ON THE UNIFORM DIMENSION AND THE ASSOCIATED PRIMES OF SKEW PBW EXTENSIONS

SEBASTIÁN HIGUERA, MARÍA CAMILA RAMÍREZ, AND ARMANDO REYES

Dedicated to Professor Oswaldo Lezama

Abstract

In this paper, we study the uniform dimension and the associated prime ideals of induced modules over skew PBW extensions.

1. Introduction

Throughout the paper, every ring R is associative (not necessarily commutative) with identity unless stated otherwise. In addition, S denotes the skew polynomial ring of R (also known as Ore extension) $R[x ; \sigma, \delta]$ defined by Ore [32] where σ is an automorphism of R and δ is a σ-derivation of R. In the context of the skew polynomial rings, Leroy and Matczuk [24] considered the induced modules on these noncommutative rings: if M_{R} is a right module and S is a skew polynomial ring of R, then $M \otimes_{R} S:=\widehat{M}_{S}$ is said to be the induced module of M_{R} [24, p. 2745]. They investigated problems related to the uniform dimension and the associated primes of the induced module \widehat{M}_{S} by considering good polynomials.

These polynomials were used by Shock with the aim of proving that the uniform dimensions of a ring R and the polynomial ring $R[x]$ are equal [41, Theorem 2.6]. A polynomial $f(x) \in R[x]$ is called good if the annihilators of the coefficients of $f(x)$ are equal [41, p. 252]. A polynomial $g \in \widehat{M}_{S}$ is called good if for any $r \in R$, $\operatorname{deg}(g r)=\operatorname{deg}(g)$ provided $g r \neq 0$ [24, Definition 3.2]. A submodule B_{S} of \widehat{M}_{S} is called good, if for any good polynomial $g \in B_{S}$ and any $n \geq \operatorname{deg}(\mathrm{g})$, there exists a good polynomial of degree n in $g S$ [24, Definition 4.4]. Leroy and Matczuk characterized the good polynomials of \widehat{M}_{S} and the right annihilators of generated modules by these polynomials [24, Lemmas 3.4 and 3.7]. In addition, they described the essential and uniform submodules of the module \widehat{M}_{S} [24, Theorem 4.6], and proved that if \widehat{M}_{S} is a good module, then the uniform dimensions of M_{R} and \widehat{M}_{S} are the same [24, Theorem 4.9]. They showed that all associated prime ideals of the induced module \widehat{M}_{S} arise from associated primes of the module M_{R} [24, Theorem 5.7]. Continuing with the study of associated prime ideals and as a natural generalization of these ideals, Ouyang and Birkenmeier [33] defined the nilpotent associated primes [33, Definition 3.2] and considered the nilpotent good polynomials

[^0]as a tool to investigate these ideals [33, Definition 3.3]. They characterized the nilpotent associated primes of skew polynomial rings [33, Theorem 3.1].

Gallego and Lezama [15] defined the skew $P B W$ extensions as a generalization of the Poincaré-Birkhoff-Witt extensions introduced by Bell and Goodearl [9] and the skew polynomial rings of injective type. Since its introduction, ring and homological properties of skew PBW extensions have been widely studied. In the literature, several authors have shown that the skew PBW extensions generalize families of noncommutative algebras such as 3 -dimensional skew polynomial algebras introduced by Bell and Smith [10], ambiskew polynomial rings in the sense of Jordan [20], solvable polynomial rings by Kandri-Rody and Weispfenning [21], almost normalizing extensions defined by McConnell and Robson [29], and skew bi-quadratic algebras recently introduced by Bavula [8]. For more details about skew PBW extensions and other noncommutative algebras having PBW bases, see $[1,14,16,40]$. Related to the good polynomials and the associated primes, Higuera and Reyes [19] extended the notion of nilpotent good polynomials and characterized the nilpotent associated prime ideals over skew PBW extensions [19, Theorem 4.4]. Annin [5] considered the annihilator-compliant polynomials to investigate associated prime ideals of the induced module \widehat{M}_{S}. According to Annin, $m(x)=m_{0}+\cdots+m_{k} x^{k} \in M[x]$ with $m_{k} \neq 0$ is called annihilator-compliant if for each $i<k, \operatorname{ann}_{R}\left(m_{k}\right) \subseteq \operatorname{ann}_{R}\left(m_{i}\right)$ [5, Definition 2.23]. Niño et al. [31] extended this definition to study associated prime ideals of modules over skew PBW extensions. Under certain compatibility conditions, they characterized the associated primes of the induced module $M \otimes_{R} A:=M\langle X\rangle_{A}$ where A is a skew PBW extension over a ring R [31, Theorem 3.12].

Thinking about the above results and motivated for the development of the theory of the uniform dimension and the associated prime ideals of polynomial modules over noncommutative rings of polynomial type (see [5], [24], [31], [19], and references therein), our aim in this paper is to characterize essential modules and the uniform dimension of induced modules over skew PBW extensions. Additionally, we study the uniform dimension of induced modules and investigate the associated prime ideals of induced modules over families of rings more general than skew polynomial rings.

The paper is organized as follows. In Section 2, we recall some definitions and preliminaries about skew PBW extensions. Section 3 presents the definition of good polynomial and original results that characterize these polynomials (Lemmas 3.2, $3.3,3.8$, and Proposition 3.4). We also present several results on essential modules and uniform dimension, within which we characterize the uniform dimension of induced modules over skew PBW extensions (Lemma 3.9, and Theorems 3.14 and 3.16). Section 4 contains results related to the characterization of associated primes of induced modules over these extensions (Lemma 4.1, and Theorems 4.5 and 4.7). Our results generalize those corresponding presented by Leroy and Matczuk [24]. It is worth mentioning that this work is a sequel of the study of ideals of skew PBW extensions that has been realized by different authors (e.g. [2, 30, 37, 38]). In this way, the results formulated in this paper about associated prime ideals extend or contribute to those presented by Annin [5], Brewer and Heinzer [11], Faith [13], Leroy and Matczuk [24], Niño et al., [31], and references therein. Finally, Section 5 illustrates the results established in Sections 3 and 4 with several noncommutative algebras that cannot be expressed as skew polynomial rings.

Throughout the paper, $\mathbb{N}, \mathbb{Z}, \mathbb{R}$, and \mathbb{C} denote the classical numerical systems. We assume the set of natural numbers including zero. The symbol \mathbb{k} denotes a field and $\mathbb{k}^{*}:=\mathbb{k} \backslash\{0\}$.

2. Skew Poincaré-Birkhoff-Witt extensions

Definition 2.1 ([15, Definition 1]). Let R be a ring. A ring A is said to be a skew $P B W$ extension over R (the ring of coefficients), denoted $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$, if the following conditions hold:
(i) R is a subring of A sharing the same identity element.
(ii) There exist finitely many elements $x_{1}, \ldots, x_{n} \in A$ such that A is a left free R-module, with basis the set of standard monomials

$$
\operatorname{Mon}(A):=\left\{x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}
$$

Moreover, $x_{1}^{0} \cdots x_{n}^{0}:=1 \in \operatorname{Mon}(A)$.
(iii) For every $1 \leq i \leq n$ and any $r \in R \backslash\{0\}$, there exists $c_{i, r} \in R \backslash\{0\}$ such that $x_{i} r-c_{i, r} x_{i} \in R$.
(iv) For $1 \leq i, j \leq n$, there exists $d_{i, j} \in R \backslash\{0\}$ such that

$$
x_{j} x_{i}-d_{i, j} x_{i} x_{j} \in R+R x_{1}+\cdots+R x_{n}
$$

i.e. there exist elements $r_{0}^{(i, j)}, r_{1}^{(i, j)}, \ldots, r_{n}^{(i, j)} \in R$ with

$$
x_{j} x_{i}-d_{i, j} x_{i} x_{j}=r_{0}^{(i, j)}+\sum_{k=1}^{n} r_{k}^{(i, j)} x_{k}
$$

Since $\operatorname{Mon}(A)$ is a left R-basis of A, the elements $c_{i, r}$ and $d_{i, j}$ are unique. Thus, every non-zero element $f \in A$ can be uniquely expressed as $f=\sum_{i=0}^{m} a_{i} X_{i}$, with $a_{i} \in R, X_{0}=1$, and $X_{i} \in \operatorname{Mon}(A)$, for $0 \leq i \leq m$ [15, Remark 2].
Proposition 2.2 ([15, Proposition 3]). If A is a skew PBW extension over R, then there exist an injective endomorphism $\sigma_{i}: R \rightarrow R$ and a σ_{i}-derivation $\delta_{i}: R \rightarrow R$ such that $x_{i} r=\sigma_{i}(r) x_{i}+\delta_{i}(r)$, for each $1 \leq i \leq n$, where $r \in R$.

We use the notation $\Sigma:=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ and $\Delta:=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ for the families of injective endomorphisms and derivations of Proposition 2.2, respectively.

Definition 2.3. Let A be a skew PBW extension over R.
(i) [15, Definition 4] A is called quasi-commutative if the conditions (iii) and (iv) presented above are replaced by the following:
(iii') For every $1 \leq i \leq n$ and $r \in R \backslash\{0\}$, there exists $c_{i, r} \in R \backslash\{0\}$ such that $x_{i} r=c_{i, r} x_{i}$.
(iv') For every $1 \leq i, j \leq n$, there exists $d_{i, j} \in R \backslash\{0\}$ such that

$$
x_{j} x_{i}=d_{i, j} x_{i} x_{j}
$$

(ii) $\left[15\right.$, Definition 4] A is called bijective if σ_{i} is bijective for each $1 \leq i \leq n$, and $d_{i, j}$ is invertible for any $1 \leq i<j \leq n$.
(iii) [2, Definition 2.3] If σ_{i} is the identity homomorphism of R for all $1 \leq i \leq n$, then we say that A is a skew PBW extension of derivation type. Similarly, if $\delta_{i} \in \Delta$ is zero, for every $1 \leq i \leq n$, then A is called a skew PBW extension of endomorphism type.

Remark 2.4. Some relationships between skew polynomial rings and skew PBW extensions are the following:
(i) If A is a quasi-commutative skew PBW extension, then A is isomorphic to an iterated skew polynomial ring of endomorphism type [25, Theorem 2.3].
(ii) In general, skew polynomial rings of injective type are strictly contained in skew PBW extensions [25, Example 5(3)]. This fact is not possible for PBW extensions. For instance, the quantum plane $\mathbb{k}\{x, y\} /\left\langle x y-q y x \mid q \in \mathbb{k}^{*}\right\rangle$ is a skew polynomial ring of injective type given by $\mathbb{k}[y][x ; \sigma]$, where $\sigma(y)=q y$, but cannot be expressed as a PBW extension.
(iii) Skew PBW extensions of endomorphism type are more general than iterated skew polynomial rings of endomorphism type [42, Remark 2.4 (ii)].

Definition 2.5 ([15, Section 3]). If A is a skew PBW extension over R, then:
(i) For any element $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, we will write $\sigma^{\alpha}:=\sigma_{1}^{\alpha_{1}} \circ \cdots \circ \sigma_{n}^{\alpha_{n}}$, $\delta^{\alpha}=\delta_{1}^{\alpha_{1}} \circ \cdots \circ \delta_{n}^{\alpha_{n}}$, where \circ denotes composition. If $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$, then $\alpha+\beta:=\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)$.
(ii) Let \succeq be a total order defined on $\operatorname{Mon}(A)$. If $x^{\alpha} \succeq x^{\beta}$ but $x^{\alpha} \neq x^{\beta}$, we write $x^{\alpha} \succ x^{\beta}$. If f is a non-zero element of A, then we use expressions as $f=a_{1} x^{\alpha_{1}}+\cdots+a_{k} x^{\alpha_{k}}$, with $a_{i} \in R$, and $x^{\alpha_{k}} \succ \cdots \succ x^{\alpha_{1}}$. With this notation, we define $\operatorname{lm}(f):=x^{\alpha_{k}}$, the leading monomial of $f ; \operatorname{lc}(f):=a_{k}$, the leading coefficient of $f ; \operatorname{lt}(f):=a_{k} x^{\alpha_{k}}$, the leading term of f. Note that $\operatorname{deg}(f):=\max \left\{\operatorname{deg}\left(x^{\alpha_{i}}\right)\right\}_{i=1}^{k}$. If $f=0, \operatorname{lm}(0):=0, \operatorname{lc}(0):=0, \operatorname{lt}(0):=0$.

The next proposition is very useful when one need to make some computations with elements of skew PBW extensions.

Proposition 2.6 ([15, Theorem 7]). If A is a polynomial ring with coefficients in R with respect to the set of indeterminates $\left\{x_{1}, \ldots, x_{n}\right\}$, then A is a skew PBW extension over R if and only if the following conditions hold:
(1) for each $x^{\alpha} \in \operatorname{Mon}(A)$ and every $0 \neq r \in R$, there exist unique elements $r_{\alpha}:=\sigma^{\alpha}(r) \in R \backslash\{0\}, p_{\alpha, r} \in A$, such that $x^{\alpha} r=r_{\alpha} x^{\alpha}+p_{\alpha, r}$, where $p_{\alpha, r}=0$, or $\operatorname{deg}\left(p_{\alpha, r}\right)<|\alpha|$ if $p_{\alpha, r} \neq 0$. If r is left invertible, so is r_{α}.
(2) For each $x^{\alpha}, x^{\beta} \in \operatorname{Mon}(A)$, there exist unique elements $d_{\alpha, \beta} \in R$ and $p_{\alpha, \beta} \in A$ such that $x^{\alpha} x^{\beta}=d_{\alpha, \beta} x^{\alpha+\beta}+p_{\alpha, \beta}$, where $d_{\alpha, \beta}$ is left invertible, $p_{\alpha, \beta}=0$, or $\operatorname{deg}\left(p_{\alpha, \beta}\right)<|\alpha+\beta|$ if $p_{\alpha, \beta} \neq 0$.

