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ABSTRACT

This scoping review assesses the current use of simulation-based design optimization
(SBDO) in marine engineering, focusing on identifying research trends, methodologies,
and application areas. Analyzing 277 studies from Scopus and Web of Science, the review
finds that SBDO is predominantly applied to optimizing marine vessel hulls, including both
surface and underwater types, and extends to key components like bows, sterns, propellers,
and fins. It also covers marine structures and renewable energy systems. A notable trend is
the preference for deterministic single-objective optimization methods, indicating potential
growth areas in multi-objective and stochastic approaches. The review points out the
necessity of integrating more comprehensive multidisciplinary optimization methods to
address the complex challenges in marine environments. Despite the extensive application
of SBDO in marine engineering, there remains a need for enhancing the methodologies’
efficiency and robustness. This review offers a critical overview of SBDO’s role in marine
engineering and highlights opportunities for future research to advance the field.
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1 Introduction

Simulation-based design optimization (SBDO), also known as simulation-driven design optimization
(SDDO), has emerged as a critical tool in marine engineering, profoundly impacting various aspects of
the field. This approach, which integrates numerical solutions with computer-aided design software and
optimization algorithms, empowers engineers to refine performance, cost-efficiency, and safety in marine
structures, including ships, underwater vehicles, offshore platforms, and notably, marine energy production
systems.

Traditional marine engineering practices, reliant on empirical data and heuristic approaches, often face
limitations in adaptability and precision. These methods, though time-tested, struggle to cope with the
increasing complexity of marine engineering challenges, especially in the face of stringent environmental
regulations and the demand for higher efficiency. SBDO addresses these challenges by enabling a more
nuanced exploration of design possibilities, leveraging computational power to identify optimal solutions
that balance performance, cost, and environmental considerations.

In ship hull design, SBDO replaces traditional methods, which are heavily reliant on experience and trial-
and-error approaches. By analyzing hydrodynamic performance across different hull designs, SBDO enables
the optimization of shape and dimensions, thus reducing drag and enhancing fuel efficiency [} 2} 3].
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For marine propulsion systems, SBDO is invaluable in dealing with the complexity of various components
like engines, propellers, shafts, and rudders. It facilitates the optimization of these components for maximum
efficiency and reduced fuel consumption [4} 516} 7, 18} [9] 10} 11} [12].

A pivotal area where SBDO is making significant strides is in the development and optimization of marine
energy production systems. As the world increasingly seeks sustainable energy sources, marine energy
systems, such as tidal [13} [14] [15, 16} [17, (18} [19] 20, 21] and wave energy converters [22} 23| 24} 25], have
gained prominence. SBDO plays a crucial role in designing these systems to maximize energy extraction and
efficiency while ensuring resilience to marine environmental challenges. The optimization of these systems
is vital for advancing renewable energy technologies and contributes significantly to sustainable marine
practices.

Additionally, SBDO enhances the safety and reliability of marine structures. For offshore structures [26],
which face harsh environmental conditions, SBDO is instrumental in evaluating and improving structural
integrity under various scenarios.

Looking ahead, the field of SBDO in marine engineering is poised for significant advancements. Emerging
trends like the integration of machine learning algorithms and the incorporation of real-time data analytics
are expected to further revolutionize SBDO applications. These advancements will not only refine the
optimization process but also open new avenues for addressing complex, multifaceted marine engineering
challenges. This scoping review aims to present a comprehensive, current overview of SBDO in marine
engineering, highlighting its applications and pointing to future research directions within marine and ocean
engineering contexts.

2 Scoping Review Methodology

Due to a noticeable increase in research output and the proliferation of primary research over the past few
years, the need to systematically identify and synthesize the existing literature has become mandatory in
research. This critical issue has first arisen in clinical medicine but nowadays it represents a priority in many
other disciplines including engineering [27]. Scoping reviews are extremely useful to accomplish this goal.
The original framework for conducting scoping reviews was proposed by Arksey and O'Malley in 2005 [28]
and further extended by Joanna Briggs Institute (JBI) Collaboration in 2015 [29]. Recently, the JBI Scoping
Reviews Methodology Group formally defined scoping reviews as a “type of evidence synthesis that aims to
systematically identify and map the breadth of evidence available on a particular topic, field, concept, or issue, often
irrespective of source (i.e., primary research, reviews, non-empirical evidence) within or across particular contexts”
[30]. Despite other review methods, scoping reviews use a broader approach for mapping literature and
addressing a broader research question without performing articles” quality assessment [31]].

2.1 Research Questions

Central to this review is the exploration of current best practices in SBDO applied to marine engineering.
This inquiry is structured into three fundamental questions:

1. What are the primary aims and approaches in the existing literature on SBDO methods in marine
engineering, and how do they compare?
2. What issues are encountered when applying SBDO methods to marine engineering problems?

3. What are the main research gaps and potential future directions in this field?

2.2 Inclusion and Exclusion Criteria

The inclusion criteria for the articles in this review were meticulously defined to ensure a focused and
relevant collection of literature. Articles were selected based on their direct relevance to SBDO applications
in marine engineering. This included studies demonstrating the use of SBDO in practical marine engineering
projects, theoretical advancements in SBDO methods specific to marine applications, and reviews of SBDO
methods within the marine engineering context.
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Exclusion criteria were equally stringent to maintain the review’s scope and quality. Articles not directly
related to SBDO, such as those focusing on general design optimization without a clear simulation-based
component, were excluded. Studies outside the realm of marine engineering, or those employing SBDO
in a manner not applicable to marine engineering challenges, were also omitted. Furthermore, non-peer-
reviewed articles, such as conference abstracts/papers and editorials, were excluded to ensure the review’s
academic rigor.

2.3 Databases and Keywords

Web of Science (WoS) and Scopus were chosen as the primary databases for their extensive coverage of
interdisciplinary scientific literature, ensuring a comprehensive collection of relevant articles in marine
engineering and optimization. These databases are renowned for their rigorous indexing of high-quality,
peer-reviewed academic journals, which aligns with the review’s emphasis on academic rigor.

The bibliographic search strategy was carefully designed to capture the broad scope of SBDO research
in marine engineering, employing a combination of keywords specifically targeted within the titles,
abstracts, and keywords sections (TITLE-ABS-KEY) of articles. The chosen keywords aimed to include
a comprehensive range of studies relevant to the field: (‘‘Simulation*’ OR ‘‘Computation#’’) AND
(‘“‘Optimi*’) AND (‘Design#’ OR ‘‘Shapex’’ OR ‘Form#’’) AND (‘‘Ship#’’ OR ¢‘Hull’’ OR ‘‘Vessel” OR
“Marine’” OR ‘‘Ocean’’). This strategic choice ensured the inclusion of pertinent research while maintaining
a focused scope on SBDO applications within marine engineering.

2.4 Search Procedure

The preferred reporting items for systematic reviews statement extended to scoping reviews (PRISMA-ScR)
are used as reporting guidelines [32]. The PRISMA flow diagram (see Fig. [T) meticulously outlines the process
undertaken for the selection of articles in the present scoping review. The articles search was conducted
on August 1st, 2022, with no restriction on the date of publication and type of study, but considering only
journal papers written in English. The diagram begins with the identification phase, where 3143 records
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were sourced through WoS and Scopus, indicating a comprehensive initial search strategy. Reference lists of
all included articles were scanned to look for literature that had not been obtained previously.

Subsequent stages in the diagram reflect the screening and eligibility assessment processes. Notably, a
significant number of records were excluded during the initial screening, likely due to title (2281) and
abstract (370) relevance checks. This highlights the precision of our inclusion criteria, ensuring that only the
most pertinent articles were considered (492) for full-text review.

The eligibility phase, as depicted, involved a more detailed review of the full texts, leading to further
exclusion of articles that did not meet the specific criteria set for this review. These criteria were crucial in
filtering out articles that did not include simulation, optimization strategies, or design/shape optimization.

Finally, the included studies (277), as shown in the diagram, represent a curated collection of articles that
passed through this rigorous selection process, ensuring a high degree of relevance and quality in the
research articles selected for this review.

3 Results

The following subsections delineate the comprehensive findings of the scoping review, focusing on the key
developments and trends within the realm of SBDO in marine engineering. This analysis aims to distill a
broad spectrum of research efforts into discernible patterns, offering insights into the evolution, current
practices, and future directions in the field. By examining a variety of aspects, from publication trends
and journal distributions to the nuanced details of optimization techniques and application areas, this
section endeavors to provide a holistic understanding of the state-of-the-art in SBDO as applied to marine
engineering.

It may be noted that different terms have been used interchangeably to describe the overarching process
of integrating computational simulations with design optimization in marine engineering. While SBDO
and SDDO are prevalent, the analysis reveals both their widespread use and nuanced differences. SBDO
emerges as the most comprehensive term, encompassing the full spectrum of leveraging simulation tools for
optimizing design parameters. This terminology aligns with the holistic approach of using simulations to
inform and drive the optimization process, where the objective is to enhance design performance metrics
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while navigating through the constraints imposed by complex marine engineering challenges. On the other
hand, SDDO often highlights the initial stages of the design process, where simulations guide the conceptual
and preliminary design decisions before formal optimization techniques are applied. This term underscores
the importance of simulations in shaping the design space and influencing early design choices, which are
crucial for setting the stage for subsequent optimization. The review suggests that while these terms broadly
address the same domain of integrating simulations with optimization, they can reflect different focuses or
stages within the broader SBDO process. This distinction is vital for understanding the scope and emphasis
of various studies within the field, as well as for appreciating the multifaceted nature of SBDO in marine
engineering.

Figure 2 illustrates a chronological trend in the number of publications per year on the topic. Starting from
1994, the year of the first publication retrieved on the topic [I]], a noticeable increase in publications can be
observed over the years (specifically starting from 2009), indicating a growing interest and advancement
in the field. It's important to note that the data for the year 2022 is partial, as the bibliographic research
was conducted on August 1, 2022. This uptick reflects the evolving complexity and significance of SBDO
in addressing contemporary challenges in marine engineering. The progressive increase underscores the
technology’s rising relevance, potentially correlating with advancements in computational capabilities and
the growing demand for efficient, optimized marine systems.

Figure 2p presents a distribution of publications across various journals, highlighting those with the highest
frequency of articles. Overall the Ocean Engineering journal covers 17.2% of the overall publications, whereas
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the other journals all contain less than 10% of the publications on SBDO. Moreover, the category ‘Others’
encapsulates a range of journals that individually contribute to less than 2% of total publications, signifying
a wide dissemination of research in this field across diverse scientific platforms. This distribution not only
reflects the interdisciplinary nature of the field but also points to the key academic outlets that are central to
the dissemination of SBDO research.

Based on a detailed analysis of the distribution and contributions, the results offer intriguing insights into
global research trends and collaborative dynamics. The geographical distribution (see Fig. [3) showcases a
significant concentration of contributions from China, accounting for 29.3% of the papers reviewed, with a
diverse representation from 48 different entities. This is followed by Italy (13.9%), the United States (11.9%),
the United Kingdom (5.7%), South Korea (5.1%), Iran (4.3%), Japan (3.4%), and Germany (3.1%), highlighting
a global interest and varied focus across these regions. The predominance of university and research center
contributions, with 89% of the instances (see Fig. EI), signifies the academic inclination of SBDO research,
whereas the industry and small and medium enterprises (SMEs), defense agencies, and regulatory bodies’
engagement, though lesser in number, underscore the multi-sectoral relevance of SBDO applications in
marine engineering. This diverse geographical and institutional representation underscores the universal
appeal and applicability of SBDO techniques across different marine engineering challenges, reflecting a
rich picture of research efforts aimed at advancing marine technology and sustainability. The data suggest a
vibrant and collaborative research ecosystem, with significant contributions emerging from both academia
and industry, pointing towards an integrated approach to innovation in marine engineering through SBDO.

The following subsections present a categorization of SBDO research into several key areas, resulting in
a systematic description of the vast body of work in this domain. The examination begins with problem
formulation strategies, identifying the complex nature and challenges of the design optimizations present in
the various studies. Subsequent analysis delves into the parameterization techniques used in SBDO. The
focus then shifts to the solvers utilized in SBDO and optimization strategies. Finally, a deeper discussion of
the applications is given.

3.1 Problem Formulations

The field of SBDO in marine engineering exhibits a range of problem formulations, from straightforward
deterministic single-objective optimization to more complex multi-objective and stochastic optimization
approaches. The evolution towards embracing these complexities is gradual, reflecting a preference for
simpler, more intuitive methods (see Fig. .

Central to the SBDO approach is the deterministic single-objective optimization, which remains predominant
due to its clear and straightforward formulation:

min  f(x,y) ey

X
subjectto gi(x,y) <0, i=1,...,m
andto hi(x,y)=0, j=1,...,p
andto x; < x < xy.

This formulation, with f as the objective function, x as the design variables (with x; and x;, the lower and
upper bounds), y as the environmental and/or operational conditions, g; as inequality constraints, and /; as
equality constraints, is favored for its ability to produce clear and concise results, making it highly suitable
for demonstrating new SBDO methodologies in marine engineering.

Despite the potential to address a broader spectrum of design criteria, the uptake of multi-objective opti-
mization, that reformulate the problem in Eq. |3|as follows

min  {fi(xy), f2(6y),--, fi(xy)} )

subjectto gi(x,y) <0, i=1,...,m
andto hj(xy)=0, j=1,...,p
andto x; < x < xy,

is cautious (see Fig. [Bh, top). This approach, involving the simultaneous optimization of multiple conflictin,
k objectives, faces challenges due to its increase in required computational resources and complexity. Figure%]



Preprint

presents a comprehensive depiction of the SBDO process using the extended design structure matrix (XDSM)
[33]. This representation includes the three main blocks (shape parametrization, numerical solver, and
optimizer) of the process, including also a stopping criteria, which may encompass either the convergence of
the optimization method or constraints imposed by a limited computational budget.

The adoption of stochastic optimization (see Fig. bh, bottom), which factors in uncertainty and variability,
is still limited. Techniques like robust design optimization (RDO) [26), 34} 18| [35, 136 37], that focus on
performance stability under uncertainty, reliability-based design optimization (RBDO) [38, 39| 40, 41, 24],
which emphasizes safety and reliability standards under probabilistic uncertainty models, and reliability-
based and robust design optimization (RBRDO) [42} 43, 44], that combines RDO and RBDO approaches to
ensure that a design is both robust against variability and reliable in terms of meeting safety or success criteria,

are not yet widespread, pointing to a significant potential area of development in the field, representing only
9% of the existing literature.

Figure[Bha clearly illustrates the continued preference for single-objective over multi-objective optimization
(top) and deterministic over stochastic optimization (bottom) approaches in the marine engineering domain.
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These preferences underscore the field’s inclination towards methodologies that offer straightforward
applicability and simplicity. Figure[Sp, on the other hand, reveals a modest but growing interest in multi-
objective optimization, with a limit to the number of objectives, indicating a cautious approach to embrace
complexity in optimization challenges. Examples of many-objectives optimization problems (number of
objectives greater than 3) are given in [45, 46, 47, 48] 49] for 4 objectives and in [50} 51, 52] for 5 objectives.

Furthermore, the analysis of problem formulations in SBDO studies, as depicted in Fig. Bk, reveals that
a significant majority of problems (63%) are formulated with constraints. This indicates that complex
real-world conditions and requirements are typically encountered in marine engineering applications.
Constraints in SBDO may originate from design, regulatory and safety requirements, physical limitations,
and environmental considerations.

The predominance of constrained problems underscores the need for optimization methodologies that can
effectively account for these limitations, balancing the achievement of design objectives with adherence
to constraint boundaries. Interestingly, a notable 19% of the problems are identified as unconstrained.
This suggests scenarios where design freedom is less restricted, possibly in more theoretical or exploratory
studies, or in cases where the primary focus is on optimizing a single aspect of design without the need for
balancing it against other factors. Another possibility is the use of implicit geometrical constraints, such
that they don’t need to be considered in the problem formulation anymore because they are satisfied by
definition. However, Fig. |5c also highlights a critical gap in current SBDO research - a lack of clarity or
information regarding the problem formulation in 18% of the papers. This ambiguity in the formulation,
specifically the absence of clear statements on whether the problems are constrained or not, points to a
potential oversight in the documentation or conceptualization of SBDO studies. It raises questions about the
comprehensiveness and depth of problem understanding in these cases. The absence of explicit mention of
constraints may lead to challenges in replicating or building upon the research, as the constraints (or lack
thereof) significantly influence the optimization process and outcomes. Furthermore, the figure brings to
light an important aspect of SBDO that appears to be insufficiently addressed: the strategies for dealing
with constraints. Effective constraint handling is crucial in SBDO, as it directly impacts the feasibility and
practicality of the optimized solutions. The lack of detailed discussion on constraint management techniques
in a considerable number of studies suggests a need for more focused research in this area. This includes the
development and application of advanced constraint-handling techniques, which are essential for ensuring
that the solutions generated by SBDO are not only optimal in a mathematical sense but also viable and
effective in real-world applications.

