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Abstract

Shariat et al [1] previously investigated the possibility of predicting, from preoperative biomarkers and
clinical data, which of any pair of patients would suffer recurrence of prostate cancer (relapse) first. We
wished to establish the extent to which predictions of time of relapse taken from such a model could be
improved upon using Bayesian methodology.

The same dataset analysed by Shariat et al was reanalysed using a Bayesian skew-Student mixture
model. Predictions were made of which of any pair of patients would relapse first, as in [1]. Further,
predictions were made of the time of relapse. The benefit of using these biomarkers relative to predictions
made without biomarkers, i.e. prediction quality over that of the prior, was measured by the apparent
Shannon information[2], using as prior a simple exponential attrition model of relapse time independent
of input variables.

Using half the dataset for training and the other half for testing, predictions of relapse time from the
Cox model interpreted strictly gave −∞ nepers of apparent Shannon information, because it predicts
that relapse can only occur at times when patients in the training set relapsed. Deliberately smoothed
predictions from the Cox model gave −0.001 (−0.131 to +0.120) nepers, while the Bayesian model gave
+0.109 (+0.021 to +0.192) nepers (mean, 2.5 to 97.5 centiles), being positive with posterior probability
0.993 and beating the blurred Cox model with posterior probability 0.927. The performance of a version
of the Cox model in which hazard rate was instead assumed invariant for any single patient over time lay
between the two, giving +0.046 (−0.073 to +0.160) nepers. These predictions from the Bayesian model
thus outperform those of the Cox model as expected, but the overall yield of predictive information
leaves plenty of scope for improvement of the range of biomarkers in use.

The Bayesian model presented here is the first such model for prostate cancer to consider the variation
of relapse hazard with biomarker concentrations to be smooth, as is intuitively believable. It is also the
first model to be shown to provide more apparent Shannon information than the Cox model and indeed
the first to be shown to provide positive apparent information relative to an exponential prior.

∗First version deposited in arxiv; RFS version 1.8.1.1 .
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1 Introduction

Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer death
in men in the United States. Up to 30% of patients experience at least biochemical recurrence following
initial therapy with curative intent. It is believed that identifying this subset of prostate cancer patients
at the time of initial surgery would allow selection of a subset of patients who should receive additional
therapies in the months following initial prostatectomy, thus avoiding the additional cost, inconvenience,
and morbidity associated with giving all patients such additional treatment.

Further, it may be possible to use such likelihood of early recurrence when choosing patient groups to
enter clinical trials for novel therapies, shortening the duration of such trials by facilitating selection of
those patients most likely to experience early recurrence on the basis of biomarker data.

Various authors have attempted to use combinations of biomarkers and clinical data to predict which
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patients are at highest risk of recurrence. In particular, Shariat et al[1] collected a dataset of 423 patients
and analysed it using standard Cox proportional hazards methods[3]. The present paper uses the same
dataset and analyses it using parametric Bayesian methods which provide a predictive distribution
on time of relapse for each patient at the time of initial surgery. The aim was to determine what
improvement in results was available from applying Bayesian methods in place of the widely-used Cox
proportional hazards model.

We will refer to “biochemical recurrence of prostate cancer” simply as “relapse”.

2 Methods

The patients, biochemical methods, and dataset have been described previously in full[1] and we here
repeat this information in abbreviated form, along with a description of the new methodology in this
paper.

2.1 Patient population

This study received institutional review board approval.

423 patients were treated with radical prostatectomy and bilateral lymphadenectomy for clinically lo-
calised prostatic adenocarcinoma between July 1994 and November 1997. No patient received neoadju-
vant chemotherapy, hormone therapy, or radiotherapy, and none had secondary cancers.

The patients were followed with digital rectal examinations and serum prostate-specific antigen (PSA)
measurements. Biochemical recurrence (herein “relapse”) was defined as a sustained elevation on two
or more occasions of serum total PSA > 0.2 ng/ml and was backdated to the first value > 0.2 ng/ml.
No patient received adjuvant therapy before this.

