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Abstract

A left-variable word over an alphabet A is a word over A Y t‹u whose
first letter is the distinguished symbol ‹ standing for a placeholder. The
Ordered Variable Word theorem (OVW), also known as Carlson-Simpson’s
theorem, is a tree partition theorem, stating that for every finite alpha-
bet A and every finite coloring of the words over A, there exists a word
c0 and an infinite sequence of left-variable words w1, w2, . . . such that
tc0 ¨ w1ra1s ¨ ¨ ¨ ¨ ¨ wkraks : k P N, a1, . . . , ak P Au is monochromatic.

In this article, we prove that OVW is Π0

4-conservative over RCA0`BΣ0

2.
This implies in particular that OVW does not imply ACA0 over RCA0.
This is the first principle for which the only known separation from ACA0

involves non-standard models.

1 Introduction

A tree partition theorem is a statement of the form “For every finite coloring of
the finite subtrees of an infinite tree-like structure, there exists an isomorphic
sub-structure whose finite subtrees are monochromatic.” Perhaps the simplest
tree partition theorem is the Tree Theorem for singletons (TT1q which says that
for every finite coloring of 2ăω, there is a monochromatic subset T Ď 2ăω such
that pT,ĺq is isomorphic to p2ăω,ĺq.

Tree partition theorems play an important role in structural Ramsey theory.
Many proofs of existence of big Ramsey numbers are reduced to higher order
versions of these theorems. For example, the existence of big Ramsey numbers
for partitions of the rationals [9] or of the Rado graph [31] are both reduced to
Milliken’s tree theorem [29].

In this article, we are interested in tree partition theorems from the viewpoint
of reverse mathematics. Reverse mathematics is a foundational program whose
goal is to find optimal axioms to prove ordinary theorems. It uses the framework
of subsystems of second-order arithmetic, with a base theory, RCA0, capturing
“computable mathematics”. See any of [20, 12, 33] for a good introduction to
reverse mathematics, and their main systems, RCA0,WKL0 and ACA0.
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Both the Tree Theorem (TT) and Milliken’s tree theorem (MTT) have been
extensively studied from a reverse mathematical viewpoint (see [5, 6, 7, 8, 13, 30]
for TT and [2] for MTT). The restrictions of TT and MTT to colorings of single-
tons are computably true, that is, every instance admits a solution computable
in the instance. Thus, their strength can be measured only in terms of the
amount of induction necessary to prove them.

1.1 Ordered Variable Word theorem

In this article, we study the reverse mathematics of a stronger tree partition
theorem, due to Carlson and Simpson [3], called the Ordered Variable Word
theorem 1. Fix a finite alphabet A and a distinguished variable symbol ‹. A
word over A is a finite sequence w “ a0 . . . ak´1 where ai P A. We write wpiq
for ai and let |w| “ k. A left variable word over A is a word w over A\t‹u such
that wp0q “ ‹. Given a left variable word w and a letter a P A, we let wras be
the word of length |w| obtained from w by substituting every occurrence of ‹
by a. Beware, the notations wpiq and wras should not be confused: the former
yields a letter, while the latter is a substitution.

Theorem 1.1 (Carlson-Simpson [3]). For every finite alphabet A and every
finite coloring f : Aăω Ñ ℓ, there is a word c0 over A and an infinite sequence
of left variable words w1, w2, . . . such that the following set is monochromatic:

tc0w1ra1sw2ra2s ¨ ¨ ¨wkraks : k P N, a1, . . . , ak P Au

We let OVW denote the statement above, standing for Ordered Variable
Word. It can be seen as a problem whose instances are pairs pA, fq, where A is
a finite alphabet and f is a finite coloring over Aăω. A solution to pA, fq is the
given of the sequence c0, w1, w2, . . . as above.

The Ordered Variable Word theorem was used as a pigeonhole principle by
Carlson and Simpson to prove a dual version of Ramsey’s theorem [3]. It was
later used by Hubička [21] to give a simple proof of the existence of big Ram-
sey degrees for the universal triangle-free graph. See the monograph of Dodos
and Kanellopoulos [10] for an extensive combinatorial analysis of variable word
theorems. Friedman and Simpson [16] asked about its reverse mathematical
strength.

Contrary to the Tree Theorem for singletons and Milliken’s tree theorem
for singletons which are computably true, Miller and Solomon [28] proved that
OVW admits a computable instance with no ∆0

2
solutions. Therefore, OVW

cannot be proven by Weak König’s lemma (WKL0). Later, Liu, Monin and
Patey [27] constructed a computable instance of OVW whose solutions com-
pute a DNC function relative to H1, that is, a function f : N Ñ N such that
@efpeq ‰ ΦH1

e peq. On the other hand, Anglès d’Auriac et al. [1] proved that every

1This statement is also called Carlson-Simpson theorem in combinatorics [11], but should
be distinguished from the Variable Word theorem [28], also known as Carlson-Simpson lemma
in reverse mathematics, which is a similar statement, but where each variable type is allowed
to appear infinitely often.
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computable instance of OVW admits a solution in any PA degree over H1. The
exact computable strength of OVW therefore lies between DNC degrees over H1

and PA degrees overH1. Note that the existence of the former is strictly weaker
than ACA0, while the latter implies it. Whether OVW implies ACA0 over RCA0

was left open. We answer the question negatively:

Theorem 1.2. WKL0 ` OVW does not imply ACA0.

Usually, separations from ACA0 are done using the so-called cone avoidance
property, that is, by proving that for every non-computable set A, every com-
putable instance of the problem admits a solution which does not compute A.
In this article, we take a different approach, and prove the separation through
a partial conservation result.

1.2 First-order parts and partial conservation

A good way to get a better grasp on the reverse mathematical strength of a
second-order theorem is to understand its first-order part, that is, the theory of
its first-order consequences. For example, the first-order part of ACA0 is Peano
arithmetic, while the first-order parts of RCA0 and WKL0 both correspond to Σ1-
PA, the restriction of PA to Σ1-induction. There exist two main families of
first-order systems which are good benchmarks of the first-order strength of a
theorem: induction and collection principles.

