to u = uK ∈ W 1,p(N) as

µK(E) =

∫

g
−1
K

(E)

|∇u|p−1dHn−1, for any measurable E ⊆ S
n−1.

If K = Ω̄ for a convex domain Ω, then, (2.6) coincides with the standard push for-

ward measure (1.3). On this basis, Akman and Mukherjee [1] reaearched the following

Minkowski problem of the p-harmonic measure:

Problem 1.2. Given a finite regular Borel measure µ on Sn−1 satisfying conditions

(i)
∫
Sn−1 |〈ζ, ξ〉|dµ(ξ) > 0, ∀ζ ∈ Sn−1,

(ii)
∫
Sn−1 ξdµ(ξ) = 0,

(iii) if µ({ξ}) > 0 then µ({−ξ}) = 0,

is there a convex domain Ω such that

µΩ = µ? (1.3)

Here, µΩ = (gΩ)∗ωp and ωp is any p-harmonic measure on ∂Ω for 1 < p < ∞.

Akman and Mukherjee [1] proved the existence of the solution to Problem 1.2. Obvi-

ously, by (1.3), when a given finite Borel measure has a positive density f(ξ) on the unit

sphere Sn−1 for a bounded convex domain Ω of class C2
+ in Rn, for 1 < p < ∞, then the

existence of Minkowski problem of p-harmonic measure in the smooth case amounts to

solving the following Monge-Ampère equation

|∇u(F (ξ))|p−1 det (hij + hδij) (ξ) = f(ξ), ξ ∈ S
n−1. (1.4)
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Motivated by [8, 15], to solve (1.4), we instead consider the following normalized Monge-

Ampère equation, for 1 < p < ∞, which is expressed as

|∇u(F (x))|p−1 det (hij + hδij) (x) = f(x)
Γ(Ω)∫

Sn−1 f(x)h(x)dx
, x ∈ S

n−1, (1.5)

where, Γ(Ω) is defined by Akman and Mukherjee [1], see (2.12). By homogeneity, it is

clear to see that, if h(x) is a solution of (1.5), then
[

Γ(Ω)∫
Sn−1f(x)h(x)dx

]− 1
n+p−2

h is a solution of

(1.4). In other words, the solution of (1.4) naturally arises as long as (1.5) has a solution.

It is a very effective method to solve the existence of Minkowski problem by constructing

flow curvature. This method has been well developed and applied, see Reference [8, 15, 25]

In this article, we will focus on solving (1.5) by method of the constructing Gauss

curvature flow. Let Ω0 be a smooth, origin symmetric and strictly convex body in Rn

and 1 < p < ∞, we consider the following anisotropic Gauss curvature flow,
{

∂X(x,t)
∂t

= −η(t) f(x)h(x,t)K(x,t)
|∇u(F (x,t),t)|p−1 ν +X(x, t),

X(x, 0) = X0(x),
(1.6)

where

η(t) =
Γ (Ωt)∫

Sn−1 f(x)h(x, t)dx
, (1.7)

where h(x, t) is the support function of Ωt, K = det (hij + hδij)
−1 is the Guass curvature

of strictly convex hypersurface ∂Ωt parameterized by X(x, t) : Sn−1 → Rn, and ν = x is

the outer unit normal vector at X(x, t).

By definition of support function, i.e., h(x, t) = 〈X(x, t), ν〉, multiplying both sides of

(1.6) by ν, we have
{

∂h(x,t)
∂t

= −η(t) f(x)h(x,t)K(x,t)
|∇u(F (x,t),t)|p−1 + h(x, t),

h(x, 0) = h0(x).
(1.8)

Moreover, we consider the corresponding functional Ψ (Ωt) with respect to the flow (1.6),

which is defined as

Ψ (Ωt) = − log Γ (Ωt) + log

∫

Sn−1

f(x)h(x, t)dx. (1.9)

In this paper, by proving the long time existence of flow (1.6), we get that h is a

solution to Monge-Ampère equation (1.5), further, we get the existence of a solution to

Monge-Ampère equation (1.4), our results are as follows.

Theorem 1.3. Let Ω0 be a smooth, origin symmetric and strictly convex body in Rn,

1 < p < ∞ and f be an even, positive and smooth function on the unit sphere Sn−1.

Then, there exists a smooth, origin symmetric and strictly convex solution Ωt satisfying

(1.6) for all time t > 0. As a corollary, (1.4) has a smooth, origin symmetric and strictly

convex solution Ω.

This paper is organized as follows. First, in the Section 2, we state some basic knowl-

edge about convex geometry, and the definition and basic properties of the p-harmonic

measure. Then, in the Section 3, we prove the long-time existence of the flow (1.6).

Finally, we give the proof of Theorem 1.3 in the Section 4.



FLOW BY GAUSS CURVATURE TO THE MINKOWSKI PROBLEM OF p-HARMONIC MEASURE 5

2. Notations and Background Materials

In this section, some notations and basic facts about convex hypersurface, convex body

and p-harmonic measures are presented. Please refer to Reference [30, 31] for the related

properties of convex body and convex hypersurface, and to Reference [1, Section 2 and

3] for the related properties of p-harmonic measures.

2.1. Convex body and convex hypersurface. Let Ω be a convex body in Rn, then

it’s uniquely determined by its support function, h(Ω, ·) : Rn → R, which is defined by

h(Ω, x) = max{〈x, y〉 : y ∈ Ω}, x ∈ R
n,

where 〈·, ·〉 denotes the standard inner product of Rn.

Let Ω be a compact star-shaped set (about the origin) in Rn, then its radial function,

ρΩ = ρ(Ω, ·) : Rn \ {0} → [0,∞), is defined by

ρ(Ω, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n \ {0}.