2.2 Biomarkers measured

Biomarkers were measured on preoperative plasma samples collected at least 4 weeks after transrec-
tal needle biopsy of the prostate and after overnight fasting, anticoagulated with sodium citrate and
centrifuged for 20 mins at 1500g. The supernatant diluted plasma was decanted and frozen at -80
C in polypropylene cryopreservation vials. Serum total PSA was measured with the Hybritech assay
(Hybritech Inc). Plasma TGF-β1, IL-6, sIL-6R, VEGF, VCAM-1, and endoglin were measured with
commercial enzyme immunoassays from R&D Systems. Plasma uPA, PAI-1 and uPAR levels were mea-
sured with enzyme immunoassays from American Diagnostica. Recentrifugation of thawed plasma at
10000g for 10 mins before assay was used to prevent contamination with markers released from dam-
aged platelets. All samples were run in duplicate and the mean used for the measurement input to the
prediction algorithm; intra-assay precision coefficients of variation were < 10%.

2.3 Bayesian algorithm design

The detailed design of the Bayesian algorithm is described in [2]. Briefly, log-transformed true values
of the input data and time of relapse were modelled as a Dirichlet-based mixture of skew-Student
distributions, the parameters of all components of which were modelled using a Bayesian hierarchical
model. The logarithms of the actual observations were modelled as differing from their true values
by Student-distributed noise, with the time of either relapse or relapse-free end of follow-up assumed
additionally to be censored at an independently and log-normally distributed time when follow-up would
have ceased in the absence of relapse. In the case of patients who remained relapse-free throughout,
this censoring was assumed to occur at the time follow-up actually ceased, while for relapsing patients
it was known to occur at or after the time of relapse.
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Given the training dataset, the parameters of the Bayesian model were sampled using Markov chain
Monte-Carlo techniques, and the result of training encapsulated by those parameter samples. Given
then a new patient for whom a prediction of relapse time was required, the predictive distribution of
relapse time given the biomarker data was calculated for each parameter sample, and the average of all
such predictions over parameter samples taken as the predicted distribution of relapse time.

2.4 Cox proportional hazards model

The Cox proportional hazards model against which comparison was made was constructed using the
full list of biomarker and clinical variables, as in the penultimate entry of Table 3 of [1], fitted by
maximum likelihood on the training set. The fitted basal hazard function and effect coefficients of the
input variables were used to construct predictions of the hazard against time for each individual and
hence of the probability distribution of relapse time.

2.5 Constant-hazard Cox model

Because much of the poor performance of the Cox model appears to be related to overfitting of the
basal hazard function to the training data, we also considered a time-independent version of the Cox
model in which the basal hazard function was constrained to being constant over time. As a result,
the predictions of probability density of relapse time from this model are decaying exponentials with a
variety of time constants dependent on the input variables.

2.6 Avoidance of bootstrapping

As described in appendix B, bootstrapping is inappropriate when used with complicated prediction
algorithms. In this context there is no rigorous justification for bootstrapping even as the number of
patients approaches infinity. On the other hand there are clear examples where bootstrapping provides
grossly optimistic results (e.g. as much as 82% correct classification when measured by bootstrapping
versus 50%, i.e. no better than chance alone, when correctly measured). There are also good theoretical
reasons why use of bootstrapping would be expected to cause erroneous operation of any training
methods which infer variance of mixture components in a generative model for the data.

Accordingly we have reprocessed the data using the original Cox proportional hazards model used by
Shariat et al[1] but without bootstrapping, for comparison with the Bayesian methods here reported,
also without bootstrapping. The only bootstrapped result we will report is a direct comparison with the
published result in [1], solely for the purpose of completeness and to demonstrate that bootstrapping
gives the same false impression of a better result in our method as in the method in [1].