Definition 1.3. Let Γ be a class of formulas (e.g. Σ0

n,Π
0

n)

• The induction scheme IΓ is defined for every formula ϕ P Γ by:

ϕp0q ^ @xpϕpxq Ñ ϕpx` 1qq Ñ @xϕpxq

• The collection scheme BΓ is defined for every formula ϕ P Γ:

@arp@x ă aqpDyqϕpx, yq Ñ pDbqp@x ă aqpDy ă bqϕpx, yqs

These schemes form a strictly increasing hierarchy as follows:

IΣ0

1 ă BΣ0

2 ă IΣ0

2 ă BΣ0

3 ă . . .

The collection scheme can be thought of as an induction scheme: BΣ0
n is equiv-

alent over RCA0 to the induction scheme for ∆0

n predicates [34]. The collection
scheme for Σ0

2
is of particular interest, and admits many characterizations. In

combinatorics, BΣ0
2 is equivalent to RT

1, the infinite pigeonhole principle [4].
The tree theorem for singletons is strictly in between IΣ0

2
and BΣ0

2
over RCA0

(see [8, 5]). It is unknown whether TT
1 is Π1

1
-conservative over RCA0 ` BΣ0

2
.

Chong, Wang and Yang [6] obtained a partial conservation result by proving
that TT

1 is @Π0

3
-conservative over RCA0. Here, a @Π0

n formula consists in a
universal set quantification followed by a Π0

n formula. We prove the following
partial conservation theorem for the Ordered Variable Word theorem, which
strengthens Chong, Wang and Yang’s result since TT

1 follows from OVW:
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Theorem 1.4. WKL0 ` OVW is @Π0

4
-conservative over RCA0 ` BΣ0

2
.

Note that Parsons, Friedman and Paris proved that BΣ0

n`1
is @Π0

n`2
-conservative

over IΣ0
n for every n ě 0 (see [18, 22]), but not Π0

n`3-conservative since BΣn`1 is
a Πn`3 sentence. Note that this result cannot be strengthened to conservation
over RCA0 since BΣ0

2
is not Π0

4
-conservative over RCA0. Also note that this

conservation results yields a separation of OVW from ACA0, since ACA0 proves
the consistency of RCA0 (see Simpson [33, Corollary VIII.1.7]).

1.3 Organization of the paper

In Section 2, we introduce the framework used to prove the partial conservation
result. Then, in Section 3, we prove the existence of some largeness bounds for
the Graham-Rothschild theorem, which are then used in Section 4 to prove the
existence of largeness bounds for the Ordered Variable Word theorem. Last, in
Section 5, we derive some consequences of the proof and state some remaining
open questions.

2 Largeness

A collection L of finite sets is a notion of largeness if it is closed under superset,
and every infinite set has a finite subset in L. Ketonen and Solovay [23] defined
a quantitative notion of largeness, called α-largeness, to better understand the
unprovability of combinatorial principles such as Ramsey’s theorem in some the-
ories. This was later combined by Patey and Yokoyama [30] with the indicator
argument techniques of Paris and Kirby [24] to prove @Π0

3-conservation results
about Ramsey’s theorem for pairs. More recently, Le Houérou, Levy Patey and
Yokoyama [26] introduced a variant of α-largeness to prove @Π0

4-conservation
results about RT

2

2
.

In what follows, we work in a language enriched with two constant symbols
c and C representing a first-order and second-order object respectively. Fix a
∆0

0
formula ζpXæz , t, x, y, zq with exactly the displayed free variables, and let

θpx, y, zq “ ζpCæz, c, x, y, zq be a ∆0,C,c
0

formula. Given two sets A and B, we
write A ă B for p@a P Aqp@b P Bqa ă b.

Definition 2.1. Two finite sets X ă Y are θ-apart if

@x ă maxXDy ă minY @z ă maxY θpx, y, zq

Note that θ-apartness is a transitive relation. Moreover, if X ă Y are θ-apart
and X0 Ď X and Y0 Ď Y , then X0, Y0 are θ-apart.

Definition 2.2 ([26]). A set X Ďfin N is

• ω0-largepθq if X ‰ H.

• ωpn`1q-largepθq if XzminX is pωn ¨minXq-largepθq

4



• ωn ¨ k-largepθq if there are k pairwise θ-apart ωn-largepθq subsets of X

X0 ă X1 ă ¨ ¨ ¨ ă Xk´1

Note that if we take θpx, y, zq to be the J formula, then ωn ¨k-largenesspθq is
exactly ωn ¨ k-largeness. The following proposition was proven by Le Houérou,
Levy Patey and Yokoyama [26].

Proposition 2.3 ([26]). For every n P ω, RCA0`BΣ0

2
`@xDy@zθpx, y, zq proves

that for every b ě 1, ωn ¨ b-largenesspθq is a largeness notion.

Remark 2.4. Many combinatorial proofs about largeness make some assump-
tions on minX in order to avoid some degenerate cases. For example, Ketonen
and Solovay [23] and Ko lodziejczyk and Yokoyama [25] assumed that minX ě 3.
In this article, because of Lemma 2.5 and Lemma 2.10, we will always assume
that minX ě 4. As in Le Houérou, Levy Patey and Yokoyama [26] we will
also require that minX ě c, for technical reasons which will become clear in the
proof of Theorem 1.4.

In the remainder of this section, we prove some basic combinatorial lemmas
about ωn-largenesspθq which will be used throughout this article. These lemmas
could be considered as folklore, in the sense that their α-largeness counterpart
are well-known, and their adaptation to ωn-largenesspθq is almost straightfor-
ward, except maybe Lemma 2.5. The proof of the next lemma is very similar
to [26, Lemma 2.9]

Lemma 2.5. IΣ0

1
proves that for every a, b and for every ωa`2b`1-largepθq set X,

then there are ωa-largepθq pairwise θ-apart subsets X0 ă ¨ ¨ ¨ ă Xk´1 of X such
that every H P

ś

iăk Xi is ωb-largepθq.

Proof. By induction over b, we prove the following statement that directly im-
ply the lemma (since minX ě 2): for all a, for all θ-apart pairs Y0 ă Y1 of
ωa`2b-largepθq sets, there are ωa-largepθq subsets X1 ă ¨ ¨ ¨ ă Xk´1 of Y1 such
that, letting X0 “ Y0, every H P

ś

iăk Xi is ωb-largepθq and X0, . . . , Xk´1 are
pairwise θ-apart.