Suppose that Ω is parameterized by the inverse Gauss map X : Sn−1 → Ω, that is

X(x) = g−1
Ω (x). Then, the support function h of Ω can be computed by

h(x) = 〈x,X(x)〉, x ∈ S
n−1, (2.1)

where x is the outer normal of Ω at X(x).

Let {e1, . . . , en−1} denote the orthonormal frame field of Sn−1 so that for any ξ ∈ S
n−1,

the tangent space Tξ (S
n−1) is spanned by {ei(ξ)}. Let ∇ denote the gradient on the

sphere Sn−1. Differentiating (2.1), there has

∇ih = 〈∇ix,X(x)〉+ 〈x,∇iX(x)〉,

since ∇iX(x) is tangent to Ω at X(x), thus,

∇ih = 〈∇ix,X(x)〉.

By differentiating (2.1) twice, the second fundamental form Aij of Ω can be computed

in terms of the support function,

Aij = ∇ijh+ δijh, (2.2)

where ∇ij = ∇i∇j denotes the second order covariant derivative with respect to δij . The

induced metric matrix gij of Ω can be derived by Weingarten’s formula,

δij = 〈∇ix,∇jx〉 = AikAljg
kl. (2.3)

The principal radii of curvature are the eigenvalues of the matrix bij = Aikgjk. When

considering a smooth local orthonormal frame on S
n−1, by virtue of (2.2) and (2.3), there

has

bij = Aij = ∇ijh+ hδij . (2.4)

The inverse bij of bij represents the principal curvature of ∂Ωt. The Gauss curvature of

X(x) ∈ Ω is given by

K(x) = (det(∇ijh+ hδij))
−1. (2.5)

2.2. p-harmonic measure. Given any convex set Ω ⊂ Rn and 1 < p < ∞, the p-

harmonic measure ωp supported on ∂Ω associated to a function u = uΩ is given by (see
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[1])

ωp(E) =

∫

∂Ω∩E

|∇u|p−1dHn−1,

for any measurable E ⊆ Rn, where u vanish on ∂K and is non-negative and p-harmonic

in a neighborhood of it. Here, for 1 < p < ∞, ωp is the p-harmonic measure with respect

to a function u = uΩ ∈ W 1,p(Ω ∩ N) given by dωp = |∇u|p−1dHn−1
x∂Ω, where u is

p-harmonic in Ω ∩N and satisfies




div (|∇u|p−2∇u) = 0 in Ω ∩N,

u > 0 in Ω,

u = 0 on ∂Ω,

where N is a neighbourhood of ∂Ω; thus, u ∈ W 1,p(N) upon zero extension. Up to

possible reduction, the choice of N is made so that ∇u 6= 0 in Ω ∩N and

‖u‖L∞(N̄∩Ω) + ‖∇u‖L∞(N̄∩Ω) < ∞

and we also assume that ∂N is C∞. For a general bounded convex set K, if K = Ω̄

for a convex domain Ω, then, µK = µΩ; if K is of empty interior, i.e. K = ∂K, then,

µK = (gK)∗ ωp, where ωp is the p-harmonic measure with respect to a function u = uK ∈

W 1,p(N) with N being a neighbourhood of K, given by dωp = |∇u|p−1dHn−1
xK where u

is p-harmonic in N and satisfies




div (|∇u|p−2∇u) = 0 in N\K,

u ≥ 0 in N,

u = 0 on K.

Thus, in general, µK defined on Sn−1 associated to u = uK ∈ W 1,p(N) as

µK(E) =

∫

g
−1
K

(E)

|∇u|p−1dHn−1, for any measurable E ⊆ S
n−1. (2.6)

Let Ω be strongly convex domain of class C2,α
+ so that gΩ : ∂Ω → Sn−1 is a diffeomor-

phism. Let its support function be hΩ. Akman and Mukherjee [1] obtained

dµΩ = |∇u (FΩ(ξ))|
p−1 dHn−1 x∂Ω = |∇u (FΩ(ξ))|

p−1 det(∇ijh(ξ) + h(ξ)δij) , (2.7)

where FΩ(ξ) := gΩ
−1(ξ) = ∇hΩ(ξ). Henceforth, we shall denote h = hΩ and F = FΩ.

Thus,

h(ξ) = hΩ(ξ) =
〈
ξ, gΩ

−1(ξ)
〉
= 〈x, gΩ(x)〉 , (2.8)

and

F (ξ) = FΩ(ξ) = g−1
Ω (ξ) = ∇h(ξ). (2.9)

Sometimes, without causing confusion, we overuse the notation, we use hij = ∇ijh de-

notes the second order covariant derivatives of h(Ω, ·) on Sn−1 with respect to a local

orthonormal frame. Then, (see, [15, Page 258])

∇hΩ(ξ) =
∑

i

hie
i + hξ, Fi(ξ) =

∑

j

det(∇ijh(ξ) + h(ξ)δij)e
j . (2.10)
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Since any ξ ∈ Sn−1 is the outerunit normal at F (ξ) ∈ ∂Ω as F = g−1
Ω (ξ), thus, we have

ξ = −∇u(F (ξ))/|∇u(F (ξ))|. (2.11)

For any integrable function f : ∂Ω → R, Akman and Mukherjee [1] obtained
∫

∂Ω

f(x)dωp(x) =

∫

Sn−1

f
(
g−1
Ω (ξ)

) ∣∣∇u
(
g−1
Ω (ξ)

)∣∣p−1
det(∇ijh(ξ) + hδij(ξ))dξ,

and defined the following functional Γ(K) for the harmonic measure of a convex set K

Γ(K) =

∫

Sn−1

hK(ξ)dµK(ξ), (2.12)

and if Ω̄ = K, then, Γ(Ω) = Γ(K), and Γ (Kj) → Γ(K) uniformly if dH (Kj , K) → 0+as

j → ∞.

Hence, by (2.7) and (2.12), we have

Γ(K) =

∫

Sn−1

hK(ξ)|∇u(F (ξ))|p−1 det(∇ijh(ξ) + h(ξ)δij)d(ξ).