The scoping review has finally highlighted a notably sparse yet significant application of multidisciplinary
design optimization (MDO) methodologies within the broader context of SBDO in marine engineering,
encompassing only about 8% of the studies. This is particularly noteworthy in a field inherently requiring
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integration across various disciplines such as hydrodynamics, structural engineering, and materials science

for optimal design solutions. MDO problems focusing on resistance/powering and seakeeping performance

improvement have been addressed in the context of various vessels, including surface combatant [53] 44],
frigate [54], and multi-hulls [43,55]. These studies highlight the application of MDO in enhancing specific

performance parameters of marine vehicles. A multilevel hierarchy system approach, which allows for the

integration of results from synthesis-level optimization into subsystem optimization and overall coordination

of multi-level design systems, was demonstrated in studies like [56] and [57]. These works employed

methods like constructive artificial neural networks for the MDO of twin H-body vessels and multi-hulls,
considering objectives and constraints related to cavitation, structural integrity, stability, hull forms, weights,
costs, and payload capacity. System-level MDO, considering seakeeping, maneuvering, and resistance

assessment, was explored in [45], showcasing the comprehensive nature of this MDO approach. In contrast,
a generalized collaborative optimization (CO) method for resistance optimization of small water-plane area

twin hull (SWATH) vessels was proposed in [58], signifying the adaptability of CO in focused optimization
tasks. The optimization of an autonomous underwater vehicle (AUV) for various performance metrics

such as rapidity, maneuverability, resistance, and energy consumption through CO was undertaken in
studies like [59] and [60]. Additionally, a modified bi-level integrated system collaborative optimization for
resistance and weight reduction of a SWATH was proposed in [61]. The application of a multi-objective MDO
based on the all-at-once architecture for weight minimization and endurance maximization of an AUV was
demonstrated in [62]. Resistance optimization and wake flow uniformity of an offshore aquaculture vessel
were addressed in [63], while [64] utilized a concurrent subspace design method for comprehensive MDO
of an AUV, covering hull form, structure, propulsion, energy, maneuverability, and general arrangement.
Further studies explored a range of MDO applications [65], from hydrostructural optimization [38} 9} 66] to
energy consumption minimization [67], showcasing the diversity of MDO applications in marine engineering,
employing various architectural approaches such as fluid-structure interaction coupling [68], super element-
based multi-level analysis [69], and uncertainty quantification in system-level MDO [70].

3.2 Design-space Parameterization

In the realm of SBDO, the parametrization of the design space is a critical step that significantly influences
the optimization process. Parametrization can be categorized broadly into fully-parametric (FPM) and
partially-parametric models (PPM) [71]. FPMs define every aspect of the design using parameters, offering
high control and predictability. PPMs, however, combine parametric elements with non-parametric or fixed
aspects, providing a balance between control and flexibility. This distinction is crucial in SBDO, where the
choice of parametrization technique impacts the feasibility, efficiency, and scope of the optimization task.

Figure [/ shows the predominant preference for FPM, accounting for 72%. This dominance suggests a
trend towards well-defined, controlled, and interpretable approaches in design variable specification. FPM
approaches include CAD-based [72], analytical [73, [74], scaling [57], sectional area curves [75| 76| [77], partial
differential equations [1], Ferguson [40], Legendre [78], Bezier curves [79, (80, 81} 182} 17| 35] and surfaces
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[3, [70], Splines [83} [84], B-splines [85, 186} 187, 88} 189] 90, [7] [91] 51}, [92] 93, [94]], T-splines [95], F-splines [96],
NURBS [97, 98] 199, 100} (6, [101]], PARSEC [102], Lackeby [103}[104], and Akima [105]. On the other hand, PPM
methods such as free-form deformation (FFD) [106), 107,108,109, [110] 111} 112}, 113} 114} 66} 115} 63},[116} 117,
118,119} [1201 121,122} 123} [124]], radial basis functions (RBF) [125} 126} 55} 127,128} 129] [130], arbitrary shape
deformation [131) 132} 133} [134, [135], patches [136} (137, [138, [139], blending [136} (140} [141]], and morphing
[142], accounting for 28%, are indicative of the need for more adaptable and flexible design approaches.
Overall, Splines family (Spline, NURBS, B-Spline, T-Spline) approaches are the most used among the FPM,
whereas FFD is the most used among the PPM methods.

Figure [7b illustrates the distribution of design space dimensionalities and the cumulative sum of the
associated occurrences. Most studies concentrate on problems with 10 dimensions or fewer, indicating a focus
on moderately complex design challenges. However, the presence of problems with higher dimensionality,
greater than 50 [97] [143] 144} [113] 166} [145]], up to 420 dimensions [146], reveals the presence of applications
with highly complex and high-dimensional optimization challenges. These high-dimensional optimizations
are often facilitated by the use of adjoint gradients [34] (66} (146, (147, [130]], since the computational cost of
adjoint gradients scales favorably with the number of problem dimensions. Despite this success, adjoint
solvers are not commonly used in the maritime field. This could be due to the relatively high complexity of
these solvers which hampers a widespread adoption of the adjoint method for high-dimensional problems.
Because of its high potential, research on adjoints for optimization should receive more attention. It is finally
important to note that a significant portion of the works reviewed, approximately 26%, do not explicitly
specify the dimensionality of the design space. This omission indicates a gap in the reported information,
meaning the presented distribution may only partially represent the problem dimensionalities encountered
in SBDO research. The absence of detailed dimensionality data underscores a potential area for improvement
in the clarity and completeness of reporting in the field.

The problem dimensionality diversity raises the issue of the curse of dimensionality [148], where larger design
spaces exponentially increase computational costs and complicate the optimization process. Despite the
variety of methods used for SBDO, considering both FPM and PPM, the definition of the design space
still represents the true bottleneck in design processes. By limiting free variables, parametric models
can significantly save time and costs. Hence, choosing restrictions based on experience, constraints from
production, operational requirements, and market acceptance is crucial. Good parametric models stem from
conscious choices of restriction, emphasizing the need for dimensionality reduction techniques in SBDO.

The development of dimensionality reduction techniques for shape optimization only recently gained
attention. The simplest method to reduce the dimensionality of the design space is to identify the most
important variables for the design problem and discard the remaining ones by setting them to a constant
value during the optimization process, i.e. a factor screening, also known as feature selection. This process
is conducted off-line (or upfront) the SBDO procedure. Sensitivity analysis has been used in [149] to
prescribe the design space, whereas Pearson correlation coefficient has been used in [52] as a variable
screening metric. On the contrary, online methods (during the SBDO procedure) have been proposed
addressing dynamic space reduction in [150, [129], where not the dimensionality of the design space is
assessed, but the design variable range, exploring roughly the whole design space at the beginning of
the SBDO and then restricting the variables range runtime, focusing on the most interesting part of the
domain. However, these approaches do not always provide the best solution, since factor screening is
not able to evaluate the importance that the fixed variables could have during the optimization process,
especially when combined with other variables, and dynamic space reduction could not take into account
possible multi-modalities of the objective function, thus missing the optimum region. Hence, industrial
design, in general, is increasingly searching for such dimensionality reduction methods that can capture, in a
reduced-dimensionality space (possibly upfront), the underlying most promising directions of the original
design space, preserving its relevant features and thereby enabling an efficient and effective optimization in
the reduced space. The remedy has been found in dimensionality reduction techniques such as unsupervised
learning, feature extraction, and modal representation, overall known as representation learning. These
methods are capable of learning relevant hidden structures of the original design-space parameterization
and have been developed focusing on the assessment of design-space variability and the subsequent
dimensionality reduction before the optimization is performed. A method based on the Karhunen-Loeve
expansion (KLE, equivalent to the proper orthogonal decomposition, POD) has been formulated in [112]
for the assessment of the shape modification variability and the definition of a reduced-dimensionality
global model of the shape modification vector. No objective function evaluations nor gradients are required
by the method. The KLE is applied to the continuous shape modification vector, requiring the solution
of an eigenvalue problem for a Fredholm integral equation. The discretized Fredholm equation can be
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solved using principal component analysis. The method has been successfully applied to the optimization of
the Delft catamaran in deterministic [151 [152]] and stochastic [43] [153] conditions, the DTMB 5415 model
[154], Wigley hull [155], as well as on different propellers [92] (156, [49]. Off-line methods improve shape
optimization efficiency by reparameterization and dimensionality reduction, providing the assessment of
the design space and the shape parameterization before optimization and/or performance analysis is carried
out. The assessment is based on the geometric variability associated with the design space, making the
method computationally very efficient and attractive (no simulations are required). Nevertheless, if the
dimensionality reduction procedure is fed only with information on the shape modification vector, they may
overlook the correlation between geometric variance and the actual objective function, since small variations
in the geometry can produce significant variations in the objective function, e.g. flow separations and
cavitation. For this reason, dimensionality reduction based on KLE has been extended to include physical
information related to the optimization problem, resulting in significant improvements in both deterministic
[157,158] and stochastic [44] cases. A similar approach has been achieved via the active subspace method
[122,123]], which involves the identification of the so-called active subspaces of the input parameter space by
analyzing the sensitivity of the output with respect to the input parameters, often using gradient information.
Obviously, the use of physical information has a computational cost and cannot always be afforded by
designers upfront the SBDO procedure. For this reason, a further attractive proposal is to substitute physical
information with physics-related geometrical parameters. A recent example has been provided in [159]
where geometric moments are used to include physics information, applying it to two different ships.

3.3 Numerical Solvers

Figure(8|presents a compelling overview of the evolving solver usage in SBDO studies from 1994 to 2022. The
graph shows the cumulative sum of occurrences for various solvers. These are potential flow methods (PF),
Reynolds-averaged Navier-Stokes (RANS), and the finite element method (FEM). Each solver represents
distinct computational approaches in SBDO.

The PF solver, while exhibiting a consistent increase in cumulative occurrences over the years, has been
outpaced by the RANS solver since 2018. The increase in PF usage indicates its continued relevance, particu-
larly in problems where potential flow assumptions are valid, such as in the early stages of aerodynamic
or hydrodynamic design. PF solvers are mainly based on the boundary elements method (BEM), see e.g.
[160,[161] 162|163, 16492, 24], but other examples have been found, such as strip theory [165][103}[73] 91} [166],
slender body [167], vortex lattice [4, [168], and blade element momentum [46} [10] methods, as well as iso-
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geometric analysis combined with BEM [95, [159]. It is important to recognize that within the realm of
PF solvers, a significant portion are developed as proprietary, in-house tools, tailored to specific research
or industrial needs. This trend underscores the specialized nature of PF solvers, which often require cus-
tomization to address unique challenges in fluid dynamics and hydrodynamics. Nevertheless, commercially

available options have also been used, see e.g. [171,96| 172,127, [174].

The RANS solver shows a quartic trend in its cumulative occurrences. This significant rise reflects the growing
preference for RANS in SBDO studies. The main cause is likely due to its enhanced capability in capturing
complex turbulent flows and its applicability in a broader range of fluid dynamics problems compared to
PF. This, in combination with an increase of computational resources which makes RANS affordable for
practical applications, results likely in a strong increase of RANS usage over the years. The quartic nature of
the trend suggests an accelerating adoption rate, highlighting RANS as an increasingly preferred tool for
fluid dynamics optimization in recent years, as also reflected by the distribution between commercial (see,
e.g., [175[176,[177, 178,179, 180 15, [181} [182} 183 16, 184} [185, [186} [187]), in-house developed [188} 189, 190],
and open-source [191] 192} [194] [195] [196} 197] solvers that is notably balanced. Commercial tools are
widely used in various industries for their comprehensive capabilities and robust support structures. On
the other hand, there are several notable in-house RANS solvers, which are developed within academic or
research institutions for specific applications or research purposes.

Finally, the use of FEM solvers [116] shows a more limited cumulative occurrence in SBDO studies despite
its critical role in structural analysis. This might be indicative of the specific focus of the studies under
consideration, possibly skewed more towards fluid dynamics than structural optimization. However, the
presence of FEM, mainly composed of commercial software, see e.g., [201], underscores its
importance in the SBDO landscape, particularly for problems involving structural response and material
optimization.
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The trends observed in Fig. [8are indicative of the evolving preferences and technological advancements in the
field of SBDO. The overtaking of PF by RANS in recent years points to a paradigm shift in solver selection,
driven possibly by the increasing complexity of design problems and the need for more sophisticated
fluid dynamics modeling capabilities. The limited but present use of FEM highlights the diverse range
of optimization challenges addressed in SBDO, necessitating a variety of computational tools to cater to
different aspects of marine engineering design.

3.4 Optimization Methods

In the evolving landscape of SBDO, the selection of optimization algorithms and the possible integration of
surrogate methods play pivotal roles. These strategies are key in navigating the complex design spaces and
computational challenges inherent in SBDO. The choice between global, local, or hybrid algorithms, as well
as the adoption of surrogate-based approaches versus surrogate-free methods, reflects a strategic balance
between exploration and exploitation, accuracy, and computational efficiency.

3.4.1 Algorithms

Figure O illustrates the year-by-year usage of global, local, and hybrid algorithms in SBDO studies. The
trend towards global optimization algorithms signifies a strategic shift in SBDO. Global algorithms, known
for their ability to explore the entire design space, are increasingly favored. This preference likely stems from
their stochastic nature and heuristic methods, which are adept at avoiding local optima: a critical advantage
in complex, multimodal design landscapes. The rising trend of global algorithms suggests an industry-wide
acknowledgment of the complexity and unpredictability inherent in SBDO problems.

Within the realm of global optimization, genetic algorithms (GAs, see, e.g., [202, 203} 204, 205} 206}, 207}, 208}
209,210,111}, 211}, 212,213}, 214} 215 216} 217]) and particle swarm optimization (PSO, see, e.g., [218,1219,[14,
220,221]) dominate. As shown in Fig. Ob, GAs cover 65% of global methods, leveraging mechanisms inspired
by biological evolution, such as selection, crossover, and mutation. This allows for a robust exploration of
the design space, making them particularly effective for non-linear, discrete, or mixed-variable optimization
problems. PSO, with 24%, employs a swarm intelligence approach that simulates social behavior patterns,
providing a balance between exploration and exploitation in the search process. Within the remaining 11%
of the global methodologies, several notable algorithms have been identified and warrant mention. These
include the infeasibility-driven evolutionary algorithm [87] [222] [184], simulated annealing [87, 26], artificial
bee colony [223][126], and dividing rectangles [224] [154].

Considering local methods, the preference for sequential quadratic programming (SQP, see, e.g., [225] 226/ 84,
227,1228,1229,77]) and methods like quasi-Newton [1] methods (e.g., the Broyden-Fletcher-Goldfarb-Shanno,
BFGS algorithm [91}[230]) and pattern search, also known as Hooke and Jeeves algorithm [165][103} 231} [182],
as seen in Fig. [, aligns with problems where a good initial guess is available, and the design space is less
rugged. In particular, SQP, with its ability to handle nonlinear constraints efficiently, is apt for fine-tuning
solutions within a well-defined local region, complementing the global search methodologies. The steepest
descent (SD) algorithm [3]], the simplex method, also known as Nelder-Mead algorithm [97] 127} 232] 233]],
and other gradient-based approaches [234] are overall less preferred.