It is important to mention that the coefficients of the polynomial expressions $p_{\alpha, r}$ and $p_{\alpha, \beta}$ in Proposition 2.6 are several evaluations of r in σ 's and δ 's depending on the coordinates of α. A more explicit description of these relations can be found in [35, Proposition 2.9 and Remark 2.10 (iv)].

According to Definition 2.1, if A is a skew PBW extension over a ring R, then A is a free left R-module. In this way, if M_{R} is a right module, we can consider the set $M\langle X\rangle_{A}$ where the elements are of the form $m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}}, m_{i} \in M_{R}$ and $x^{\alpha_{i}} \in \operatorname{Mon}(A)$, for every $1 \leq i \leq k$. Considering Proposition 2.6 and the explicit relations described in [35, Proposition 2.9 and Remark 2.10 (iv)], the set $M\langle X\rangle_{A}$ has A-module structure defined as follows: if $m x^{\alpha_{i}}:=m x_{1}^{\alpha_{i 1}} \cdots x_{n}^{\alpha_{i n}} \in M\langle X\rangle_{A}$ and $b x^{\beta_{j}}:=b x_{1}^{\beta_{j 1}} \cdots x_{n}^{\beta_{j n}} \in A$, then we multiply these elements following the rule

$$
\begin{aligned}
m x_{1}^{\alpha_{i 1}} \cdots x_{n}^{\alpha_{i n}} b x_{1}^{\beta_{j 1}} \cdots x_{n}^{\beta_{j n}}= & m \sigma^{\alpha_{i}}(b) x^{\alpha_{i}} x^{\beta_{j}}+m p_{\alpha_{i 1}, \sigma_{i 2} \alpha_{i 2}\left(\cdots\left(\sigma_{i n}^{\alpha_{i n}}(b)\right)\right)} x_{2}^{\alpha_{i 2}} \cdots x_{n}^{\alpha_{i n}} x^{\beta_{j}} \\
& +m x_{1}^{\alpha_{i 1}} p_{\alpha_{i 2}, \sigma_{i 3}^{\alpha_{i 3}}\left(\cdots\left(\sigma_{i n}^{\alpha_{i n}}(b)\right)\right)} x_{3}^{\alpha_{i 3}} \cdots x_{n}^{\alpha_{i n}} x^{\beta_{j}} \\
& +m x_{1}^{\alpha_{i 1}} x_{2}^{\alpha_{i 2}} p_{\alpha_{i 3}, \sigma_{i 4}^{\alpha_{i 4}}\left(\cdots\left(\sigma_{i n}^{\alpha_{i n}}(b)\right)\right)}^{x_{4}^{\alpha_{i 4}} \cdots x_{n}^{\alpha_{i n}} x^{\beta_{j}}} \\
& +\cdots+m x_{1}^{\alpha_{i 1}} x_{2}^{\alpha_{i 2} \cdots x_{(n-2)}^{\alpha_{i n-2)}} p_{\alpha_{i(n-1)}, \sigma_{i n}^{\alpha_{i n}}(b)} x_{n}^{\alpha_{i n}} x^{\beta_{j}}} \\
& +m x_{1}^{\alpha_{i 1}} x_{2}^{\alpha_{i 2}} \cdots x_{(n-1)}^{\alpha_{i(n-1)}} p_{\alpha_{i n}, b} x^{\beta_{j}} .
\end{aligned}
$$

This guarantees that $M\langle X\rangle_{A}$ is a right A-module and is called the induced module of M_{R}. If \succeq is a total order defined on $\operatorname{Mon}(A)$ and $m \in M\langle X\rangle_{A}$ with $m \neq 0$, then we use expressions as $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}}$, where $m_{i} \in M_{R}$, and $x^{\alpha_{k}} \succ \cdots \succ x^{\alpha_{1}}$. With this notation, we define $\operatorname{lm}(m):=x^{\alpha_{k}}$, the leading monomial of $m ; \operatorname{lc}(m):=m_{k}$, the leading coefficient of $m ; \operatorname{lt}(m):=m_{k} x^{\alpha_{k}}$, the leading term of m. Note that $\operatorname{deg}(m):=\max \left\{\operatorname{deg}\left(x^{\alpha_{i}}\right)\right\}_{i=1}^{k}$. More details and properties about the induced module $M\langle X\rangle_{A}$ can be consulted in [31, 36].

3. Good polynomials and uniform dimension

In this section, we study good polynomials, the essential modules and the uniform dimension of induced modules over skew PBW extensions.
3.1. Good polynomials over skew PBW extensions. Since Leroy and Matczuk [24] used the good polynomials to study the uniform dimension and the associated primes of induced modules over skew polynomial rings, we introduce the following definition thinking about skew PBW extensions.

Definition 3.1. Let A be a skew PBW extension over R, M_{R} be a right module, and $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in M\langle X\rangle_{A}$ with leading coefficient $m_{k} \neq 0$. We say that m is a good polynomial if for every $r \in R, \operatorname{lm}(m r)=\operatorname{lm}(m)$, as long as $m r \neq 0$.

Following Leroy and Matczuk, if R is a ring, σ is an automorphism of R, and M_{R} is a right module, then M_{σ} denotes the σ-twisted module defined on the same additive structure $M_{\sigma}=M$, where the action is defined by $m \cdot r:=m \sigma(r)$, for all $r \in R$ [24, p. 2747]. With this in mind, we consider the following definition. If $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is a finite set of automorphisms of R and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, then $M_{\sigma^{\alpha}}$ denotes the σ^{α}-twisted module where the action of R over $M_{\sigma^{\alpha}}$ is given by $m \cdot r:=m \sigma^{\alpha}(r)=m \sigma_{1}^{\alpha_{1}} \circ \cdots \circ \sigma_{n}^{\alpha_{n}}(r)$, for every $r \in R$. If $m \in M$, we denote by $\langle m\rangle_{\sigma^{\alpha}}$ the σ^{α}-twisted R-module generated by m. Additionally, if X is a subset of R and $\alpha \in \mathbb{N}^{n}$, then $\sigma^{-\alpha}(X)$ denotes the inverse image of X under σ^{α}, that is, if $r \in \sigma^{-\alpha}(X)$, then $\sigma^{\alpha}(r) \in X$.

Lemma 3.2. Let A be a bijective skew $P B W$ extension over R, M_{R} be a right module, and $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in M\langle X\rangle_{A}$ with leading coefficient $m_{k} \neq 0$. The following statements are equivalent:
(1) m is a good polynomial.
(2) For all $f \in m R_{R}, \operatorname{lm}(f) \succeq x^{\alpha_{k}}$.
(3) For all $f \in m A_{A}, \operatorname{lm}(f) \succeq x^{\alpha_{k}}$.
(4) For any $r \in R, m_{k} \sigma^{\alpha_{k}}(r)=0$ if and only if $m r=0$.
(5) $\operatorname{ann}_{R}(m)=\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right)$.
(6) $\operatorname{ann}_{A}(m)=\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$.
(7) $m A \cong\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ as A-modules.

Proof.
(1) $\Rightarrow(2)$ If $f \in m R_{R}$, then $f=m r$, for some $r \in R$. If we assume that $\operatorname{lm}(f) \prec x^{\alpha_{k}}$, then $\operatorname{lm}(m r) \prec \operatorname{lm}(m)$, which contradicts that m is a good polynomial. Hence $x^{\alpha_{k}} \preceq \operatorname{lm}(f)$, for all $f \in m R_{R}$.
$(2) \Rightarrow(3)$ Suppose that $x^{\alpha_{k}} \preceq \operatorname{lm}(f)$, for all $f \in m R_{R}$. It is clear that $\operatorname{lm}(m) \preceq \operatorname{lm}\left(m x^{\alpha}\right)$, for every $\alpha \in \mathbb{N}^{n}$. Thus, if $f=m g$, for some $g \in A$, then $x^{\alpha_{k}}=\operatorname{lm}(m) \prec \operatorname{lm}(m g)$, whence $x^{\alpha_{k}} \preceq \operatorname{lm}(f)$, for all $f \in m A_{A}$.
(3) \Rightarrow (4) Suppose that $m_{k} \sigma^{\alpha_{k}}(r)=0$. If $m r \neq 0$, then $m r$ is a non-zero element of $m A_{A}$ such that $\operatorname{lm}(m r) \prec \operatorname{lm}(m)=x^{\alpha_{k}}$, which is a contradiction. Thus, we have $m r=0$. For the other implication, if $m r=0$ then the leading coefficient of $m r$ is zero, that is, $m_{k} \sigma^{\alpha_{k}}(r)=0$ as desired.
(4) $\Rightarrow(5)$ If $r \in \operatorname{ann}_{R}(m)$, then $m r=0$. By statement (4), $m_{k} \sigma^{\alpha_{k}}(r)=0$ whence $\sigma^{\alpha_{k}}(r) \in \operatorname{ann}\left(m_{k}\right)$. Hence, $r \in \sigma^{-\alpha_{k}}\left(\operatorname{ann}\left(m_{k}\right)\right)$, and so $\operatorname{ann}_{R}(m) \subseteq$ $\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right)$. For the other inclusion if $r \in \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right)$, then $\sigma^{\alpha_{k}}(r) \in \operatorname{ann}\left(m_{k}\right)$ which implies that $m_{k} \sigma^{\alpha_{k}}(r)=0$, and thus $m r=0$ by hypothesis. This proves that $\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) \subseteq \operatorname{ann}_{R}(m)$.
$(5) \Rightarrow(6)$ Assume that (5) holds, and let $g=b_{1} x^{\beta_{1}}+\cdots+b_{t} x^{\beta_{t}} \in \operatorname{ann}_{A}(m)$. If $m g=0$, then $m_{k} \sigma^{\alpha_{k}}\left(b_{t}\right)=0$, and so $b_{t} \in \operatorname{ann}_{R}(m)$ by hypothesis. Thus, $m\left(b_{1} x^{\beta_{1}}+\cdots+b_{t-1} x^{\beta_{t-1}}\right)=0$ whence $m_{k} \sigma^{\alpha_{k}}\left(b_{t-1}\right)=0$, and so $b_{t-1} \in \operatorname{ann}_{R}(m)$. Continuing this process, we have $b_{i} \in \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right)$, for every $1 \leq i \leq t$, and so $g \in \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$. This proves the inclusion $\operatorname{ann}_{A}(m) \subseteq \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$. The other inclusion is clear.
(6) $\Rightarrow(7)$ Assume that (6) holds. If ϕ is the A-module homomorphism of A over $m A$ defined by $\phi(f)=m f$ for all $f \in A$, then it is clear that the kernel of ϕ is $\operatorname{ann}_{A}(m)$, whence $m A \cong A / \operatorname{ann}_{A}(m)$ by the first isomorphism theorem for A-modules. Additionally, if $\operatorname{ann}_{A}(m)=\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$ by assumption, then we get the isomorphism $m A \cong A / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$. Let φ be the map of $R / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) \times A$ over $A / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$ defined by $\varphi(\bar{r}, f):=\overline{r f}$. It is not difficult to see that φ is bilinear and due to the universal property of the tensorial product, there exists $\bar{\varphi}$ of $R / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) \otimes_{R} A$ over $A / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$ give by $\bar{\varphi}(\bar{r} \otimes f):=\overline{r f}$ with inverse $\bar{\varphi}^{-1}$ of $A / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A$ over $R / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) \otimes_{R} A$ defined by $\bar{\varphi}^{-1}(\bar{f}):=\overline{1} \otimes f$. Thus, it follows that $A / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A \cong$ $R / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) \otimes_{R} A$. Since $R / \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right)$ is isomorphic to the R-module $\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}}$, we have $m A \cong\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$, where the isomorphism ϕ is defined as $\phi(m g):=m_{k} \sigma^{\alpha_{k}}\left(b_{1}\right) x^{\beta_{1}}+\cdots+m_{k} \sigma^{\alpha_{k}}\left(b_{t}\right) x^{\beta_{t}}$, for every $g=b_{1} x^{\beta_{1}}+\cdots+b_{t} x^{\beta_{t}} \in A$.
(7) $\Rightarrow(1)$ Let ϕ be the isomorphism defined above. If m is a polynomial such that $\operatorname{lm}(m r) \prec \operatorname{lm}(m)$, for some $r \in R$, then $m_{k} \sigma^{\alpha_{k}}(r)=0$. Thus, $\phi(m r)=m_{k} \sigma^{\alpha_{k}}(r)=0$, and since ϕ is injective, this implies that $m r=0$. Hence, m is a good polynomial.

Shock proved that given any non-zero polynomial $f(x) \in R[x]$, there exists $r \in R$ such that $f(x) r$ is good [41, Proposition 2.2]. Lemma 3.3 generalize Shock's result and characterizes the right annihilators of good polynomials over the induced module $M\langle X\rangle_{A}$. This lemma extends [24, Corollary 3.5].

Lemma 3.3. Let A be a bijective skew $P B W$ extension over R and M_{R} be a right module. If $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in M\langle X\rangle_{A}$ with leading coefficient $m_{k} \neq 0$, then:
(1) There exists $r \in R$ such that $m r$ is good polynomial.
(2) If m is good polynomial, we have $\operatorname{ann}_{A}(m)=\operatorname{ann}_{R}(m) A$.

Proof. (1) Assume that the result is false and suppose that $m \in M\langle X\rangle_{A}$ is a counterexample of minimal leading monomial, that is, $m r$ is not a good polynomial, for every $r \in R$. In particular, if $r=1$, then m is not a good
polynomial, and thus there exists $r \in R$ such that $\operatorname{lm}(m r) \prec \operatorname{lm}(m)$. If $m r \neq 0$, then by the minimality of $\operatorname{lm}(m)$, there exists $c \in R$ with $m r c$ a good polynomial. However, this contradicts the fact that $m r$ is not a good polynomial for all $r \in R$.
(2) If m is good polynomial, by using equivalences (5) and (6) of Lemma 3.2, we have $\operatorname{ann}_{A}(m)=\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right) A=\operatorname{ann}_{R}(m) A$.