Case b “ 0. The result is clear, as every non-empty set is ω0-largepθq
Case b ą 0. Let Y0 ă Y1 be ωa`2b-largepθq and θ-apart, let Z0 ă ¨ ¨ ¨ ă

ZminY1´1 be ωa`2b´1-largepθq pairwise θ-apart subsets of Y1. For every i ă
minY1, let Z0

i , Z
1

i be ωa`2b´2-largepθq and θ-apart subsets of Zi.
We can then apply the inductive hypothesis on the pairs

pZ0

0
, Z1

0
q, pZ0

1
, Z1

1
q . . . , pZ0

maxY0´1
, Z1

maxY0´1
q

to get for every j ă maxY0, families of pairwise θ-apart ωa-largepθq subsets
Z0

j “ Xj,0 ă ¨ ¨ ¨ ă Xj,kj
of Z0

j Y Z1

j such that every H P
ś

iďkj
Xj,i is ωb´1-

largepθq.
Consider the family, Y0 ă X0,0 ă X0,1 ă ¨ ¨ ¨ ă X0,k0

ă X1,0 ă X1,1 ă ¨ ¨ ¨ ă
XmaxY0´1,kmax Y0´1

. Every block of this family is ωa-largepθq. Since X0,0 Ď Y1,

5



then Y0 and X0,0 are θ-apart. Moreover, for all j ă maxY0´1, since Xj,kj
Ď Zj

and Xj`1,0 “ Zj`1, Xj,kj
and Xj`1,0 are θ-apart.

Let H P Y0 ˆ X0,0 ˆ ¨ ¨ ¨ ˆ X0,k0
ˆ X1,0 ˆ ¨ ¨ ¨ ˆ XmaxY0´1,kmax Y0´1

. Every

element of
ś

iăkj
Xj,i is ωb´1-largepθq, therefore H is ωb-largepθq.

This completes the proof.

Remark 2.6. The bound obtained in Lemma 2.5 is tight in the sense that it
is not possible to get rid of the 2m in the exponent: there exists a formula θ

and a set X that is ω2m´1-largepθq such that no family X0 ă ¨ ¨ ¨ ă Xk´1 of
ω-largepθq and pairwise θ-apart subsets of X satisfy that every H P

ś

iăk Xi is
ωm-largepθq.

To see this, we can use the construction in [26] of a formula θ and of an
ω2m´1-largepθq set X with a coloring f : X Ñ 2 such that no f -homogeneous
ωm-largepθq subset exists. The coloring f has the property that for any ω-largepθq
subset Y of X, there exists some y0, y1 P rminY,maxY sXX such that fpy0q “ 0
and fpy1q “ 1.

Assuming there exists a family X0 ă ¨ ¨ ¨ ă Xk´1 of ω-largepθq subsets
of X such that every H P

ś

iăk Xi is ωm-largepθq, we get that every H P
ś

iăkrminXi,maxXisXX is ωm-largepθq (θ has the property that the θ-apartness
of two sets Y0 and Y1 depends only on maxY0, min Y1 and maxY1) and therefore,
by taking in each set rminXi,maxXis XX an element hi such that fphiq “ 0,
we obtain a set H that is f -homogeneous and ωm-largepθq, contradicting the
properties of X.

Remark 2.7. Contrary to Remark 2.6, when considering the classical notion
of largeness, it is possible to show that for every ωn`m`1-large set X, there
exists ωn-large subsets X0 ă ¨ ¨ ¨ ă Xk´1 such that every H P

ś

iăk Xi is ωm-
large. Propagating this difference between the bound obtained for largeness and
for largenesspT q, the bound to obtain an ωn-largepOVWq set is linear, while the
bound to obtain an ωn-largepθ,OVWq set is exponential.

Lemma 2.8 (Folklore, see Ketonen and Solovay [23]). For every primitive re-
cursive function f , there exists some n P ω such that every ωn-large (and a
fortiori ωn-largepθq) set X satisfies |X | ą fpminX ´ 1q.

Ko lodziejczyk and Yokoyama [25] defined two notions of sparsity, called exp-
sparsity and α-sparsity, respectively, and proved that with a constant overhead
on the bounds of largeness, one could always assume that the set is sufficiently
sparse. We define a similar notion of sparsity, stronger than exp-sparsity, and
prove the corresponding lemma.

Definition 2.9 (Sparsity). A set X is said to be sparse if for every x, y P X

with x ă y we have xxx

ă y.

It is clear that if RCA0 proves that some Γ is a largeness notion, then RCA0

proves that being Γ-large and sparse is again a largeness notion. Indeed, given

6



any infinite set X , RCA0 proves the existence of an infinite sparse subset Y Ď X .
By largeness of Γ, there is a finite Γ-large subset Z Ď Y , which is both Γ-large
and sparse.

Lemma 2.10. If X is ω2n`7-largepθq, then there is a subset Y Ď X that is
ωn-largepθq and sparse.

Proof. By Lemma 2.5, there exists X0 ă ¨ ¨ ¨ ă Xk´1 ω3-largepθq subsets of X
such that tmaxXi : i ă ku is ωn-largepθq.

This set is also sparse: by a simple computation, if px, ys is ω3-largepθq then
y ą xxx

(using the assumption that minX ě 4).

2.1 Largeness and variable words

Largeness is defined in terms of sets of integers, while the Ordered Variable
Word theorem is a statement about words and variable words. We bridge the
two notions by defining an ordered X-variable word over a finite set X Ď N.

Definition 2.11 (Ordered Y -variable word). For Y “ ty0, . . . , yn´1u a finite
set, an ordered Y -variable word over A is a finite word w over the alphabet
A\ txj : j ă nu where for every j ă n, the first occurrence of xj is at position
yj and for every j ă n´ 1 its last occurrence is before position yj`1.

Definition 2.12 (Substitution). For w a Y -variable word over an alphabet
A and u P Aď|Y |, the substitution wrus is defined as the word w where every
occurrence of xi for i ă |u| is replaced by upiq and cut just before the first
occurrence of x|u|.