Finally, hybrid approaches deserve some hints. It may be noted that hybrid approaches include both
memetic approaches (hybrid global/local) [175] 189|176 [110, 235, [153, 60, [158], as well as hybridization of
different global algorithms [108], global methods with reinforcement learning [236], and local algorithms
with multi-start approaches [200, [164]. Among the memetic approaches the SHERPA (simultaneous hybrid
exploration that is robust, progressive, and adaptive) algorithm [237, [18} 55, 135, 134} 238]], noted for its
robust and adaptive capabilities in handling complex design challenges, is gaining recognition in various
engineering domains, not only marine. However, its proprietary nature, being exclusive to a specific software
environment, presents potential limitations in terms of widespread adoption and accessibility, particularly
in academic and open-source research communities where transparency and adaptability of algorithms are
often paramount.
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3.4.2 Surrogates

Figure compares the trend of solving SBDO problems with and without surrogate methods. The recent
overtaking of surrogate-based methods over surrogate-free approaches marks a significant development
in SBDO. In surrogate-based optimization, the original optimization problem in Eq. [B]is reformulated by
approximating the objective function f(x) and the eventual functional constraints g;(x) and h;(x) with
surrogate models, denoted as f(x), §;(x), and fz]-(x) respectively. This approach transforms the original
optimization task into a more computationally tractable form by minimizing the surrogate objective function

while ensuring that surrogate constraints are satisfied. The reformulated optimization problem is expressed
as:

min  f(x,y) (3)
subjectto  §i(x,y) <0, i=1,...,m
fzj(x,y):O, i=1...,p.

Surrogate models, serving as approximations of the actual objective and constraint functions, offer substantial
computational savings. The cubic trend of surrogate-based methods (see Fig. [I0p) reflects their growing
importance in dealing with high-fidelity simulations that are computationally expensive, allowing for more
iterations and a deeper exploration within feasible turnaround times.

The predominance of Gaussian process (GP, see, e.g., [91) [194] 52 121} 190, 156]) and Kriging (KG, see,
e.g., [45, (114,17, 241, 242], 244 246]]) methods (34%) in surrogate-
based optimization, as shown in Fig. [10p, underscores their efficacy in capturing complex, nonlinear
relationships with a relatively small number of samples. When it comes to practical applications, the
distinction between GP models and KG models can become blurred despite their differences in original
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contexts and typical interpretations. This is particularly true in the context of surrogate modeling. In many
cases, especially in computer experiments and design of experiments, the terms are used interchangeably,
as the underlying mathematical principles are very similar. Both methods are highly appreciated for their
ability to provide accurate predictions (excelling in modeling smooth functions) and a statistical framework
that quantifies prediction uncertainty which is crucial for decision-making in the optimization process.
However, computational challenges occur when applied to large datasets. Other popular methods like RBF
(21%, see, e.g., [50, (189 [151], [223] [149], [247| [248], [127| [134]), response surface methodologies (RSM, 18%, see,
e.g., [106} 39,109 [180} 59, [15| [16] 140, [141), 249} 250, 251} [252]), neural networks (NN, 14%, see, e.g., [175] 56|
57,186| 4, [173] 162, [17, 20, [197]]), and support vector machines (SVM, 5%, see, e.g., [199, 163} 104} 253} 254])
each offer unique advantages, such as local approximation capabilities and flexibility in modeling complex
patterns. Specifically, RBFs are beneficial for multidimensional interpolation and smooth transitions, though
they can struggle with larger, high-dimensional data; RSM is effective for design of experiments and process
optimization but is less suited for non-linear or complex problems and requires extensive experimentation
for accurate modeling; NNs, with their flexibility for complex relationships, are ideal for large datasets, but
require significant data and are computationally intensive; lastly, SVM provide robust performance in high-
dimensional spaces but are sensitive to kernel and parameter choices and computationally demanding for
large datasets. This nuanced understanding of each method’s strengths and weaknesses is crucial in guiding
the selection of the most appropriate surrogate modeling technique for specific engineering optimization
problems. Finally, the other 9% surrogate-based approaches are composed of trust-region methods [53 2],
elliptic basis function [255], orthogonal polynomial methods [256], and hyper-surrogate approaches [186],
where multiple surrogate methods are used, like RSM, RBEF, and KG, and then averaged to get the objective
prediction.

It may be noted that in the present scoping review, and under the statistics provided in Fig. [I0b, works that
characterize RBF models as single-layer NN are categorized under the use of RBF surrogates, rather than as
conventional NN implementations. This classification stems from the mathematical alignment of single-layer
RBF networks with RBF interpolation, highlighting their role as surrogate modeling techniques. In these
instances, the RBF’s function is used primarily to approximate complex nonlinear relationships within the
data, distinguishing it from the multi-layered, deep-learning frameworks typically associated with NNs.
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Figure 11: Example of extension of the XDSM diagram towards single-fidelity surrogate-based SBDO with
active learning.
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Transitioning to another critical aspect of surrogate-based optimization, it is essential to acknowledge the
pivotal role of the initial training and sampling approach employed for the surrogate models. The effective-
ness of surrogate methods, as discussed earlier, hinges significantly on the quality and representativeness of
the initial training data or design of experiments (DoE) used to construct these models. This data funda-
mentally influences the surrogate’s ability to accurately capture the underlying behavior of the objective
function and constraints. Therefore, the selection of an appropriate DoE becomes a key determinant in the
success of surrogate-based optimization processes. Among the various DoE employed (see Fig. [10c), the
Latin hypercube sampling (LHS), see, e.g., [56, 39, 58] covers 37% of the cases (including optimal [239) 26]
and universal [194] LHS) and this can be attributed to its effectiveness in generating well-distributed sam-
ples across the design space, ensuring a representative and unbiased training set for surrogate models.
Other techniques include central composite design (CCD, 7%, e.g. [178),[180} (141} [157, 238]], Sobol (7%, e.g.
[250, 120} [127]), uniform design (UD, 5%, e.g. [54,[199,48]), full factorial (FF, 5%, e.g. [241) 257, [229])), and
finally the remaining 12% includes orthogonal arrays (5%, [50,[189,[107]), Hammersley/Halton sequences
[151} 70} [156]], as well as random/Monte Carlo sampling [195] 37, [197]. However, it is noteworthy that in
27% of the cases, the specific DoE strategy employed remains unidentified or unspecified. This lack of
clarity on the training approach used can have implications for the interpretability and reproducibility of
the optimization results. Consequently, this highlights a gap in the current body of research, underscoring
the need for more transparent and detailed reporting of the sampling methodologies in surrogate-based
optimization studies to better understand their impact on the effectiveness of the surrogate models.

In the domain of surrogate-based optimization, the development of multi-fidelity or variable-fidelity meth-
ods has emerged as a key strategy to enhance the effectiveness of surrogate models while also conserving
computational resources. These methods leverage varying levels of model fidelity, combining computation-
ally expensive high-fidelity simulations with less costly lower-fidelity approximations in order to construct
more informed and efficient surrogates. Despite their potential benefits, the scoping review reveals that only
12% [53, 12189, 107 142,180, (61} 91, (157, 258] [230, 259, 260] of surrogate-based approaches have employed
multi-fidelity methodologies, and their application appears sporadic over the years covered by the review.
This limited utilization raises questions about the popularity and perceived benefits of multi-fidelity methods
in this specific field. It is unclear whether this lack of widespread adoption is due to a general underutiliza-
tion of these methods in the industry, or if there exist ambiguities and uncertainties regarding the actual
advantages of integrating multi-fidelity approaches in surrogate-based optimization for marine engineering
applications. This observation points to a potential area for further investigation and clarification, as the
effective use of multi-fidelity methods could significantly impact the efficiency and accuracy of optimization
processes in this domain.

In concluding the discussion on surrogate-based optimization, it is crucial to recognize the role of adaptive
sampling or active learning methods in enhancing the effectiveness of these models. Such techniques, for
both single- and multi-fidelity methods, start with an initial DoE, subsequently adapted by incorporating
new samples x* in areas most beneficial for optimization. A variety of strategies have been employed for
this purpose, including, among others, the so-called acquisition function ¢ based on: the validation of the
best found [54, 186} (108, 180 (180, [151), (154} [193] |64} 244], the maximum uncertainty [107, [157], the expected
improvement [34, 91} 157, 230], and lower confidence bounding [157,[60]. These methods aim to iteratively
refine the surrogate model by focusing on regions of the design space where additional information can
significantly influence the optimization outcome. Despite the apparent advantages of these adaptive
techniques, this scoping review indicates that in 21% of the surrogate-based methods employing adaptive
sampling approaches, the specific technique utilized remains unspecified. This lack of detail not only
hinders the full understanding of the method’s implementation but also obscures the comparative analysis of
different techniques’ efficacy. Given the potential impact of adaptive sampling on the accuracy and efficiency
of surrogate-based optimization, particularly in marine engineering applications, this represents a significant
gap in the current literature. A more transparent and detailed reporting of adaptive sampling methods could
provide deeper insights into their benefits and limitations, fostering their more informed and effective use in
the field.

An example of how SBDO workflow shown in Fig. [f] can be extended to the use of a general single-
fidelity surrogate approach, including active learning, is given in Fig. [I1} The diagram illustrates how the
surrogate model acts as an intermediary between the numerical solver and the optimization algorithm. This
arrangement facilitates the application of the optimization algorithm directly on the surrogate model to

identify the optimal solution, denoted as Xmin and fmm. Concurrently, an active learning-driven optimization
procedure operates in parallel. This procedure employs an acquisition function, ¢, to systematically pinpoint
potential new candidate solutions x* to be sampled. These candidates are then processed through the
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numerical solver if the predefined stopping criterion has not yet been met. This dual-path approach
integrates surrogate modeling with active learning to efficiently converge towards the optimum by balancing
the exploration of the solution space and the exploitation of known high-potential areas. A further example
of XDSM diagram extended to multi-fidelity methods can be found in [261].

3.5 Applications

Figure[12|shows the breakdown of the SBDO applications in marine engineering. The overwhelming majority
of SBDO applications are dedicated to vehicle design (87%), which includes ships (see, e.g., [262, 263} 264,
265|266, 267]), submarines (see, e.g., [268) 269]), and various types of watercraft. This dominant focus
can be attributed to several factors: (i) marine vehicles often have complex design requirements balancing
hydrodynamic efficiency, stability, load capacity, and speed, consequently SBDO provides a powerful tool
to optimize these competing factors; (ii) the marine vehicle industry is highly competitive, with a constant
demand for improved performance and efficiency and SBDO enables designers to explore innovative
shapes and configurations that might not be feasible through traditional design methods; (iii) the increasing
environmental regulations and the push for energy efficiency drive the need for advanced optimization
techniques to meet these stringent standards. The use of SBDO in the development of renewable energy
solutions in marine settings, such as wave [78} 22| 23] 186} 24} 25] and ocean-thermal [270] energy converters,
pumps [271]], and tidal [13} [16} (14} 17| [18] 19} 20| 21]], marine/ocean current [79, 81}, 241} 258, 229, 272], river
hydrokinetic [163} [101], and offshore wind [173} 182} 273] turbines, highlights its growing importance,
covering 10% of the literature. This category’s smaller proportion might be due to the relatively newer
field compared to traditional marine vehicle design. Furthermore, the design of renewable energy systems
involves complex interactions with the marine environment, requiring sophisticated models that can be
challenging to optimize. The smallest category in the breakdown is offshore applications (3%), which
include steel catenary risers [39]219], deep-sea test miners [239], platforms and semi-submersible structures
[26] 247, 274], mooring systems [164], and ocean bottom flying nodes [257]. Factors influencing this lower
percentage include high stakes and safety concerns, as well as complex environmental conditions. Offshore
structures are often subject to stringent safety standards due to the high risks involved, possibly leading to a
more conservative approach in adopting new optimization techniques. Moreover, the design of offshore
structures must account for a wide range of environmental conditions, making the optimization process
more challenging.

Among vehicle design, Fig. [13|offers insights into where optimization efforts are being primarily focused.
Specifically, 86% is composed of surface vehicles, 13% underwater, and the remaining 1% amphibious. The
optimization of surface vehicles can be pivotal in enhancing various aspects like hydrodynamic efficiency and
seakeeping, resulting in less fuel consumption, improved stability and payload capacity. SBDO’s significant
role in surface vehicle design may be due to the large economic and environmental impact of these vessels,
driving a need for continuous improvement in their performance and efficiency. Underwater vehicles
include submarines [82, 72] and autonomous underwater vehicles (AUVs, see, e.g., [178,[179], 222} [183]]). The
design optimization of these vehicles focuses on aspects like efficient maneuverability, stability under water,
and energy efficiency for extended mission ranges. The application of SBDO in underwater vehicle design
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indicates a focus on specialized performance characteristics unique to the underwater environment, such
as pressure resistance and stealth capabilities. Finally, amphibious vehicles are specialized vehicles
that operate both in water and in air or land. The design challenges for amphibious vehicles are particularly
complex due to the need to optimize performance in two very different environments. SBDO can play a key
role in balancing these dual requirements, optimizing aspects such as buoyancy, stability, and propulsion
efficiency.

Due to the predominance of surface vehicles, a further breakdown has been conducted in this subfield. The
sub-categories are shown in Fig. A significant focus on containerships (see, e.g., [234, 275]) in SBDO
applications aligns with their vital role in global trade. Optimization for these vessels likely focuses on
maximizing cargo capacity, fuel efficiency, and minimizing environmental impact, crucial for cost-effective
and sustainable operations. The Korea research institute of ships and ocean engineering (KRISO) container
ship (KCS) represents the most used benchmark in this sub-category, see, e.g., [110, 234], 16|, [51],
[117,128122][77], serving as a standard reference model for various hydrodynamic studies. The optimization
of military [54] 277 and patrol [87, vessels underscores the importance of performance, stealth,
and agility in these applications. SBDO can be instrumental in enhancing these attributes, contributing
to the effectiveness and safety of naval operations. As for containerships, also military vessels have their
specific standard benchmark, represented by the David Taylor model basin (DTMB) 5415 model, which
has been extensively used for hull-form optimization purposes [53, 2] [224] [114]
[145| 277, 44, [158| 260]. The application of SBDO in tanker design (see, e.g., [278]) reflects the need for
optimizing fuel efficiency and safety, given their role in transporting large volumes of liquid cargo, including
oil and chemicals. The KRISO very large crude carrier (KVLCC2) model is the actual benchmark in this
sub-category, see, e.g., 245]). The application of SBDO in several further categories indicates a broad
spectrum of optimization goals, from enhancing the efficiency of bulk carriers [111, 214, 116, 246] and fishing
47, vessels to improving passenger comfort and safety in passenger’s vessels
[236] 99, [127], including yachts [T} (9|70, B6] and cruise ships [48| [121]. The optimization of
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inland [225, 10,210} 94] and special ships also points to specialized requirements, perhaps related to shallow
waters navigation or unique operational roles like research vessels [166}280], survey ships [221], or offshore

aquaculture [63, 119].

As shown in Fig. [14} the strongest emphasis on surface vessels is represented by multi-hull designs, such as
catamarans and trimarans, suggesting a focus on seakeeping and efficiency, resulting in improved stability
and speed. Multi-hulls present unique design challenges that SBDO can help address, particularly in
balancing stability with performance. For these reasons a deeper analysis has been conducted on multi-hull
vessels, revealing three main sub-categories, which are catamarans, trimarans, and SWATH vehicles (see
Fig. . Catamarans, with two parallel hulls of equal size, offer stability and spaciousness, making them
popular for passenger ferries and recreational vessels. SBDO in catamaran design [85] [137] likely focuses
on optimizing hull shape for stability 43]] and reducing resistance, improving fuel efficiency
[142] 162| 242| 52| [127, [281]. The standard benchmark model used for developing and assessing SBDO
methodologies is represented by the Delft catamaran, see, e.g., [112] 42]]. Trimarans, featuring a
main hull with two smaller outrigger hulls, are known for their speed and stability, making them suitable
for high-speed ferries and racing yachts. In trimaran design [125], SBDO can play a crucial role in
optimizing the hull configuration for balance and speed [211} 141} 174} 238], ensuring structural integrity
while maximizing performance [167, [147, [130]. The use of SBDO in trimarans
can also address specific challenges like wave-piercing capabilities and maneuverability, enhancing
their performance in various marine conditions. SWATH vessels are designed to minimize hull volume
at the water’s surface, reducing the impact of waves and providing a smoother ride in rough seas. SBDO
in SWATH design [56, 206 58, [161] 118, 250, 230, 252] is likely centered on optimizing the hull shape and
configuration to achieve the desired stability and seakeeping qualities [91] [190], making them
ideal for applications like research vessels and coast guard ships. It should be finally highlighted that
Fig. [14] does not account for the hull-form studies applied to the Wigley [97, and systematic series
S60 | 177, 202, 183} 223] benchmark models because they cannot be included in any of the specified
subcategories. Nevertheless, they have been used for specific development/assessment of SBDO method
74, 124 [172, [171)220], as well as for particular operational /environmental
conditions, like high speed and shallow waters [137], or retrofitting [11].