3. Long-time existence of the flow

In this section, we aim to get the long-time existence of the solution of the flow (1.6),

which means that we get that the flow (1.6) is uniformly parabolic. The key is to derive

the upper and lower bounds of the principal curvature. Therefore, we need to build a

C0, C1 estimate for the flow (1.6). First, we show that Γ(Ωt) is unchanged along the flow

(1.6).

Lemma 3.1. For 1 < p < ∞, let Ωt be a smooth, origin-symmetric and strictly convex

solution satisfying the flow (1.6) in Rn. Then, Γ(Ωt) is unchanged along the flow (1.6),

i.e.

Γ(Ωt) = Γ(Ω0).

Proof. Let h(·, t) be the support function of Ωt, we have

d

dt
Γ(Ωt) =

∫

Sn−1

∂h

∂t
(x, t)dµ (Ω0, u)

=

∫

Sn−1

∂h

∂t
(x, t)|∇u|1−p det(∇ijh+ hδij)dx

=

∫

Sn−1

(
− η(t)|∇u|1−pK(x, t)h(x, t)f(x) + h(x, t)

)
|∇u|p−1K−1(x)dx

=0.

This ends the proof of Lemma 3.1. �

The following lemma shows that the functional Ψ(Ωt) is non-increasing along the flow

(1.6).

Lemma 3.2. For 1 < p < ∞, let Ωt be a smooth, origin-symmetric and strictly convex

solution satisfying the flow (1.6) in Rn. Then, the functional (1.9) is non-increasing

along the flow (1.6). Namely,
d

dt
Ψ(Ωt) ≤ 0,

and the equality holds if and only if Ωt satisfy (1.5).
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Proof. By (1.9), (1.8), (1.7) and Hölder inequality, we have

d

dt
Ψ(Ωt)

=−
1

Γ(Ωt)

∫

Sn−1

|∇u|p−1K−1∂h

∂t
dx+

∫
Sn−1 f(x)

∂h
∂t
dx∫

Sn−1 f(x)h(x, t)dx

=

∫

Sn−1

−h∂h
∂t

Γ(Ωt)|∇u|−(p−1)Kh
dx+

∫
Sn−1 f(x)

∂h
∂t
dx∫

Sn−1 f(x)h(x, t)dx

=

∫

Sn−1

∂th

(
−h

Γ(Ωt)|∇u|−(p−1)Kh
+

f(x)∫
Sn−1 f(x)h(x, t)dx

)
dx

=

∫

Sn−1

∂th

(−h + f(x)Γ(Ωt)|∇u|−(p−1)Kh∫
Sn−1 f(x)h(x,t)dx

Γ(Ωt)|∇u|−(p−1)Kh

)
dx

=

∫

Sn−1

∂th

(−h + f(x)Γ(Ωt)|∇u|−(p−1)Kh∫
Sn−1 f(x)h(x,t)dx

Γ(Ωt)|∇u|−(p−1)Kh

)
dx

=−

∫

Sn−1

(
− f(x)Γ(Ωt)|∇u|−(p−1)Kh∫

Sn−1 f(x)h(x,t)dx
+ h

)2

Γ(Ωt)|∇u|−(p−1)Kh
dx

≤0,

with equality if and only if ∂th = 0, i.e.,

η(t)
f(x)h(x, t)K(x, t)

| ∇u(F (x, t), t) |p−1
= h(x, t),

which illustrates that Ωt satisfies (1.5). The proof is completed. �

Next, we aim to establish the C0, C1 estimates for the solution to flow (1.6). To do

this, we need the following lemma.

Lemma 3.3. [26, Lemma 4.28] Let Ω ⊂ Rn be a bounded Lipschitz domain. Given

1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p-harmonic function in

Ω ∩B(w, 2r). Assume also that u is continuous in Ω̄ ∩ B̄(w, 2r) and u = 0 on ∆(w, 2r).

Then, there exist ξ ∈ ∂B(0, 1) and c3, δ+ > 1, both of which only depend on p, n and M

such that

δ−1
+

u(x)

d(x, ∂Ω)
≤ 〈∇u(x), ξ〉 ≤ |∇u(x)| ≤ δ+

u(x)

d(x, ∂Ω)
,

whenever x ∈ Ω ∩ B (w, r/c3). Moreover, ξ can be chosen independently of u.

Lemma 3.4. Let f be an even, smooth and positive function on Sn−1, 1 < p < ∞ and

Ωt be a smooth, origin-symmetric and strictly convex solution satisfying the flow (1.6).

Then
1

C
≤ h(x, t) ≤ C, ∀(x, t) ∈ S

n−1 × (0,+∞), (3.1)

and
1

C
≤ ρ(u, t) ≤ C, ∀(u, t) ∈ S

n−1 × (0,+∞). (3.2)

Here h(x, t) and ρ(u, t) are the support function and the radial function of Ωt, respectively.
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Proof. Due to ρ(u, t)u = ∇h(x, t) + h(x, t)x. Clearly, one see

min
Sn−1

h(x, t) ≤ ρ(u, t) ≤ max
Sn−1

h(x, t).

This implies that the estimate (3.1) is tantamount to the estimate (3.2). So, we only

need to establish (3.1) or (3.2).

Using the monotonicity of Ψ(Ωt), we have

Ψ (Ω0) + log Γ (Ω0) ≥ log

∫

Sn−1

f(x)h(x, t)dx. (3.3)

Let ρmax(t) = maxSn−1 ρ(·, t). By a rotation of coordinate, we suppose that ρmax(t) =

ρ(e1, t). Since Ωt is origin symmetric, by the definition of h(x, t), one see h(x, t) ≥

ρmax(t)〈x, e1〉 for ∀x ∈ S
n−1.