A submodule N_{R} of M_{R} is called essential if $m R \cap N \neq 0$, for any $0 \neq m \in M_{R}$. The set of all elements $m \in M_{R}$ such that $\operatorname{ann}_{R}(m)$ is an essential ideal of R is said to be the singular submodule of M_{R} and is denoted by $Z\left(M_{R}\right) ; M_{R}$ is called nonsingular if $Z\left(M_{R}\right)=0$ [22, Definition 3.26]. Leroy and Matczuk [24] proved that there exist good polynomials of any degree in a submodule of a nonsingular module. The following proposition extends [24, Proposition 3.6].

Proposition 3.4. Let A be a bijective skew PBW extension over R, M_{R} be a right module, and $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}}$ be a good polynomial of $M\langle X\rangle_{A}$ with leading coefficient $m_{k} \neq 0$. If the submodule $m_{k} R$ of M_{R} is nonsingular, then:
(1) $m_{k} A$ contains a good polynomial f with leading monomial x_{i} for all i.
(2) For any $x^{\alpha_{l}} \succeq x^{\alpha_{k}}$, there exists a good polynomial $f \in m A$ with leading monomial $x^{\alpha_{l}}$.

Proof. (1) Let $g \in A$ with leading term $m_{k} x_{i}$ for some $1 \leq i \leq n$. Since $m_{k} R$ is nonsingular, there exists $0 \neq b \in R$ such that $\sigma_{i}(b) R \bigcap \bigcap_{a n n_{R}}\left(m_{k}\right)=0$. Note that the leading coefficient of the polynomial $g b$ is $m_{k} \sigma_{i}(b)$. Now, consider an element $r \in R$ such that $\sigma_{i}(r) \in \operatorname{ann}_{R}\left(m_{k} \sigma_{i}(b)\right)$. In this way, $\sigma_{i}(b) \sigma_{i}(r) \in \sigma_{i}(b) R \bigcap \operatorname{ann}_{R}\left(m_{k}\right)=0$, and so $\sigma_{i}(b r)=0$. By the injectivity of σ_{i}, if $b r=0$, then $g b r=0$. This proves that $f=g b$ is a good polynomial with leading monomial x_{i}.
(2) If m is a good polynomial, then there exists an isomorphism of A-modules ϕ of $m A$ over $\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ such that $\phi(m g):=m_{k} \sigma^{\alpha_{k}}\left(b_{1}\right) x^{\beta_{1}}+\cdots+m_{k} \sigma^{\alpha_{k}}\left(b_{j}\right) x^{\beta_{j}}$, for every $g=b_{1} x^{\beta_{1}}+\cdots+b_{j} x^{\beta_{j}} \in A$, by Lemma 3.2 (7). Furthermore, we get $\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right)=\operatorname{ann}_{R}(m)$, by Lemma 3.2 (5), which implies that the leading monomial of $\phi(m g)$ is $x^{\beta_{j}}$ if and only if the leading monomial of $m g$ is $x^{\alpha_{k}+\beta_{j}}$. Therefore, $m g \in m A$ is a good polynomial if and only if $m_{k} \sigma^{\alpha_{k}}(g) \in\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ is a good polynomial by Lemma 3.2 (2).

It is not difficult to see that, if $m_{k} R$ is nonsingular, then $\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}}$ also is. By part (1), there exists $g^{\prime}=\phi(m g) \in\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ a good polynomial such that the leading monomial of g^{\prime} is x_{1}. Thus, $m g^{\prime}$ is a good polynomial of $m A$ with leading monomial x^{β} with $\beta \in \mathbb{N}^{n}$, where $\beta_{1}=\alpha_{k 1}+1$ and $\beta_{i}=\alpha_{k i}$, for all $2 \leq i \leq n$. Since the leading coefficient of $m g^{\prime}$ belongs to $\left\langle m_{k} R\right\rangle_{\sigma^{\alpha_{k}}}$, its leading coefficient satisfies the hypothesis of the theorem. Thus, there exists $m g^{\prime \prime} \in m A$ with leading monomial x^{β} where $\beta_{1}=\alpha_{k 1}+2$ and $\beta_{i}=\alpha_{k i}$, for every $2 \leq i \leq n$. Following this argument, in at most $\left|\alpha_{l 1}-\alpha_{k 1}\right|$ steps, we find a good polynomial $m g_{1}$ with leading monomial x^{β} where $\beta_{1}=\alpha_{l 1}$ and $\beta_{i}=\alpha_{k i}$, for all $2 \leq i \leq n$. The idea is to continue with x_{2}. By part (1), there exists $g_{1}^{\prime} \in\left\langle m_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ a good polynomial where the leading monomial of g_{1}^{\prime} is x_{2}. Thus, $m g_{1}^{\prime}$ is a good polynomial of $m A$ with leading monomial x^{β} with $\beta \in \mathbb{N}^{n}$, where $\beta_{1}=\alpha_{l 1}, \beta_{2}=\alpha_{k 2}+1$ and $\beta_{i}=\alpha_{k i}$, for all $3 \leq i \leq n$. Repeating the process, in at most $\left|\alpha_{l 2}-\alpha_{k 2}\right|$
steps, we find a good polynomial $m g_{2}$ with leading monomial x^{β} where $\beta_{i}=\alpha_{l i}$ for $i=1,2$ and $\beta_{i}=\alpha_{k i}$, for all $3 \leq i \leq n$. In this way, in at most $n \cdot \max \left\{\left|\alpha_{l i}-\alpha_{k i}\right|\right\}$ steps, we have a good polynomial f with $\operatorname{lm}(f)=x^{\alpha_{l}}$.

Let R be a ring, $\Sigma:=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be a finite set of endomorphisms of R and $\Delta:=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a finite set of Σ-derivations of R. If I is a two-sided ideal of R, then I is called Σ-invariant if $\sigma_{i}(I) \subseteq I$, for every $1 \leq i \leq n ; I$ is a Δ-invariant ideal if $\delta_{i}(I) \subseteq I$, for all $1 \leq i \leq n$; if I is both Σ and Δ-invariant, we say that I is (Σ, Δ)-invariant [2, Definition 2.1]. These ideals have been widely studied in the literature [2, 26, 30, 34].

Leroy and Matczuk defined some invariant ideals associated with an ideal I of R, an endomorphism σ of R, and a σ-derivation δ of R (cf. [24, p. 2746]). Following their ideas, we consider some ideals with the aim of studying properties of induced modules over skew PBW extensions.
Definition 3.5. Let R be a ring, $\Sigma:=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be a finite set of endomorphisms of R and $\Delta:=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a finite set of Σ-derivations of R. If I is a two-sided ideal of R, then

$$
\begin{aligned}
I_{\Sigma} & :=\left\{a \in I \mid \sigma^{\alpha}(a) \in I, \text { for all } \alpha \in \mathbb{N}^{n}\right\}, \\
I_{\Delta} & :=\left\{a \in I \mid \delta^{\beta}(a) \in I, \text { for all } \beta \in \mathbb{N}^{n}\right\} \\
I_{\Sigma, \Delta} & :=\left\{a \in I \mid \sigma^{\alpha} \delta^{\beta}(a) \in I, \text { for all } \alpha, \beta \in \mathbb{N}^{n}\right\} .
\end{aligned}
$$

Remark 3.6. Notice that I is Σ-invariant if and only if $I=I_{\Sigma} ; I$ is Δ-invariant if and only if $I=I_{\Delta}$, and I is a (Σ, Δ)-invariant ideal if and only if $I=I_{\Sigma, \Delta}$.

The following lemma extends [24, Lemma 3.1].
Lemma 3.7. Let R be a ring, $\Sigma:=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be a finite set of endomorphisms of R, and $\Delta:=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a finite set of Σ-derivations of R.
(1) $I_{\Sigma, \Delta} \subseteq I_{\Sigma} \cap I_{\Delta}$.
(2) If either I_{Σ} is Δ-invariant or I_{Δ} is Σ-invariant, then $I_{\Sigma, \Delta}=I_{\Sigma}$.
(3) If N_{R} is a right module with $I=\operatorname{ann}_{R}(N)$ an ideal Δ-invariant, then:
(a) $\operatorname{ann}_{R}(N\langle X\rangle)=I_{\Sigma, \Delta}$.
(b) If $\operatorname{ann}_{A}(N\langle X\rangle)=J A$ for some ideal J, then $J=I_{\Sigma, \Delta}=\operatorname{ann}_{R}(N\langle X\rangle)$.

Proof. (1) If $a \in I_{\Sigma, \Delta}$, then $\sigma^{\alpha} \delta^{\beta}(a) \in I$ for every $\alpha, \beta \in \mathbb{N}^{n}$. Thus, $\sigma^{\alpha}(a) \in I$ which implies that $a \in I_{\Sigma}$. Similarly, if $\sigma^{\alpha} \delta^{\beta}(a) \in I$ for all $\alpha, \beta \in \mathbb{N}^{n}$, then $\delta^{\beta}(a) \in I$ for all $\beta \in \mathbb{N}^{n}$, which implies that $a \in I_{\Delta}$, and so $a \in I_{\Sigma} \cap I_{\Delta}$.
(2) Suppose that I_{Σ} is a Δ-invariant ideal. If $a \in I_{\Sigma}$ and I_{Σ} is Δ-invariant, then $\delta^{\beta}(a) \in I_{\Sigma}$, and hence $\sigma^{\alpha} \delta^{\beta}(a) \in I$, for all $\alpha, \beta \in \mathbb{N}^{n}$. Thus, $I_{\Sigma} \subseteq I_{\Sigma, \Delta}$. If I_{Δ} is Σ-invariant, then the argument is similar.
(3) Let N_{R} be a right module with $I=\operatorname{ann}_{R}(N)$ an ideal Δ-invariant.
(a) Let $n=n_{1} x^{\alpha_{1}}+\cdots+n_{k} x^{\alpha_{k}} \in N\langle X\rangle_{A}$. For every $r \in R$, the coefficients of $n r$ are products of n_{i} with elements obtained evaluating σ 's and δ 's in the element r [35, Remark 2.10]. If $r \in I_{\Sigma, \Delta}$, then $n r=0$, and so $I_{\Sigma, \Delta} \subseteq \operatorname{ann}_{R}(N\langle X\rangle)$. For the other inclusion, if $r \in \operatorname{ann}_{R}(N\langle X\rangle)$, then $n x^{\alpha} r=0$, for any $\alpha \in \mathbb{N}^{n}$ and every $n \in N$. Notice that the leading coefficient of $n x^{\alpha} r$ is zero, that is, $n \sigma^{\alpha}(r)=0$, for all α, which implies that $r \in I_{\Sigma}$. Since I is a Δ-invariant ideal, we have $r \in I_{\Sigma}=I_{\Sigma, \Delta}$ and so $\operatorname{ann}_{R}(N\langle X\rangle) \subseteq I_{\Sigma, \Delta}$.
(b) By item (a), we obtain $I_{\Sigma, \Delta} \subseteq J$. For the other inclusion, if we have the equality $\operatorname{ann}_{A}(N\langle X\rangle)=J A$, for some ideal J, then $n x^{\alpha} r x^{\beta}=0$, for every $\alpha, \beta \in \mathbb{N}^{n}, r \in J$, and $n \in N$. In particular, if $\beta=0$, then $n x^{\alpha} r=0$ and $n \sigma^{\alpha}(r)=0$, for any α, which implies that $r \in I_{\Sigma}$. Since I is Δ-invariant, we get $r \in I_{\Sigma}=I_{\Sigma, \Delta}$ which shows that the equality $J=I_{\Sigma, \Delta}=\operatorname{ann}_{R}(N\langle X\rangle)$ follows.

The following lemma characterizes annihilators of generated submodules by good polynomials and extends [24, Lemma 3.7].

Lemma 3.8. Let A be a bijective skew $P B W$ extension over R, M_{R} be a right module, and $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in M\langle X\rangle_{A}$ be a good polynomial with leading coefficient $m_{k} \neq 0$. If $I:=\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k} R\right)\right)$, then:
$(1) \operatorname{ann}_{R}(m A) \subseteq \operatorname{ann}_{A}(m A) \subseteq \operatorname{ann}_{A}(m R)$.
(2) $\operatorname{ann}_{R}(m R)=I$ and $\operatorname{ann}_{A}(m R)=I A$.
(3) $\operatorname{ann}_{R}(m A)=I_{\Sigma, \Delta}$.
(4) If I_{Σ} is Δ-invariant, then $\operatorname{ann}_{A}(m A)=I_{\Sigma} A$.