Finally, a breakdown of SBDO applied to marine components is presented in Fig. [16| Propulsors, including
propellers [38], water jets [104) 240], and thrusters [253], are critical for the movement and maneuverability
of marine vehicles. Shape optimization in this area focuses on improving hydrodynamic efficiency
[5, 7, [156]], reducing cavitation [88), 8,92], and minimizing noise [4, 285]]. The optimization
could involve refining blade shapes and angles [12] to enhance propulsion efficiency while reducing fuel
consumption [36, 49] and environmental impact [10, 90, 11]], including also retrofitting solutions, like
equalizing ducts [93]. Marine vehicle appendages include rudders [6]], fins [113}66], and keels [175], which
play essential roles in stability and steering. Shape optimization in appendages [188, aims to
enhance hydrodynamic performance, improve maneuverability, and reduce drag [195]. This might involve
optimizing the size, shape, and positioning of these components to achieve a balance between stability
and agility [9] [70]. Structures likely encompass the hull and superstructure of marine vehicles, as well
as substructures of offshore platforms 247,274, 272]). Shape optimization in structures focuses
on enhancing overall hydrodynamic performance, maximizing space utilization, and ensuring structural
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integrity 140, 201]. In addition, it involves tweaking hull forms for better wave resistance, stability,
and seakeeping qualities, crucial for efficiency and safety [203, 68], including crashworthiness [143] 144,
218]. In sailboats and sailing yachts, the optimization of sail shapes is vital for maximizing wind propulsion
efficiency [244]. This involves determining the optimal curvature, material stiffness, and positioning of sails
to harness wind power effectively, which is essential for performance in competitive sailing and leisure
cruising [34][102]. Finally, anti-roll tanks are used to stabilize ships by reducing rolling motion caused by
waves. Shape optimization in anti-roll tanks aims to maximize their effectiveness in damping roll motion
while minimizing the impact on the vessel’s overall performance and weight distribution [166, 245].

The detailed breakdown of shape optimization in various marine vehicle components underscores the
comprehensive and multifaceted nature of design challenges in marine engineering. Shape optimization in
each of these areas requires a deep understanding of fluid dynamics, material properties, and operational
conditions. The focus on specific components like propulsors, appendages, and structures reflects the indus-
try’s commitment to enhancing performance, safety, and environmental sustainability. The optimization of
sails and anti-roll tanks highlights specialized areas where SBDO can significantly impact vessel performance
and passenger comfort. This analysis demonstrates the critical role of shape optimization in advancing the
design and functionality of marine vehicles. It highlights the technological advancements in SBDO and its
application in addressing the nuanced and complex design requirements of different components of marine
vehicles.

Overall, this analysis underscores the adaptability and potential of SBDO across various facets of marine
engineering, promising continued innovation and improvement in the design of marine vehicles, renewable
energy systems, and offshore structures.

4 Discussion

The marine engineering field, while recognizing the advantages of more comprehensive multi-objective and
stochastic optimization approaches, shows a marked preference for simpler, deterministic single-objective
formulations. This trend results from the tendency to provide a simple and clear demonstration of new
SBDO methodologies. At the same time, it highlights important areas for future growth such as the adoption
of stochastic problem formulations, such as RDO, RBDO, and RBRDO. These approaches more accurately
reflect the uncertainties characteristic of marine environments and align with broader trends in marine
engineering, including digitalization, sustainability, and evolving regulatory landscapes. The analysis of
problem formulations in SBDO studies reveals a landscape where constrained problems dominate, reflecting
the complex nature of marine engineering challenges. However, the significant proportion of studies with
unclear formulations and the apparent gap in the discussion of constraint-handling strategies highlight
areas for improvement in SBDO research. Future studies would benefit from a more explicit focus on the
nature and management of constraints, thereby enhancing the relevance, applicability, and impact of SBDO
in marine engineering. The scarcity of MDO applications also highlights a potentially huge area for growth
and development in marine engineering research. As the field continues to develop, an increased recognition
of the benefits of a more integrated multidisciplinary approach is expected. MDO is especially useful in
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Figure 16: Occurrences of SBDO applied to marine components following the primary classification level.

20



Preprint

tackling complex design challenges that encompass multiple engineering facets. Future research could focus
on developing more accessible and efficient MDO methodologies, facilitating their broader adoption in
marine engineering optimization problems.

The variety of parameterization techniques reflects a range of approaches to defining design spaces, while
the distribution of design space dimensionalities reveals both a focus on more manageable problems and an
interest in tackling more complex, high-dimensional optimization challenges. This analysis underscores the
need for continued innovation in SBDO methodologies, particularly in addressing the challenges posed by
high-dimensional design spaces, and overcoming the curse of dimensionality. Dimension reduction tech-
niques such as factor screening, sensitivity analysis, and dynamic space reduction are classical approaches
to mitigate the curse of dimensionality. However, these techniques do not capture multi-modalities of
the objective function and may therefore fail to find the optimum region. Unsupervised learning, feature
extraction, and representation learning such as KLE and POD overcome these issues and do not require
objective function evaluations or gradients. These methods are based on geometrical variance and do not
account for the relation between geometrical variation and the variation of the objective. The inclusion of
physical (objective) information is therefore identified as a promising way to improve dimension reduction
techniques. Nevertheless, for practical application in an industrial context, where parametrization methods
are mainly CAD-based, designers cannot easily retrieve the original design variables from the reduced
design space (also known as the pre-image problem). It can be noted that a back-mapping procedure,
called parametric model embedding (PME) [287], has been recently proposed. The PME simply extends the
design-space dimensionality reduction procedure based on KLE/PCA using a generalized feature space
that includes shape modification and design variables vectors together with a generalized inner product,
building an embedded model of the original design parameterization.

The choice of numerical solvers in SBDO studies reflects an evolving landscape. The growing preference
for RANS solvers over potential flow methods marks a shift towards more comprehensive fluid dynamics
modeling. This transition aligns with the industry’s push towards capturing more complex, turbulent
flows and the increasing availability of computational resources. However, the consistent but limited use of
FEM solvers indicates a potential underutilization in structural optimization aspects of marine engineering.
Future research could benefit from a more integrative approach that combines RANS for fluid dynamics
with FEM for structural analysis, potentially leading to more comprehensive and effective optimization in
marine engineering.

In the field of engineering optimization, the emphasis is often on achieving an optimal solution in a single
iteration of an algorithm, reflecting the practical constraints of time and resources. Traditional stochastic
global methods, while robust in exploratory capacity, typically require multiple iterations to ascertain
solution reliability due to their inherent randomness. This necessitates a shift towards deterministic variants
of global evolutionary strategies and population-based methods. These deterministic adaptations aim to
retain the broad exploratory characteristics of global methods but enhance the consistency and predictability
of outcomes in each individual run. Additionally, the strategic integration of these deterministic global
methods with deterministic local search techniques marks a significant advancement in optimization practice.
This hybrid approach synergistically merges the expansive exploration capabilities of global methods with
the focused, efficient refinement of local optimization techniques, such as gradient-based or line search
methods. The result is an approach that effectively leverages the strengths of both methodologies, facilitating
convergence to the most optimal solution within the constraints of a single algorithmic execution. Such
developments in deterministic global methods, complemented by hybridization with local searches, are
particularly salient in engineering contexts. They offer a streamlined and effective means of identifying
the global optimum, aligning with the practical exigencies of engineering optimization where timely and
reliable solutions are paramount.

The trends and preferences in optimization algorithms and surrogate methods in SBDO reflect an evolving
field that continually adapts to the intricacies of marine engineering design problems. The shift towards
global optimization and the increasing reliance on surrogate-based methods indicate a strategic response
to the challenges of high-dimensional, complex design spaces. This evolution underscores the industry’s
commitment to finding a balance between computational efficiency and the need for thorough, accurate
design exploration. It can be noted how the extension to multi-fidelity approaches, as well as, the integration
of active learning/adaptive sampling procedure for the surrogate training process, is still limited. These two
branches represent a pathway to follow for future research to assess clearly the pros and cons of multi-fidelity
versus single-fidelity methods, as well as identify the most efficient and effective DoE in combination with
active learning /adaptive sampling procedure. It may be emphasized that, as for the problem formulation,
the literature presents several unclear statements on which DoE is used for surrogate training, as well as
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what kind of acquisition function has been used in the case of active learning. This represents a huge gap in
interpretability and repeatability of the methodologies, that have to be filled.

Finally, the current distribution of SBDO applications in marine engineering indicates a strong focus on
vehicle design, reflecting both the industry’s needs and the maturity of optimization techniques in this area.
However, the presence of renewable energy and offshore applications, although smaller in proportion, is
significant. It suggests a growing recognition of SBDO’s potential in these areas, particularly in response to
global trends toward sustainable energy and the need for environmentally resilient offshore infrastructure.
As the field of SBDO evolves, it might be expected to see a diversification in its applications. The renewable
energy sector, in particular, may experience growth in SBDO applications as the demand for sustainable
energy solutions increases. Furthermore, advancements in SBDO methodologies might lead to greater
adoption in offshore applications, addressing the unique challenges posed by these environments. The
distribution of SBDO applications across different types of marine vehicles reflects the diverse challenges
and priorities in marine vehicle design. The prominence of SBDO in surface vehicle optimization aligns with
the global scale and economic significance of these vessels. The focus on underwater vehicles highlights
the technological advancements and specialized requirements in this sector. Meanwhile, the application in
amphibious vehicle design, although likely less in comparison, underscores the complexity and innovation
in multi-environment vehicle design. SBDO is a crucial tool in advancing the design and performance
of various types of marine vehicles, addressing unique challenges, and contributing to the evolution of
more efficient, capable, and environmentally friendly marine transportation and exploration technologies.
The breakdown of SBDO applications across various types of surface ships demonstrates the versatility
and significance of optimization techniques in addressing the diverse design and operational challenges of
different ship categories. The focus on containerships and military vessels reflects economic and strategic
priorities, while the emphasis on multi-hulls indicates an interest in innovative hull designs. The diverse
application across other ship types, such as tankers, bulk carriers, fishing, and passenger ships, highlights
the broad applicability of SBDO in enhancing various aspects of marine vessel design and operation.

In summary, while SBDO has become a cornerstone in marine engineering, there is a clear path forward
for further advancements. Embracing complex optimization methodologies, expanding the use of MDO,
and integrating various computational solvers could pave the way for more innovative and sustainable
solutions in marine engineering. These developments, coupled with the broader trends in digitalization and
environmental consciousness, are poised to significantly shape the future of SBDO in this field.

It finally should be noted that while focusing exclusively on peer-reviewed journal papers has ensured the
academic rigor and reliability of the sources reviewed, this approach may have limited the representation
of industrial applications of SBDO in marine engineering. Industrial projects, especially those involving
multi-objective and constrained optimization problems as well as multi-disciplinary efforts, are often not
documented in the academic databases surveyed. This is due to various factors, including proprietary
considerations and the publication venues typically preferred by industry practitioners, such as industry
magazines, conference contributions, and books detailing larger research and development projects.

5 Conclusions

The scoping review conducted in this study underscores the increasingly pivotal role of simulation-based
design optimization (SBDO) in marine engineering. Our findings illuminate how SBDO is not just a facilitator
of improved performance and cost-efficiency in marine engineering systems and components but also a
catalyst for innovation and adaptation in the face of evolving technological and environmental challenges.

Significantly, our analysis reveals a low use of more sophisticated, multi-objective, and stochastic optimiza-
tion approaches in SBDO, despite the complex, dynamic nature of marine environments. There remains a
predominant reliance on simpler, deterministic single-objective formulations, highlighting a crucial area
for future development. This gap underscores the necessity for more advanced algorithms that can more
accurately model and navigate the uncertainties inherent in marine engineering, including factors like wave
dynamics and ocean currents.

Moreover, the review highlights the emergence of high-fidelity solvers in SBDO, signaling a shift towards
more nuanced and detailed simulation capabilities. This advancement is indicative of the field’s progression
towards tackling more complex optimization challenges, further driven by the integration of active learning
and adaptive sampling techniques in surrogate-based optimization models and the development of design-
space dimensionality reduction procedures for addressing the curse of dimensionality problem.
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In conclusion, this scoping review not only reaffirms the significant potential of SBDO in revolutionizing
marine engineering practices but also identifies critical pathways for future research. These include the
need for more integrative, multidisciplinary approaches, and the development of optimization methods
that are both computationally efficient and robust in the face of the unique challenges posed by the marine
environment. As the field continues to evolve, these insights will be instrumental in guiding the next
generation of research and innovation in SBDO, paving the way for more sustainable, efficient, and advanced
marine engineering solutions.

Acknowledgments

Dr. Serani has been partially supported by the Horizon Europe “RETROFIT55 - Retrofit solutions to achieve
55% GHG reduction by 2030”, grant agreement 101096068. Dr. Scholcz is grateful to the Dutch Ministry of
Economic Affairs which has partially funded the present work.

References

[1] T. W. Lowe, M. L. Bloor, and M. ]. Wilson. The automatic functional design of hull surface geometry.
Journal of ship research, 38(4):319-328, 1994.

[2] Emilio F. Campana, Daniele Peri, Yusuke Tahara, and Frederick Stern. Shape optimization in ship
hydrodynamics using computational fluid dynamics. Computer Methods in Applied Mechanics and
Engineering, 196(1-3):634-651, December 2006.

[3] Daniele Peri, Michele Rossetti, and Emilio F. Campana. Design Optimization of Ship Hulls via CFD
Techniques. Journal of Ship Research, 45(02):140-149, June 2001.

[4] Florian Vesting and Rickard E. Bensow. On surrogate methods in propeller optimisation. Ocean
Engineering, 88:214-227, September 2014.

[5] Cheng Ma, Hao-peng Cai, Zheng-fang Qian, and Ke Chen. The design of propeller and propeller boss
cap fins (PBCF) by an integrative method. Journal of Hydrodynamics, 26(4):586-593, August 2014.

[6] Chen-Wei Chen, Tsung-Yueh Lin, Bo-Yen Chen, and Jen-Shiang Kouh. Parametric design and opti-
mization of a pivoting s-type rudder for containerships. Journal of Marine Science and Technology, 26(6):1,
2018.

[7] Nowrouz Mohammad Nouri, Saber Mohammadi, and Masoud Zarezadeh. Optimization of a marine
contra-rotating propellers set. Ocean Engineering, 167:397-404, November 2018.

[8] Seyedali Mirjalili, Andrew Lewis, and Jin Song Dong. Confidence-based robust optimisation using
multi-objective meta-heuristics. Swarm and Evolutionary Computation, 43:109-126, December 2018.

[9] Matteo Diez, Daniele Peri, Giovanni Fasano, and Emilio F. Campana. Hydroelastic optimization of
a keel fin of a sailing boat: a multidisciplinary robust formulation for ship design. Structural and
Multidisciplinary Optimization, 46(4):613-625, October 2012.

[10] Breno Inglis Favacho, Jerson Rogério Pinheiro Vaz, André Luiz Amarante Mesquita, Fabio Lopes,
Antonio Luciano Seabra Moreira, Newton Sure Soeiro, and Otavio Fernandes Lima da Rocha. Con-
tribution to the marine propeller hydrodynamic design for small boats in the Amazon region. Acta
Amazonica, 46:37-46, 2016. Publisher: SciELO Brasil.

[11] Ehsan Esmailian, Hassan Ghassemi, and Hassan Zakerdoost. Systematic probabilistic design method-
ology for simultaneously optimizing the ship hull-propeller system. International Journal of Naval
Architecture and Ocean Engineering, 9(3):246-255, 2017. Publisher: Elsevier.

[12] Yu Lu, Chunxiao Wu, Shewen Liu, Zhuhao Gu, Wu Shao, and Chuang Li. Research on Optimization of
Parametric Propeller Based on Anti-Icing Performance and Simulation of Cutting State of Ice Propeller.
Journal of Marine Science and Engineering, 9(11):1247, November 2021.

[13] Spyros A. Kinnas, Wei Xu, Yi-Hsiang Yu, and Lei He. Computational Methods for the Design and
Prediction of Performance of Tidal Turbines. Journal of Offshore Mechanics and Arctic Engineering,
134(1):011101, February 2012.

23



Preprint

[14] De-Sheng Zhang, Jian Chen, Wei-Dong Shi, Lei Shi, and Lin-Lin Geng. Optimization of hydrofoil for
tidal current turbine based on particle swarm optimization and computational fluid dynamic method.
Thermal Science, 20(3):907-912, 2016.