Next we will obtain the upper bound of h(x, t). By (3.3),

Γ (Ω0) e
Ψ(Ω0) ≥

∫

Sn−1

h(x, t)fdx ≥

∫

Sn−1

ρmax〈x, e1〉fdx

≥ |min f |ρmax

∫

Sn−1

〈x, e1〉dx

≥ |min f |ρmaxc0,

hence,

ρmax(t) ≤
Γ (Ω0) e

Ψ(Ω0)

c0|min f |
≤ C, (3.4)

for some C > 0, independent of t. This implies the upper bound for (3.1).

On the other hand, to give the lower bound of h(x, t) along the following line. Note that

V (Ωt) ≤ w− (Ωt)w+ (Ωt)
n−1, where w− (Ωt) and w+ (Ωt) are respectively the minimum

width and maximum width of Ωt. Since Ωt is origin-symmetric, w− (Ωt) = 2minx∈Sn−1 h(x, t)

and w+ (Ωt) = 2maxx∈Sn−1 h(x, t). So, utilizing (3.4), we have

V (Ωt) ≤ w− (Ωt)w+ (Ωt)
n−1

≤ C min
x∈Sn−1

h(x, t), (3.5)

for a positive constant C, independent of t. Lemma 3.3, Lemma 3.1, and (3.4) show that

V (Ωt) ≥
1

Cp−1Γ (Ωt) > 0 for a positive constant C as showed in (3.4), together this with

(3.5), we conclude that h(x, t) has a uniformly lower bound. �

The C1 estimate naturally follows by applying above C0 estimate.

Lemma 3.5. Let f be an even, smooth and positive function on Sn−1, 1 < p < ∞ and

Ωt be a smooth, origin-symmetric and strictly convex solution satisfying the flow (1.6).

Then

|∇h(x, t)| ≤ C, ∀(x, t) ∈ S
n−1 × (0,+∞), (3.6)

and

|∇ρ(u, t)| ≤ C, ∀(u, t) ∈ S
n−1 × (0,+∞), (3.7)

for some C > 0, independent of t.
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Proof. Let u and x be related by ρ(u, t)u = ∇h(x, t) + h(x, t)x, we have

h =
ρ2√

|∇ρ|2 + ρ2
, ρ2 = h2 + |∇h|2.

The above facts together with Lemma 3.4 illustrate the desired result. �

In order to get the C2 on the solution of the flow (1.6), we will need the following

conclusions about harmonic functions.

Lemma 3.6. [1, Lemma 3.44] Let u : Ω → R be as in (1.2) and {e1, . . . , en−1, } be an

orthonormal frame field of Sn−1 such that for any ξ ∈ Sn−1 the unit vectors ei = ei(ξ) ∈

Sn−1 span the tangent space Tξ (S
n−1). Then

(a) 〈D2u(F (ξ))ei, ej〉 = −K(F (ξ))|∇u(F (ξ))|Ci,j [∇
2h+ hδij ];

(b) 〈D2u(F (ξ))ξ, ei〉 = −K(F (ξ))
∑

j Ci,j [∇
2h+ hδij ]∇j(|∇u(F (ξ))|);

(c) 〈D2u(F (ξ))ξ, ξ〉 = 1
(p−1)

K(F (ξ))|∇u(F (ξ))|Tr(C [∇2h+ hδij ]),

where Ci,j[·] = 〈C[·]ej , ei〉 are entries of the cofactor matrix for i, j ∈ {1, . . . , n− 1} with

respect to this frame and F (ξ) = gΩ
−1(ξ) = ∇h(ξ).

Lemma 3.7. [1, Proposition 3.20] If u(·, t) ∈ W 1,p (Ωt ∩N) is the solution of (1.2), then,

the following holds:

(a) t 7→ u(·, t) is differentiable at t = 0 for all x ∈ Ω̄ ∩N and u̇ ∈ C2,β(Ω ∩N);

(b) u̇(x) = −〈∇u(x), x〉 for all x ∈ ∂N ∩ Ω;

(c) u̇(x) = |∇u(x)|v (gΩ(x)) for all x ∈ ∂Ω.

In what follows, we shall give the upper and lower bounds of principal curvature of ∂Ωt

based on above preparations.

Lemma 3.8. Let f be an even, smooth and positive function on S
n−1, 1 < p < ∞ and

Ωt be a smooth, origin-symmetric and strictly convex solution satisfying the flow (1.6).

Then,
1

C
≤ Ki ≤ C, ∀(x, t) ∈ S

n−1 × (0,+∞)

for some positive constants C, independent of t.

Proof. For 1 < p < ∞, in order to prove that the Gaussian curvature K has an upper

bound, we construct the following auxiliary function:

Q(x, t) =
η(t) f(x)h(x,t)K(x,t)

|∇u(F (x,t),t)|p−1 − h(x, t)

h− ε0
=

−ht

h− ε0
, (3.8)

where ht =
∂h(x,t)

∂t
and

ε0 =
1

2
min

Sn−1×(0,+∞)
h(x, t) > 0.

For any fixed t ∈ (0,∞), assume that Q(x, t) reaches its maximum value at x0. Thus,

we obtain that at x0,

0 = ∇iQ =
−hti

h− ε0
+

hthi

(h− ε0)
2 . (3.9)
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Then, with the assistance of (3.9) and (1.8), at x0, we deduce

0 ≥ ∇iiQ =
−htii

h− ε0
+

2htihi + hthii

(h− ε0)
2 −

2hth
2
i

(h− ε0)
3

=
−htii

h− ε0
+

hthii

(h− ε0)
2 .

From the above formula combined with (3.8), we get

−htii − htδij ≤ −
hthii

h− ε0
− htδij

=
−ht

h− ε0
[hii + (h− ε0) δij ] (3.10)

= Q (bii − ε0δij) .

