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Abstract

In the present paper, an integrable semi-discretization of the modified Camassa–Holm (mCH) equation
with cubic nonlinearity is presented. The key points of the construction are based on the discrete
Kadomtsev-Petviashvili (KP) equation and appropriate definition of discrete reciprocal transformations.
First, we demonstrate that these bilinear equations and their determinant solutions can be derived from
the discrete KP equation through Miwa transformation and some reductions. Then, by scrutinizing the
reduction process, we obtain a set of semi-discrete bilinear equations and their general soliton solutions
in the Gram-type determinant form. Finally, we obtain an integrable semi-discrete analog of the mCH
equation by introducing dependent variables and discrete reciprocal transformation. It is also shown that
the semi-discrete mCH equation converges to the continuous one in the continuum limit.

1 Introduction

In this paper, we are concerned with integrable discretization of the following modified Camassa-Holm (mCH)
equation with cubic nonlinearity

mt + [m(u2 − u2
x)]x = 0, m = u− uxx. (1)

Here u = u(x, t) is a real valued function of time t and a spatial variable x, and the subscripts x and t
appended to m and u denote partial differentiation. It was firstly proposed by Fuchssteiner and Fokas in
1981 (see (32) of Ref. [1]) as a special case of a more general system. Then it appeared in the papers of Fokas
[2], Fuchssteiner [3], Olver and Rosenau [4], and later was rediscovered by Qiao [5, 6]. The mCH equation
(1) has attracted considerable attention over the past two decades due to its rich mathematical structure
and solutions. It has been extensively investigated in various areas, including well-posedness, regularization,
the Cauchy problem, the Riemann-Hilbert problem, long-time asymptotics, and the Liouville correspondence
with the modified Korteweg-de Vries (KdV) equation [7–16]. Matsuno presented a compact parametric repre-
sentation of the smooth bright multisoliton solutions for the mCH equation via the Hirota’s bilinear method
[17], while Hu et al. derived its Gram-type determinant solution from the extended Kadomtsev–Petviashvili
(KP) hierarchy with negative flow [18]. Several groups also constructed the smooth soliton solutions through
Darboux transformation/Bäcklund transformation method [19–21] and Lie algebraic approach [22]. In [23],
the wave-breaking problem and the existence of single and multi-peakon solutions to the mCH equation
have been discussed. Recently, Chang et al. have investigated the Lax integrability and the conservative
peakon solutions in a series of work [24–26]. Gao et al. studied the patched peakon weak solution [27], and
the conservative sticky peakons [28]. Other related problem such as blow-up phenomena and the stability
including the orbital stability have been studied by several authors [29–32].
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Recently, research on discrete integrable systems has garnered significant attention due to its connections
to several other fields, including random matrices, quantum field theory, numerical algorithms, orthogonal
and biorthogonal polynomials, and random matrices [33]. There are far fewer instances of discrete integrable
systems and analytical tools available as compared to continuous integrable systems. On the other hand,
discrete integrable systems are seen to be more basic and universal than continuous ones [34]. The authors
have conducted extensive research in finding integrable discretizations of soliton equations, including the
short pulse equation [35, 36], (2+1)-dimensional Zakharov equation[37], the Camassa-Holm (CH) equation
[38, 39], the Degasperis-Procesi equaiton [40], the generalized sine-Gordon equation [41, 42] and the mCH
equation with cubic nonlinearity and linear dispersion term [43] via Hirota’s bilinear method.