Proof. (1) Since $R \subseteq A$, it follows that $\operatorname{ann}_{R}(m A) \subseteq \operatorname{ann}_{A}(m A)$. On the other hand if $f \in \operatorname{ann}_{A}(m A)$, then $g A f=0$ whence $g R f=0$. This proves that $\operatorname{ann}_{A}(m A) \subseteq \operatorname{ann}_{A}(m R)$.
(2) Let us show that $\operatorname{ann}_{R}(m R)=I$. If $r \in I$, then $m_{k} R \sigma^{\alpha_{k}}(r)=0$, and since m is a good polynomial, we have $m R r=0$ and thus $r \in \operatorname{ann}_{R}(m R)$. Now, if $r \in \operatorname{ann}_{R}(m R)$, then $m_{k} R \sigma^{\alpha_{k}}(r)=0$ and so $r \in \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k} R\right)\right)=I$. Let us prove that $\operatorname{ann}_{A}(m R)=I A$. If $f=a_{1} x^{\beta_{1}}+\cdots+a_{t} x^{\beta_{t}} \in \operatorname{ann}_{A}(m R)$, then $m R f=0$ whence $m_{k} R \sigma^{\alpha_{k}}\left(a_{t}\right)=0$. Since m is good, it follows that $a_{t} \in \operatorname{ann}_{R}(m R)=I$. If $m R a_{t}=0$, then $m R\left(a_{1} x^{\beta_{1}}+\cdots+a_{t-1} x^{\beta_{t-1}}\right)=0$ which implies that $m_{k} R \sigma^{\alpha_{k}}\left(a_{t-1}\right)=0$. If m is good, then $m R a_{t-1}=0$, and thus $a_{t-1} \in \operatorname{ann}_{R}(m R)=I$. Continuing this argument, we have that $a_{i} \in \operatorname{ann}_{R}(m R)=I$, for every $1 \leq i \leq t$, and so $f \in \operatorname{ann}_{R}(m R) A=I A$. Hence, $\operatorname{ann}_{A}(m R) \subseteq I A$. The reverse inclusion is clear.
(3) We have the R-module isomorphism $(m R)\langle X\rangle=m R \otimes_{R} A \cong m A$. By item (2), we obtain that $\operatorname{ann}_{R}(m R)=I$ and by Lemma 3.7 (3)(a), it follows that $\operatorname{ann}_{R}((m R)\langle X\rangle)=\operatorname{ann}_{R}(m A)=I_{\Sigma, \Delta}$.
(4) Suppose that I_{Σ} is Δ-invariant. By Lemma 3.7 (2), we get $I_{\Sigma}=I_{\Sigma, \Delta}$. By items (1) and (3), we obtain $I_{\Sigma} A=\operatorname{ann}_{R}(m A) A \subseteq \operatorname{ann}_{A}(m A)$. To see the other inclusion if $f=a_{1} x^{\beta_{1}}+\cdots+a_{t} x^{\beta_{t}} \in \operatorname{ann}_{A}(m A)$, then $m R x^{\beta} f=0$ whence $\sigma^{\beta}\left(a_{t}\right) \in \sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k} R\right)\right)=I$, for every $\beta \in \mathbb{N}^{n}$, and so $a_{t} \in I_{\Sigma}$. Since m is good, we get $m R x^{\beta} a_{t}=0$ for all $\beta \in \mathbb{N}^{n}$ whence $m A a_{t}=0$. Then $m A\left(f-a_{t} x^{\beta_{t}}\right)=0$ and $\operatorname{lm}\left(f-a_{t} x^{\beta_{t}}\right) \prec \operatorname{lm}(f)$. An inductive argument proves that $\operatorname{ann}_{A}(m A) \subseteq I_{\Sigma} A$ and so the equality $\operatorname{ann}_{A}(m A)=I_{\Sigma} A$ holds.
3.2. Uniform dimension over skew PBW extensions. In this section, we study the essential modules and the uniform dimension of induced modules over skew PBW extensions. The following theorem extends [24, Lemma 4.1].

Lemma 3.9. Let A be a bijective skew $P B W$ extension over R and M_{R} be a right module. If N_{R} is a submodule M_{R}, then:
(1) $N\langle X\rangle_{R}$ is essential in $M\langle X\rangle_{R}$ if and only if $N\langle X\rangle_{A}$ is essential in $M\langle X\rangle_{A}$.
(2) $Z\left(M_{R}\right)=0$ if and only if $Z\left(M\langle X\rangle_{R}\right)=0$.
(1) If $N\langle X\rangle_{R}$ is essential, then $0 \neq m R \cap N\langle X\rangle_{R} \subseteq m A \cap N\langle X\rangle_{A}$ for every $m \in M\langle X\rangle_{A}$, and so $N\langle X\rangle_{A}$ is an essential submodule of $M\langle X\rangle_{A}$. Suppose that $N\langle X\rangle_{A}$ is an essential submodule of $M\langle X\rangle_{A}$ and consider the A module homomorphism of $M\langle X\rangle_{A}$ over $(M / N)\langle X\rangle_{A}$ defined by $\phi\left(m_{1} x^{\alpha_{1}}+\right.$ $\left.\cdots+m_{k} x^{\alpha_{k}}\right):=\overline{m_{1}} x^{\alpha_{1}}+\cdots+\overline{m_{k}} x^{\alpha_{k}}$. It is not hard to see that ϕ induces an isomorphism $\bar{\phi}$ between the A-modules $M\langle X\rangle_{A} / N\langle X\rangle_{A}$ and $(M / N)\langle X\rangle_{A}$. Let $\bar{f} \in(M / N)\langle X\rangle_{A}$ be the image of f by $\bar{\phi}$, for some $f \in M\langle X\rangle_{A} \backslash N\langle X\rangle_{A}$. By Lemma 3.3 (1), there exists $r \in R$ such that $\bar{f} r$ is a good polynomial and since $N\langle X\rangle_{A}$ is an essential submodule of $M\langle X\rangle_{A}$, we have $\operatorname{fr} A \cap N\langle X\rangle_{A} \neq 0$, that is, there exists $g=b_{1} x^{\beta_{1}}+\cdots+b_{t} x^{\beta_{t}} \in A$ such that $0 \neq f r g \in N\langle X\rangle_{A}$. By Lemma 3.3 (2), if $0 \neq f r g \in N\langle X\rangle_{A}$, then $g \in \operatorname{ann}_{A}(\bar{f} r)=\operatorname{ann}_{R}(\bar{f} r) A$ whence $b_{i} \in \operatorname{ann}_{R}(\bar{f} r)$, for every $1 \leq i \leq t$. Thus, $\bar{f} r b_{i}=0$, and so $f r b_{i} \in N\langle X\rangle_{R}$. Additionally if $f r g \neq 0$, then $0 \neq f r b_{i} \in N\langle X\rangle_{R}$, for some $1 \leq i \leq t$. This shows that $f R \cap N\langle X\rangle_{R} \neq 0$, and hence $N\langle X\rangle_{R}$ is an essential submodule of $M\langle X\rangle_{R}$.
(2) Since $Z\left(M_{R}\right)=Z\left(M\langle X\rangle_{R}\right) \cap M_{R}$ if $Z\left(M\langle X\rangle_{R}\right)=0$, then $Z\left(M_{R}\right)=0$. Assume that $Z\left(M\langle X\rangle_{R}\right) \neq 0$ and let $f=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in Z\left(M\langle X\rangle_{R}\right)$ with leading coefficient $m_{k} \neq 0$ and minimal monomial leading, that is, $\operatorname{lm}(f) \preceq \operatorname{lm}(g)$, for all $g \in f R$. By Lemma 3.2 (2) and (5), f is a good polynomial and $\operatorname{ann}_{R}(f)=\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(m_{k}\right)\right)$ is an essential ideal of R which implies that $0 \neq m_{k} \in Z\left(M\langle X\rangle_{R}\right) \cap M_{R}=Z\left(M_{R}\right)$.
(3) Assume that $Z\left(M_{R}\right)=0$ and $Z\left(M\langle X\rangle_{A}\right) \neq 0$. Let $f=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}}$ be an element of $Z\left(M\langle X\rangle_{A}\right)$ with leading coefficient $m_{k} \neq 0$ and minimal monomial leading, that is, $\operatorname{lm}(f) \preceq \operatorname{lm}(g)$, for all $g \in f A$. By Lemma 3.2 (3), f is a good polynomial and by Lemma $3.3(2), \operatorname{ann}_{A}(f)=\sigma^{-\alpha_{k}}(I) A$ where $I=\operatorname{ann}_{R}\left(a_{k}\right)$. Since $\sigma^{-\alpha_{k}}(I) A \cap m^{\prime} A \neq 0$, for all $m^{\prime} \in M\langle X\rangle_{A}$, it follows that $\sigma^{-\alpha_{k}}(I) \cap m^{\prime} M_{R} \neq 0$, and so $\sigma^{-\alpha_{k}}(I)$ is an essential ideal of R. Therefore, $0 \neq a_{k} \in Z\left(M_{R}\right)$ which is a contradiction. This proves that $Z\left(M\langle X\rangle_{A}\right)=0$ as desired.

If R is a ring, σ is an automorphism of R, and δ is a σ-derivation of R, then an ideal I of R is said to be $\left(\sigma, \sigma^{-1}, \delta\right)$-stable if $\sigma(I)=I$ and $\delta(I) \subseteq I[17$, p. 6]. Annin [4] investigated properties of induced modules over skew polynomial rings under the assumption that for any $m \in M_{R}, I=\operatorname{ann}_{R}(m)$ is a $\left(\sigma, \sigma^{-1}, \delta\right)$-stable ideal. Leroy and Matczuk [24] studied these same modules using the following condition: M_{R} satisfies the weak (σ, δ)-compatibility condition if every non-zero submodule N_{R} of M_{R} contains an element $m \neq 0$ such that $\operatorname{ann}_{R}(m)$ is $\left(\sigma, \sigma^{-1}, \delta\right)$-stable [24, Definition 4.2]. Thinking about skew PBW extensions, we consider the following definition: if R is a ring, $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is a finite family of endomorphisms of R and $\Delta=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ is a finite family of Σ-derivations of R, then an ideal I of R is called $\left(\Sigma, \Sigma^{-1}, \Delta\right)$-stable if $\sigma_{i}(I)=I$ and $\delta_{i}(I) \subseteq I$, for every $1 \leq i \leq n$. This definition allows us to extend the compatibility condition as follows.

Definition 3.10. Let R be a ring, Σ be a finite family of endomorphisms of R, and Δ a finite family of Σ-derivations of R. We say that a right module M_{R} satisfies
the weak (Σ, Δ)-compatibility condition, if every submodule N_{R} of M_{R} contains an element $a \neq 0$ such that $I:=\operatorname{ann}_{R}(a)$ is $\left(\Sigma, \Sigma^{-1}, \Delta\right)$-stable.

The following lemma is analogous to [24, Lemma 4.3].
Lemma 3.11. Let R be a ring, $\Gamma=\left\{\gamma_{i}, \ldots, \gamma_{n}\right\}$ be a family of automorphisms of R, and $\Lambda=\left\{\lambda_{i}, \ldots, \lambda_{n}\right\}$ be a family of Γ-derivations of R. If A is a bijective skew $P B W$ extension over R and M_{R} is a right weak (Γ, Λ)-compatible module, then:
(1) For any good polynomial $m \in M\langle X\rangle_{A}$, there exists $r \in R$ such that $m r$ is good and the annihilator of its leading coefficient is $\left(\Gamma, \Gamma^{-1}, \Lambda\right)$-stable.
(2) Suppose that for the family of endomorphisms $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ we have $\sigma_{i} \gamma_{j}=\gamma_{j} \sigma_{i}$ for $1 \leq i, j \leq n$. If there exist some central invertible elements $q_{i j} \in R$ such that $\sigma_{i} \lambda_{j}=q_{i j} \lambda_{j} \sigma_{i}$ and γ_{i} and λ_{i} can be extended to A, then then module $M\langle X\rangle_{A}$ satisfies the weak (Γ, Λ)-compatibility condition.
Proof. (1) Let $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}}$ be a non-zero good polynomial with leading coefficient $m_{k} \neq 0$. If M_{R} satisfies the weak (Γ, Λ)-compatibility condition, then there exists $r \in R$ such that $m_{k} r \neq 0$ and $I=\operatorname{ann}_{R}\left(m_{k} r\right)$ is $\left(\Gamma, \Gamma^{-1}, \Lambda\right)$-stable. By Lemma 3.2, $m \sigma^{-\alpha_{k}}(r)$ is a good polynomial with leading coefficient $m_{k} r$ and I is the annihilator of its leading coefficient.
(2) Let $N\langle X\rangle$ be a submodule of $M\langle X\rangle_{A}$ and $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in N\langle X\rangle$ be a polynomial of minimal leading monomial in $m A$, that is, $x^{\alpha_{k}} \prec \operatorname{lm}(f)$ for every $f \in m A$. By Lemma 3.2 and item (1), m is a good polynomial, and so $m \sigma^{-\alpha_{k}}(r)$ is also a good polynomial for some $r \in R$ with $I=\operatorname{ann}_{R}\left(m_{k} r\right)$ $\left(\Gamma, \Gamma^{-1}, \Lambda\right)$-stable. Additionally, $\operatorname{ann}_{A}(m)=\sigma^{-\alpha_{k}}(I) A$ by Lemma 3.2, and since $\sigma_{i} \gamma_{j}=\gamma_{j} \sigma_{i}, \sigma_{i} \lambda_{j}=q_{i j} \lambda_{j} \sigma_{i}$ for every $1 \leq i, j \leq n$ and some central invertible element $q_{i j} \in R$, and also λ_{i} can be extended to A, it follows that $\operatorname{ann}_{A}(m)=\sigma^{-\alpha_{k}}(I) A$ is $\left(\Gamma, \Gamma^{-1} \Lambda\right)$-stable.

Leroy and Matczuk showed that the induced modules over skew polynomial rings have good polynomials of any degree [24, Example 3.3]. This fact motivated the following definition: a submodule B_{S} of \widehat{M}_{S} is called good, if for any good polynomial $g \in B_{S}$ and any $n \geq \operatorname{deg}(\mathrm{g})$, there exists a good polynomial of degree n in $g S$ [24, Definition 4.4]. Following this idea and with the purpose of studying properties of induced modules over skew PBW extensions, we introduce the following definition.

Definition 3.12. Let A be a skew PBW extension over R and M_{R} be a right module. A submodule $N\langle X\rangle_{A}$ of $M\langle X\rangle_{A}$ is called good, if for any good polynomial $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in N\langle X\rangle_{A}$ and any monomial x^{β} with $\beta \in \mathbb{N}^{n}$, there exists a good polynomial $f \in m A$ such that $\operatorname{lm}(f)=x^{\beta} \succeq x^{\alpha_{k}}$.