Example 2.13. On the alphabet A “ ta, bu, w “ abx0ax0bx1bb is a t2, 6u-
variable word, ax0bx1x0ab is not a variable word, since there is an occurrence of
x0 after an occurrence of x1 and aax1b is not a variable word either since there
is no occurrence of x0. wrǫs “ ab (where ǫ is the empty word), wras “ abaaab

and wrbas “ abbabbabb.

3 Graham-Rothschild theorem

The Ordered Variable Word theorem belongs to a whole family of variable words
statements, whose pigeonhole principle is the Hales-Jewett theorem [19]. In its
simplest form, the Hales-Jewett theorem asserts the existence, for every finite
alphabet A and every finite coloring of Aăω, of a variable word w such that
twras : a P Au is monochromatic. Its generalization to multiple dimensions
is known as the Graham-Rothschild theorem [17]. In this section, we define
notions of largeness for these theorems, and obtain explicit quantitative bounds
for them. This analysis will be reused in the next section to obtain quantitative
bounds for the Ordered Variable Word theorem.

Definition 3.1. For Y a set, a combinatorial Y -space over an alphabet A is
a set of the form S “ twrus : u P A|Y |u for some ordered Y -variable word w

7



over A. We call w its generating variable word. The dimension of a combinato-
rial Y -space T over A is the number of variable kinds of its generating variable
words. A combinatorial Y -line is a combinatorial Y -space of dimension 1.

Definition 3.2. For S a combinatorial X-space, a combinatorial subspace S1

of S is a combinatorial Y -space included in S for some set Y .

A consequence of the definition is that if S1 is a combinatorial Y -subspace
of a combinatorial X-space S, then Y Ď X and the generating word w1 of S1

is equal to wrus for w the generating word of S and u some I-variable word of
length |X |, where X “ tx0, . . . , xnu and Y “ txi : i P Iu.

The following theorem, known as the Hales-Jewett theorem, admits an ele-
mentary proof involving only finite combinatorics, hence are easily formalizable
over RCA0. Its original proof [19] had an extremely fast-growing bound. A more
recent proof by Shelah [32] yielded a primitive recursive bound.

Theorem 3.3 (Hales-Jewett [19], Shelah [32], RCA0). There exists a primitive
recursive function HJpk, ℓq such that for every set X with |X | ě HJpk, ℓq,
every combinatorial X-space S over an alphabet A of size k and every coloring
f : S Ñ ℓ, there exists some x P X and an f -homogeneous combinatorial txu-
subspace of S.

As mentioned above, the Hales-Jewett theorem admits a multidimensional
generalization, known as the Graham-Rothschild theorem [17]. Its proof fol-
lows from the Hales-Jewett theorem by elementary combinatorics. The original
Graham-Rothschild theorem allows the variable kinds to be unordered, that is,
that the first occurrence of xi must appear before the first occurrence of xi`1,
but the last occurrence of xi might appear later. We are going to use a slightly
modified version of the Graham-Rothschild theorem, due to Dodos et al [11,
Theorem 2.1], which requires the variable words to be ordered. The proof of
its primitive recursive bound is an adaptation of Shelah’s bound [32] for the
original Graham-Rothschild theorem, which can be found in Dodos and Kanel-
lopoulos [10, Theorem 2.9, Theorem 2.15].

Theorem 3.4 (Graham-Rothschild [17], Dodos and Kanellopoulos [10], RCA0).
There exists a primitive recursive function GRpk, d,m, ℓq such that for every
set X with |X | ě GRpk, d,m, ℓq, every combinatorial X-space S over an al-
phabet A of size k and every coloring f of the m-dimensional subspaces of S

with ℓ colors, there exists some d-dimensional subspace of S, all of whose m-
dimensional subspaces have the same color.

Definition 3.5. A set X Ďfin N is said to be ωr ¨ s-largepθ,GRq if for every
ℓ, k ă minX, every combinatorial X-space over an alphabet A of size k and
every coloring f : S Ñ ℓ, there exists some ωr ¨ s-largepθq subset Y Ď X and an
f -homogeneous combinatorial Y -subspace of S.

For the following lemma, recall that a set X is ω0-largepθq iff X ‰ H. It
therefore states that if X is sufficiently large, then the size of X will be large

8



enough to be able to apply the Hales-Jewett theorem for minX ´ 1 colors and
alphabet of size minX ´ 1, and get a monochromatic combinatorial line.

Lemma 3.6. There exists some n0 P ω such that RCA0 proves that if X is
ωn0-largepθq then X is ω0-largepθ,GRq.

Proof. For X to be ω0-largepθ,GRq, it is sufficient that |X | ě HJpminX ´
1,minX ´ 1q. By Theorem 3.3, x ÞÑ HJpx, xq is primitive recursive, so by
Lemma 2.8, there exists some n0 such that every ωn0-largepθq set X satisfies
|X | ě HJpminX ´ 1,minX ´ 1q.

In the following lemma, it might be helpful for the reader to see a combina-
torial X-space over an alphabet A as the set of leaves of a tree isomorphic to
Aď|X|.

Lemma 3.7. RCA0 proves that for all b P N and every finite set X, if X is
ω2b`n0`1-largepθq and sparse then X is ωb-largepθ,GRq.

Proof. Fix some b P N such that the hypothesis holds. Let X be ω2b`n0`1-largepθq,
let ℓ, k ă minX , let S be a combinatorial X-space over an alphabet A of size k

with generating variable word w, and let f : S Ñ ℓ be a coloring.
By Lemma 2.5, there exists pairwise θ-apart ωn0-largepθq subsets of XztminXu

X0 ă ¨ ¨ ¨ ă Xa´1 such that any Y P
ś

iăa Xi is ωb-largepθq. For simplicity, we
will assume that S is a combinatorial pX0 Y ¨ ¨ ¨ YXa´1q-space (this can always
be done by taking a subspace of the original space).