[15] Weichao Shi, Dazheng Wang, Mehmet Atlar, Bin Guo, and Kwang-cheol Seo. Optimal design of a thin-
wall diffuser for performance improvement of a tidal energy system for an AUV. Ocean Engineering,
108:1-9, November 2015.

[16] Bin Huang, Yuta Usui, Kohei Takaki, and Toshiaki Kanemoto. Optimization of blade setting angles
of a counter-rotating type horizontal-axis tidal turbine using response surface methodology and
experimental validation: Optimization of a counter-rotating type tidal turbine. International Journal of
Energy Research, 40(5):610-617, April 2016.

[17] Zhaocheng Sun, Zengliang Li, Menghao Fan, Meng Wang, and Le Zhang. Prediction and multi-
objective optimization of tidal current turbines considering cavitation based on GA-ANN methods.
Energy Science & Engineering, 7(5):1896-1912, October 2019.

[18] Heejeon Im, Taegyu Hwang, and Bumsuk Kim. Duct and blade design for small-scale floating tidal
current turbine development and CFD-based analysis of power performance. Journal of Mechanical
Science and Technology, 34(4):1591-1602, April 2020.

[19] Mohammad Hassan Khanjanpour and Akbar A. Javadi. Optimization of the hydrodynamic perfor-
mance of a vertical Axis tidal (VAT) turbine using CFD-Taguchi approach. Energy Conversion and
Management, 222:113235, October 2020.

[20] EviElisa Ambarita, Ir Harinaldi, and Nasruddin. Computational study on multi-objective optimization
of the diffuser augmented horizontal axis tidal turbine. Journal of Marine Science and Technology,
26(4):1237-1250, December 2021.

[21] Eng Jet Yeo, David M. Kennedy, and Fergal O’Rourke. Tidal current turbine blade optimisation with
improved blade element momentum theory and a non-dominated sorting genetic algorithm. Energy,
250:123720, July 2022.

[22] S Ribeiro e Silva, RPF Gomes, and AFO Falcao. Hydrodynamic optimization of the UGEN: Wave
energy converter with U-shaped interior oscillating water column. International Journal of Marine
Energy, 15:112-126, 2016. Publisher: Elsevier.

[23] L Simonetti, L. Cappietti, H. Elsafti, and H. Oumeraci. Optimization of the geometry and the turbine
induced damping for fixed detached and asymmetric OWC devices: A numerical study. Energy,
139:1197-1209, November 2017.

[24] Ji Tao, Feifei Cao, Xiaochen Dong, Demin Li, and Hongda Shi. Optimized design of 3-DOF buoy
wave energy converters under a specified wave energy spectrum. Applied Ocean Research, 116:102885,
November 2021.

[25] Xingxian Bao, Weijie Xiao, Shubo Li, and Gregorio Iglesias. Parametric study and optimization of a
two-body wave energy converter. IET Renewable Power Generation, 15(14):3319-3330, October 2021.

[26] Hezhen Yang and Yun Zhu. Robust design optimization of supporting structure of offshore wind
turbine. Journal of Marine Science and Technology, 20(4):689-702, December 2015.

[27] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. Lessons
from applying the systematic literature review process within the software engineering domain. Journal
of systems and software, 80(4):571-583, 2007.

[28] Hilary Arksey and Lisa O’Malley. Scoping studies: towards a methodological framework. International
journal of social research methodology, 8(1):19-32, 2005.

[29] Micah DJ Peters, Christina M Godfrey, Hanan Khalil, Patricia McInerney, Deborah Parker, and Cas-
sia Baldini Soares. Guidance for conducting systematic scoping reviews. JBI Evidence Implementation,
13(3):141-146, 2015.

[30] Zachary Munn, Danielle Pollock, Hanan Khalil, Lyndsay Alexander, Patricia Mclnerney, Christina M
Godfrey, Micah Peters, and Andrea C Tricco. What are scoping reviews? providing a formal definition
of scoping reviews as a type of evidence synthesis. JBI Evidence Synthesis, 20(4):950-952, 2022.

[31] Pooja Sharma and Nishant Goyal. How to write a scoping review? International Journal of Advanced
Medical and Health Research, 10(1):53-56, 2023.

[32] Andrea C Tricco, Erin Lillie, Wasifa Zarin, Kelly K O’Brien, Heather Colquhoun, Danielle Levac, David
Moher, Micah DJ Peters, Tanya Horsley, Laura Weeks, et al. Prisma extension for scoping reviews
(prisma-scr): checklist and explanation. Annals of internal medicine, 169(7):467-473, 2018.

24



Preprint

[33] Andrew B Lambe and Joaquim R R A Martins. Extensions to the design structure matrix for the descrip-
tion of multidisciplinary design, analysis, and optimization processes. Structural and Multidisciplinary
Optimization, 46:273-284, 2012.

[34] Hakjin Lee, Yeongmin Jo, Duck-Joo Lee, and Seongim Choi. Surrogate model based design optimiza-
tion of multiple wing sails considering flow interaction effect. Ocean Engineering, 121:422-436, July
2016.

[35] Xun-bin Yin, Yu Lu, Jin Zou, and Lei Wan. Numerical and experimental study on hydrodynamic
bulbous bow hull-form optimization for various service conditions due to slow steaming of container
vessel. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime
Environment, 233(4):1103-1122, November 2019.

[36] Antonio Bacciaglia, Alessandro Ceruti, and Alfredo Liverani. Controllable pitch propeller optimization
through meta-heuristic algorithm. Engineering with Computers, 37(3):2257-2271, July 2021.

[37] Zunfeng Du, Xuliang Mu, Haiming Zhu, and Muxuan Han. Identification of critical parameters influ-
encing resistance performance of amphibious vehicles based on a SM-SA method. Ocean Engineering,
258:111770, August 2022.

[38] Y.L. Young, ].W. Baker, and M.R. Motley. Reliability-based design and optimization of adaptive marine
structures. Composite Structures, 92(2):244-253, January 2010.

[39] He Zhen Yang and Wenqing Zheng. Metamodel approach for reliability-based design optimization of
a steel catenary riser. Journal of Marine Science and Technology, 16(2):202-213, June 2011.

[40] Myung-Jin Choi, Hyunkyoo Cho, K. K. Choi, and Seonho Cho. Sampling-Based RBDO of Ship
Hull Structures Considering Thermo-Elasto-Plastic Residual Deformation. Mechanics Based Design of
Structures and Machines, 43(2):183-208, April 2015.

[41] Yuan Hang Hou, Xiao Liang, and Xu Yang Mu. Hull Lines Reliability-Based Optimisation Design for
Minimum EEDI. Brodogradnja, 69(2):17-33, June 2018.

[42] Riccardo Pellegrini, Andrea Serani, Cecilia Leotardi, Umberto lemma, Emilio F. Campana, and Mat-
teo Diez. Formulation and parameter selection of multi-objective deterministic particle swarm for
simulation-based optimization. Applied Soft Computing, 58:714-731, September 2017.

[43] Matteo Diez, Emilio F. Campana, and Frederick Stern. Stochastic optimization methods for ship
resistance and operational efficiency via CFD. Structural and Multidisciplinary Optimization, 57(2):735—
758, February 2018.

[44] Andrea Serani, Frederick Stern, Emilio F. Campana, and Matteo Diez. Hull-form stochastic optimiza-
tion via computational-cost reduction methods. Engineering with Computers, 38(S3):2245-2269, August
2022.

[45] Jim He, Shari Hannapel, David Singer, and Nickolas Vlahopoulos. Multidisciplinary Design Op-
timisation of a Ship Hull Using Metamodels. Ship Technology Research, 58(3):156-166, September
2011.

[46] Mojtaba Kamarlouei, Hassan Ghassemi, Koorosh Aslansefat, and Daniel Nematy. Multi-objective
evolutionary optimization technique applied to propeller design. Acta Polytechnica Hungarica, 11(9):163—
182, 2014.

[47] Yan Lin, Jingyi He, and Kai Li. Hull form design optimization of twin-skeg fishing vessel for minimum
resistance based on surrogate model. Advances in Engineering Software, 123:38-50, September 2018.

[48] Penghui Wang, Fei Wang, Zuogang Chen, and Yi Dai. Aerodynamic optimization of a luxury cruise
ship based on a many-objective optimization system. Ocean Engineering, 236:109438, September 2021.

[49] Pranav Sumanth Doijode, Stefan Hickel, Tom Van Terwisga, and Klaas Visser. A machine learning
approach for propeller design and optimization: Part II. Applied Ocean Research, 124:103174, July 2022.

[50] Daniele Peri and Emilio F. Campana. High-Fidelity Models and Multiobjective Global Optimization
Algorithms in Simulation-Based Design. Journal of Ship Research, 49(03):159-175, September 2005.

[51] Yu Lu, Xin Chang, Xunbin Yin, and Ziying Li. Hydrodynamic Design Study on Ship Bow and
Stern Hull Form Synchronous Optimization Covering Whole Speeds Range. Mathematical Problems in
Engineering, 2019:1-19, August 2019.

[52] Malte Mittendorf and Apostolos D. Papanikolaou. Hydrodynamic hull form optimization of fast
catamarans using surrogate models. Ship Technology Research, 68(1):14-26, January 2021.

25



Preprint

[53] Daniele Peri and Emilio F. Campana. Multidisciplinary Design Optimization of a Naval Surface
Combatant. Journal of Ship Research, 47(01):1-12, March 2003.

[54] Daniele Peri, Emilio F. Campana, and Roberto Dattola. Multidisciplinary Design Optimization of a
Frigate. Ship Technology Research, 52(4):151-158, October 2005.

[55] Amin Nazemian and Parviz Ghadimi. Multi-objective optimization of trimaran sidehull arrangement
via surrogate-based approach for reducing resistance and improving the seakeeping performance.
Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime
Environment, 235(4):944-956, November 2021.

[56] Eric Besnard, Adeline Schmitz, Hamid Hefazi, and Rahul Shinde. Constructive Neural Networks and
Their Application to Ship Multidisciplinary Design Optimization. Journal of Ship Research, 51(04):297—
312, December 2007.

[57] Hamid Hefazi, Igor Mizine, Adeline Schmitz, Stephen Klomparens, and Stephen Wiley. Multi-
disciplinary Synthesis Optimization Process in Multihull Ship Design: Multidisciplinary Synthesis
Optimization Process. Naval Engineers Journal, 122(3):29-47, September 2010.

[58] Mi Xiao, Liang Gao, Xinyu Shao, Haobo Qiu, and Ping Jiang. A generalised collaborative optimisation
method and its combination with kriging metamodels for engineering design. Journal of Engineering
Design, 23(5):379-399, May 2012.

[59] Weilin Luo and Wenjing Lyu. An application of multidisciplinary design optimization to the hydrody-
namic performances of underwater robots. Ocean Engineering, 104:686-697, August 2015.

[60] Weilin Luo, Xiaoming Guo, Jiawei Dai, and Taichun Rao. Hull optimization of an underwater vehicle
based on dynamic surrogate model. Ocean Engineering, 230:109050, June 2021.

[61] Ping Jiang, Qi Zhou, Xinyu Shao, Ren Long, and Hui Zhou. A modified BLISCO method and its
combination with variable fidelity metamodel for engineering design. Engineering Computations,
33(5):1353-1377, July 2016.

[62] Xiaoyi Liu, Qingging Yuan, Min Zhao, Weicheng Cui, and Tong Ge. Multiple objective multidisci-
plinary design optimization of heavier-than-water underwater vehicle using CFD and approximation
model. Journal of Marine Science and Technology, 22(1):135-148, March 2017.

[63] Yukun Feng, Zuogang Chen, Yi Dai, Fei Wang, Jigiang Cai, and Zhixin Shen. Multidisciplinary
optimization of an offshore aquaculture vessel hull form based on the support vector regression
surrogate model. Ocean Engineering, 166:145-158, October 2018.

[64] Tiedong Zhang, Heng Zhou, Jian Wang, Zihao Liu, Jian Xin, and Yongjie Pang. Optimum design of a
small intelligent ocean exploration underwater vehicle. Ocean Engineering, 184:40-58, July 2019.

[65] Arjit Seth and Rhea P. Liem. Amphibious Aircraft Developments: Computational Studies of Hydrofoil
Design for Improvements in Water-Takeoffs. Aerospace, 8(1):10, December 2020.

[66] Nitin Garg, Gaetan K.W. Kenway, Joaquim R.R.A. Martins, and Yin Lu Young. High-fidelity multipoint
hydrostructural optimization of a 3-D hydrofoil. Journal of Fluids and Structures, 71:15-39, May 2017.

[67] Xu Chen, Peng Wang, Daiyu Zhang, and Huachao Dong. Gradient-based multidisciplinary design
optimization of an autonomous underwater vehicle. Applied Ocean Research, 80:101-111, November
2018.

[68] Matteo Diez, Evan]. Lee, Emily L. Harrison, Ann Marie R. Powers, Lawrence A. Snyder, Minyee J. Jiang,
Raymond J. Bay, Richard R. Lewis, Eric R. Kubina, Philipp Mucha, and Frederick Stern. Experimental
and computational fluid-structure interaction analysis and optimization of deep-V planing-hull grillage
panels subject to slamming loads — Part I: Regular waves. Marine Structures, 85:103256, September
2022.

[69] Li Sun and Deyu Wang. A new rational-based optimal design strategy of ship structure based on
multi-level analysis and super-element modeling method. Journal of Marine Science and Application,
10(3):272-280, September 2011.

[70] Cecilia Leotardi, Andrea Serani, Umberto lemma, Emilio F. Campana, and Matteo Diez. A variable-
accuracy metamodel-based architecture for global MDO under uncertainty. Structural and Multidisci-
plinary Optimization, 54(3):573-593, September 2016.

[71] S Harries and C Abt. Faster turn-around times for the design and optimization of functional surfaces.
Ocean Engineering, 193:106470, 2019.

26



Preprint

[72] K. L. Vasudev, R. Sharma, and S. K. Bhattacharyya. A Modular and Integrated Optimisation Model for
Underwater Vehicles. Defence Science Journal, 66(1):71, January 2016.

[73] Hassan Bagheri and Hassan Ghassemi. Genetic algorithm applied to optimization of the ship hull
form with respect to seakeeping performance. Transactions of FAMENA, 38(3):45-58, 2014. Publisher:
Fakultet strojarstva i brodogradnje.

[74] Hassan Bagheri, Hassan Ghassemi, and Ali Dehghanian. Optimizing the Seakeeping Performance of
Ship Hull Forms Using Genetic Algorithm. TransNav, the International Journal on Marine Navigation and
Safety of Sea Transportation, 8(1):49-57, 2014.

[75] Jong-Heon Park, Jung-Eun Choi, and Ho-Hwan Chun. Hull-form optimization of KSUEZMAX to
enhance resistance performance. International Journal of Naval Architecture and Ocean Engineering,
7(1):100-114, January 2015.

[76] Hee-Jung Kim, Jung-Eun Choi, and Ho-Hwan Chun. Hull-form optimization using parametric
modification functions and particle swarm optimization. Journal of Marine Science and Technology,
21(1):129-144, March 2016.

[77] Sung-Woo Park, Seung-Hyeon Kim, Yang-lk Kim, and Inwon Lee. Hull Form Optimization
Study Based on Multiple Parametric Modification Curves and Free Surface Reynolds-Averaged
Navier-Stokes (RANS) Solver. Applied Sciences, 12(5):2428, February 2022.

[78] Domenico P. Coiro, Elia Daniele, and Pierluigi Della Vecchia. Diffuser shape optimization for GEM, a
tethered system based on two horizontal axis hydro turbines. International Journal of Marine Energy,
13:169-179, April 2016.

[79] B. Yang and X.W. Shu. Hydrofoil optimization and experimental validation in helical vertical axis
turbine for power generation from marine current. Ocean Engineering, 42:35-46, March 2012.

[80] Slawomir Koziel and Leifur Leifsson. Simulation-driven design using surrogate-based optimization
and variable-resolution computational fluid dynamic models. Journal of Computational Methods in
Sciences and Engineering, 12(1-2):75-98, May 2012.

[81] Xing-qi Luo, Guo-jun Zhu, and Jian-jun Feng. Multi-point design optimization of hydrofoil for marine
current turbine. Journal of Hydrodynamics, 26(5):807-817, October 2014.

[82] Deddy Chrismianto, Ahmad Fauzan Zakki, Berlian Arswendo, and Dong Joon Kim. Development of
cubic Bezier curve and curve-plane intersection method for parametric submarine hull form design to
optimize hull resistance using CFD. Journal of Marine Science and Application, 14(4):399-405, December
2015.