It should be commented that there exists a mCH equation with cubic nonlinearity and linear dispersion
term

mt + [m(u2 − u2
x)]x + 2κ2ux = 0, m = u− uxx, (2)

whose bilinear equations are totally different from those of Eq. (1). The mCH equation with linear dispersion
term were derived in [44] and also in [43] as the reduction of the negative flow of the deformed KdV
hierarchy. Although in [43] we have proposed an integrable semi-discretization of the mCH equation with
linear dispersion term, i.e., Eq. (2), to the best of our knowledge, integrable discrete analogues of Eq. (1)
(the mCH equation without linear dispersion term) have not been reported yet. There are mainly two
challenging points in the construction. Firstly, bilinear equations of the mCH equation (1) are reduced from
the extended KP hierarchy with negative flow. The non-original location of one of the poles presents a
challenge in constructing its discrete analogue. Secondly, as shown in Section 3, we have to define a second
discrete counterpart for the same continuous variable in order to obtain an explicit form of the semi-discrete
mCH equation. Hence, it is a natural but definitely not a trivial problem to generate a semi-discrete version
for the mCH equation (1).

In this paper, upon introducing appropriate Miwa transformation, we derive successfully the two sets
bilinear mCH equation from the discrete KP equation. As a byproduct, integrable semi-discrete bilinear
mCH equation and the corresponding Gram-type determinant solutions are obtained. Under the discrete
reciprocal transformation and dependent variable transformation, an integrable semi-discrete analog of the
mCH equation is given.

The outline of the paper is as follows. In section 2, we review the bilinear forms and determinant solutions
of the mCH equation, which can be reduced from the discrete KP equation and its τ -function through a
series of transformations including Miwa transformation. In section 3, by scrutinizing the process in deriving
the bilinear mCH equation from the discrete KP equation, we propose semi-discrete analogues of bilinear
mCH equations. Based on these discrete bilinear equations, we construct an integrable semi-discrete mCH
equation and present its N -soliton solutions. Section 4 is devoted to a brief summary and discussion.

2 From the discrete KP equation to the modified Camassa-Holm
equation

In this section, we first review the results in [18] about the bilinear form of the mCH equation. The mCH
equation (1) can be transformed into the following bilinear equations(

2DτD
2
y + 2DτDy − 4Dy

)
g · f = 0, (3)(

D2
y +Dy

)
g · f = 0, (4)

through the reciprocal transformation

x = y + τ + 2 ln
g

f
, (5)

t = τ, (6)

and the dependent variable transformation

u = 1− (ln fg)yτ , (7)
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where Dx is the Hirota D-operator defined by

Dn
xf · g =

(
∂

∂x
− ∂

∂y

)n

f(x)g(y)|y=x.

Next, we give a lemma regarding bilinear equations of the mCH equation (1) and show the correspongding
reductions.

Lemma 2.1. The following bilinear equations(
D2

x1
−Dx2

+ 2cDx1

)
τn · τn+1 = 0, (8)(

Dx−1

(
D2

x1
−Dx2

+ 2cDx1

)
− 4Dx1

)
τn · τn+1 = 0, (9)

admit the Gram-type determinant solutions

τn = det
1⩽i,j⩽N

(
m

(n)
ij

)
,

where the matrix element is defined as

m
(n)
ij = cij +

1

pi + qj

(
−pi − c

qj + c

)−n

eξi+ηj ,

ξi = pix1 + p2ix2 +
1

pi − c
x−1 + ξi0,

ηj = qjx1 − q2jx2 +
1

qj + c
x−1 + ηj0,

and cij , pi, qj , ξi0, ηj0, c are constants.

Proof. The discrete Kadomtsev-Petviashvili (dKP) equation, or the Hirota-Miwa (HM) equation,

a1 (a2 − a3) τ (k1 + 1, k2, k3) τ (k1, k2 + 1, k3 + 1)

+ a2 (a3 − a1) τ (k1, k2 + 1, k3) τ (k1 + 1, k2, k3 + 1)

+ a3 (a1 − a2) τ (k1, k2, k3 + 1) τ (k1 + 1, k2 + 1, k3) = 0, (10)

was proposed independently by Hirota [45] and Miwa [46] in early 1980s. It is known that the discrete KP
equation admits a general solution in terms of the following Gram-type determinant [47]:

τ(k1, k2, k3) = |mij | =

∣∣∣∣∣cij + 1

pi + qj

3∏
l=1

(
1− alpi
1 + alqj

)−kl

∣∣∣∣∣
1⩽i,j⩽N

. (11)