The coloring f induce a coloring on every combinatorial Xa´1-subspace of S.
Let na´1 be the numbers of such subspaces, there is one of them for every
possible value taken by the variables of X0 Y ¨ ¨ ¨ YXa´2, so

na´1 “ k|X0|`¨¨¨`|Xa´2| ă kmaxXa´2

We can consider the product of all those colorings f 1 : S1 Ñ ℓna´1 for S1 an
arbitrary combinatorial Xa´1-space. By sparsity of X ,

ℓna´1 ă ℓk
maxXa´2

ă minXa´1

And since Xa´1 is ωn0-largepθq, by lemma 3.6, there is some ya´1 P Xa´1

and an f -homogeneous combinatorial tya´1u-subspace of S1. By definition of f 1,
for every combinatorial Xa´1-subspace of S, there is an f -homogeneous combi-
natorial tya´1u-subspace of it.

Consider Sa´1 an arbitrary combinatorial pX0 Y ¨ ¨ ¨ YXa´2q-subspace of S
(for example, by fixing an arbitrary value for the variables of Xa´1). There is a
one-to-one correspondence between the elements of Sa´1 and the combinatorial
Xa´1-subspaces of S: every element of Sa´1 correspond to a possible value for
the variables of X0Y¨ ¨ ¨YXa´2 and therefore belongs to only one Xa´1-subspace
of S and vice versa, every Xa´1-subspace of S contains only one element of Sa´1.

9



So consider fa´1 : Sa´1 Ñ ℓ a coloring that take any element of Sa´1 to the
color of the f -homogeneous combinatorial tya´1u-subspace of the corresponding
combinatorial Xa´1-subspace.

We can then repeat the same argument and find some ya´2 P Xa´2 such that,
for every combinatorial Xa´2-subspace of Sa´1 there is an fa´1-homogeneous
combinatorial tya´2u-subspace of it. Therefore, for every combinatorial pXa´2Y
Xa´1q-subspace of S, there is an f -homogeneous combinatorial tya´2, ya´1u-
subspace of it.

Iterate the construction to find a sequence y0 P X0, . . . , ya´1 P Xa´1 such
that, by letting Y “ ty0, . . . , ya´1u, there is an f -homogeneous combinatorial
Y -subspace of S. And Y is ωb-largepθq since Y P

ś

iăa Xi.

4 Ordered Variable word theorem

We now turn to the quantitative analysis of the target theorem of this article,
namely, the Ordered Variable Word theorem. The main result of this section is
Corollary 4.9, which is then used in Section 5 to prove our conservation theorem.

Definition 4.1 (Ordered variable word Y -tree). For Y a set, an OVW Y -
tree over an alphabet A is a set of the form T “ twrus : u P Aď|Y |u for some
ordered Y -variable word w over A. We call w its generating variable word.
The dimension of an OVW Y -tree T over A is the number of variable kinds
of its generating variable words, or equivalently the least n P ω such that T is
isomorphic to Aďn. A OVW Y -line is an OVW Y -tree of dimension 1.

Definition 4.2. For T an OVW X-tree, an OVW subtree T 1 of X is an OVW
Y -tree included in T for some set Y .

A consequence of the definition is that if T 1 is an OVW Y -subtree of an OVW
X-tree T , then Y Ď X and the generating word w1 of T 1 is equal to wrus for w

the generating word of T and u some I-variable word, where X “ tx0, . . . , xnu
and Y “ txi : i P Iu. We shall mainly consider two kinds of Y -subtrees: sub-
trees obtained by instantiating some variables of the generating word, which
are therefore of same depth but with fewer branches, and subtrees obtained by
truncating the generating word, and therefore of different depth.

The following theorem is a finitary version of an infinitary theorem due to
Carlson and Simpson [3]. The finitary version follows from its infinite version
by compactness. Dodos et al. [11, Theorem 4.1] gave an elementary proof of a
higher order variant of its finitary version, with a primitive recursive bound. The
finitary version of the Ordered Variable word follows easily from the Graham-
Rothschild theorem, and thus can almost be considered as folklore. The proof
below appears in Dodos and Kanellopoulos [10, Proposition 4.10].
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Theorem 4.3 (Carlson-Simpson [3], Dodos and Kanellopoulos. [10], RCA0).
There exists a primitive recursive bound CSpk, d, ℓq such that for every X with
|X | ě CSpk, d, ℓq, every OVW X-tree T over an alphabet A of size k and every
coloring f : T Ñ ℓ there exists some subset Y Ď X with |Y | “ d and an
f -homogeneous OVW Y -subtree of T .

Proof. Fix a set X such that |X | ě GRpk, d ` 1, 1, ℓq. Fix an OVW X-tree T

over an alphabet A of size k and a coloring f : T Ñ ℓ. Let w be the generating
variable word of T and consider the combinatorial X-space S corresponding to
the set of leaves of the tree T . A 1-dimensional subspace of S corresponds to an
instantiation of all the kind of variables in w except one, so define a coloring g

that takes any 1-dimensional subspace of S to the color (by f) of its generating
variable word cut before the first apparition of its only kind of variables. By
definition of GRpk, d` 1, 1, ℓq, there is a pd` 1q-dimensional subspace S1 of S,
all whose 1-dimensional subspaces are of the same color for g. Let w1 be the
generating word of S1, and let w2 be w1 cut before the first occurrence of its
last variable: xd, let Y be such that w2 is a Y -variable word (|Y | “ d). Then
tw2rus : u P Aď|Y |u is an f -homogeneous OVW Y -subtree of T (The f -color of
w2rus is the g-color of any 1-dimensional subspace of S1 whose non instantiated
variable is the |u|-th one).

Note that in the previous proof, we used the Graham-Rothschield theorem
with colorings of 1-dimensional spaces to prove the Carlson-Simpson theorem
which is about colorings of 0-dimensional OVW trees, that is, colorings of words.
This can be generalized to prove a higher order version of the finite Carlson
Simpson theorem with primitive recursive bounds (see Dodos and Kanellopou-
los [10, Theorem 4.21]). However, only the 0-dimensional version will be used
in this article.

Definition 4.4. A set X Ďfin N is said to be ωr ¨ s-largepθ,OVWq if for every
ℓ, k ă minX, every OVW X-tree T over an alphabet A of size k and every col-
oring f : T Ñ ℓ, there is an ωr ¨s-largepθq subset Y Ď X and an f -homogeneous
OVW Y -subtree of T .

Note that by definition of an ordered Y -variable sequence w, |w| ě maxY .

Lemma 4.5. There exists some n1 P ω such that RCA0 proves that is X is
ωn1-largepθq then X is ω0 ¨ pminX ´ 1q-largepθ,OVWq.