The following lemma generalizes [24, Lemma 4.5].
Lemma 3.13. Let A be a bijective skew $P B W$ extension over R and M_{R} be a right module. If one of the following conditions is satisfied
(1) M_{R} is nonsingular.
(2) $M_{R}=R_{R}$ and for any non-zero element $r \in R$, there is a good polynomial $m \in r A$ with leading monomial x_{i} for all i.
(3) A is a skew $P B W$ extension of endomorphism type.
(4) M_{R} satisfies the weak (Σ, Δ)-compatibility condition.
then $M\langle X\rangle_{A}$ is a good module.

Proof. (1) This statement is a direct consequence of Proposition 3.4.
(2) If $f=a_{1} x^{\alpha_{1}}+\cdots+a_{k} x^{\alpha_{k}}$ is a good polynomial of A with leading monomial $x^{\alpha_{k}}$, then there exists an A-module isomorphism ϕ of $f A$ over $\left\langle a_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ such that $\phi(f g):=a_{k} \sigma^{\alpha_{k}}\left(b_{1}\right) x^{\beta_{1}}+\cdots+a_{k} \sigma^{\alpha_{k}}\left(b_{j}\right) x^{\beta_{j}}$, for every $g \in A$ with leading monomial $x^{\beta_{j}}$ for any $\beta_{j} \in \mathbb{N}^{n}$, by Lemma 3.2 (7). Furthermore, we have $\sigma^{-\alpha_{k}}\left(\operatorname{ann}_{R}\left(a_{k}\right)\right)=\operatorname{ann}_{R}(f)$, by Lemma 3.2 (5), which implies that the leading monomial of $\phi(f g)$ is $x^{\beta_{j}}$ if and only if the leading monomial of $f g$ is $x^{\alpha_{k}+\beta_{j}}$. Therefore, $f g \in f A$ is a good polynomial if and only if $a_{k} \sigma^{\alpha_{k}}(g) \in\left\langle a_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ is a good polynomial by Lemma 3.2 (2).

If x^{β} is a monomial such that $x^{\alpha_{k}} \preceq x^{\beta}$, for some $\beta \in \mathbb{N}^{n}$, we must find a good polynomial with leading monomial x^{β}. By assumption, if $a_{k} \in R$, there exists $g^{\prime}=\phi(f g) \in\left\langle a_{k}\right\rangle_{\sigma^{\alpha_{k}}} A$ a good polynomial such that the leading monomial of g^{\prime} is x_{i}, for all i. Following the same argument of Proposition 3.4, we find a good polynomial \bar{f} of $f A$ with leading monomial x^{β} in at most $n \cdot \max \left\{\left|\beta_{i}-\alpha_{k i}\right|\right\}$ steps, proving that A_{A} is a good module.
(3) Let $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in M\langle X\rangle_{A}$ be a good polynomial with leading coefficient $m_{k} \neq 0$. If $\operatorname{lm}\left(m x^{\alpha} r\right) \prec \operatorname{lm}\left(m x^{\alpha}\right)$ for some $r \in R$, then $m_{k} \sigma^{\alpha_{k}}\left(\sigma^{\alpha}(r)\right)=0$. Thus, $\operatorname{lm}\left(m \sigma^{\alpha}(r)\right) \prec \operatorname{lm}(m)$, which contradicts that m is good polynomial. Hence, $m x^{\alpha}$ is also good polynomial for any $\alpha \in \mathbb{N}^{n}$.
(4) Let $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in M\langle X\rangle_{A}$ be a good polynomial with leading coefficient $m_{k} \neq 0$. We claim that $m x^{\beta}$ is good, for any $\beta \in \mathbb{N}^{n}$. If $x^{\alpha_{k}+\beta}$ is the leading monomial of $m x^{\beta}$ and $\operatorname{lm}\left(m x^{\beta} r\right) \prec \operatorname{lm}\left(m x^{\beta}\right)$, for some $r \in R$, then $m_{k} \sigma^{\alpha_{k}+\beta}(r)=0$. By Lemma $3.11(1), \operatorname{ann}_{R}\left(m_{k}\right)$ is $\left(\Sigma, \Sigma^{-1}, \Delta\right)$-stable, and so $r \in \operatorname{ann}_{R}\left(m_{k}\right)$. Furthermore, if $\operatorname{ann}_{R}\left(m_{k}\right)$ is $\left(\Sigma, \Sigma^{-1}, \Delta\right)$-stable, then $m x^{\beta} r=0$ which proves that $m x^{\beta}$ is a good polynomial for any $\beta \in \mathbb{N}^{n}$.

Recall that M_{R} is said to be a uniform module if every submodule of N_{R} of M_{R} is an essential submodule. Equivalently, M_{R} is called uniform if the intersection of any two non-zero submodules of M_{R} is non-zero [22, p. 84]. Theorem 3.14 characterizes the essential and uniform submodules of the induced module $M\langle X\rangle_{A}$.
Theorem 3.14. Let A be bijective a skew $P B W$ extension over R, M_{R} be a right module, and N_{R} be a submodule of M_{R}. If $N\langle X\rangle_{A}$ is a good module, then:
(1) N_{R} is essential in M_{R} if and only if $N\langle X\rangle_{A}$ is essential in $M\langle X\rangle_{A}$.
(2) N_{R} is uniform if and only if $N\langle X\rangle_{A}$ is uniform.

Proof. (1) If T_{R} is a submodule of M_{R} such that $T_{R} \cap N_{R}=0$, we have that $T\langle X\rangle_{A} \cap N\langle X\rangle_{A}=0$, which proves that if $N\langle X\rangle_{A}$ is essential, then N_{R} is essential. Suppose that N_{R} is an essential submodule of M_{R}. By Lemma 3.9 (1), we need to show that $N\langle X\rangle_{R}$ is an essential submodule in $M\langle X\rangle_{R}$, that is, $m R \cap N\langle X\rangle_{R} \neq 0$, for any $m \in M\langle X\rangle_{R}$. We proceed by induction on the monomials. By Lemma 3.3, we may assume that $m=m_{1} x^{\alpha_{1}}+$ $\cdots+m_{k} x^{\alpha_{k}} \in M\langle X\rangle_{R}$ is a good polynomial. If $\alpha_{k}=0$, then $m=m_{k} \in$ M_{R}, and $m R \cap N_{R} \neq 0$ because N_{R} is essential. Suppose the statement is true for any leading monomial x^{β} such that $x^{\beta} \prec x^{\alpha_{k}}$ with $\beta \in \mathbb{N}^{n}$. If N_{R} is an essential submodule in M_{R}, then $m_{k} R \cap N_{R} \neq 0$, whence $m_{k} \sigma^{\alpha_{k}}(r) \in N_{R}$, for some $r \in R$. The element $m_{k} \sigma^{\alpha_{k}}(r) \in N \subseteq N\langle X\rangle_{A}$ is a good polynomial, and since $N\langle X\rangle_{A}$ is a good module, there exists a good polynomial $g \in m_{k} \sigma^{\alpha_{k}}(r) A \subseteq N\langle X\rangle_{A}$ such that $\operatorname{lm}(g)=\operatorname{lm}(m r)$. The
leading coefficient of g belongs to $m_{k} \sigma^{\alpha_{k}}(r) R$, so there exists $w \in R$ such that $m r w$ and g have the same leading coefficient, and then g and $m r w$ have the same leading term. If $g=m r w$, it follows that $g \in m R \cap N\langle X\rangle_{R}$ which proves that $N\langle X\rangle_{R}$ is essential in $M\langle X\rangle_{R}$. If $g \neq m r w$, then $m r w-g \neq 0$ and since $m r w$ and g have the same leading term, the leading monomial of $m r w-g$ is x^{β} for some $\beta \in \mathbb{N}^{n}$ with $x^{\beta} \prec x^{\alpha_{k}}$. Thus, by the inductive hypothesis, there exists $s \in R$ such that $h:=(m r w-g) s \in N\langle X\rangle_{R}$ with $h \neq 0$. Since $m r w$ and g are good polynomials of the same leading term, they have the same annihilator in R. In this way, if $m r w s=0$, then $g s=0$ and so $h=0$ which is a contradiction. Therefore, we have mrws $\neq 0$, and $0 \neq m r w s=g s+h \in m R \cap N\langle X\rangle_{R}$.
(2) It is clear that if $N\langle X\rangle_{A}$ is a uniform module, then N_{R} is a uniform module. For the other implication, suppose that N_{R} is a uniform module. If $N\langle X\rangle_{A}$ is not uniform, then there exist non-zero polynomials $f, g \in N\langle X\rangle_{R}$ such that $f A \cap g A=0$ with $f=n_{1} x^{\alpha_{1}}+\cdots+n_{k} x^{\alpha_{k}}$ and $g=n_{1}^{\prime} x^{\beta_{1}}+\cdots+n_{l}^{\prime} x^{\beta_{l}}$. By Lemma 3.3 (1), we may assume that f and g are good polynomials with $\operatorname{lm}(g) \preceq \operatorname{lm}(f)$. Since $N\langle X\rangle_{A}$ is a good submodule of $M\langle X\rangle_{A}$, there is a good polynomial $h \in g A$ with $\operatorname{lm}(h)=\operatorname{lm}(f)$. Let n_{k} and $n_{t}^{\prime \prime}$ be the leading coefficients of the polynomials f and h, respectively. Since $n_{k}, n_{t}^{\prime \prime} \in N_{R}$ and N_{R} is uniform, there exist $r, s \in R$ such that $n_{k} r=n_{t}^{\prime \prime} s \neq 0$. Consider the polynomial $z=f \sigma^{-\alpha_{k}}(r)-h \sigma^{-\alpha_{k}}(s) \in N\langle X\rangle_{A}$ with leading monomial x^{β} for some $\beta \in \mathbb{N}$ where $x^{\beta} \prec x^{\alpha_{k}}$. If $f \sigma^{-\alpha_{k}}(r)=h \sigma^{-\alpha_{k}}(s) \in g A$, then $f \sigma^{-\alpha_{k}}(r)=0$ since $f A \cap g A=0$. Thus, $f \sigma^{-\alpha_{k}}(r) \neq h \sigma^{-\alpha_{k}}(s)$ whence $z \neq 0$. Since f and g are good polynomials with $\operatorname{lm}(g) \preceq \operatorname{lm}(f), z A \cap g A \neq 0$. So, there are $v_{1}, v_{2} \in A$ such that $g v_{2}=z v_{1}=f \sigma^{-\alpha_{k}}(r) v_{1}-h \sigma^{-\alpha_{k}}(s) v_{1}$. Since $f \sigma^{-\alpha_{k}}(r)$ and $h \sigma^{-\alpha_{k}}(s)$ are good polynomials of the same leading term and $f \sigma^{-\alpha_{k}}(r) v_{1}=g v_{2}+h \sigma^{-\alpha_{k}}(s) v_{1} \in f A \cap g A=0$, then they have the same annihilators in A, and hence $h \sigma^{-\alpha_{k}}(s) v_{1}=0$ which is a contradiction. Therefore, $N\langle X\rangle_{A}$ is a uniform submodule of $M\langle X\rangle_{A}$.

Corollary 3.15 ([24, Theorem 4.6]). Let $S:=R[x ; \sigma, \delta]$ and N_{R} be a submodule of M_{R} such that \widehat{N}_{S} is good. Then:
(1) N_{R} is essential in M_{R} if and only if \widehat{N}_{S} is essential in \widehat{M}_{S}.
(2) N_{R} is uniform if and only if \widehat{N}_{S} is uniform.

We recall that a module M_{R} has finite uniform dimension if there exist uniform submodules U_{1}, \ldots, U_{n} of M_{R} such that $U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of M_{R} [22, Definition 6.2]. In this case, the uniform dimension of M_{R} is denoted by $\operatorname{udim}\left(M_{R}\right)=n<\infty$. It is not difficult to see that a right module M_{R} has infinite uniform dimension if and only if M_{R} contains an infinite direct sum of non-zero submodules [22, Proposition 6.4].

Theorem 3.16 establishes sufficient conditions to guarantee that M_{R} and $M\langle X\rangle_{A}$ have the same uniform dimension (c.f. [34, Proposition 4.10]).

Theorem 3.16. Let A be a bijective skew $P B W$ extension over R and M_{R} be a right module. If $M\langle X\rangle_{A}$ is a good module, then $\operatorname{udim}\left(M\langle X\rangle_{A}\right)=\operatorname{udim}\left(M_{R}\right)$.

Proof. Assume that $\operatorname{udim}\left(M_{R}\right)=k$. There exist N_{1}, \ldots, N_{k} uniform submodules of M_{R} such that $N_{1} \oplus \cdots \oplus N_{k}$ is an essential submodule of M_{R}. By Theorem 3.14, we
have $N_{1}\langle X\rangle_{A}, \ldots, N_{k}\langle X\rangle_{A}$ are uniform submodules of $M\langle X\rangle_{A}$, and the submodule $N_{1}\langle X\rangle_{A} \oplus \cdots \oplus N_{k}\langle X\rangle_{A}$ is essential in $M\langle X\rangle_{A}$, whence $\operatorname{udim}\left(M\langle X\rangle_{A}\right)=k$.

If $\operatorname{udim}\left(M_{R}\right)=\infty$, there exist non-zero submodules N_{1}, N_{2}, \ldots of M_{R} such that $N_{1} \oplus N_{2} \oplus \cdots$ is a submodule of M_{R}. Thus, every $0 \neq N_{i}\langle X\rangle_{A}$ is a submodule of $M\langle X\rangle_{A}$ for every $i \geq 1$, and $N_{1}\langle X\rangle_{A} \oplus N_{2}\langle X\rangle_{A} \oplus \cdots$ is a submodule of $M\langle X\rangle_{A}$, which implies that $\operatorname{udim}\left(M\langle X\rangle_{A}\right)=\infty$. Therefore, $\operatorname{udim}\left(M\langle X\rangle_{A}\right)=\operatorname{udim}\left(M_{R}\right)$.

Corollary 3.17 ([24, Theorem 4.9]). Let $S:=R[x ; \sigma, \delta]$ and M_{R} be a right module. If \widehat{M}_{S} is good, then $\operatorname{udim}\left(\widehat{M}_{S}\right)=\operatorname{udim}\left(M_{R}\right)$.