Notice that the element in Gram-type solution (11) of the discrete KP equation (10) can be rewritten as

mij =cij +
1

pi + qj

(
1− a1pi
1 + a1qj

)−k1
(
1− a2pi
1 + a2qj

)−k2
(
1− a3pi
1 + a3qj

)−k3

=cij +
1

pi + qj

(
−pi
qj

)−k3
(
1− a1pi
1 + a1qj

)−k1
(
1− a2pi
1 + a2qj

)−k2
(
1− a−1

3 p−1
i

1 + a−1
3 q−1

j

)−k3

=cij +
1

p̃i + q̃j

(
− p̃i − c

q̃j + c

)−k3
(
1− b1p̃i
1 + b1q̃j

)−k1
(
1− b2p̃i
1 + b2q̃j

)−k2
(
1− dp−1

i

1 + dq−1
j

)−k3

,

where p̃i = pi + c, q̃i = qi − c, b−1
1 = a−1

1 + c, b−1
2 = a−1

2 + c, d = a−1
3 . We then drop the tilde for simplicity.

Let k3 = n = m, then the discrete KP equation becomes the discrete deformed modified KP equation(
d− b−1

2 + c
)
τn (k1 + 1, k2,m) τn+1 (k1, k2 + 1,m+ 1)

+
(
b−1
1 − c− d

)
τn (k1, k2 + 1,m) τn+1 (k1 + 1, k2,m+ 1)

+
(
b−1
2 − b−1

1

)
τn+1 (k1, k2,m+ 1) τn (k1 + 1, k2 + 1,m) = 0. (12)
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Applying Miwa transformation

x1 =

2∑
j=1

kjbj , x2 =
1

2

2∑
j=1

kjb
2
j , · · · , xk =

1

k

2∑
j=1

kjb
k
j ,

x−1 = md, x−1 =
1

2
md2, · · · , x−k =

1

k
mdk,

and taking bj → 0, j = 1, 2 and d → 0, we obtain an infinite number of bilinear equations:∑
K,L,M

(
d− b−1

2 + c
)
bK1 bL2 d

MpK

(
1

2
D̃+

)
pL

(
−1

2
D̃+

)
pM

(
−1

2
D̃−

)
τn · τn+1

+
∑

K,L,M

(
b−1
1 − c− d

)
bK1 bL2 d

MpK

(
−1

2
D̃+

)
pL

(
1

2
D̃+

)
pM

(
−1

2
D̃−

)
τn · τn+1

+
∑

K,L,M

(
b−1
2 − b−1

1

)
bK1 bL2 d

MpK

(
−1

2
D̃+

)
pL

(
1

2
D̃+

)
pM

(
1

2
D̃−

)
τn · τn+1 = 0,

where

D̃+ =

(
Dx1

,
1

2
Dx2

, · · · , 1
n
Dxn

)
, D̃− =

(
Dx−1

,
1

2
Dx−2

, · · · , 1
n
Dx−n

)
.

At the order of b01b
0
2d

0, we have(
−p1

(
1

2
D̃+

)
p1

(
−1

2
D̃+

)
+ cp1

(
1

2
D̃+

)
+ p2

(
−1

2
D̃+

)
−cp1

(
−1

2
D̃+

)
+ p21

(
1

2
D̃+

)
− p2

(
1

2
D̃+

))
τn · τn+1 = 0, (13)

which gives equation (8).
At the order of b11b

0
2d

1, we have(
p1

(
1

2
D̃+

)
− p1

(
1

2
D̃+

)
p1

(
−1

2
D̃+

)
p1

(
−1

2
D̃−

)
+ cp1

(
1

2
D̃+

)
p1

(
−1

2
D̃−

)
+ p2

(
−1

2
D̃+

)
p1

(
−1

2
D̃−

)
− cp1

(
−1

2
D̃+

)
p1

(
−1

2
D̃−

)
− p1

(
−1

2
D̃+

)
+p21

(
1

2
D̃+

)
p1

(
−1

2
D̃−

)
− p2

(
1

2
D̃+

)
p1

(
−1

2
D̃−

))
τn · τn+1 = 0, (14)

which leads to equation (9). The proof is complete.