Now take the derivative of the second variable of Q(x, t), by (3.8) and (1.8), we get

∂Q

∂t
=

−htt

h− ε0
+

h2
t

(h− ε0)
2

=
f(x)

h− ε0

[
∂η(t)

∂t

h(x, t)K(x, t)

| ∇u(F (x, t), t) |p−1
+

∂h(x, t)

∂t

η(t)K(x, t)

| ∇u(F (x, t), t) |p−1
(3.11)

+
∂K(x, t)

∂t

η(t)h(x, t)

| ∇u(F (x, t), t) |p−1
+ η(t)h(x, t)K(x, t)

∂ | ∇u(F (x, t), t) |1−p

∂t

]

+Q+Q2.

Next, our division makes an estimate of (3.11). From (1.7), Lemma 3.1 and (3.8), we

obtain

∂η(t)

∂t
=

∂

∂t

(
Γ (Ωt)∫

Sn−1 f(x)h(x, t)dx

)

=
∂Γ (Ωt)

∂t

(
1∫

Sn−1 f(x)h(x, t)dx

)
+ Γ (Ωt)

∂

(
1∫

Sn−1 f(x)h(x,t)dx

)

∂t

=− Γ (Ωt)

∫
Sn−1 f(x)

∂h
∂t
dx

(∫
Sn−1 f(x)h(x, t)dx

)2

=Γ (Ωt)

∫
Sn−1 f(x)(h(x, t)− ε0)Q(x, t)dx
(∫

Sn−1 f(x)h(x, t)dx

)2 (3.12)

≤Q(x0, t)Γ (Ωt)
1(∫

Sn−1 f(x)h(x, t)dx

)

≤C1Q(x0, t).

Rotate the axes so that {bij} is diagonal at x0 with bij = hij + hδij , {b
ij} is the inverse

of {bij} . Using (2.5) and (3.10) at x0, we can get

∂K(x, t)

∂t
=

∂ [det (∇2h + hI)]
−1

∂t
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= −
[
det
(
∇2h+ hI

)]−2
∑

i

∂ [det (∇2h+ hI)]

∂bii
(htii + ht)

≤
[
det
(
∇2h+ hI

)]−2
∑

i

∂ [det (∇2h+ hI)]

∂bii
Q (bii − ε0)

≤ Q
[
det
(
∇2h + hI

)]−2 [
det
(
∇2h+ hI

)]∑

i

bii (bii − ε0) (3.13)

= KQ

[
(n− 1)− ε0

∑

i

bii

]

= KQ [(n− 1)− ε0H ]

≤ KQ
[
(n− 1)− ε0(n− 1)K

1
n−1

]
,

where H denotes the mean curvature of ∂Ωt, and the last inequality stems from H ≥ (n−

1) (Πib
ii)

1
n−1 = (n− 1)K

1
n−1 .

In addition, from (2.9), (2.10), (2.11) and (c) of Lemma 3.7, we obtain

∂ | ∇u(F (x, t), t) |1−p

∂t

=(1− p)|∇u(F (x, t), t)|−p∂|∇u(F (x, t), t)|

∂t

=− (1− p)|∇u(F (x, t), t)|−p

(〈
∇2u(F (x, t), t)x,

∑

i

(
htie

i + htx
)〉

+

〈
∇u̇(F (x, t), t), x

〉)

=(1− p)|∇u(F (x, t), t)|−p

〈
∇2u(F (x, t), t)x,

(
∑

i

((h− ε0)Q)i e
i + (h− ε0)Qx

)〉

+ (p− 1)|∇u(F (x, t), t)|−p〈∇u̇(F (x, t), t), x〉

=(1− p)|∇u(F (x, t), t)|−p

(〈
∇2u(F (x, t), t)x,

∑

i

hiQei
〉
+ 〈∇2u(F (x, t), t)x, (h− ε0)Qx〉

)

+ (p− 1)|∇u(F (x, t), t)|−p〈∇u̇(F (x, t), t), x〉. (3.14)

Now, our division estimates (3.14). Since 1 < p < ∞, from Lemma 3.4 and Lemma 3.5,

there exist positive constants c1 and c2, independent of t, such that

(1− p)|∇u(F (x, t), t)|−p

(〈
∇2u(F (x, t), t)x,

∑

i

hiQei
〉
+ 〈∇2u(F (x, t), t)x, (h− ε0)Qx〉

)

=(1− p)|∇u(F (x, t), t)|−p

〈
∇2u(F (x, t), t)x,

∑

i

hiQei

〉

+ (1− p)|∇u(F (x, t), t)|−p
〈
∇2u(F (x, t), t)x, (h− ε0)Qx

〉

≤c1Q|∇u(F (x, t), t)|−p
∣∣∇2u(F (x, t), t)

∣∣+ c2Q|∇u(F (x, t), t)|−p
∣∣∇2u(F (x, t), t)

∣∣ ,
meanwhile, by (c) of Lemma 3.7, (2.10), (2.11) and (3.8), there exist positive constants

c3 and c4, independent of t, such that

(p− 1)|∇u(F (x, t), t)|−p〈∇u̇(F (x, t), t), x〉
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=(p− 1)|∇u(F (x, t), t)|−p

〈
∇

〈
−∇u(F (x, t), t),

(
∑

i

htie
i + htx

)〉
, x

〉

=(p− 1)|∇u(F (x, t), t)|−p

〈
∇

〈
|∇u(F (x, t), t)|x,

(
∑

i

htie
i + htx

)〉
, x

〉

=(p− 1)|∇u(F (x, t), t)|−p

〈
∇

〈
|∇u(F (x, t), t)|x,

(
∑

i

−hiQei − (h− ε0)Qx

)〉
, x

〉

=(p− 1)|∇u(F (x, t), t)|−p 〈∇ [|∇u(F (x, t), t)| (h− ε0)Q] , x〉

=(p− 1) (h− ε0)Q|∇u(F (x, t), t)|−p〈∇|∇u(F (x, t), t)|, x〉+ (p− 1)Q|∇u(F (x, t), t)|1−p〈∇h, x〉