4. Associated primes ideals of induced modules

In this section, we characterize the associated primes of induced modules over skew PBW extensions (c.f. [31, Section 3]). We recall that a right module N_{R} is called prime if $N_{R} \neq 0$ and $\operatorname{ann}_{R}\left(N_{R}\right)=\operatorname{ann}_{R}\left(N_{R}^{\prime}\right)$, for every non-zero submodule $N_{R}^{\prime} \subseteq N_{R}$ [5, Definition 1.1]; an ideal P of R is said to be associated of M_{R} if P is prime and there exists a prime submodule $N_{R} \subseteq M_{R}$ such that $P=\operatorname{ann}_{R}\left(N_{R}\right)$. The set of associated prime ideals of M_{R} is denoted by $\operatorname{Ass}\left(M_{R}\right)$ [5, Definition 1.2]. Following Leroy and Matczuk [24], it may happen that $\operatorname{Ass}\left(M_{R}\right)$ is not empty but $\operatorname{Ass}\left(N_{R}\right)=\emptyset$, for some non-zero submodule N_{R} of M_{R} [24, p. 2756]. For this reason, they worked with modules where $\operatorname{Ass}\left(N_{R}\right)$ is not empty for all nonzero submodule N_{R} of M_{R} and introduced the following definition: M_{R} has enough prime submodules if any non-zero submodule N_{R} of M_{R} contains a prime submodule [24, Definition 5.1].

The following lemma shows that if M_{R} has enough prime submodules, then any non-zero submodule of the induced module $M\langle X\rangle_{A}$ contains a good polynomial. Lemma 4.1 generalizes [24, Lemma 5.4].
Lemma 4.1. Let A be a bijective skew $P B W$ extension over R and M_{R} be a right module. If M_{R} has enough prime submodules, then any non-zero submodule N_{A} of $M\langle X\rangle_{A}$ contains a good polynomial m, with leading coefficient $m_{k} \neq 0$, such that $m_{k} R$ is a prime submodule of M_{R}.

Proof. Let N_{A} be a submodule of $M\langle X\rangle_{A}$ and $n=n_{1} x^{\alpha_{1}}+\cdots+n_{k} x^{\alpha_{k}} \in N_{A}$ be a non-zero polynomial with $\operatorname{lc}(n)=n_{k} \neq 0$ and minimal leading monomial in $n A$, that is, $x^{\alpha_{k}} \prec \operatorname{lm}(f)$, for every $f \in n A$. By Lemma $3.2, n$ is a good polynomial, and since M_{R} contains enough prime submodules, $n_{k} R$ contains a non-zero prime submodule $m_{k} R$ where $m_{k}=n_{k} r \neq 0$, for some $r \in R$. Thus, the polynomial $m=n \sigma^{-\alpha_{k}}(r) \in N_{A}$ is good with leading coefficient m_{k} such that $m_{k} R$ is a prime submodule of M_{R}.

Leroy and Matczuk characterized certain right annihilators of generated modules on $R[x ; \sigma, \delta]$ where δ is a σ-derivation q-quantized of R [24, Lemma 5.6]. Goodearl and Letzter [17] introduced the notion of q-quantized derivation in the following way: a σ-derivation δ of R is q-quantized if $\delta \sigma=q \sigma \delta$ where q is a central, invertible element of R such that $\sigma(q)=q$ and $\delta(q)=0$. The ring $R[x ; \sigma, \delta]$ is called a q-skew polynomial ring if δ is q-quantized [17, p. 10]. We consider the following definition for a finite family of endomorphims Σ and a family of Σ-derivations Δ of R.
Definition 4.2. Let R be a ring and Σ be a finite family of endomorphisms of R. A family of Σ-derivations Δ of R is called quantized if there exists $\left(q_{1}, \ldots, q_{n}\right) \in R^{n}$
such that $\delta_{i} \sigma_{i}=q_{i} \sigma_{i} \delta_{i}, \sigma_{i}\left(q_{j}\right)=q_{j}$ and $\delta_{i}\left(q_{j}\right)=0$, for every $0 \leq i, j \leq n$ where q_{i} is a central and invertible element of R for every $1 \leq i \leq n$.

We say that a skew PBW extension A over a ring R is quantized if the family of Σ-derivations Δ defined in Proposition 2.2 is quantized.

Example 4.3. We present some examples of quantized skew PBW extensions.
(1) The algebra of q-differential operators $D_{q, h}[x, y]$: Let $q, h \in \mathbb{k}, q \neq 0$. We consider $\mathbb{k}[y][x ; \sigma, \delta]$ with $\sigma(y):=q y$ and $\delta(y):=h$. By definition of skew polynomial ring, $x y=\sigma(y) x+\delta(y)=q y x+h$, and so $x y-q y x=h$. We can prove that $D_{q, h}[x, y] \cong \sigma(\mathbb{k}[y])\langle x\rangle$. It is not difficult to verify that $\delta \sigma=\sigma \delta$, whence $D_{q, h}[x, y]$ is a quantized skew PBW extension over $\mathbb{k}[y]$.
(2) Additive analogue of the Weyl algebra: Let \mathbb{k} be a field and $A_{n}\left(q_{1}, \ldots, q_{n}\right)$ be the \mathbb{k}-algebra generated by $x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{n}$ and subject to the relations:

$$
\begin{aligned}
x_{j} x_{i} & =x_{i} x_{j}, \quad t_{j} t_{i}=t_{i} t_{j}, \quad 1 \leq i, j \leq n . \\
x_{j} t_{i} & =t_{i} x_{j}, \quad i \neq j . \\
x_{i} t_{i} & =q_{i} t_{i} x_{i}+1, \quad 1 \leq i \leq n .
\end{aligned}
$$

where $q_{i} \in \mathbb{k} \backslash\{0\}$. Thus, $A_{n}\left(q_{1}, \ldots, q_{n}\right) \cong \sigma\left(\mathbb{k}\left[t_{1}, \ldots, t_{n}\right]\right)\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Notice that $\sigma_{i}\left(t_{i}\right)=q t_{i}$ and $\delta_{i}\left(t_{i}\right)=1$, for all $1 \leq i \leq n$. Some simple computations show that $\delta_{i} \sigma_{i}=\sigma_{i} \delta_{i}$, and so $A_{n}\left(q_{1}, \ldots, q_{n}\right)$ is a quantized skew PBW extension over $\mathbb{k}\left[t_{1}, \ldots, t_{n}\right]$.

The following lemma characterizes the annihilators of generated modules by good polynomials and generalizes [24, Lemma 5.6].

Lemma 4.4. Let A be a bijective skew $P B W$ extension over R, M_{R} be a right module, and $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}}$ be a good polynomial of $M\langle X\rangle_{A}$ with leading coefficient $m_{k} \neq 0$. If $P:=\operatorname{ann}_{R}\left(m_{k} R\right)$, then:
(1) If P is $\left(\Sigma, \Sigma^{-1}, \Delta\right)$-stable, then $\operatorname{ann}_{A}(m A)=P\langle X\rangle$.
(2) If A is quantized and P is $\left(\Sigma, \Sigma^{-1}\right)$-stable, then $\operatorname{ann}_{A}(m A)=P_{\Delta}\langle X\rangle$
(3) If A is quantized, $m_{k} R$ is prime, and $m A$ contains good polynomial of any monomial greater than $x^{\alpha_{k}}$, then $\operatorname{ann}_{A}(m A)=\sigma^{-\alpha_{k}}\left(P_{\Sigma, \Delta}\right)\langle X\rangle$.

Proof. (1) Since P is Δ-stable, we have $\operatorname{ann}_{A}(m A)=P_{\Sigma}\langle X\rangle$ by Lemma 3.8 (4). Since $\left(\Sigma, \Sigma^{-1}\right)$-stable, we have $P_{\Sigma}=P$, and so $\operatorname{ann}_{A}(m A)=P\langle X\rangle$.
(2) If $r \in P_{\Delta}$, then $\delta^{\beta}(r) \in P$, and so $\sigma^{\alpha}\left(\delta^{\beta}(r)\right) \in P$ for every $\alpha, \beta \in \mathbb{N}^{n}$ by the $\left(\Sigma, \Sigma^{-1}\right)$-stability of P. If A is quantized, $\delta^{\beta}\left(\sigma^{\alpha}(r)\right)=r_{\alpha, \beta} \sigma^{\alpha}\left(\delta^{\beta}(r)\right) \in P$ for some $r_{\alpha, \beta} \in R$ whence P_{Δ} is a Σ-invariant ideal of R. Hence, $P_{\Delta}\langle X\rangle$ is a two-sided ideal of A and so $P_{\Delta}\langle X\rangle \subseteq \operatorname{ann}_{A}(m A)$. Let $f=b_{1} x^{\beta_{1}}+\cdots+b_{t} x^{\beta_{t}}$ be an element of $\operatorname{ann}_{A}(m A)$. By induction on the monomials, we show that $\delta^{\theta}\left(b_{i}\right) \in P$, for any $\theta \in \mathbb{N}^{n}$ and $1 \leq i \leq t$. Since m is a good polynomial and P is a $\left(\Sigma, \Sigma^{-1}\right)$-stable ideal of $R, \operatorname{ann}_{A}(m R)=\sigma^{-\alpha_{k}}(P)\langle X\rangle=P\langle X\rangle$ by Lemma 3.2, and thus $b_{i} \in P$ for every $1 \leq i \leq t$. Assume that for any leading monomial x^{γ} with $x^{\gamma} \prec x^{\theta}$, we have $\delta^{\gamma}\left(b_{i}\right) \in P$. If $f \in \operatorname{ann}_{A}(m A)$ and $\operatorname{ann}_{A}(m R)=P\langle X\rangle_{A}$, then $m r x^{\theta} f=0$. Since A is quantized, it follows that $x^{\theta} b_{i}=r_{1} x^{\theta_{1}}+\cdots+r_{s} x^{\theta_{s}}$ where each r_{j} is a finite sum of several evaluations of $\sigma^{\theta_{j}}$'s and $\delta^{\theta-\theta_{j}}$'s in the element b_{i}, for every $1 \leq j \leq s$. Thus, if P is a $\left(\Sigma, \Sigma^{-1}\right)$-stable ideal and $\delta^{\gamma}\left(b_{i}\right) \in P$ for any $\gamma \in \mathbb{N}^{n}$ with $x^{\gamma} \prec x^{\theta}$, then $m R r_{i} x^{\theta_{j}}=0$ for all $1 \leq j \leq s$ where $\theta_{j} \neq 0$. In this way, we have
$m r x^{\theta} b_{i}=m r \delta^{\theta}\left(b_{i}\right)$, and hence $m r x^{\theta} f=m r\left(\delta^{\theta}\left(b_{1}\right) x^{\beta_{1}}+\cdots+\delta^{\theta}\left(b_{t}\right) x^{\beta_{t}}\right)$ which shows that $\delta^{\theta}\left(b_{i}\right) \in P$ for all $1 \leq i \leq t$, and therefore $f \in P_{\Delta}\langle X\rangle$.
(3) Let $f=b_{1} x^{\beta_{1}}+\cdots+b_{t} x^{\beta_{t}} \in \operatorname{ann}_{A}(m A)$. We prove by induction on the leading monomials that $\delta^{\theta}\left(b_{i}\right) \in \sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)$, for all $\theta \in \mathbb{N}^{n}$ and $1 \leq i \leq t$. Since $m A$ contains good polynomials of any monomial greater than $x^{\alpha_{k}}$, there exists $f_{\gamma_{i}} \in m A$ with leading monomial $x^{\gamma_{i}}$, for each $x^{\gamma_{i}} \succeq x^{\alpha_{k}}$. Let $m_{\gamma_{i}}$ be the leading coefficient of $f_{\gamma_{i}}$ where $m_{\gamma_{i}} \in m_{k} R$. If $m_{k} R$ is prime, then $m_{\gamma_{i}} R$ is prime, and thus $\operatorname{ann}\left(m_{\gamma_{i}} R\right)=P$ for all γ_{i}. Since the $f_{\gamma_{i}}$ are good polynomials, $\operatorname{ann}_{A}\left(f_{\gamma_{i}} R\right)=\sigma^{-\gamma_{i}}(P)\langle X\rangle$ by Lemma 3.2. If E denotes the submodule of $M\langle X\rangle_{R}$ defined by $E=\sum_{\gamma_{i} \geq \alpha_{k}} f_{\gamma_{i}} R$, then $E \subseteq m A$ and $\operatorname{ann}_{A}(m A) \subseteq \operatorname{ann}_{A}(E)=\bigcap_{\gamma_{i} \geq \alpha_{k}} \sigma^{-\gamma_{i}}(P)\langle X\rangle=\sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)\langle X\rangle$. In this way, if $f \in \operatorname{ann}_{A}(m A)$, then $f \in \sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)\langle X\rangle$ and thus $b_{i} \in \sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)$.