If we impose the constraints

pi = qi, cij = δij ,

one can verify that ∂x2
τn = 0. Setting τ1 = g, τ0 = f , we obtain from (8)-(9) the following bilinear equations(

D2
x1

+ 2cDx1

)
f · g = 0, (15)(

Dx−1

(
D2

x1
+ 2cDx1

)
− 4Dx1

)
f · g = 0. (16)

Furthermore, by setting x1 = y, x−1 = τ
2 and c = − 1

2 , we arrive at the bilinear equations of the mCH
equation (3)-(4). Thus τ -functions f and g admit the following Gram-type determinant form

τn =

∣∣∣∣∣δij + 1

pi + pj

(
− 2pi + 1

2pj − 1

)−n

eξi+ηj

∣∣∣∣∣ , (17)

ξi = piy +
1

2pi + 1
t+ ξi0, (18)

ηj = pjy +
1

2pi − 1
t+ ξi0, (19)

with g = τ1, f = τ0.
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3 Integrable semi-discretization of the modified Camassa-Holm
equation

In this section, we aim to construct the integrable spatial discretization of the mCH equation. To this end,
we shall first derive semi-discrete analogs of the bilinear equations (3)-(4). Subsequently, in Subsection 3.2,
we construct an integrable semi-discrete mCH equation.

3.1 From discrete KP equation to the semi-discrete analog of (8) and (9)

Lemma 3.1. The discrete KP equation (10) generates the following bilinear equations(
−b−1

2 + c
)
τn (k + 1, l) τn+1 (k, l + 1) +

(
b−1
1 − c

)
τn (k, l + 1) τn+1 (k + 1, l)

+
(
b−1
2 − b−1

1

)
τn (k + 1, l + 1) τn+1 (k, l) = 0, (20)

(
−b−1

2 + c
)
D−1τn (k + 1, l) · τn+1 (k, l + 1) +

(
b−1
1 − c

)
D−1τn (k, l + 1) · τn+1 (k + 1, l)

+
(
b−1
2 − b−1

1

)
D−1τn (k + 1, l + 1) · τn+1 (k, l) + 2 (τn (k, l + 1) τn+1 (k + 1, l)

−τn (k + 1, l) τn+1 (k, l + 1)) = 0, (21)

which admit the determinant solution of Gram-type

τn(k, l) =
∣∣∣mn,k,l

ij

∣∣∣ = ∣∣∣∣∣cij + 1

pi + qj

(
−pi − c

qj + c

)−n(
1− b1pi
1 + b1qj

)−k (
1− b2pi
1 + b2qj

)−l

eξi+ηj

∣∣∣∣∣ , (22)

where

ξi =
1

pi − c
x−1 + ξi0, ηj =

1

qj + c
x−1 + ηj0. (23)

Proof. We apply the Miwa transformation to (12) by taking d → 0 and leaving b1, b2 finite and then we have(
d− b−1

2 + c
)
dMp1

(
−1

2
D̃−

)
τn (k1 + 1, k2) · τn+1 (k1, k2 + 1)

+
(
b−1
1 − c− d

)
dMp1

(
−1

2
D̃−

)
τn (k1, k2 + 1) · τn+1 (k1 + 1, k2)

+
(
b−1
2 − b−1

1

)
dMp1

(
−1

2
D̃−

)
τn (k1 + 1, k2 + 1) · τn+1 (k1, k2) = 0. (24)

At the order of d0 and d1, we obtain equation (20) and (21) with k1 = k, k2 = l, respectively.