[83] R Dejhalla, S Vukovic, and Z Mrsa. Numerical Optimisation of the Ship Hull from a Hydrodynamic
Standpoint. Brodogradnja, 49(3):289-294, 2001. Publisher: Izdavac.

[84] Kazuo Suzuki, Hisashi Kai, and Shigetoshi Kashiwabara. Studies on the optimization of stern hull
form based on a potential flow solver. Journal of Marine Science and Technology, 10(2):61-69, June 2005.

[85] Po-Fan Chen and Cheng-Hung Huang. An inverse hull design approach in minimizing the ship wave.
Ocean Engineering, 31(13):1683-1712, September 2004.

[86] Gregory J. Grigoropoulos and Dimitris S. Chalkias. Hull-form optimization in calm and rough water.
Computer-Aided Design, 42(11):977-984, November 2010.

[87] Ahmad F. Mohamad Ayob, Tapabrata Ray, and Warren F. Smith. Uncovering secrets behind low-
resistance planing craft hull forms through optimization. Engineering Optimization, 43(11):1161-1173,
November 2011.

[88] D. Bertetta, S. Brizzolara, S. Gaggero, M. Viviani, and L. Savio. CPP propeller cavitation and noise
optimization at different pitches with panel code and validation by cavitation tunnel measurements.
Ocean Engineering, 53:177-195, October 2012.

[89] Amitava Guha and Jeffrey Falzaranoa. Application of multi objective genetic algorithm in ship hull
optimization. Ocean Systems Engineering, 5(2):91-107, June 2015.

[90] Stefano Gaggero, Diego Villa, Giorgio Tani, Michele Viviani, and Daniele Bertetta. Design of ducted
propeller nozzles through a RANSE-based optimization approach. Ocean Engineering, 145:444-463,
November 2017.

[91] Luca Bonfiglio, Paris Perdikaris, Giuliano Vernengo, Jodo Seixas De Medeiros, and George Karniadakis.
Improving SWATH Seakeeping Performance using Multi-Fidelity Gaussian Process and Bayesian
Optimization. Journal of Ship Research, 62(04):223-240, December 2018.

27



Preprint

[92] Stefano Gaggero, Giuliano Vernengo, Diego Villa, and Luca Bonfiglio. A reduced order approach for
optimal design of efficient marine propellers. Ships and Offshore Structures, 15(2):200-214, February
2020.

[93] Francesco Furcas, Giuliano Vernengo, Diego Villa, and Stefano Gaggero. Design of Wake Equalizing
Ducts using RANSE-based SBDO. Applied Ocean Research, 97:102087, April 2020.

[94] Harlysson W. S. Maia, Said Mounsif, Jassiel V. Herndndez-Fontes, and Rodolfo Silva. Computational
Fluid Dynamics Applied to River Boat Hull Optimization. Marine Technology Society Journal, 55(5):94—
108, September 2021.

[95] K.V. Kostas, A.L Ginnis, C.G. Politis, and P.D. Kaklis. Ship-hull shape optimization with a T-spline
based BEM-isogeometric solver. Computer Methods in Applied Mechanics and Engineering, 284:611-622,
February 2015.

[96] Xin Liu, Heng Zhang, Qiang Liu, Suzhen Dong, and Changshi Xiao. A cross-entropy algorithm based
on Quasi-Monte Carlo estimation and its application in hull form optimization. International Journal of
Naval Architecture and Ocean Engineering, 13:115-125, 2021.

[97] Scott Percival, Dane Hendrix, and Francis Noblesse. Hydrodynamic optimization of ship hull forms.
Applied Ocean Research, 23(6):337-355, December 2001.

[98] Hassan Zakerdoost, Hassan Ghassemi, and Mahmoud Ghiasi. An evolutionary optimization technique
applied to resistance reduction of the ship hull form. Journal of Naval Architecture and Marine Engineering,
10(1):1-12, June 2013.

[99] Weilin Luo and Lingiang Lan. Design Optimization of the Lines of the Bulbous Bow of a Hull Based on
Parametric Modeling and Computational Fluid Dynamics Calculation. Mathematical and Computational
Applications, 22(1):4, January 2017.

[100] Tomasz Abramowski and Karol Sugalski. Energy saving procedures for fishing vessels by means of
numerical optimization of hull resistance. 49 Scientific Journals of the Maritime University of Szczecin,
121(49):19-27, 2017.

[101] Marina Barbari¢ and Zvonimir Guzovi¢. Investigation of the Possibilities to Improve Hydrodynamic
Performances of Micro-Hydrokinetic Turbines. Energies, 13(17):4560, September 2020.

[102] Yong Ma, Huaxiong Bi, Mengqi Hu, Yuanzhou Zheng, and Langxiong Gan. Hard sail optimization
and energy efficiency enhancement for sail-assisted vessel. Ocean Engineering, 173:687-699, February
2019.

[103] E.Sari6z. Inverse design of ship hull forms for seakeeping. Ocean Engineering, 36(17-18):1386-1395,
December 2009.

[104] Jun Guo, Yan Zhang, Zuogang Chen, and Yukun Feng. CFD-based multi-objective optimization of a
waterjet-propelled trimaran. Ocean Engineering, 195:106755, January 2020.

[105] Hayriye Pehlivan Solak. Multi-Dimensional Surrogate Based Aft Form Optimization of Ships Using
High Fidelity Solvers. Brodogradnja, 71(1):85-100, March 2020.

[106] Régis Duvigneau, Michel Visonneau, and Gan Bo Deng. On the role played by turbulence closures in
hull shape optimization at model and full scale. Journal of Marine Science and Technology, 8(1):11-25,
June 2003.

[107] Emilio F. Campana, Daniele Peri, Yusuke Tahara, Manivannan Kandasamy, and Frederick Stern.
Numerical Optimization Methods for Ship Hydrodynamic Design. In Day 1 Wed, October 21, 2009,
page D011S001R004, Providence, Rhode Island, USA, October 2009. SNAME.

[108] Yusuke Tahara, Daniele Peri, Emilio Fortunato Campana, and Frederick Stern. Single- and multiobjec-
tive design optimization of a fast multihull ship: numerical and experimental results. Journal of Marine
Science and Technology, 16(4):412-433, December 2011.

[109] SZ Li, Feng Zhao, and Qi-Jun Ni. Multiobjective optimization for ship hull form design using SBD
technique. CMES, 92(2):123-149, 2013.

[110] Daniele Peri and Matteo Diez. Ship optimization by globally convergent modification of PSO by a
surrogate-based Newton method. Engineering Computations, 30(4):548-561, May 2013.

[111] Sheng-Zhong Li, Feng Zhao, and Qi-Jun Ni. Bow and Stern Shape Integrated Optimization for a Full
Ship by a Simulation-based Design Technique. Journal of Ship Research, 58(2):83-96, June 2014.

28



Preprint

[112] Matteo Diez, Emilio F. Campana, and Frederick Stern. Design-space dimensionality reduction in shape
optimization by Karhunen-Loéve expansion. Computer Methods in Applied Mechanics and Engineering,
283:1525-1544, January 2015.

[113] Nitin Garg, Gaetan K. W. Kenway, Zhoujie Lyu, Joaquim R. R. A. Martins, and Yin L. Young. High-
Fidelity Hydrodynamic Shape Optimization of a 3-D Hydrofoil. Journal of Ship Research, 59(4):209-226,
December 2015.

[114] Jianwei Wu, Xiaoyi Liu, Min Zhao, and Decheng Wan. Neumann-Michell theory-based multi-objective
optimization of hull form for a naval surface combatant. Applied Ocean Research, 63:129-141, February
2017.

[115] Lei Yang, Sheng-zhong Li, Feng Zhao, and Qi-jun Ni. An integrated optimization design of a fishing
ship hullform at different speeds. Journal of Hydrodynamics, 30(6):1174-1181, December 2018.

[116] Ping He, Grzegorz Filip, Joaquim R.R.A. Martins, and Kevin J. Maki. Design optimization for self-
propulsion of a bulk carrier hull using a discrete adjoint method. Computers & Fluids, 192:104259,
October 2019.

[117] Aigin Miao and Decheng Wan. Hull Form Optimization Based on an NM+CFD Integrated Method for
KCS. International Journal of Computational Methods, 17(10):2050008, December 2020.

[118] Qijun Ni, Wenquan Ruan, Shengzhong Li, and Feng Zhao. Multiple speed integrated optimization
design for a SWATH using SBD technique. Journal of Marine Science and Technology, 25(1):185-195,
March 2020.

[119] Penghui Wang, Zuogang Chen, and Yukun Feng. Many-objective optimization for a deep-sea aquacul-
ture vessel based on an improved RBF neural network surrogate model. Journal of Marine Science and
Technology, 26(2):582-605, June 2021.

[120] Diego Villa, Francesco Furcas, Jan Oscar Pralits, Giuliano Vernengo, and Stefano Gaggero. An Effective
Mesh Deformation Approach for Hull Shape Design by Optimization. Journal of Marine Science and
Engineering, 9(10):1107, October 2021.

[121] Nicola Demo, Giulio Ortali, Gianluca Gustin, Gianluigi Rozza, and Gianpiero Lavini. An efficient
computational framework for naval shape design and optimization problems by means of data-driven
reduced order modeling techniques. Bollettino dell’Unione Matematica Italiana, 14(1):211-230, March
2021.

[122] Shahroz Khan and Panagiotis Kaklis. From regional sensitivity to intra-sensitivity for parametric
analysis of free-form shapes: Application to ship design. Advanced Engineering Informatics, 49:101314,
August 2021.

[123] Nicola Demo, Marco Tezzele, Andrea Mola, and Gianluigi Rozza. Hull Shape Design Optimization
with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing. Journal of Marine
Science and Engineering, 9(2):185, February 2021.

[124] Shenglong Zhang, Tahsin Tezdogan, Baoji Zhang, and Ling Lin. Research on the hull form optimization
using the surrogate models. Engineering Applications of Computational Fluid Mechanics, 15(1):747-761,
January 2021.

[125] Chi Yang, Fuxin Huang, and Hyunyul Kim. Hydrodynamic optimization of a triswach. Journal of
Hydrodynamics, 26(6):856-864, December 2014.

[126] Chi Yang and Fuxin Huang. An overview of simulation-based hydrodynamic design of ship hull
forms. Journal of Hydrodynamics, 28(6):947-960, December 2016.

[127] Stefan Harries and Sebastian Uharek. Application of Radial Basis Functions for Partially-Parametric
Modeling and Principal Component Analysis for Faster Hydrodynamic Optimization of a Catamaran.
Journal of Marine Science and Engineering, 9(10):1069, September 2021.

[128] Haichao Chang, Chengsheng Zhan, Zuyuan Liu, Xide Cheng, and Baiwei Feng. Dynamic sampling
method for ship resistance performance optimisation based on approximated model. Ships and Offshore
Structures, 16(4):386-396, April 2021.

[129] Qiang Zheng, Bai-Wei Feng, Hai-Chao Chang, and Zu-Yuan Liu. Dynamic space reduction optimiza-
tion framework and its application in hull form optimization. Applied Ocean Research, 114:102812,
September 2021.

[130] Amin Nazemian and Parviz Ghadimi. Shape optimisation of trimaran ship hull using CFD-based
simulation and adjoint solver. Ships and Offshore Structures, 17(2):359-373, February 2022.

29



Preprint

[131] Sheng-long Zhang, Bao-ji Zhang, Tahsin Tezdogan, Le-ping Xu, and Yu-yang Lai. Research on bulbous
bow optimization based on the improved PSO algorithm. China Ocean Engineering, 31(4):487—494,
August 2017.

[132] Tahsin Tezdogan, Zhang Shenglong, Yigit Kemal Demirel, Wendi Liu, Xu Leping, Lai Yuyang,
Rafet Emek Kurt, Eko Budi Djatmiko, and Atilla Incecik. An investigation into fishing boat opti-
misation using a hybrid algorithm. Ocean Engineering, 167:204-220, November 2018.

[133] Shenglong Zhang, Tahsin Tezdogan, Baoji Zhang, Leping Xu, and Yuyang Lai. Hull form optimisation
in waves based on CFD technique. Ships and Offshore Structures, 13(2):149-164, February 2018.

[134] Amin Nazemian and Parviz Ghadimi. Automated CFD-based optimization of inverted bow shape of
a trimaran ship: Proposing an applicable and efficient optimization platform. Scientia Iranica, 0(0):0-0,
December 2020.

[135] Amin Nazemian and Parviz Ghadimi. CFD-based optimization of a displacement trimaran hull for
improving its calm water and wavy condition resistance. Applied Ocean Research, 113:102729, August
2021.

[136] Yusuke Tahara, Satoshi Tohyama, and Tokihiro Katsui. CFD-based multi-objective optimization
method for ship design. International Journal for Numerical Methods in Fluids, 52(5):499-527, October
2006.

[137] Goutam Kumar Saha, Kazuo Suzuki, and Hisashi Kai. Hydrodynamic optimization of ship hull forms
in shallow water. Journal of Marine Science and Technology, 9(2), July 2004.

[138] Goutam Kumar Saha, Kazuo Suzuki, and Hisashi Kai. Hydrodynamic optimization of a catamaran
hull with large bow and stern bulbs installed on the center plane of the catamaran. Journal of Marine
Science and Technology, 10(1):32-40, March 2005.

[139] Bao-ji Zhang, Sheng-long Zhang, and Hui Zhang. Optimization Design of Minimum Total Resistance
Hull Form Based on CFD Method. China Ocean Engineering, 32(3):323-330, June 2018.

[140] Z.C.Hong, Z. Zong, H.T. Li, H. Hefazi, and PK. Sahoo. Self-blending method for hull form modification
and optimization. Ocean Engineering, 146:59-69, December 2017.

[141] Zhi Zong, Zhichao Hong, Yigeng Wang, and H. Hefazi. Hull form optimization of trimaran using
self-blending method. Applied Ocean Research, 80:240-247, November 2018.

[142] Manivannan Kandasamy, Daniele Peri, Seng Keat Ooi, Pablo Carrica, Frederick Stern, Emilio F.
Campana, Philip Osborne, Jessica Cote, Neil Macdonald, and Nic De Waal. Multi-fidelity optimization
of a high-speed foil-assisted semi-planing catamaran for low wake. Journal of Marine Science and
Technology, 16(2):143-156, June 2011.

[143] Alan Klanac, Soren Ehlers, and Jasmin Jelovica. Optimization of crashworthy marine structures.
Marine Structures, 22(4):670-690, October 2009.

[144] S Ehlers. A procedure to optimize ship side structures for crashworthiness. Proceedings of the Institution
of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 224(1):1-11, March
2010.

[145] Danny D’Agostino, Andrea Serani, and Matteo Diez. Design-space assessment and dimensionality
reduction: An off-line method for shape reparameterization in simulation-based optimization. Ocean
Engineering, 197:106852, February 2020.

[146] Jing-lu Li, Xin-jing Wang, Peng Wang, Hua-chao Dong, and Cai-hua Chen. Shape Optimization for A
Conventional Underwater Glider to Decrease Average Periodic Resistance. China Ocean Engineering,
35(5):724-735, November 2021.

[147] Ahmed Hamed. Multi-objective optimization method of trimaran hull form for resistance reduction
and propeller intake flow improvement. Ocean Engineering, 244:110352, January 2022.

[148] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition,
1957.

[149] Heng Zhang, Zuyuan Liu, Chengsheng Zhan, and Baiwei Feng. A sensitivity analysis of a hull’s local
characteristic parameters on ship resistance performance. Journal of Marine Science and Technology,
21(4):592-600, December 2016.

[150] Paolo Geremia, Kevin J. Maki, Gianpiero Lavini, and Harpo Genuzio. Hull Design Method Combining
an Innovative Flow Solver Coupled With Efficient Multivariate Analysis and Optimization Strategies.
Journal of Ship Production and Design, 28(4):164-171, November 2012.

30



Preprint

[151] Xi Chen, Matteo Diez, Manivannan Kandasamy, Zhiguo Zhang, Emilio F. Campana, and Frederick
Stern. High-fidelity global optimization of shape design by dimensionality reduction, metamodels
and deterministic particle swarm. Engineering Optimization, 47(4):473-494, April 2015.