+ (p− 1) (h− ε0) |∇u(F (x, t), t)|1−p〈∇Q, x〉

=(p− 1) (h− ε0)Q|∇u(F (x, t), t)|−p−1
〈
∇u(F (x, t), t)∇2U(F (x, t), t), x

〉

+ (p− 1)Q|∇u(F (x, t), t)|1−p〈∇h, x〉

+ (p− 1) (h− ε0) |∇u(F (x, t), t)|1−p

〈(
−
∑

i (hi)t e
i

h− ε0
+Qx−Q

∇h

h− ε0

)
, x

〉

≤c3Q|∇u(F (x, t), t)|−p
∣∣∇2u(F (x, t), t)

∣∣+ c4Q|∇u(F (x, t), t)|1−p,

hence, there exist positive constants C2 and C3, independent of t, such that

∂ | ∇u(F (x, t), t) |1−p

∂t
≤ C2Q|∇u(F (x, t), t)|−p

∣∣∇2u(F (x, t), t)
∣∣+ C3Q|∇u(F (x, t), t)|1−p.

(3.15)

Thus, by (3.11), (3.12), (3.13) and (3.15), we obtain

∂Q

∂t
≤

f(x)

h− ε0

[
C1Q(x0, t)

h(x, t)K(x, t)

| ∇u(F (x, t), t) |p−1
−Qh

η(t)K(x, t)

| ∇u(F (x, t), t) |p−1

+ η(t)h(x, t)K(x, t)
(
C2Q|∇u(F (x, t), t)|−p

∣∣∇2u(F (x, t), t)
∣∣+ C3Q|∇u(F (x, t), t)|1−p

)

+KQ
(
(n− 1)− ε0(n− 1)K

1
n−1

) η(t)h(x, t)

| ∇u(F (x, t), t) |p−1

]

+Q +Q2.

For a Q large enough, by Lemma 3.4 and Lemma 3.5, it is easy to see that there exist

a positive constant C, independent of t, such that

1

C
K ≤ Q ≤ CK,

then, for K ≈ Q >> 1 ( Q is sufficiently large), we obtain

∂Q

∂t
≤ C0Q

2
(
C1 − ε0Q

1
n−1

)
< 0, (3.16)

for some positive C0, C1, independent of t. Therefore, the ODE (3.16) implies that

Q (x0, t) ≤ C,

for some C > 0, independent of t and x, depending only on Q(x0, t), C0, C1, ε0. Hence,

we conclude

K ≤
Q(x, t)(h− ε0) + h

η(t)f(x)h(x,t)
|∇u(F (x,t),t)|p−1

≤
Q(x0, t)(h− ε0) + h

η(t)f(x)h(x,t)
|∇u(F (x,t),t)|p−1

≤ C.
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Next, we prove Ki ≥
1
C
. Consider the auxiliary function

H(x, t) = log λmax ({bij})−A log h(x, t) + expB|∇h|2 , (3.17)

where A and B are positive constants, λmax ({bij}) is the maximal eigenvalue of {bij}.

For any fixed t ∈ (0,+∞), we assume that the maximum value of H(x, t) is achieved at

x0 on Sn−1. By rotating the coordinates, we can assume that {bij (x0, t)} is the diagonal,

λmax ({bij (x0, t)}) = b11 (x0, t) is a diagonal. To get the lower bound of the principal

curvature, just show that b11 has an upper bound. At the same time, transforming (3.17)

into

H̃(x, t) = log b11 − A log h(x, t) + expB|∇h|2 .

Thus, according to the above assumption, for any fixed t ∈ (0,+∞), H̃(x, t) has a local

maximum at x0, which states that, at x0, we obtain

0 = ∇iH̃ = b11∇ib11 − A
hi

h
+ 2B expB|∇h|2

∑

j

hjhji

= b11 (b1i1)− A
hi

h
+ 2B expB|∇h|2 hihii

= b11 (hi11 + h1δ1i)− A
hi

h
+ 2B expB|∇h|2 hihii,

and

0 ≥ ∇iiH̃ =b11∇iib11 −
(
b11
)2

(∇ib11)
2 −A

(
hii

h
−

h2
i

h2

)

+ 4B2 expB|∇h|2 (hihii)
2 + 2B expB|∇h|2

[
∑

j

hjhjii + h2
ii

]
. (3.18)

Since,

∂H̃(x, t)

∂t
=b11∂tb11 − A

ht

h
+ 2B expB|∇h|2

∑

j

hjhjt

=b11 (h11t + ht)− A
ht

h
+ 2B expB|∇h|2

∑

j

hjhjt. (3.19)

In addition, use (1.8) to obtain,

log (h− ht) = log

(
η(t)

f(x)h(x, t)K(x, t)

| ∇u(F (x, t), t) |p−1

)

= − log det
(
∇2

Sn−1h+ hI
)
+Ψ(x, t), (3.20)

where

Ψ(x, t) := log

(
η(t)

f(x)h(x, t)

|∇u(F (x, t), t)|p−1

)
. (3.21)

Taking the second covariant derivative with respect to ej on both sides of the equation

(3.20), we can derive

hj − hjt

h− ht

= −
∑

i,k

bik∇jbik +∇jΨ
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= −
∑

i

bii (hjii + hiδij) +∇jΨ, (3.22)

and

h11 − h11t

h− ht

−
(h1 − h1t)

2

(h− ht)
2

=−
∑

i

bii∇11bii +
∑

i,k

biibkk (∇1bik)
2 +∇11Ψ. (3.23)

The Ricci identity on the sphere is written as

∇11bij = ∇ijb11 − δijb11 + δ11bij − δ1ib1j + δ1jb1i. (3.24)