Theorem 3.1. Bilinear equations

1

b
(fk+1gk−1 − 2fkgk + fk−1gk+1)−

1

2
(fk+1gk−1 − fk−1gk+1) = 0, (25)

2

b
Dτ (fk+1 · gk−1 − 2fk · gk + fk−1 · gk+1)

−Dτ (fk+1 · gk−1 − fk−1 · gk+1)− 2 (fk+1gk−1 − fk−1gk+1) = 0. (26)

admit the Gram-type determinant solution

fk = τ0(k), gk = τ1(k),

τn(k) =
∣∣∣mn,k

ij

∣∣∣ = ∣∣∣∣∣δij + 1

pi + pj

(
− 2pi + 1

2pj − 1

)−n(
1− bpi
1 + bpj

)−k

eξi+ηj

∣∣∣∣∣ , (27)

where

ξi =
1

2pi + 1
τ + ξi0, ηj =

1

2pj − 1
τ + ηj0. (28)
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Proof. To realize the 2-reduction in the discrete case, we set

b1 = −b2 = b, pi = qi, cij = δij , (29)

in (22). Under these constraints, we have the reduction relation

τn(k + 1, l + 1) = τn(k, l). (30)

From the reduction, we drop the index l and define

fk = τ0(k), gk = τ1(k). (31)

Then from (20)-(21), we have

1

b
(fk+1gk−1 − 2fkgk + fk−1gk+1) + c (fk+1gk−1 − fk−1gk+1) = 0, (32)

1

b
D−1 (fk+1 · gk−1 − 2fk · gk + fk−1 · gk+1)

+ cD−1 (fk+1 · gk−1 − fk−1 · gk+1)− 2 (fk+1gk−1 − fk−1gk+1) = 0. (33)

By setting x−1 = τ
2 and c = − 1

2 , eqs. (32)-(33) are transformed into (25)-(26). Gram determinant solution
(27) can be obtained directly by using the reduction from (22).

3.2 Integrable semi-discretization of the mCH equation

Based on the semi-discrete bilinear equations in Theorem 3.1, we propose an integrable semi-discrete mCH
equation.

Theorem 3.2. An integrable semi-discrete analogue of the mCH equation (1) is derived as

dm−1
k

dt
= 2mkΓk (δuk) , (34)

mk =
uk+1 + uk

2
− 1

2
mk

(
1 +

b2

4
(m−1

k − 1)

)(
δ(m̃−1

k )
)
t
, (35)

from Eqs. (25)-(26) through a dependent variable transformation

uk = 1− 1

b

(
ln

gkfk
gk−1fk−1

)
τ

, (36)

and a discrete reciprocal transformation

δxk ≡ xk+1 − xk

b
= 1 +

2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
, t = τ. (37)

Other variables are defined by

x̃k = kb+ τ + 2 ln
gk
fk

, (38)

m−1
k = δxk = 1 +

2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
, (39)

δuk =
uk+1 − uk

b
= − 1

b2

(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
τ

, (40)

m̃−1
k = δx̃k =

x̃k+1 − x̃k

b
= 1 +

2

b
ln

gk+1fk
gkfk+1

, (41)

Γk = 1 +
m−1

k − 1

4
b−

(m−1
k − 1)2

4
b2 −

(m−1
k − 1)3

16
b3, (42)

δ(m̃−1
k ) =

m̃−1
k − m̃−1

k−1

b
= − 2

b2
ln

fk+1fk−1g
2
k

gk+1gk−1f2
k

. (43)
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Prior to the proof of the theorem, we show that the semi-discrete mCH equations (34)-(35) converge to
the mCH equation (1) in the continuous limit b → 0.