[152] Andrea Serani, Cecilia Leotardi, Umberto lemma, Emilio F. Campana, Giovanni Fasano, and Matteo
Diez. Parameter selection in synchronous and asynchronous deterministic particle swarm optimization
for ship hydrodynamics problems. Applied Soft Computing, 49:313-334, December 2016.

[153] Riccardo Pellegrini, Andrea Serani, Giampaolo Liuzzi, Francesco Rinaldi, Stefano Lucidi, and Matteo
Diez. Hybridization of Multi-Objective Deterministic Particle Swarm with Derivative-Free Local
Searches. Mathematics, 8(4):546, April 2020.

[154] Andrea Serani, Giovanni Fasano, Giampaolo Liuzzi, Stefano Lucidi, Umberto lemma, Emilio F. Cam-
pana, Frederick Stern, and Matteo Diez. Ship hydrodynamic optimization by local hybridization of
deterministic derivative-free global algorithms. Applied Ocean Research, 59:115-128, September 2016.

[155] Xinwang Liu, Weiwen Zhao, and Decheng Wan. Linear reduced order method for design-space dimen-
sionality reduction and flow-field learning in hull form optimization. Ocean Engineering, 237:109680,
October 2021.

[156] Pranav Sumanth Doijode, Stefan Hickel, Tom Van Terwisga, and Klaas Visser. A machine learning
approach for propeller design and optimization: Part I. Applied Ocean Research, 124:103178, July 2022.

[157] A. Serani, R. Pellegrini, ]. Wackers, C.-E. Jeanson, P. Queutey, M. Visonneau, and M. Diez. Adaptive
multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels. International
Journal of Computational Fluid Dynamics, 33(6-7):237-255, August 2019.

[158] Riccardo Pellegrini, Andrea Serani, Giampaolo Liuzzi, Francesco Rinaldi, Stefano Lucidi, and Matteo
Diez. A Derivative-Free Line-Search Algorithm for Simulation-Driven Design Optimization Using
Multi-Fidelity Computations. Mathematics, 10(3):481, February 2022.

[159] Shahroz Khan, Panagiotis Kaklis, Andrea Serani, and Matteo Diez. Geometric Moment-Dependent
Global Sensitivity Analysis without Simulation Data: Application to Ship Hull Form Optimisation.
Computer-Aided Design, 151:103339, October 2022.

[160] Emilio Fortunato Campana, Giampaolo Liuzzi, Stefano Lucidi, Daniele Peri, Veronica Piccialli, and An-
tonio Pinto. New global optimization methods for ship design problems. Optimization and Engineering,
10(4):533-555, December 2009.

[161] Stefano Brizzolara, Tom Curtin, Marco Bovio, and Giuliano Vernengo. Concept design and hydrody-
namic optimization of an innovative SWATH USV by CFD methods. Ocean Dynamics, 62(2):227-237,
February 2012.

[162] Devrim Biilent Danisman. Reduction of demi-hull wave interference resistance in fast displacement
catamarans utilizing an optimized centerbulb concept. Ocean Engineering, 91:227-234, November 2014.

[163] Abdullah Muratoglu and M. Ishak Yuce. Design of a River Hydrokinetic Turbine Using Optimization
and CFD Simulations. Journal of Energy Engineering, 143(4):04017009, August 2017.

[164] Lin Li, Zhiyu Jiang, Muk Chen Ong, and Weifei Hu. Design optimization of mooring system: An
application to a vessel-shaped offshore fish farm. Engineering Structures, 197:109363, October 2019.

[165] Gregory J. Grigoropoulos. Hull Form Optimization for Hydrodynamic Performance. Marine Technology
and SNAME News, 41(04):167-182, October 2004.

[166] Rahul Subramanian, Jyothish P.V., and Anantha Subramanian V. Genetic Algorithm Based Design
Optimization of a Passive Anti-Roll Tank in a Sea Going Vessel. Ocean Engineering, 203:107216, May
2020.

[167] Amin Nazemian and Parviz Ghadimi. Global optimization of trimaran hull form to get minimum
resistance by slender body method. Journal of the Brazilian Society of Mechanical Sciences and Engineering,
43(2):67, February 2021.

[168] Florian Vesting, Rickard Gustafsson, and Rickard E. Bensow. Development and application of optimi-
sation algorithms for propeller design. Ship Technology Research, 63(1):50-69, January 2016.

[169] K.V. Kostas, A.I. Ginnis, C.G. Politis, and P.D. Kaklis. Shape-optimization of 2D hydrofoils using an
Isogeometric BEM solver. Computer-Aided Design, 82:79-87, January 2017.

[170] Jingpu Chen, Jinfang Wei, and Wujie Jiang. Optimization of a twin-skeg container vessel by parametric
design and CFD simulations. International Journal of Naval Architecture and Ocean Engineering, 8(5):466—
474, September 2016.

31



Preprint

[171] Xide Cheng, Baiwei Feng, Zuyuan Liu, and Haichao Chang. Hull surface modification for ship
resistance performance optimization based on Delaunay triangulation. Ocean Engineering, 153:333-344,
April 2018.

[172] Qiang Zheng, Hai-Chao Chang, Zu-Yuan Liu, and Bai-Wei Feng. Application of Dynamic Space
Reduction Method Based on Partial Correlation Analysis in Hull Optimization. Journal of Ship Research,
65(02):167-178, June 2021.

[173] Changwan Han, Hanjong Kim, and Seonghun Park. Optimal design of floating substructures for
spar-type wind turbine systems. Wind and Structures, 18(3):253-265, March 2014.

[174] Amin Nazemian and Parviz Ghadimi. A multi-objective optimisation study of trimaran hull applying
RBF-Morph technique and integrated optimisation platform at two design speeds. Ships and Offshore
Structures, 17(12):2628-2640, December 2022.

[175] Carlo Poloni, Andrea Giurgevich, Luka Onesti, and Valentino Pediroda. Hybridization of a multi-
objective genetic algorithm, a neural network and a classical optimizer for a complex design problem
in fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 186(2-4):403-420, June 2000.

[176] A. Cirello and A. Mancuso. A numerical approach to the keel design of a sailing yacht. Ocean
Engineering, 35(14-15):1439-1447, October 2008.

[177] Shahid Mahmood and Debo Huang. Computational fluid dynamics based bulbous bow optimization
using a genetic algorithm. Journal of Marine Science and Application, 11(3):286-294, September 2012.

[178] Tae-Hwan Joung, Karl Sammut, Fangpo He, and Seung-Keon Lee. Shape optimization of an au-
tonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis.
International Journal of Naval Architecture and Ocean Engineering, 4(1):44-56, March 2012.

[179] K.L. Vasudev, R. Sharma, and S.K. Bhattacharyya. A multi-objective optimization design framework
integrated with CFD for the design of AUVs. Methods in Oceanography, 10:138-165, September 2014.

[180] Deddy Chrismianto and Dong-Joon Kim. Parametric bulbous bow design using the cubic Bezier curve
and curve-plane intersection method for the minimization of ship resistance in CFD. Journal of Marine
Science and Technology, 19(4):479-492, December 2014.

[181] Leifur Leifsson, Elvar Hermannsson, and Slawomir Koziel. Optimal shape design of multi-element
trawl-doors using local surrogate models. Journal of Computational Science, 10:55-62, September 2015.

[182] Weikang Du, Yongsheng Zhao, Yanping He, and Yadong Liu. Design, analysis and test of a model
turbine blade for a wave basin test of floating wind turbines. Renewable Energy, 97:414-421, November
2016.

[183] Ting Gao, Yaxing Wang, Yongjie Pang, and Jian Cao. Hull shape optimization for autonomous
underwater vehicles using CFD. Engineering Applications of Computational Fluid Mechanics, 10(1):599—
607, January 2016.

[184] Khairul Alam, Tapabrata Ray, and Sreenatha G. Anavatti. Design Optimization of an Unmanned
Underwater Vehicle Using Low- and High-Fidelity Models. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 47(11):2794-2808, November 2017.

[185] Kurt Mizzi, Yigit Kemal Demirel, Charlotte Banks, Osman Turan, Panagiotis Kaklis, and Mehmet Atlar.
Design optimisation of Propeller Boss Cap Fins for enhanced propeller performance. Applied Ocean
Research, 62:210-222, January 2017.

[186] Paresh Halder, Mohamed H. Mohamed, and Abdus Samad. Wave energy conversion: Design and
shape optimization. Ocean Engineering, 150:337-351, February 2018.

[187] Shenglong Zhang, Baoji Zhang, Tahsin Tezdogan, Leping Xu, and Yuyang Lai. Computational fluid
dynamics-based hull form optimization using approximation method. Emngineering Applications of
Computational Fluid Mechanics, 12(1):74-88, January 2018.

[188] R. Duvigneau and M. Visonneau. Hydrodynamic design using a derivative-free method. Structural
and Multidisciplinary Optimization, 28(2-3), September 2004.

[189] Yusuke Tahara, Daniele Peri, Emilio Fortunato Campana, and Frederick Stern. Computational fluid
dynamics-based multiobjective optimization of a surface combatant using a global optimization
method. Journal of Marine Science and Technology, 13(2):95-116, May 2008.

[190] Paul Renaud, Matthieu Sacher, and Yves-Marie Scolan. Multi-objective hull form optimization of a
SWATH configuration using surrogate models. Ocean Engineering, 256:111209, July 2022.

32



Preprint

[191] Giuliano Vernengo, Luca Bonfiglio, Stefano Gaggero, and Stefano Brizzolara. Physics-Based Design by
Optimization of Unconventional Supercavitating Hydrofoils. Journal of Ship Research, 60(4):187-202,
December 2016.

[192] Elisa Berrini, Bernard Mourrain, Yann Roux, Mathieu Durand, and Guillaume Fontaine. Geometric
Modelling and Deformation for Shape Optimization of Ship Hulls and Appendages. Journal of Ship
Research, 61(02):91-106, June 2017.

[193] Joel Guerrero, Alberto Cominetti, Jan Pralits, and Diego Villa. Surrogate-Based Optimization Using an
Open-Source Framework: The Bulbous Bow Shape Optimization Case. Mathematical and Computational
Applications, 23(4):60, October 2018.

[194] Antonio Coppede, Stefano Gaggero, Giuliano Vernengo, and Diego Villa. Hydrodynamic shape
optimization by high fidelity CFD solver and Gaussian process based response surface method.
Applied Ocean Research, 90:101841, September 2019.

[195] Yaxing Wang, Ting Gao, Yongjie Pang, and Yuangui Tang. Investigation and optimization of appendage
influence on the hydrodynamic performance of AUVs. Journal of Marine Science and Technology,
24(1):297-305, March 2019.

[196] Mohammad Javad Abdollahzadeh and Ali Moosavi. Optimization of microgrooves for water—solid
drag reduction using genetic algorithm. Journal of Ocean Engineering and Marine Energy, 6(3):221-242,
August 2020.

[197] Yuyang Wang, Joe Joseph, T. P. Aniruddhan Unni, Soji Yamakawa, Amir Barati Farimani, and Kenji
Shimada. Three-Dimensional Ship Hull Encoding and Optimization via Deep Neural Networks.
Journal of Mechanical Design, 144(10):101701, October 2022.

[198] Soren Ehlers. A Particle Swarm Algorithm-Based Optimization for High-Strength Steel Structures.
Journal of Ship Production and Design, 28(01):1-9, February 2012.

[199] Li Sun and Deyu Wang. Optimal structural design of the midship of a VLCC based on the strategy
integrating SVM and GA. Journal of Marine Science and Application, 11(1):59-67, March 2012.

[200] Huachao Dong, Baowei Song, and Peng Wang. Kriging-based optimization design for a new style shell
with black box constraints. Journal of Algorithms & Computational Technology, 11(3):234-245, September
2017.

[201] Dejun Jia, Fanchun Li, Cong Zhang, and Lanxin Li. Design and simulation analysis of trimaran
bulkhead based on topological optimization. Ocean Engineering, 191:106304, November 2019.

[202] R. Dejhalla, Z. Mrs$a, and S. Vukovi¢. Application of Genetic Algorithm For Ship Hull Form Optimiza-
tion. International Shipbuilding Progress, 48(2):117-133, 2001. Publisher: IOS Press.

[203] Mitsuru Kitamura and Tetsuya Uedera. Optimization of ship structure based on zooming finite
element analysis with sensitivities. International Journal of Offshore and Polar Engineering, 13(01), 2003.
Publisher: OnePetro.

[204] Beom-Seon Jang, Dae-Eun Ko, Yong-Suk Suh, and Young-Soon Yang. Adaptive approximation in
multi-objective optimization for full stochastic fatigue design problem. Marine Structures, 22(3):610-632,
July 2009.

[205] Yu-Tai Lee, Vineet Ahuja, Ashvin Hosangadi, and Michael Ebert. Shape Optimization of a Multi-
Element Foil Using an Evolutionary Algorithm. Journal of Fluids Engineering, 132(5):051401, May
2010.

[206] Stefano Brizzolara and Giuliano Vernengo. Automatic optimization computational method for uncon-
ventional SWATH ships resistance. International Journal of Mathematical Models and Methods in Applied
Sciences, 5(5):882-889, 2011.

[207] R.I. Whitfield, A.H.B. Dufty, S. Gatchell, J. Marzi, and W. Wang. A collaborative platform for integrating

and optimising Computational Fluid Dynamics analysis requests. Computer-Aided Design, 44(3):224—
240, March 2012.

[208] Yu Lu, Xin Chang, and An-kang Hu. A hydrodynamic optimization design methodology for a ship
bulbous bow under multiple operating conditions. Engineering Applications of Computational Fluid
Mechanics, 10(1):330-345, January 2016.

[209] Xiaoyi Liu, Min Zhao, Decheng Wan, and Jianwei Wu. Hull Form Multi-Objective Optimization for a
Container Ship with Neumann-Michell Theory and Approximation Model. International Journal of
Offshore and Polar Engineering, 27(4):423-432, December 2017.

33



Preprint

[210] Erik Rotteveel, Robert Hekkenberg, and Auke Van Der Ploeg. Inland ship stern optimization in
shallow water. Ocean Engineering, 141:555-569, September 2017.

[211] S.M. Wang, S. Ma, and W.Y. Duan. Seakeeping optimization of trimaran outrigger layout based on
NSGA-II. Applied Ocean Research, 78:110-122, September 2018.

[212] Xiaoyun Fu, Lei Lei, Gang Yang, and Baoren Li. Multi-objective shape optimization of autonomous
underwater glider based on fast elitist non-dominated sorting genetic algorithm. Ocean Engineering,
157:339-349, June 2018.

[213] K. L. Vasudev, R. Sharma, and S. K. Bhattacharyya. Shape optimisation of an AUV with ducted
propeller using GA integrated with CFD. Ships and Offshore Structures, 13(2):194-207, February 2018.

[214] Yusuke Tahara, Yasuo Ichinose, Azumi Kaneko, and Yoshikazu Kasahara. Variable decomposition
approach applied to multi-objective optimization for minimum powering of commercial ships. Journal
of Marine Science and Technology, 24(1):260-283, March 2019.

[215] Xide Cheng, Baiwei Feng, Haichao Chang, Zuyuan Liu, and Chengsheng Zhan. Multi-objective
optimisation of ship resistance performance based on CFD. Journal of Marine Science and Technology,
24(1):152-165, March 2019.

[216] K. L. Vasudev, R. Sharma, and S. K. Bhattacharyya. Multi-objective shape optimization of submarine
hull using genetic algorithm integrated with computational fluid dynamics. Proceedings of the Institution
of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 233(1):55-66,
February 2019.

[217] Yang Luo, Guang Pan, Qiaogao Huang, Yao Shi, and Hui Lai. Parametric Geometric Model and Shape
Optimization of Airfoils of a Biomimetic Manta Ray Underwater Vehicle. Journal of Shanghai Jiaotong
University (Science), 24(3):402-408, June 2019.

[218] Mihkel Korgesaar and Soren Ehlers. An Assessment Procedure of the Crashworthiness of an LNG
Tanker Side Structure. Ship Technology Research, 57(2):108-119, April 2010.

[219] Aline Aparecida De Pina, Carl Horst Albrecht, Beatriz Souza Leite Pires De Lima, and Breno Pinheiro
Jacob. Tailoring the particle swarm optimization algorithm for the design of offshore o0il production
risers. Optimization and Engineering, 12(1-2):215-235, March 2011.

[220] Xunbin Yin, Qingliang Lu, Yu Lu, Jin Zou, and Lei Wan. Hydrodynamic optimization of foreship
hull-form using contrastive optimization algorithms. Journal of Coastal Research, 37(5):1063-1078, 2021.
Publisher: Coastal Education and Research Foundation.