Thus, by the (3.19), (3.23), (2.4), (3.24), (3.18) and (3.22), we have at x0,

∂
∂t
H̃(x, t)

h− ht

=
b11 (h11t + ht)

h− ht

− A
ht

h (h− ht)
+ 2B expB|∇h|2

∑
j hjhjt

h− ht

= b11
[
(h11t − h11 + h11 + h− h+ ht)

h− ht

]
−

A

h

ht − h+ h

(h− ht)
+ 2B expB|∇h|2

∑
j hjhjt

h− ht

= b11

[
−
(h1 − h1t)

2

(h− ht)
2 +

∑

i

bii∇11bii −
∑

i,k

biibkk (∇1bik)
2 −∇11Ψ

]

+
1

h− ht

− b11 +
A

h
−

A

h− ht

+ 2B expB|∇h|2

∑
j hjhjt

h− ht

≤b11

[
∑

i

bii (∇iib11 − b11 + bii)−
∑

i,k

biibkk (∇1bik)
2

]

+
1

h− ht

(1−A)− b11∇11Ψ+
A

h
+ 2B expB|∇h|2

∑
j hjhjt

h− ht

≤
∑

i

bii
[(
b11
)2

(∇ib11)
2 + A

(
hii

h
−

h2
i

h2

)
− 4B2 expB|∇h|2 (hihii)

2

−2B expB|∇h|2

(
∑

j

hjhjii + h2
ii

)]
− b11

∑

i,k

biibkk (∇1bik)
2 − b11∇11Ψ+

A

h

+ 2B expB|∇h|2

∑
j hjhjt

h− ht

+
1

h− ht

(1− A)

≤
∑

i

biid

(
hii + h− h

h
−

h2
i

h2

)
− 2B expB|∇h|2

∑

i

biih2
ii

+ 2B expB|∇h|2
∑

j

hj

[
−
∑

i

biihjii +
hjt

h− ht

]

− 4B2 expB|∇h|2
∑

i

biih2
i (bii − h)2 − b11∇11Ψ+

A

h
+

1

h− ht

(1− A)

≤ −b11∇11Ψ− 2B expB|∇h|2
∑

j

hj∇jΨ+
(
2B expB|∇h|2 |∇h|2 −A

)∑

i

bii
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− 2B expB|∇h|2
∑

i

bii − 4B2 expB|∇h|2
∑

i

biih
2
i + 8hB2 expB|∇h|2 |∇h|2

+
2B expB|∇h|2 |∇h|2 + 1− A

h− ht

+ 4(n− 1)AB expB|∇h|2 +
nA

h
. (3.25)

Then, differentiate from (3.21) and get

∇jΨ =
fj
f

+ (1− p)|∇u|−p|∇u|j +
hj

h
, (3.26)

thus

∇11Ψ =
ff11 − f 2

1

f 2
− (1− p)|∇u|−p−1 (|∇u|1)

2 + (1− p)|∇u|−p|∇u|11 +
hh11 − h2

1

h2
.

(3.27)

Since

|∇u(F (x, t), t)| = 〈−∇u(F (x, t), t), x〉.

Taking the covariant derivative of both sides, we have

|∇u|j = −〈∇u, ej〉 − 〈
(
∇2u

)
Fj , x〉

= −

〈
∑

i

bij
(
∇2u

)
ei, x

〉
, (3.28)

thus

|∇u|11 =−

〈
∑

i

bi11
(
∇2u

)
ei, x

〉
−

〈
∑

i,j

bj1bi1
(
∇3u

)
ejei, x

〉
+

〈
∑

i

bi1δ1i
(
∇2u

)
x, x

〉

−

〈
∑

i

bi1
(
∇2u

)
eie1

〉
.

Below, we estimate the first and second items of (3.25). By (3.26), Lemma 3.4 and

Lemma 3.5, we obtain

−2B expB|∇h|2
∑

j

hj∇jΨ =− 2B expB|∇h|2
∑

j

hj

[
fj
f

+ (1− p)|∇u|−p|∇u|j +
hj

h

]

≤C1B expB|∇h|2 +2(1− p)B expB|∇h|2 |∇u|−p

〈∑

j

hjbjj
(
∇2u

)
ej , x

〉
.

Using (3.27), Lemma 3.4 and Lemma 3.5, for 1 < p < ∞, we have

− b11∇11Ψ

=− b11
[
ff11 − f 2

1

f 2
− (1− p)|∇u|−p−1 (|∇u|1)

2 + (1− p)|∇u|−p|∇u|11 +
hh11 − h2

1

h2

]

=− b11



ff11 − f 2
1

f 2
− (1− p)|∇u|−p−1

〈
−
∑

i

bij
((
∇2u

)
ei, x

)
〉2

+(1− p)|∇u|−p

(〈
−
∑

i

bi11
(
∇2u

)
ei, x

〉
−

〈∑

i,j

bj1bi1
(
∇3u

)
ejei, x

〉
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+

〈∑

i

bi1δ1i
(
∇2u

)
x, x

〉
−

〈∑

i

bi1
(
∇2u

)
ei, e1

〉)
+

h(b11 − h)− h2
1

h2

]

=b11

[
−
ff11 − f 2

1

f 2
+ (1− p)|∇u|−p−1

〈∑

i

bij
(
∇2u

)
ei, x

〉2

+
(1− p)

|∇u|p

〈∑

i

bi11
(
∇2u

)
ei, x

〉
+

(1− p)

|∇u|p

〈∑

i,j

bj1bi1
(
∇3u

)
ejei, x

〉

−
(1− p)

|∇u|p

〈∑

i

bi1δ1i
(
∇2u

)
x, x

〉
+

(1− p)

|∇u|p

〈∑

i

bi1
(
∇2u

)
ei, e1

〉
+

h(b11 − h)− h2
1

h2

]

≤b11

[
C3 +

(1− p)

|∇u|p

〈∑

i

bi11
(
∇2u

)
ei, x

〉
+ (1− p)(n− 1)b211

|∇3u|

|∇u|p

+2(1− p)(n− 1)b11
|∇2u|

|∇u|p
−

b11
h2

+ 1 +
h2
1

h2

]
.