Recall that

u = 1− (ln fg)yτ , x = y + τ + 2 ln
g

f
. (44)

It is obvious that when b → 0 we have

uk → u, x̃k → x, δuk → uy, m̃−1
k → ∂x

∂y
=

1

m
, δ(m̃−1

k ) →
(

1

m

)
y

, (45)

and furthermore,

Γk → 1, fk+1 → fk + bfk,y, gk+1 → gk + bgk,y, (46)

which leads to

2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
→ 2

b

fk−1(gk−1 + 2bgk,y)− gk−1(fk−1 + 2bfk,y)

fk−1(gk−1 + 2bgk,y) + gk−1(fk−1 + 2bfk,y)
→ 2

(
ln

g

f

)
y

. (47)

Therefore, we have

δxk = m−1
k → 1 + 2

(
ln

g

f

)
y

=
∂x

∂y
=

1

m
. (48)

Thus we conclude that Eqs. (34)-(35) converge to

∂2x

∂y∂τ
=

(
1

m

)
τ

= 2muy, (49)

m = u− 1

2
m

(
1

m

)
yτ

= u−m(muy)y = u− uxx, (50)

respectively. On the other hand, Eq. (49) is equivalent to

∂2x

∂y∂τ
= 2muy = 2(u−m(muy)y)uy =

(
u2 −m2u2

y

)
y
= (u2 − u2

x)y, (51)

or

∂x

∂τ
= u2 − u2

x, (52)

which implies

∂τ = ∂t + (u2 − u2
x)∂x. (53)

As a result, Eq. (49) leads to

mτ + 2m3uy =mt + (u2 − u2
x)mx + 2m2ux

=mt +
[
m(u2 − u2

x)
]
x
= 0,

which is actually the mCH equation (1).
In the following we present the detailed proof of the theorem.

Proof. We rewrite Eq. (25) as

1

b

(
fk+1gk−1

fkgk
− 2 +

fk−1gk+1

fkgk

)
− 1

2

(
fk+1gk−1

fkgk
+

fk−1gk+1

fkgk

)
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
= 0,

7



or equivalently

−2

b
+

fk+1gk−1 + fk−1gk+1

fkgk

(
1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
= 0. (54)

By using the identity ρτ = ρ (ln ρ)τ , we have(
fk+1gk−1 + fk−1gk+1

fkgk

)
τ

=
fk+1gk−1

fkgk

(
ln

fk+1gk−1

fkgk

)
τ

+
fk−1gk+1

fkgk

(
ln

fk−1gk+1

fkgk

)
τ

=
fk+1gk−1 + fk−1gk+1

2fkgk

(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
τ

+
fk−1gk+1 − fk+1gk−1

2fkgk

(
ln

fk−1gk+1

fk+1gk−1

)
τ

,

and (
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
τ

= − 2fk+1gk−1fk−1gk+1

(fk+1gk−1 + fk−1gk+1)
2

(
ln

fk−1gk+1

fk+1gk−1

)
τ

.

Therefore, differentiating Eq. (54) with respect to τ leads to(
fk+1gk−1 + fk−1gk+1

2fkgk

(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
τ

+
fk−1gk+1 − fk+1gk−1

2fkgk

(
ln

fk−1gk+1

fk+1gk−1

)
τ

)
·(

1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
+

fk+1gk−1 + fk−1gk+1

fkgk

fk+1gk−1fk−1gk+1

(fk+1gk−1 + fk−1gk+1)
2

(
ln

fk−1gk+1

fk+1gk−1

)
τ

= 0.

Dividing both sides by fk+1gk−1+fk−1gk+1

2fkgk
, we have(

1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
τ

+
1

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1

(
ln

fk−1gk+1

fk+1gk−1

)
τ

+
1

2

(
ln

fk−1gk+1

fk+1gk−1

)
τ

= 0. (55)

As b → 0, Eq. (55) converges to

(ln fg)yyτ + 2

(
ln

g

f

)
y

(
ln

g

f

)
yτ

+

(
ln

g

f

)
yτ

= 0.

From the definition of Γk, uk, δuk, and m−1
k , we have

Γk = 1 +
m−1

k − 1

4
b−

(m−1
k − 1)2

4
b2 −

(m−1
k − 1)3

16
b3

=

(
1− b

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)(
1−

(
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)2
)

=

(
1− b

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
4fk+1gk−1fk−1gk+1

(fk+1gk−1 + fk−1gk+1)
2 .