[221] Shengzhong Li, Feng Zhu, Xiaojun Hou, and Qijun Ni. Application of mesh deformation and adaptive
method in hullform design optimization. Journal of Marine Science and Technology, 27(1):566-575, March
2022.

[222] Khairul Alam, Tapabrata Ray, and Sreenatha G. Anavatti. Design and construction of an autonomous
underwater vehicle. Neurocomputing, 142:16-29, October 2014.

[223] Fuxin Huang and Chi Yang. Hull form optimization of a cargo ship for reduced drag. Journal of
Hydrodynamics, 28(2):173-183, April 2016.

[224] Emilio F. Campana, Matteo Diez, Umberto Iemma, Giampaolo Liuzzi, Stefano Lucidi, Francesco
Rinaldi, and Andrea Serani. Derivative-free global ship design optimization using global/local
hybridization of the DIRECT algorithm. Optimization and Engineering, 17(1):127-156, March 2016.

[225] C. Cinquini, P. Venini, R. Nascimbene, and A. Tiano. Design of a river-sea ship by optimization.
Structural and Multidisciplinary Optimization, 22(3):240-247, October 2001.

[226] Y. Tahara, F. Stern, and Y. Himeno. Computational Fluid Dynamics-Based Optimization of a Surface
Combatant. Journal of Ship Research, 48(04):273-287, December 2004.

[227] Hee Jong Choi. Hull-form optimization of a container ship based on bell-shaped modification function.
International Journal of Naval Architecture and Ocean Engineering, 7(3):478-489, May 2015.

[228] Zhang Baoji. Research on Ship Hull Optimisation of High-Speed Ship Based on Viscous Flow /Potential
Flow Theory. Polish Maritime Research, 27(1):18-28, March 2020.

[229] Murali Kunasekaran, Shin Hyung Rhee, Nithya Venkatesan, and Abdus Samad. Design optimization
of a marine current turbine having winglet on blade. Ocean Engineering, 239:109877, November 2021.

[230] Luca Bonfiglio, Paris Perdikaris, and Stefano Brizzolara. Multi-fidelity Bayesian Optimization of
SWATH Hull Forms. Journal of Ship Research, 64(02):154-170, June 2020.

34



Preprint

[231] Ebru Sari6z. Minimum ship size for seakeeping. Proceedings of the Institution of Mechanical Engineers,
Part M: Journal of Engineering for the Maritime Environment, 226(3):214-221, August 2012.

[232] Thai Gia Tran, Chinh Van Huynh, and Hyun Cheol Kim. Optimal design method of bulbous bow for
fishing vessels. International Journal of Naval Architecture and Ocean Engineering, 13:858-876, 2021.

[233] Thai Gia Tran, Quang Van Huynh, and Hyun Cheol Kim. Optimization strategy for planing hull
design. International Journal of Naval Architecture and Ocean Engineering, 14:100471, 2022.

[234] Jorn Kroger, Niklas Kiihl, and Thomas Rung. Adjoint volume-of-fluid approaches for the hydrody-
namic optimisation of ships. Ship Technology Research, 65(1):47-68, January 2018.

[235] Long Yu, Markus Druckenbrod, Martin Greve, Ke-qi Wang, and Moustafa Abdel-Maksoud. Numerical
and experimental analysis of a ducted propeller designed by a fully automated optimization process
under open water condition. China Ocean Engineering, 29(5):733-744, October 2015.

[236] Osman Turan and Hao Cui. A Reinforcement Learning Based Hybrid Evolutionary Algorithm for Ship
Stability Design. In Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz, editors, Variants of
Evolutionary Algorithms for Real-World Applications, pages 281-303. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[237] Zhongtu Ge, Richard Korpus, and Zhirong Shen. Optimization of Stern-Tube Bearing Performance
by CFD-Based Fluid-Structures Interaction. In SNAME Maritime Convention, page D0335015R003.
SNAME, 2016.

[238] Amin Nazemian and Parviz Ghadimi. Simulation-based multi-objective optimization of side-hull
arrangement applied to an inverted-bow trimaran ship at cruise and sprint speeds. Engineering
Optimization, 55(2):214-235, February 2023.

[239] Minuk Lee, Su-gil Cho, Jong-Su Choi, Hyung-Woo Kim, Sup Hong, and Tae Hee Lee. Metamodel-
Based Multidisciplinary Design Optimization of a Deep-Sea Manganese Nodules Test Miner. Journal
of Applied Mathematics, 2012:1-18, 2012.

[240] Renfang Huang, Yuanxing Dai, Xianwu Luo, Yiwei Wang, and Chenguang Huang. Multi-objective
optimization of the flush-type intake duct for a waterjet propulsion system. Ocean Engineering,
187:106172, September 2019.

[241] Karthikeyan Thandayutham, E.J. Avital, Nithya Venkatesan, and Abdus Samad. Optimization of a
horizontal axis marine current turbine via surrogate models. Ocean Systems Engineering, 9(2):111-133,
June 2019.

[242] Aigin Miao, Min Zhao, and Decheng Wan. CFD-based multi-objective optimisation of S60 Catamaran
considering Demihull shape and separation. Applied Ocean Research, 97:102071, April 2020.

[243] Xinwang Liu, Weiwen Zhao, and Decheng Wan. Hull form optimization based on calm-water wave
drag with or without generating bulbous bow. Applied Ocean Research, 116:102861, November 2021.

[244] James Cairns, Marco Vezza, Richard Green, and Donald MacVicar. Numerical optimisation of a ship
wind-assisted propulsion system using blowing and suction over a range of wind conditions. Ocean
Engineering, 240:109903, November 2021.

[245] Xin-wang Liu, Wei-wen Zhao, and De-cheng Wan. Optimization of the roll motion of box-shaped hull
section with anti-rolling sloshing tanks and fins in beam waves. Journal of Hydrodynamics, 33(4):688-697,
August 2021.

[246] Zhigiang Liu, Weiwen Zhao, and Decheng Wan. Resistance and wake distortion optimization of JBC
considering ship-propeller interaction. Ocean Engineering, 244:110376, January 2022.

[247] Wenzhen Qiu, Xingyu Song, Kaiyuan Shi, Xinshu Zhang, Zhiming Yuan, and Yunxiang You. Multi-
objective optimization of semi-submersible platforms using particle swam optimization algorithm
based on surrogate model. Ocean Engineering, 178:388-409, April 2019.

[248] Sheng-Ju Wu, Chun-Cheng Lin, Tsung-Lung Liu, and I-Hsuan Su. Robust design on the arrangement
of a sail and control planes for improvement of underwater Vehicle’s maneuverability. International
Journal of Naval Architecture and Ocean Engineering, 12:617-635, 2020.

[249] Yan Lin, Qu Yang, and Guan Guan. Automatic design optimization of SWATH applying CFD and
RSM model. Ocean Engineering, 172:146-154, January 2019.

[250] Qu Yang, Yan Lin, and Guan Guan. Improved sequential sampling for meta-modeling promotes
design optimization of SWATH. Ocean Engineering, 198:106958, February 2020.

35



Preprint

[251] Tongshuai Sun, Guangyao Chen, Shaogiong Yang, Yanhui Wang, Yanzhe Wang, Hua Tan, and Lianhong
Zhang. Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology.
Engineering Applications of Computational Fluid Mechanics, 15(1):1057-1074, January 2021.

[252] Guan Guan, Qu Yang, Yunlong Wang, Shuai Zhou, and Zhengmao Zhuang. Parametric design and
optimization of SWATH for reduced resistance based on evolutionary algorithm. Journal of Marine
Science and Technology, 26(1):54-70, March 2021.

[253] Yukun Feng, Zuogang Chen, Yi Dai, Lianzheng Cui, Zheng Zhang, and Ping Wang. Multi-objective
optimization of a bow thruster based on URANS numerical simulations. Ocean Engineering, 247:110784,
March 2022.

[254] Huizi Lv, Chengzhu Wei, Xiaofeng Liang, and Hong Yi. Optimisation of wave-piercing trimaran
outrigger layout with comprehensive consideration of resistance and seakeeping. Ocean Engineering,
250:111050, April 2022.

[255] Guan Guan, Lei Wang, Jiahong Geng, Zhengmao Zhuang, and Qu Yang. Parametric automatic optimal
design of USV hull form with respect to wave resistance and seakeeping. Ocean Engineering, 235:109462,
September 2021.

[256] Ming Yang, Yanhui Wang, Yue Chen, Cheng Wang, Yan Liang, and Shaoqiong Yang. Data-driven
optimization design of a novel pressure hull for AUV. Ocean Engineering, 257:111562, August 2022.

[257] Lingyun Xu, Peng Li, and Hongde Qin. Optimization of Hydrodynamic Performance of Ocean Bottom
Flying Node. International Journal of Offshore and Polar Engineering, 31(04):403-410, 2021. Publisher:
ISOPE.

[258] Karthikeyan Thandayutham and Abdus Samad. Hydrostructural Optimization of a Marine Current
Turbine Through Multi-fidelity Numerical Models. Arabian Journal for Science and Engineering, 45(2):935-
952, February 2020.

[259] Stefano Gaggero, Giuliano Vernengo, and Diego Villa. A marine propeller design method based on
two-fidelity data levels. Applied Ocean Research, 123:103156, June 2022.

[260] Xinwang Liu, Weiwen Zhao, and Decheng Wan. Multi-fidelity Co-Kriging surrogate model for ship
hull form optimization. Ocean Engineering, 243:110239, January 2022.

[261] Emanuele Spinosa, Riccardo Pellegrini, Antonio Posa, Riccardo Broglia, Mario De Biase, and An-
drea Serani. Simulation-Driven Design Optimization of a Destroyer-Type Vessel via Multi-Fidelity
Supervised Active Learning. Journal of Marine Science and Engineering, 11(12):2232, 2023.

[262] Mauro Valorani, Daniele Peri, and Emilio F. Campana. Sensitivity Analysis Methods to Design Optimal
Ship Hulls. Optimization and Engineering, 4(4):337-364, December 2003.

[263] Bao-ji Zhang, Kun Ma, and Zhuo-shang Ji. The Optimization of the Hull Form with the Minimum
Wave Making Resistance Based on Rankine Source Method. Journal of Hydrodynamics, 21(2):277-284,
April 2009.

[264] Wesley Wilson, Dane Hendrix, and Joseph Gorski. Hull form optimization for early stage ship design.
Naval Engineers Journal, 122(2):53-65, 2010. Publisher: American Society of Naval Engineers.

[265] Bao-ji Zhang. Shape optimization of bow bulbs with minimum wave-making resistance based on
Rankine source method. Journal of Shanghai Jiaotong University (Science), 17(1):65-69, February 2012.

[266] Xujian Lv, Xiaoguang Wu, Jianglong Sun, and Haiwen Tu. Trim Optimization of Ship by a Potential-
Based Panel Method. Advances in Mechanical Engineering, 5:378140, January 2013.

[267] Julien Dambrine, Morgan Pierre, and Germain Rousseaux. A theoretical and numerical determination
of optimal ship forms based on Michell’s wave resistance. ESAIM: Control, Optimisation and Calculus of
Variations, 22(1):88-111, January 2016.

[268] Llanez C. Ignacio, Ramirez R. Victor, Del Rio R. Francisco, and Antonio Pascoal. Optimized design
of an autonomous underwater vehicle, for exploration in the Caribbean Sea. Ocean Engineering,
187:106184, September 2019.

[269] Brian R. Page and Nina Mahmoudian. Simulation-Driven Optimization of Underwater Docking
Station Design. IEEE Journal of Oceanic Engineering, 45(2):404-413, April 2020.

[270] Yun Chen, Yanjun Liu, Weimin Liu, Yunzheng Ge, Yifan Xue, and Li Zhang. Optimal design of radial
inflow turbine for ocean thermal energy conversion based on the installation angle of nozzle blade.
Renewable Energy, 184:857-870, January 2022.

36



Preprint

[271] Kai Wang, Guangzhao Luo, Yu Li, Ruichao Xia, and Houlin Liu. Multi-condition optimization and
experimental verification of impeller for a marine centrifugal pump. International Journal of Naval
Architecture and Ocean Engineering, 12:71-84, 2020.

[272] Di Zhu, Ran Tao, Zhaoheng Lu, Yanzhao Wu, and Ruofu Xiao. Optimization design of the inter-
nal structural support of marine turbine blade for weight reduction: A preliminary study. Ocean
Engineering, 260:111989, September 2022.

[273] Frank Lemmer, Wei Yu, Kolja Miiller, and Po Wen Cheng. Semi-submersible wind turbine hull shape
design for a favorable system response behavior. Marine Structures, 71:102725, May 2020.

[274] Beom-Seon Jang, Jae Dong Kim, Tae-Yoon Park, and Sang Bae Jeon. FEA based optimization of semi-
submersible floater considering buckling and yield strength. International Journal of Naval Architecture
and Ocean Engineering, 11(1):82-96, January 2019.

[275] Yanxin Feng, Ould El Moctar, and Thomas E. Schellin. Parametric Hull Form Optimization of
Containerships for Minimum Resistance in Calm Water and in Waves. Journal of Marine Science and
Application, 20(4):670-693, December 2021.

[276] Bao-Ji Zhang, Chi Zhang, and Wen-Xuan She. The Minimum Wave Resistance of Hull Form Design
Method Based on CFD Method. Journal of Ship Production and Design, 36(03):161-170, August 2020.

[277] Le Zha, Renchuan Zhu, Liang Hong, and Shan Huang. Hull form optimization for reduced calm-water
resistance and improved vertical motion performance in irregular head waves. Ocean Engineering,
233:109208, August 2021.

[278] Omer Goren, Sander M. Calisal, and D. Bulent Danisman. Mathematical programming basis for
ship resistance reduction through the optimization of design waterline. Journal of Marine Science and
Technology, 22(4):772-783, December 2017.

[279] Cheng Zhao, Wei Wang, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiaotong
University, Marine Design and Research Institute of China, Panpan Jia, and Yonghe Xie. Optimisation
of Hull Form of Ocean-Going Trawler. Brodogradnja, 72(4):33-46, December 2021.

[280] Hasan Timurlek and Bekir Sener. Hydrodynamic optimization of a high-speed vessel by means of
simulation-based design methodology. Proceedings of the Institution of Mechanical Engineers, Part M:
Journal of Engineering for the Maritime Environment, 236(4):891-903, November 2022.

[281] Ahmad Fitriadhy, Nurul Shukna Rizat, Atiyah Raihanah Abd Razak, Sheikh Fakhruradzi Abdullah,
Faisal Mahmuddin, and Alamsyah Kurniawan. Optimization Modelling of a Catamaran Hull Form
towards Reducing Ship’s Total Resistance. CFD Letters, 14(4):67-79, May 2022.

[282] S.M. Wang, W.Y. Duan, Q.L. Xu, E Duan, G.Z. Deng, and Y. Li. Study on fast interference wave
resistance optimization method for trimaran outrigger layout. Ocean Engineering, 232:109104, July
2021.

[283] Amin Nazemian and Parviz Ghadimi. Multi-objective optimization of ship hull modification based on
resistance and wake field improvement: combination of adjoint solver and CAD-CFD-based approach.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(1):27, January 2022.

[284] Yuan-Hang Hou, Xiao-Jing Jiang, and Xiong-Hua Shi. Ship hull optimization based on new neural
network. Journal of Computers, 28(1):137-148, 2017.

[285] Jing-Wei Jiang, Jiang-Tao Qi, Hao-Peng Cai, Ke Chen, and Wei-Xi Huang. Prediction and optimisation
of low-frequency discrete- and broadband-spectrum marine propeller forces. Applied Ocean Research,
98:102114, May 2020.

[286] Yoondo Ha, Woojong Kim, and Seonho Cho. Design Sensitivity Analysis and Topology Optimization
Method Applied to Stiffener Layout in Hull Structures. Journal of Ship Research, 50(03):222-230,
September 2006.

[287] Andrea Serani and Matteo Diez. Parametric model embedding. Computer Methods in Applied Mechanics
and Engineering, 404:115776, 2023.

37



	Introduction
	Scoping Review Methodology
	Research Questions
	Inclusion and Exclusion Criteria
	Databases and Keywords
	Search Procedure

	Results
	Problem Formulations
	Design-space Parameterization
	Numerical Solvers
	Optimization Methods
	Algorithms
	Surrogates

	Applications

	Discussion
	Conclusions