Now, assume that for any leading monomial x^{γ} with $x^{\gamma} \prec x^{\theta}$, we have $\delta^{\gamma}\left(b_{i}\right) \in \sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)$. If $E x^{\theta} \subseteq m A$ and $f=b_{1} x^{\beta_{1}}+\cdots+b_{t} x^{\beta_{t}} \in \operatorname{ann}_{A}(m A)$, then $E x^{\theta} f=0$. In addition if A is quantized, then $x^{\theta} b_{i}=r_{1} x^{\theta_{1}}+\cdots+r_{s} x^{\theta_{s}}$ where each r_{j} is a finite sum of several evaluations of $\sigma^{\theta_{j}}$'s and $\delta^{\theta-\theta_{j}}$'s in the element b_{i}, for every $1 \leq j \leq s$. If $\delta^{\gamma}\left(b_{i}\right) \in \sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)$ for any $\gamma \in \mathbb{N}^{n}$ with $x^{\gamma} \prec x^{\theta}$, then $E r_{i} x^{\theta_{j}}=0$ for all $1 \leq j \leq s$ where $\theta_{j} \neq 0$. Thus $E x^{\theta} b_{i}=E \delta^{\theta}\left(b_{i}\right)$, and hence $E x^{\theta} f=E\left(\delta^{\theta}\left(b_{1}\right) x^{\beta_{1}}+\cdots+\delta^{\theta}\left(b_{t}\right) x^{\beta_{t}}\right)$ whence $\delta^{\theta}\left(b_{i}\right) \in \sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)$ for all $1 \leq i \leq t$. So $\operatorname{ann}_{A}(m A) \subseteq\left(\sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)\right)_{\Delta} A$, and since A is quantized, it follows that $\left(\sigma^{-\alpha_{k}}\left(P_{\Sigma}\right)\right)_{\Delta}=\sigma^{-\alpha_{k}}\left(P_{\Sigma, \Delta}\right)$, and hence $\operatorname{ann}_{A}(m A) \subseteq \sigma^{-\alpha_{k}}\left(P_{\Sigma, \Delta}\right)$.

To prove the other inclusion, if $r \in \sigma^{-\alpha_{k}}\left(P_{\Sigma, \Delta}\right)$, then $\sigma^{\alpha_{k}}(r) \in P_{\Sigma, \Delta}$, and thus $\sigma^{\alpha_{k}}\left(\sigma^{\alpha} \delta^{\beta}(r)\right)$ for all $\alpha, \beta \in \mathbb{N}$. Since m is a good polynomial of leading monomial $x^{\alpha_{k}}$ and leading coefficient $m_{k} \neq 0$, then $m R \sigma^{\alpha} \delta^{\beta}(r)=0$. This implies that $m R x^{\gamma} r=0$, for any $\gamma \in \mathbb{N}^{n}$, and so $\sigma^{-\alpha_{k}}\left(P_{\Sigma, \Delta}\right) \subseteq \operatorname{ann}_{A}(m A)$.

The following theorem characterizes the associated prime ideals of $M\langle X\rangle_{A}$ where M_{R} is a right module that contains enough prime submodules.
Theorem 4.5. Let A be a bijective skew $P B W$ extension over R, M_{R} be a right module, and $Q \in \operatorname{Ass}\left(M\langle X\rangle_{A}\right)$. If M_{R} contains enough prime submodule, then:
(1) If P is $\left(\Sigma, \Sigma^{-1}, \Delta\right)$-stable for every $P \in \operatorname{Ass}\left(M_{R}\right)$, then $Q=P\langle X\rangle$ for some $P \in \operatorname{Ass}\left(M_{R}\right)$.
(2) If A is quantized and P is $\left(\Sigma, \Sigma^{-1}\right)$-stable for every $P \in \operatorname{Ass}\left(M_{R}\right)$, then $Q=P_{\Delta}\langle X\rangle$ for some $P \in \operatorname{Ass}\left(M_{R}\right)$.
(3) If A is quantized and the module $M\langle X\rangle_{A}$ is good, then $Q=P_{\Sigma, \Delta}\langle X\rangle$ for some $P \in \operatorname{Ass}\left(M_{R}\right)$ and $P_{\Sigma, \Delta}$ is $\left(\Sigma, \Sigma^{-1}\right)$-stable.
Proof. (1) Let N_{A} be a prime submodule of $M\langle X\rangle_{A}$ such that $\operatorname{ann}_{A}(N)=Q$. By Lemma 4.1, there is a good polynomial $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in N_{A}$ with leading coefficient $m_{k} \neq 0$ such that $m_{k} R$ is prime submodule of M_{R}. Since N_{A} is prime, then $m A$ is also prime and $\operatorname{ann}_{A}(m A)=\operatorname{ann}_{A}(N)=Q$. By Lemma 4.4 (1), we have $Q=P\langle X\rangle$ with $P=\operatorname{ann}_{R}\left(m_{k} R\right) \in \operatorname{Ass}\left(M_{R}\right)$.
(2) In the same way, if N_{A} is a prime submodule of $M\langle X\rangle_{A}$ with $\operatorname{ann}_{A}(N)=Q$, there exists a good polynomial $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in N_{A}$ with leading coefficient $m_{k} \neq 0$ such that $m_{k} R$ is prime submodule of M_{R} by Lemma 4.1. Since N_{A} is prime, then $m A$ is also prime and $\operatorname{ann}_{A}(m A)=\operatorname{ann}_{A}(N)=Q$. By Lemma $4.4(2), Q=P_{\Delta}\langle X\rangle$ where $P=\operatorname{ann}_{R}\left(m_{k} R\right) \in \operatorname{Ass}\left(M_{R}\right)$.
(3) If N_{A} is a prime submodule of $M\langle X\rangle_{A}$ such that $\operatorname{ann}_{A}(N)=Q$, there exists a good polynomial $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}} \in N_{A}$ with leading coefficient $m_{k} \neq 0$ by Lemma 4.1. If $M\langle X\rangle_{A}$ is good, $m A$ contains a good polynomial m^{\prime} with leading monomial x^{β} such that $x^{\alpha_{k}} \preceq x^{\beta}$. Additionally, $m A$ is prime module which implies that $\operatorname{ann}_{A}(m A)=Q$, and by Lemma 4.4 (3), $\operatorname{ann}_{A}\left(m^{\prime} A\right)=\sigma^{-\beta}\left(P_{\Sigma, \Delta}\right)\langle X\rangle$ and $\operatorname{ann}_{A}(m A)=\sigma^{-\alpha_{k}}\left(P_{\Sigma, \Delta}\right)\langle X\rangle$. Thus, $P_{\Sigma, \Delta}$ is $\left(\Sigma, \Sigma^{-1}\right)$-stable, and hence $Q=\operatorname{ann}_{A}(m A)=P_{\Sigma, \Delta}\langle X\rangle$.

Corollary 4.6 ([24, Theorem 5.7]). Let $S:=R[x ; \sigma, \delta]$ and M_{R} be a right module. If M_{R} contains enough prime submodule and $Q \in \operatorname{Ass}\left(\widehat{M}_{S}\right)$, then:
(1) If for every $P \in \operatorname{Ass}\left(M_{R}\right), \sigma(P)=P$ and $\delta(P) \subseteq P$, then $Q=P S$ for some $P \in \operatorname{Ass}\left(M_{R}\right)$.
(2) If δ is q-quantized and $\sigma(P)=P$ for all $P \in \operatorname{Ass}\left(M_{R}\right)$, then $Q=P_{\delta} S$ for some $P \in \operatorname{Ass}\left(M_{R}\right)$.
(3) If δ is q-quantized and \widehat{M}_{S} is a good module, then $Q=P_{\sigma, \delta} S$ for some $P \in \operatorname{Ass}\left(M_{R}\right)$ and $\sigma\left(P_{\sigma, \delta}\right)=P_{\sigma, \delta}$.

Leroy and Matczuk presented an example where Corollary 4.6 fails if the module M_{R} does not have enough prime submodules. This shows that this hypothesis is not superfluous. If M is a \mathbb{k}-linear space with basis $\left\{v_{i}\right\}_{i \in \mathbb{Z}}$ and $R=\mathbb{k}\langle X\rangle$ is the free algebra over \mathbb{k} on the set $X=\left\{x_{i}\right\}_{i \in \mathbb{Z}}$, then M has a module structure over R given by $v_{i} x_{k}=v_{i+1}$ if $i \leq k$ and 0 otherwise. Let σ be the automorphism of R defined by $\sigma\left(x_{k}\right)=x_{k+1}$ for any $k \in \mathbb{Z}$ and $S:=R[t, \sigma]$. They showed that $\operatorname{Ass}\left(M_{R}\right)=\emptyset$ and that \widehat{M}_{S} is prime with $\operatorname{Ass}\left(\widehat{M}_{S}\right)=\{0\}$ [24, Example 5.8].

The following theorem shows when $M\langle X\rangle_{A}$ is a prime module and characterizes its associated prime ideals in terms of the associated primes of M_{R}.

Theorem 4.7. Let A be a bijective skew $P B W$ extension over R and M_{R} be a right module. If M_{R} is a prime module with $P=\operatorname{ann}_{R}(M)$, then:
(1) If P is $\left(\Sigma, \Sigma^{-1}, \Delta\right)$-stable, then the induced module $M\langle X\rangle_{A}$ is prime with the associated prime ideal equal to $Q=P\langle X\rangle$.
(2) If A is quantized and P is $\left(\Sigma, \Sigma^{-1}\right)$-stable, then $M\langle X\rangle_{A}$ is prime with the associated prime ideal equal to $Q=P_{\Delta}\langle X\rangle$.
(3) If A is quantized and the module $M\langle X\rangle_{A}$ is good, then $M\langle X\rangle_{A}$ is a prime module if and only if $P_{\Sigma, \Delta}$ is $\left(\Sigma, \Sigma^{-1}\right)$-stable. If $M\langle X\rangle_{A}$ is prime, then its associated prime ideal is equal to $Q=P_{\Sigma, \Delta}\langle X\rangle$.

Proof. (1) Let N_{A} be a submodule of $M\langle X\rangle_{A}$ and $m=m_{1} x^{\alpha_{1}}+\cdots+m_{k} x^{\alpha_{k}}$ be an element of N_{A} with minimal leading monomial in $m A_{A}$, i.e., $x^{\alpha_{k}} \preceq \operatorname{lm}(f)$ for all $f \in m A_{A}$. By Lemma 3.2, m is a good polynomial and since M_{R} is prime, then $m_{k} R$ is a submodule prime of M_{R} with $P=\operatorname{ann}_{R}\left(m_{k} R\right)$ by Lemma 4.1. Additionally, by Lemma 4.4 (1), we have $P\langle X\rangle=\operatorname{ann}_{A}(m A)$, and thus $P\langle X\rangle \subseteq \operatorname{ann}_{A}(M\langle X\rangle) \subseteq \operatorname{ann}_{A}(N) \subseteq \operatorname{ann}_{A}(m A)=P\langle X\rangle$. This implies that $\operatorname{ann}_{A}(N)=P\langle X\rangle$ for any submodule N_{A} of $M\langle X\rangle_{A}$, whence $M\langle X\rangle_{A}$ is a prime module with associated prime ideal $Q=P\langle X\rangle$.
(2) Following the same argument in (1) and Lemma 4.4 (2), $M\langle X\rangle_{A}$ is a prime module with associated prime ideal $Q=P_{\Delta}\langle X\rangle$.
(3) In the same way, the argument of (1) and Lemma 4.4 (3) show that $M\langle X\rangle_{A}$ is a prime module with associated prime ideal $Q=P_{\Sigma, \Delta}\langle X\rangle$ and $P_{\Sigma, \Delta}$ is (Σ, Σ^{-1})-stable.

Corollary 4.8 ([24, Theorem 5.10]). Let $S:=R[x ; \sigma, \delta]$ and M_{R} be a right module. If M_{R} is prime with $P=\operatorname{ann}_{R}(M)$, then:
(1) Suppose that $\sigma(P)=P$ and $\delta(P) \subseteq P$. Then the induced module \widehat{M}_{S} is prime with the associated prime ideal equal to $P S=Q$.
(2) Suppose that δ is a q-quantized σ-derivation and $\sigma(P)=P$. Then \widehat{M}_{S} is prime with the associated prime ideal equal to $P_{\delta} S=Q$.
(3) Suppose that δ is a q-quantized σ-derivation and the module \widehat{M}_{S} is good. Then \widehat{M}_{S} is a prime module if and only if $\sigma\left(P_{\sigma, \delta}\right)=P_{\sigma, \delta}$. Moreover, if \widehat{M}_{S} is prime, then its associated prime ideal is equal to $P_{\sigma, \delta} S=Q$.

5. Examples

The importance of our results is appreciated when we apply them to algebraic structures more general than those considered by Leroy and Matczuk [24], that is, some noncommutative rings which cannot be expressed as skew polynomial rings. In this section, we consider several families of rings that have been studied in the literature which are subfamilies of skew PBW extensions.