Then Eq. (55) leads to (
m−1

k

)
τ
= 2mkΓkδuk. (56)

Since δxk = m−1
k , one can rewrite Eq. (56) as

dδxk

dt
= 2mkΓk (δuk) , (57)

8



which constitutes the first equation of the semi-discrete mCH equation. Now we are ready to deduce the
second equation of the semi-discrete mCH equation. We rewrite Eq. (26) into

1

b

(
fk+1gk−1

(
ln

fk+1

gk−1

)
τ

− 2fkgk

(
ln

fk
gk

)
τ

+ fk−1gk+1

(
ln

fk−1

gk+1

)
τ

)
− 1

2

(
fk+1gk−1

(
ln

fk+1

gk−1

)
τ

− fk−1gk+1

(
ln

fk−1

gk+1

)
τ

)
− (fk+1gk−1 − fk−1gk+1) = 0. (58)

Thus we have

1

b

(
ln

fk+1fk−1

gk+1gk−1

)
τ

− 4

b

fkgk
fk+1gk−1 + fk−1gk+1

(
ln

fk
gk

)
τ

+
1

b

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

(
ln

fk+1gk+1

fk−1gk−1

)
τ

− 1

2

((
ln

fk+1gk+1

fk−1gk−1

)
τ

+
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

(
ln

fk+1fk−1

gk+1gk−1

)
τ

)
− 2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
= 0. (59)

By rewriting Eq. (25) as

1

b

2fkgk
fk+1gk−1 + fk−1gk+1

=
1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
,

and substituting it into Eq. (59), one obtains

1

b

2fkgk
fk+1gk−1 + fk−1gk+1

(
ln

fk+1fk−1g
2
k

gk+1gk−1f2
k

)
τ

+
1

b

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

(
ln

fk+1gk+1

fk−1gk−1

)
τ

− 1

2

(
ln

fk+1gk+1

fk−1gk−1

)
τ

− 2
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
= 0. (60)

From the definition of uk and δ(m̃−1
k ), one can obtain

uk+1 + uk = 2− 1

b

(
ln

gk+1fk+1

gk−1fk−1

)
τ

.

Eq. (60) can be rewritten as

− b

2

(
1 +

b2

4
(m−1

k − 1)

)(
δ(m̃−1

k )
)
τ
− bm−1

k

(
1− uk + uk+1

2

)
+ b(m−1

k − 1) = 0, (61)

which can shown to be equivalent to Eq. (35). The proof is complete.

The semi-discrete mCH equation (34)-(35) admits a determinant form of N -soliton solution

uk = 1− 1

b

(
ln

gkfk
gk−1fk−1

)
τ

,

δxk ≡ xk+1 − xk

b
= 1 +

2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
, mk = (δxk)

−1

where fk, gk are given by (27).

Proof. From Theorem 3.1 and Theorem 3.2, the proof can be completed.
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3.3 One- and Two- soliton solutions

3.3.1 One-soliton solutions

The τ -functions for the one-soliton solution of the semi-discrete mCH equation in Theorem 3.2 are

fk ∝ 1 +

(
1− bp

1 + bp

)−k

eζ , gk ∝ 1 +

(
−2p+ 1

2p− 1

)−1(
1− bp

1 + bp

)−k

eζ , (62)

with ζ = − 4p
1−4p2 τ + ζ0. Here we set p = p1 for simplicity. Thus, we can obtain the one-soliton solution in a

parametric form

uk = 1− 1

b

(
ln

gkfk
gk−1fk−1

)
τ

= 1− 1

b

4p

1− 4p2

(
1

fk
+

1

gk
− 1

fk−1
− 1

gk−1

)
, (63)

xk = x0 + b

k−1∑
i=0

δxi

= x0 + (k − 1)b+ 2

k−1∑
i=0

fi−1gi+1 − fi+1gi−1

fi−1gi+1 + fi+1gi−1
. (64)