Proof. For X to be ω0 ¨ pminX´1q-largepθ,OVWq, it is sufficient to have |X | ě
CSpminX´1,minX,minX´1q. By Theorem 4.3, the function x ÞÑ CSpx, x`
1, xq is primitive recursive, so by Lemma 2.8, there exists some n1 such that if
X is ωn1-largepθq, then |X | ě CSpminX ´ 1,minX,minX ´ 1q.

Lemma 4.6. RCA0 proves that for every b, r P N, if the following statement
holds:

• “Every ωb-largepθq sparse set is ωr-largepθ,OVWq”
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then the following statement holds:

• “Every ω2b`n0`3-largepθq sparse set X is ωr ¨ pminX´1q-largepθ,OVWq”.

Proof. Fix r, b P N such that the first statement holds. Let X be ω2b`n0`3-largepθq
and sparse. Let us prove that X is ωr ¨ pminX ´ 1q-largepθ,OVWq:

Consider ℓ, k ă minX , an OVW X-tree T over an alphabet A of size k

and a coloring f : T Ñ ℓ. The set XzminX is ω2b`n0`2-largepθq, so there ex-
ists pairwise θ-apart ω2b`n0`1-largepθq subsets of XzpminXYminpXzminXqq,
X0 ă ¨ ¨ ¨ ă Xa with a “ ℓ ˆ pminX ´ 2q ă pminXq2 ă minpXztminXuq (by
sparsity). For simplicity, we will assume that T is an OVW pX0Y¨ ¨ ¨YXaq-tree
(this can always be done by taking a subtree of the original tree).

Above every σ P AminXa X T is an OVW Xa-subtree of T . The number
na of such subtrees satisfies na “ k|X0|`¨¨¨`|Xa´1| (there is one subtree for each
instantiation of the variables of X0 Y ¨ ¨ ¨ YXa´1), so na ď kmaxXa´1 .

The coloring f induce a coloring on each of those trees, and since all these
trees are isomorphic (not only isomorphic as trees, but they share the same
structure as OVW trees: their generating word only differ for indexes less than
|σ|), consider the product coloring f 1 : T 1 Ñ ℓna of all those coloring (for T 1 an

arbitrary such Xa-subtree). By sparsity of X , ℓna ď ℓk
maxXa´1

ă minXa.
Since Xa is ω2b`n0`1-largepθq and sparse, then it is ωr-largepOVW, θq, so

there exists some ωr-largepθq subset Ya Ď Xa and some f 1-homogeneous OVW
Ya-subtree S1 Ď T 1. Therefore, by definition of f 1, there exists an instantiation
of the variables in XazYa making f -homogeneous the corresponding OVW Ya-
subtrees of T above each σ P AminXa X T . Let T 1

a be the corresponding OVW
pX0 Y ¨ ¨ ¨ Y Xa´1 Y Yaq-subtree of T . T 1

a has the property that above every
σ P T 1

aXAminXa , there is a color cσa P ℓ such that all the τ in the OVW Ya-tree
above σ have that same color cσa .

Let Ta “ T XAďminXa . Note that Ta is an OVW pX0Y ¨ ¨ ¨YXa´1q-subtree
of T . Let Sa be the corresponding combinatorial pX0Y¨ ¨ ¨YXa´1q-space, every
element of Sa correspond to one instantiation of the variables of X0Y¨ ¨ ¨YXa´1

and therefore to exactly one of the OVW Xa-subtrees considered before. So,
consider the coloring fa : Sa Ñ ℓ that send any element of Sa to the color cσa of
its corresponding OVW Xa-subtree.

There are at most k|X0Y¨¨¨YXa´2| ď kmaxXa´2 combinatorial Xa´1-subspaces
of Sa (one for each instantiation of the variables in X0 Y ¨ ¨ ¨ Y Xa´2) and fa
induces a coloring on each of them. So, by using the same trick of consid-
ering the product coloring, we can apply Lemma 3.7 to get an ωb-largepθq
subset Za´1 Ď Xa´1 such that there exists an instantiation of the variables
in Xa´1zZa´1 making fa-homogeneous the corresponding combinatorial Za´1-
subspaces of each combinatorial Xa´1-subspaces of Sa.

Since Za´1 is ωb-largepθq, then it is ωr-largepOVW, θq, so there exists some
ωr-largepθq subset Ya´1 Ď Za´1 and some instantiation of the variables in
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Za´1zYa´1 making f -homogeneous the corresponding OVW Ya´1-subtrees of
Ta above each σ P AminXa´1 X Ta (again by considering a product coloring).

Let T 1
a´1

be the corresponding OVW pX0Y ¨ ¨ ¨YXa´2YYa´1YYaq-subtree
of T . T 1

a´1
has the property that for every σ P T 1

a´1
XAminXa´1 there is a tuple

of color pcσa´1, c
σ
aq such that all the τ in the OVW pYa´1YYaq-tree above σ have

color cσa´1
if |τ | P Ya´1 (by construction of Ya´1) and color cσa if |τ | P Ya (by

construction of Za´1).

We can then iterate the construction and obtain a sequence of ωr-largepθq
subsets Yi Ď Xi and of OVW pX0Y ¨ ¨ ¨YXi´1YYiY ¨ ¨ ¨YYaq-subtrees T 1

i of T ,
where each T 1

i has the property that for every σ P T 1
iXA

minXi there is a pa´i`1q-
uple of colors pcσi , . . . , c

σ
aq such that all the τ in the OVW pYi Y ¨ ¨ ¨ Y Yaq-tree

above σ have color cσj if |τ | P Yj . At each step of the construction, we con-

sider the tree Ti “ T XAďminXi , the corresponding combinatorial subspace Si,
a coloring fi : Si Ñ ℓa`1´i (The coloring fi gives the tuple of colors corre-
sponding to the OVW pYi`1 Y ¨ ¨ ¨ Y Yaq-subtree above every element of Si), an
fi-homogeneous combinatorial Zi-subspace of Si for some Zi Ď Xi ω

b-largepθq,
and finally an ωr-largepθq subset Yi Ď Zi satisfying the desired properties and
T 1
i , the corresponding OVW pX0 Y ¨ ¨ ¨ YXi´1 Y Yi Y ¨ ¨ ¨ Y Yaq-subtree of T .