Example 5.1. [14, p. 30] The diffusion algebra A is generated by $2 n$ indeterminates D_{i}, x_{i} over \mathbb{k} with $1 \leq i \leq n$ and subjects to the relations

$$
\begin{aligned}
x_{i} x_{j}=x_{j} x_{i}, \quad x_{i} D_{j}=D_{j} x_{i}, & 1 \leq i, j \leq n, \\
c_{i j} D_{i} D_{j}-c_{j i} D_{j} D_{i}=x_{j} D_{i}-x_{i} D_{j}, & i<j, \quad c_{i j}, c_{j i} \in \mathbb{k}^{*} .
\end{aligned}
$$

According to Definition 2.1, the algebra A can be seen as a skew PBW extension over $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, but not as a PBW extension or an iterated skew polynomial ring of injective type. If M_{R} is a right module over $R:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and $M\left\langle D_{1}, \ldots, D_{n}\right\rangle_{A}$ is a good module, then Theorem 3.16 shows that M_{R} and $M\left\langle D_{1}, \ldots, D_{n}\right\rangle_{A}$ have the same uniform dimension. If M_{R} contains enough prime submodules, then Theorem 4.5 characterizes the associated prime ideals of $M\left\langle D_{1}, \ldots, D_{n}\right\rangle_{A}$, and if M_{R} is a prime module with $P=\operatorname{ann}_{R}(M)$, then $M\left\langle D_{1}, \ldots, D_{n}\right\rangle_{A}$ is prime module with associated prime ideal $P\left\langle D_{1}, \ldots, D_{n}\right\rangle$ by Theorem 4.7.
Example 5.2. [12, Section 25.2] The basis of the Lie algebra $\mathfrak{g}=\mathfrak{s o}(5, \mathbb{C})$ consists of the elements $\mathbf{J}_{\alpha \beta}=-\mathbf{J}_{\beta \alpha}, \alpha, \beta=1,2,3,4,5$ satisfying the commutation relations $\left[\mathbf{J}_{\alpha \beta}, \mathbf{J}_{\mu \nu}\right]=\delta_{\beta \mu} \mathbf{J}_{\alpha \nu}+\delta_{\alpha \nu} \mathbf{J}_{\beta \mu}-\delta_{\beta \nu} \mathbf{J}_{\alpha \mu}-\delta_{\alpha \mu} \mathbf{J}_{\beta \nu}$. Having in mind the classical PBW theorem for the universal enveloping algebra $U(\mathfrak{s o}(5, \mathbb{C})$) of $\mathfrak{s o}(5, \mathbb{C})$, and since $U(\mathfrak{s o}(5, \mathbb{C}))$ is a PBW extension of $\mathbb{C}[9$, Section 5], then $U(\mathfrak{s o}(5, \mathbb{C}))$ is a skew PBW extension over \mathbb{C}, i.e., $U(\mathfrak{s o}(5, \mathbb{C})) \cong \sigma(\mathbb{C})\left\langle\mathbf{J}_{\alpha \beta} \mid 1 \leq \alpha \leq \beta \leq 5\right\rangle$. If $M_{\mathbb{C}}$ is a right module over \mathbb{C} and $M\left\langle\mathbf{J}_{\alpha \beta}\right\rangle_{A}$ is a good module, then Theorem 3.16 characterizes the uniform dimension of the module $M\left\langle\mathbf{J}_{\alpha \beta}\right\rangle_{A}$ over $A:=U(\mathfrak{s o}(5, \mathbb{C}))$, and if $M_{\mathbb{C}}$ contains enough prime submodules, then Theorem 4.5 describes the associated prime ideals of $M\left\langle\mathbf{J}_{\alpha \beta}\right\rangle_{A}$.

Example 5.3. Following Havliček et al. [18, p. 79], the \mathbb{C}-algebra $U_{q}^{\prime}\left(\mathfrak{s o}_{3}\right)$ is generated by the indeterminates I_{1}, I_{2}, and I_{3}, subject to the relations given by

$$
I_{2} I_{1}-q I_{1} I_{2}=-q^{\frac{1}{2}} I_{3}, \quad I_{3} I_{1}-q^{-1} I_{1} I_{3}=q^{-\frac{1}{2}} I_{2}, \quad I_{3} I_{2}-q I_{2} I_{3}=-q^{\frac{1}{2}} I_{1}
$$

where $0 \neq q \in \mathbb{C}$. It is straightforward to show that $U_{q}^{\prime}\left(\mathfrak{5 0}_{3}\right)$ cannot be expressed as an iterated skew polynomial ring. However, this algebra can be seen as a skew PBW extension over \mathbb{C} [14, Example 1.3.3]. If $M_{\mathbb{C}}$ is a right module over \mathbb{C} and $M\left\langle I_{1}, I_{2}, I_{3}\right\rangle_{A}$ is a good module, then Theorem 3.16 characterizes the uniform dimension of $M\left\langle I_{1}, I_{2}, I_{3}\right\rangle_{A}$ with $A:=U_{q}^{\prime}\left(\mathfrak{s o}_{3}\right)$. If $M_{\mathbb{C}}$ contains enough prime submodules, then Theorem 4.5 describes the associated prime ideals of $M\left\langle I_{1}, I_{2}, I_{3}\right\rangle_{A}$, and if $M_{\mathbb{C}}$ is a prime module with $P=\operatorname{ann}_{\mathbb{C}}(M)$, then $M\left\langle I_{1}, I_{2}, I_{3}\right\rangle_{A}$ is a prime module with associated prime ideal $P\left\langle I_{1}, I_{2}, I_{3}\right\rangle$ by Theorem 4.7.

Example 5.4. Zhedanov [44] defined the Askey-Wilson algebra AW(3) as the algebra generated by three indeterminates K_{0}, K_{1}, and K_{2}, subject to the commutation relations given by

$$
\begin{aligned}
& e^{\omega} K_{0} K_{1}-e^{-\omega} K_{1} K_{0}=K_{2}, e^{\omega} K_{2} K_{0}-e^{-\omega} K_{0} K_{2}=B K_{0}+C_{1} K_{1}+D_{1}, \\
& e^{\omega} K_{1} K_{2}-e^{-\omega} K_{2} K_{1}=B K_{1}+C_{0} K_{0}+D_{0},
\end{aligned}
$$

where $B, C_{0}, C_{1}, D_{0}, D_{1} \in \mathbb{R}$ and ω is an arbitrary real parameter. It is not difficult to see that $\mathrm{AW}(3)$ cannot be expressed as an iterated skew polynomial ring. On the other hand, using techniques such as those presented in [14, Theorem 1.3.1], it can be shown that $\mathrm{AW}(3)$ is a skew PBW extension of endomorphism type over \mathbb{R}, that is, $\mathrm{AW}(3) \cong \sigma(\mathbb{R})\left\langle K_{0}, K_{1}, K_{2}\right\rangle$. If $M_{\mathbb{R}}$ is a right module over \mathbb{R} and $M\left\langle K_{0}, K_{1}, K_{2}\right\rangle_{A}$ is a good module over $A:=A W(3)$, then $\operatorname{udim}\left(M\left\langle K_{0}, K_{1}, K_{2}\right\rangle_{A}\right)=\operatorname{udim}\left(M_{\mathbb{R}}\right)$ by Theorem 3.16. If $M_{\mathbb{R}}$ contains enough prime submodules, then Theorem 4.5 characterizes the associated prime ideals of $M\left\langle K_{0}, K_{1}, K_{2}\right\rangle_{A}$, and if $M_{\mathbb{R}}$ is a prime module with $P=\operatorname{ann}_{\mathbb{R}}(M)$, then $M\left\langle K_{0}, K_{1}, K_{2}\right\rangle_{A}$ is a prime module with associated prime ideal $P\left\langle K_{0}, K_{1}, K_{2}\right\rangle$ by Theorem 4.7.

6. Future work

As a possible future work, we have in mind to study the couniform dimension of modules introduced by Varadarajan [39, 43]. Annin [6] studied this dimension on the inverse polynomial module $M\left[x^{-1}\right]$ over $R[x ; \sigma]$. We think that a natural task is to investigate the counifom dimension of the polynomial module $M\left[x^{-1}\right]$ on structures more general than skew polynomial rings of automorphism type.

Macdonald [28] introduced the dual notion of primary decomposition known as secondary representation, where the main ideals of his theory are called attached primes. Since Annin [7] characterized the attached prime ideals on the inverse polynomial module $M\left[x^{-1}\right]$ over $R[x ; \sigma]$, another natural task is to investigate the attached prime ideals of modules $M\left[x^{-1}\right]$ over structures more general than skew polynomial rings of automorphism type (for instance, the skew PBW extensions and the semi-graded rings introduced by Lezama and Latorre [23]).

References

[1] M. Abdi and Y. Talebi, On the diameter of the zero-divisor graph over skew PBW extensions, J. Algebra Appl. 23(05) 2450089.
[2] J. P. Acosta, O. Lezama and A. Reyes, Prime ideals of skew PBW extensions, Rev. Un. Mat. Argentina 56(2) (2015) 39-55.
[3] S. Annin, Associated and Attached Primes Over Noncommutative Rings, PhD Thesis, University of California, Berkeley (2002).
[4] S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30(5) (2002) 25112528.
[5] S. Annin, Associated primes over Ore extension rings, J. Algebra Appl. 3(2) (2004) 193-205.
[6] S. Annin, Couniform dimension over skew polynomial rings, Comm. Algebra 33(4) (2005) 1195-1204.
[7] S. Annin, Attached primes under skew polynomial extensions, J. Algebra Appl. 10(3) (2011) 537-547.
[8] V. V. Bavula, Description of bi-quadratic algebras on 3 generators with PBW basis, J. Algebra 631 (2023) 695-730.
[9] A. Bell and K. Goodearl, Uniform rank over differential operator rings and Poincaré-BirkhoffWitt extensions, Pacific J. Math. 131(1) (1988) 13-37.
[10] A. D. Bell and S. P. Smith, Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, (1990).
[11] J. Brewer and W. Heinzer, Associated primes of principal ideals, Duke Math. J. 41(1) (1974) 1-7.
[12] Č. Burdík and O. Navrátil, Decomposition of the Enveloping Algebra so(5). In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A., eds. Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, (2009) 297-302.
[13] C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra 28(8) (2000) 3983-3986.
[14] W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, H. Venegas, Skew PBW Extensions: Ring and Module-theoretic properties, Matrix and Gröbner Methods, and Applications, Algebra and Applications. Springer, Cham, 2020.
[15] C. Gallego and O. Lezama, Gröbner bases for ideals of σ-PBW extensions, Comm. Algebra $39(1)(2011) 50-75$.
[16] J. Gomez Torrecillas, Basic Module Theory over Non-commutative Rings with Computational Aspects of Operator Algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M., eds. Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, Vol. 8372, (Springer, Berlin, Heidelberg, 2014) pp. 23-82.
[17] K. R. Goodearl and E. S. Letzter, Prime Ideals in Skew and q-Skew Polynomial Rings Vol. 521, American Mathematical Soc. (1994).
[18] M. Havlíček, A. U. Klimyk and S. Pošta, Central elements of the algebras $U^{\prime}\left(\mathfrak{s o}_{m}\right)$ and $U\left(\mathfrak{i s o}_{m}\right)$, Czech. J. Phys. 50(1) (2000) 79-84.
[19] S. Higuera and A. Reyes, On Weak annihilators and Nilpotent Associated Primes of Skew PBW Extensions, Comm. Algebra 51(11) (2023) 4839-4861.
[20] D. A. Jordan, Down-Up Algebras and Ambiskew Polynomial Rings, J. Algebra 228(1) (2000) 311-346.
[21] A. Kandri-Rody and V. Weispfenning, Non-commutative Gröbner Bases in Algebras of Solvable Type, J. Symbolic Comput. 9(1) (1990) 1-26.
[22] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics Vol. 189, Springer-Verlag, Berlin, (1998).
[23] E. Latorre. and O. Lezama, Non-commutative algebraic geometry of semi-graded rings, Internat. J. Algebra Comput. 27(4) (2017) 361-389.
[24] A. Leroy and J. Matczuk, On Induced Modules Over Ore Extensions, Comm. Algebra 32 (7) (2004) 2743-2766.
[25] O. Lezama and A. Reyes, Some Homological Properties of Skew PBW Extensions, Comm. Algebra 42 (3) (2014) 1200-1230.
[26] M. Louzari and A. Reyes, Minimal prime ideals of skew PBW extensions over 2-primal compatible rings, Rev. Colombiana Mat. 54(1) (2020) 39-63.
[27] O. Lunqun and L. Jingwang, On weak ($\alpha, \delta)$-compatible rings, Internat. J. Algebra Comput. 5(26) (2011) 1283-1296.
[28] I. G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math. 11 (1973) 23-43.
[29] J. McConnell and J. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics AMS (2001).
[30] A. Niño and A. Reyes, Some remarks about minimal prime ideals of skew Poincaré-BirkhoffWitt extensions, Algebra Discrete Math. 30(2) (2019) 207-229.
[31] A. Niño, M. C. Ramírez and A. Reyes, Associated prime ideals over skew PBW extensions, Comm. Algebra 48(12) (2020) 5038-5055.
[32] O. Ore, Theory of Non-Commutative Polynomials, Ann. of Math. (2) 34(3) (1933) 480-508.
[33] L. Ouyang and G. F. Birkenmeier, Weak annihilator over extension rings, Bull. Malays. Math. Sci. Soc. 35(2) (2012) 345-347.
[34] A. Reyes, Uniform dimension over skew PBW extensions, Rev. Colombiana Mat. 48(1) (2014) 79-96.
[35] A. Reyes, Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings, Rev. Integr. Temas Mat. 33(2) (2015) 173-189.
[36] A. Reyes, Armendariz modules over skew PBW extensions, Comm. Algebra 47 (3) (2019) 1248-1270.
[37] A. Reyes and H. Suárez, Radicals and Köthe's conjecture for skew PBW extensions, Commun. Math. Stat. 9(2) (2021) 119-138.
[38] A. Reyes and Y. Suárez, On the ACCP in skew Poincaré-Birkhoff-Witt extensions, Beitr. Algebra Geom. 59(4) (2018) 625-643.
[39] B. Sarath and K. Varadarajan, Dual Goldie dimension II, Comm. Algebra 7(17) (1979) 18851899.
[40] W. M. Seiler Involution. The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms Computat. Math, Vol. 24, Springer (2010).
[41] R. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42(1) (1972) 251257.
[42] H. Suárez, A. Chacón and A. Reyes, On NI and NJ skew PBW extensions, Comm. Algebra 50(8) (2022) 3261-3275.
[43] K. Varadarajan, Dual Goldie dimension, Comm. Algebra 7(6) (1979) 565-610.
[44] A. S. Zhedanov, "Hidden symmetry" of Askey-Wilson polynomials, Theoret. and Math. Phys. 89(2) (1991) 1146-1157.

Universidad Nacional de Colombia - Sede Bogotá
Current address: Campus Universitario
Email address: sdhiguerar@unal.edu.co
Universidad Nacional de Colombia - Sede Bogotá
Current address: Campus Universitario
Email address: macramirezcu@unal.edu.co
Universidad Nacional de Colombia - Sede Bogotá
Current address: Campus Universitario
Email address: mareyesv@unal.edu.co

[^0]: 2020 Mathematics Subject Classification. 16D25, 16P60, 16S36, 16S38.
 Key words and phrases. Induced module, associated prime, uniform dimension, skew PBW extension.

 The authors were supported by the research fund of Faculty of Science, Code HERMES 53880, Universidad Nacional de Colombia - Sede Bogotá, Colombia.