Hence, by Lemma 3.6, Lemma 3.4 and Lemma 3.5, we have

− 2B expB|∇h|2
∑

j

hj∇jΨ− b11∇11Ψ

≤C1B expB|∇h|2 +
(1− p)

|∇u|p

〈∑

i

b11bi11
(
∇2u

)
ei, x

〉

+ b11
[
C3 + (1− p)(n− 1)b211

|∇3u|

|∇u|p
+ 2(1− p)(n− 1)b11

|∇2u|

|∇u|p
−

b11
h2

+ 1 +
h2
1

h2

]

≤C̃1B expB|∇h|2 +C̃2b
11 + C̃3 + C̃4b11 + C̃5d (3.29)

Substituting (3.29) into (3.25), and choosing A = 2BmaxSn−1×(0,∞) exp
B|∇h|2 |∇h|2+1,

with a suitable B > C̃4, then, at x0, we have

∂
∂t
H̃(x, t)

h− ht

≤C̃1B expB|∇h|2 +C̃2b
11 + C̃3 + C̃4b11 + C̃5 + C̃6B (3.30)

− 2B expB|∇h|2
∑

i

bii + C̃7B
2 expB|∇h|2 +4(n− 1)AB expB|∇h|2 +

nA

h
< 0,

provided b11 >> 1. (3.30) yields

H (x0, t) = H̃ (x0, t) ≤ C

for some C > 0, independent of t and x. This implies that the principal radii is bounded.

This completes the proof of Lemma 3.8. �

4. The existence of smooth solution

In this section, we will give the proof of the main theorem.

Proof of Theorem 1.3. The uniform estimates of support function and principal curvature

showed in Lemma 3.4, Lemma 3.5 and Lemma 3.8 imply that (1.8) is uniformly parabolic

in C2 norm space. Then, by virtue of the standard Krylov’s regularity theory [21] of

uniform parabolic equation, the estimates of higher derivatives can be naturally obtained.

Hence, we obtain that the long-time existence and regularity of the solution of (1.8).
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Furthermore, there exists a uniformly positive constant C, independent of t, such that

‖h‖
C

i,j
x,t(S

n−1×[0,+∞)) ≤ C (4.1)

for each pair of nonnegative integers i and j. From Lemma 3.2, we have

dΨ (Ωt)

dt
≤ 0, (4.2)

thus, by (4.2), if there exists a t0 such that

dΨ (Ωt)

dt

∣∣∣∣
t=t0

= 0,

then,

| ∇u(F (x, t0), t0) |
p−1 1

K(x, t0)
=

Γ (Ωt0)∫
Sn−1 f(x)h(x, t0)dx

f(x).

Let Ω = Ωt0 , thus, Ω satisfies (1.5).

In addition, suppose that for every t > 0,

dΨ (Ωt)

dt
< 0. (4.3)

According to (4.1), applying the Arzelà-Ascoli theorem and diagonal argument, there

exists a subsequence of t, denoted as {tk}k∈N ⊂ (0,+∞), and there is a smooth function

h(x), such that

‖h (x, tk)− h(x)‖Ci(Sn−1) → 0 (4.4)

uniformly for each nonnegative integer i as tk → +∞. This shows that h(x) is a support

function. We use Ω to represent the convex body determined by h(x). Therefore, Ω is a

smooth, origin symmetric and strictly convex body.

Using (4.1) and the consistent estimates in Lemma 3.4, Lemma 3.5 and Lemma 3.8,

we get Ψ (Ωt) is a bounded function in t, and dΨ(Ωt)
dt

is uniformly continuous. So, for any

t > 0, using (4.3), there exist positive constants C, independent of t, such that
∫ t

0

(
−
dΨ (Ωt)

dt

)
dt = Ψ (Ω0)−Ψ (Ωt) ≤ C, (4.5)

thus, we have
∫ +∞

0

(
−
dΨ (Ωt)

dt

)
dt ≤ C,

this shows that there is a subsequence tk → +∞ of t, such that

dΨ (Ωt)

dt

∣∣∣∣
t=tk

→ 0 as tk → +∞. (4.6)

Using again the estimates established in Lemma 3.4, Lemma 3.5 and Lemma 3.8, we can

obtain that there exists a positive constant λ > 0, such that

dΨ (Ωt)

dt

∣∣∣∣
t=tk

= −

∫

Sn−1

(
− f(x)Γ(Ωt)|∇u(F (x,t),t)|−(p−1)Kh∫

Sn−1 f(x)h(x,t)dx
+ h

)2

Γ(Ωt)|∇u(F (x, t), t)|−(p−1)Kh
dx

∣∣∣∣∣∣∣∣∣
t=tk
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≤ − λ

∫

Sn−1

[
−fhK

1

|∇u(F (x, t), t)|p−1

Γ(Ωt)∫
Sn−1 fhdx

+ h

]2
dx

∣∣∣∣∣
t=tk

. (4.7)

Taking the limit tk → +∞ in (4.7), by (4.4) and (4.6), we can deduce that

0 = lim
tk→+∞

dΨ (Ωt)

dt

∣∣∣∣
t=tk

≤ −λ

∫

Sn−1

[
−fhK

1

|∇u(F (x, t), t)|p−1

Γ(Ωt)∫
Sn−1 fhdx

+ h

]2
dx ≤ 0,

which implies that

| ∇u(F (x)) |p−1 1

K(x)
= f(x)

Γ (Ω)∫
Sn−1 f(x)h(x)dx

.

Therefore, h(x) is the solution to equation (1.5). This completes the proof of Theorem

1.3. �
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