Therefore, the color of every τ P T 1
0

is determined by the index j ď a

such that |τ | P Yj . By the finite pigeonhole principle, there is one color that
appear at least pminX ´ 1q times, since a ` 1 “ ℓ ˆ pminX ´ 2q ` 1. Let
i0 ă ¨ ¨ ¨ ă iminX´2 ď a be indices witnessing the pigeonhole principle, and let
Y “ Yi1 Y ¨ ¨ ¨ Y YiminX´2

. The set Y is ωr ¨ pminX ´ 1q-largepθq and any OVW
Y -subtree of T 1

0
is f -homogeneous.

Lemma 4.7. RCA0 proves that for every b, r P N, if the following statement
holds:

• “Every ωb-largepθq sparse set X is ωr ¨ pminX ´ 1q-largepθ,OVWq”

then the following statement holds:

• “Every ω2b`n0`2-largepθq sparse set is ωr`1-largepθ,OVWq”.

Proof. Fix r, b P N such that the first statement holds. Let X be ω2b`n0`2-largepθq
and sparse. Let us prove that X is ωr`1-largepθ,OVWq:

Let X be ω2b`n0`2-largepθq and sparse. Consider ℓ, k ă minX , an OVW
X-tree T over an alphabet A of size k and a coloring f : T Ñ ℓ.

Let X0 ă ¨ ¨ ¨ ă Xℓ be ω2b`n0`1-largepθq subsets of X . By the same con-
struction as in the proof of Lemma 4.6, but replacing ωr-largenesspθ,OVWq by
ωr ¨ pminX´1q-largenesspθ,OVWq, we obtain for each i ď ℓ an ωr ¨ pminX´1q-
largepθq subset Yi Ď Xi, and an OVW pY0 Y ¨ ¨ ¨ Y Yℓq-tree T 1

0
such that the

color of every ρ P T 1
0 is determined by the index j ď ℓ such that |ρ| P Yj . Since

ℓ` 1 ą ℓ, there are indexes i ă j such that all the ρ P T 1
0

with |ρ| P YiYYj have
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the same color. Take some y P Yi, since y ď min Yj´1 and Yj is ωr ¨pminXj´1q-
largepθq, then tyu Y Yj is ωr`1-largepθq and any OVW ptyu Y Yjq-subtree of T 1

0

is f -homogeneous.

Lemma 4.8. RCA0 proves that for every b, r P N, if the following statement
holds:

• “Every ωb-largepθq sparse set is ωr-largepθ,OVWq”

then the following statement holds:

• “Every ω4b`3n0`8-largepθq sparse set is ωr`1-largepθ,OVWq”.

Proof. Immediate by Lemma 4.6 and Lemma 4.7.

Corollary 4.9. RCA0 proves that for every b P N, every ωOp4bq-largepθq sparse
set is ωb-largepθ,OVWq.

Proof. By a simple induction over b, using Lemma 4.5 and Lemma 4.7 for the
base case, and Lemma 4.8 for the induction step.

5 Consequences and open questions

We now turn to the proof of Theorem 1.4 using Corollary 4.9. The proof is
an adaptation of Le Houérou, Levy Patey and Yokoyama [26, Proposition 2.13],
which is itself an elaboration of the original construction by Kirby and Paris [24]
of a semi-regular cut.

Theorem 1.4. WKL0 ` OVW is @Π0

4
-conservative over RCA0 ` BΣ0

2
.

Proof. Let φpXæz , t, x, y, zq be a ∆0
0-formula and assume that RCA0 ` BΣ0

2 &
@X@tDx@yDzφpXæz, t, x, y, zq. In what follows, we enrich the language with two
constant symbols c and C, of first and second order, respectively.

By completeness and the Löwenheim-Skolem theorem, there exists some
countable model

M “ pM,S, cM, CMq |ù RCA0 ` BΣ0

2
` @xDy@z φpCæz, c, x, y, zq

Let θpx, y, zq be the ∆0,C,c
0

formula  φpCæz, c, x, y, zq.

By Proposition 2.3 and Lemma 2.10, for all standard n, there exists some
sparse ωn-largepθq subset of M . So, by compactness, we can assume that M

contains a sparse ωd-largepθq set X for some non-standard integer d.

By a standard argument, we can consider a decreasing sequence X “ X0 Ě
X1 Ě . . . such that for every i ă ω:

(1) Xi is ωdi-largepθq for some di non-standard.
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(2) minXi`1 ą minXi

(3) For every M -finite set E such that |E| ă minXi, there exists some j ą i

such that rminXj ,maxXjs X E “ H.

(4) For every coloring f : AăM Ñ k for some k ă minXi and some M -finite
alphabet A with |A| ă minXi with f P M, there exists some j ą i and
an f -homogeneous OVW Xj-subtree of AăM .

(5) There exists some j ą i such that

@x ă minXjDy ă minXj`1@z ă maxXj`1θpx, y, zq

Then, consider I “ suptminXi|i P ωu. I is a semi-regular cut of M by
p3q, therefore pI,CodpM{Iqq |ù WKL0. The constraint minX ě c imposed on
largenesspθq ensures that c is in I.

The condition minXi`1 ą minXi implies that every Xi X I is infinite in I.
Let k P I and A a finite alphabet with |A| P I, let f : AăI Ñ k be a coloring

in pI,CodpM{Iqq. There exists some coloring g : AăM Ñ k in M such that
f “ gXI and let i such that k, |A| ă minXi. By construction, let j ą i and T a
g-homogeneous OVW Xj-subtree of AăM , then TXI is an f -homogeneous OVW
Xj X I-subtree of AăI . Since Xj X I is infinite in I, pI,CodpM{Iqq |ù OVW.

Finally, pI,CodpM{Iq, cM, CM X Iq |ù @xDy@zθpx, y, zq as for every k P I,
there exists an index i P ω such that k ă minXi and therefore by (5), there
is some j ą i such that @x ă kDy ă minXj`1@z ă maxXj`1 θpx, y, zq, so
pI,CodpM{Iq, cM, CM X Iq |ù @x ă kDy@z θpx, y, zq (since maxXj`1 ą I).