When we take b = 0.1, ζ0 = 0, and choose appropriate x0 such that the solution uk is symmetric with respect
to xk, Figure 1 displays two different kinds of solutions for the semi-discrete mCH equation under different
p values. Figure 2 depicts a one-soliton solution to the semi-discrete mCH equation while comparing with

the one-soliton solution to the mCH equation. When 0 < |p| <
√
3
4 , the solution uk is single-valued with

one peak since δk > 0 (see Figure 1(a)). Figure 1(b) illustrates the symmetric singular soliton solutions that

are three-valued with two spikes for
√
3
4 < |p| < 1

2 . Figure 2 shows the comparison among the one-soliton
solutions for the mCH equation in [17, 18] and the semi-discrete mCH equation at t = 0. It should be pointed
out that the semi-discrete analogue of the mCH equation with linear dispersion term admits anti-symmetric
singular soliton solutions (see Figure 1C and 2C in [43]), while the semi-discrete mCH equation without
linear dispersion term we proposed here does not admit such singular solution.

(a) Smooth soliton solutions (b) Symmetric singular soliton solutions

Fig. 1: Two different kinds of solutions for the semi-discrete mCH equation at t = 0. (a) Smooth soliton
solutions, (b) Symmetric singular soliton solutions.
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(a) Smooth soliton solutions (b) Symmetric singular soliton solutions

Fig. 2: Comparison between the one-soliton solution for the mCH equation and the semi-discrete mCH
equation at t = 0; solid line: mCH equation, dot: semi-discrete mCH equation. (a) p = 0.35, (b) p = 0.485.

3.3.2 Two-soliton solutions

The τ -functions for the two-soliton solution of the semi-discrete mCH equation in Theorem 3.2 are

fk ∝ 1 + z−k
1 eζ1 + z−k

2 eζ2 +

(
p1 − p2
p1 + p2

)2

(z1z2)
−keζ1+ζ2 , (65)

gk ∝ 1 +
1− 2p1
1 + 2p1

z−k
1 eζ1 +

1− 2p2
1 + 2p2

z−k
2 eζ2 +

1− 2p1
1 + 2p1

1− 2p2
1 + 2p2

(
p1 − p2
p1 + p2

)2

(z1z2)
−keζ1+ζ2 , (66)

with zi =
1−bpi

1+bpi
and ζi = − 4pi

1−4p2
i
τ + ζi0. We take b = 0.1 and ζi0 = 0. Fig. 3 displays the collision between

two smooth solitons. One can see that the soliton with a higher peak moves faster than the lower one. It
can be found that there is a strong agreement between the two-soliton solution of the semi-discrete mCH
equation and the mCH equation.

(a) t = −15 (b) t = 0 (c) t = 15

Fig. 3: Comparison between the two-soliton solution of the mCH and the semi-discrete mCH equation with
p1 = 0.25, p2 = 0.35; solid line: mCH equation; dot: semi-discrete mCH equation. (a)t = −15, (b)t = 0,
(c)t = 15.

4 Conclusion

In this paper, starting from the discrete KP equation, we have constructed an integrable semi-discrete analog
of the mCH equation with cubic nonlinearity through Miwa transformation and a series of reductions. Gram-
type determinant solutions for the semi-discrete mCH equation has been derived. Smooth soliton solutions
and symmetric singular soliton solutions are generated from the determinant formulas. The discrete KP
equation is once again shown to be the fundamental equation for integrable systems, in line with the findings
by Hirota, Ohta, Tsujimoto, Nimmo, and so on. Furthermore, there are a few aspects that deserve further
study. Firstly, the Lax pair associated with the semi-discrete mCH equation is still unknown. How to

11



generate the Lax pair for the derived discrete integrable systems based on the Lax pair of discrete KP
equation is left to be investigated. Secondly, here we only find semi-discrete version of the mCH equation
and the full-discrete analogue of the mCH is left to be considered. Thirdly, connections between the discrete
KP equation and the two-component CH equation [48], the two-component mCH equation [49], the complex
short pulse equation [50] and the massive Thirring model equation [51] are worth investigating.
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