Hence pI,CodpM{Iqq |ùWKL0 ` OVW ` @X@tDx@yDzφpXæz, t, x, y, zq.

Corollary 5.1. WKL0`OVW is @Π0
3-conservative over RCA0 and Π0

2-conservative
over PRA.

Proof. By a parameterized version of the Parsons, Paris and Friedman conser-
vation theorem (see [18, 22]), RCA0 ` BΣ0

2
is @Π0

3
-conservative over RCA0. By

Friedman [15] (see [33]), RCA0 is Π0

2
-conservative over PRA.

Corollary 5.2. WKL0 ` OVW does not imply ACA0.

Proof. By Simpson [33, Corollary VIII.1.7], ACA0 proves the consistency of RCA0,
which is a Π0

1
statement, while RCA0 does not by the second Gödel incom-

pleteness theorem. Thus, by Corollary 5.1, WKL0 ` OVW does not imply the
consistency of RCA0.

5.1 Open questions

As mentioned in the introduction, the tree theorem for singletons (TT1) is
strictly stronger than BΣ0

2
. Since TT

1 is a Π1

2
statement, this does not rule

out the possibility that RCA0 ` TT
1 is Π1

1-conservative over RCA0 ` BΣ0

2. The
same question can be asked about the Ordered Variable Word theorem.
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Question 5.3. Is RCA0 ` OVW Π1

1
-conservative over RCA0 ` BΣ0

2
?

The Tree Theorem for singletons and Milliken’s tree theorem for singletons
are both provable over RCA0` IΣ0

2
. On the other hand, OVW is not computably

true, as it admits a computable instance with no ∆0
2 solutions.

Question 5.4. Is RCA0 ` IΣ0

2
` OVW Π1

1
-conservative over RCA0 ` IΣ0

2
?

If the answer to Question 5.4 is positive, then by Fiori-Carones et al. [14],
Question 5.3 can be reduced to whether RCA0 ` OVW is @Π0

5
-conservative

over RCA0 ` BΣ0
2.

The proof of Corollary 5.2 involves the construction of a non-standard model
of WKL0 ` OVW. It is natural to wonder whether such separation also holds
over ω-models, that is, models whose first-order part consists of the standard
integers. A problem P admits cone avoidance if for every non-computable set C
and every computable P-instance X , there exists a P-solution Y to X such
that C ęT Y . If P admits cone avoidance, then there exists an ω-model of
WKL0 ` P which does not contain H1, hence is not a model of ACA0. All the
known separations of problems from ACA0 are done by proving that P admits
cone avoidance.

Question 5.5. Does OVW admits cone avoidance?

Acknowledgements

The authors are thankful to Keita Yokoyama for insightful comments and dis-
cussions.

References

[1] Paul-Elliot Angles d’Auriac, Lu Liu, Bastien Mignoty, and Ludovic Patey.
Carlson-Simpson’s lemma and applications in reverse mathematics. Ann.
Pure Appl. Logic, 174(9):Paper No. 103287, 16, 2023.

[2] Paul-Elliot Angles d’Auriac, Peter A Cholak, Damir D Dzhafarov, Benoˆıt
Monin, and Ludovic Patey. Milliken’s tree theorem and its applications:
a computability-theoretic perspective. arXiv preprint arXiv:2007.09739,
2020.

[3] Timothy J. Carlson and Stephen G. Simpson. A dual form of Ramsey’s
theorem. Adv. in Math., 53(3):265–290, 1984.

[4] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the
strength of Ramsey’s theorem for pairs. J. Symbolic Logic, 66(1):1–55,
2001.

[5] C. T. Chong, Wei Li, Wei Wang, and Yue Yang. On the strength of Ram-
sey’s theorem for trees. Adv. Math., 369:107180, 39, 2020.

16



[6] Chi Tat Chong, Wei Wang, and Yue Yang. Conservation strength of the
infinite pigeonhole principle for trees. Israel Journal of Mathematics, pages
1–24, 2023.

[7] Jennifer Chubb, Jeffry L. Hirst, and Timothy H. McNicholl. Reverse mathe-
matics, computability, and partitions of trees. J. Symbolic Logic, 74(1):201–
215, 2009.

[8] Jared Corduan, Marcia J. Groszek, and Joseph R. Mileti. Reverse mathe-
matics and Ramsey’s property for trees. J. Symbolic Logic, 75(3):945–954,
2010.

[9] Denis Campau Devlin. SOME PARTITION THEOREMS AND ULTRA-
FILTERS ON OMEGA. ProQuest LLC, Ann Arbor, MI, 1980. Thesis
(Ph.D.)–Dartmouth College.

[10] Pandelis Dodos and Vassilis Kanellopoulos. Ramsey theory for product
spaces, volume 212 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 2016.

[11] Pandelis Dodos, Vassilis Kanellopoulos, and Konstantinos Tyros. A den-
sity version of the Carlson-Simpson theorem. J. Eur. Math. Soc. (JEMS),
16(10):2097–2164, 2014.

[12] Damir D. Dzhafarov and Carl Mummert. Reverse mathematics—problems,
reductions, and proofs. Theory and Applications of Computability.
Springer, Cham, [2022] ©2022.

[13] Damir D. Dzhafarov and Ludovic Patey. Coloring trees in reverse mathe-
matics. Adv. Math., 318:497–514, 2017.

[14] Marta Fiori-Carones, Leszek Aleksander Ko lodziejczyk, Tin Lok Wong, and
Keita Yokoyama. An isomorphism theorem for models of weak kz” onig’s
lemma without primitive recursion. arXiv preprint arXiv:2112.10876, 2021.

[15] Harvey Friedman. Personal communication to L. Harrington, 1977.

[16] Harvey Friedman and Stephen G. Simpson. Issues and problems in reverse
mathematics. In Computability theory and its applications (Boulder, CO,
1999), volume 257 of Contemp. Math., pages 127–144. Amer. Math. Soc.,
Providence, RI, 2000.

[17] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey
theory. Wiley Series in Discrete Mathematics and Optimization. John Wiley
& Sons, Inc., Hoboken, NJ, 2013. Paperback edition of the second (1990)
edition [MR1044995].
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