2.7 Measurement of prediction quality

The prediction quality measure used in [1] was that of concordance between actual order of relapse of
any pair of patients and the order of relapse considered most likely for that pair of patients by the model.
That paper did not publish either any measure of how the confidence of the model on the predicted
order of relapse accorded with what actually transpired, or on the time of relapse, although the Cox
model is capable of providing both.

In the present paper the Bayesian methodology used provides probabilities[4] that one of any pair of
patients will die first, the probability that a patient will undergo relapse within 100 months after surgery,
and a probability distribution on the time of relapse of any patient given that they do relapse by 100
months. For simplicity, we have combined the last two to give a probability distribution on time of
relapse, in which the area under the curve between two time points gives the probability of relapse
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Figure 1: Prior probability density of time of recurrence, which is an exponential attrition of constant
hazard rate independent of biomarkers or clinical data.

occurring during that interval. For such a curve the total area under the curve from start to 100 months
gives the probability of relapse before 100 months; that probability is usually less than one.

For each of these predicted probabilities we estimate the apparent Shannon information content[2, 5, 6, 7]
of the predictions using only data not seen by the model during training, using the methods described
in [2], and compare it with the same measure on the same data analysed using the Cox model with one
modification. The modification arises because the Cox model predicts that all relapses will occur at
times (relative to time of surgery) at which patients in the training set relapsed (because it maximises
the probability of seeing the training set jointly over both the underlying hazard function and the
model coefficients). Consequently, unless the inordinately unlikely event occurs that this is indeed what
happens to the unseen patients, the Cox model would score −∞ on this measure, providing too easy
a straw man to knock down. We therefore felt it reasonable to give the Cox model some latitude,
spreading each “spike” of relapse probability evenly over the range of time nearer to that spike than to
others.

The zero point of the Shannon information measure was set by assuming that in the absence of input
data, the hazard rate of relapse is constant both over time and between patients. This results in an
exponential attrition model, which was fitted to the training data answers in each case, independent of
the input biomarkers and clinical data. The resulting prior is shown in Figure 1 as a probability density
and in Figure 2 as the decumulative distribution function; both will be used later for comparison in
different settings.

2.8 Splitting the training and validation sets

We considered three ways of splitting the training and validation sets, namely:

1. Assign each patient with probability 0.5 to the validation set, otherwise to the training set. Train
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Figure 2: The decumulative distribution corresponding to the prior probability density shown in Figure
1.

a single algorithm on the training set and measure its performance on the validation set. We
refer to this as the 1/2 scenario, indicating that testing was on a single algorithm and that the
validation set was roughly one half of the dataset.

2. Assign each patient with probability 1/8 to each of eight separate validation sets. Train eight
algorithms on the eight different training sets, each of which consists of roughly 7/8 of the dataset,
and which overlap with each other. Test each algorithm only on the points not used to train it.
Assemble the resulting predictions into a single set of results covering all 423 patients exactly once.
We refer to this as the 8/8 scenario.

3. Create ten overlapping validation sets, each similarly containing roughly e−1 of the data. Create
ten algorithms, each trained on one of the ten training sets containing a corresponding 1− e−1 of
the data. Assess each algorithm only on the points not used to train it. Assemble the resulting
predictions into a set of on average 10/e separate predictions on each datapoint. We refer to this
as the 10/e scenario.

Thus in all cases, predictions were only made on datapoints that had not been seen during training. The
1/2 scenario provides the cleanest assessment, and the only one performed using a single algorithm, with
the potential disadvantage that both training and validation sets are limited to only half the available
data. The 8/8 scenario achieves training dataset size close to that of the whole dataset, with validation
on the whole dataset, but with the disadvantage that we are no longer looking at the performance of a
single algorithm. The 10/e scenario is at least to some extent appropriate for assessing the variability of
results with selection of training set, and also provides input for the single measurement of bootstrapped
performance that we report.
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Figure 3: The prior probability density of time of recurrence (months post-op) is shown in magenta (the
area under which from time 0 to infinity is 1), with the prediction of recurrence time for a single patient
in blue (the area under which from time 0 to infinity is less than or equal to 1). This particular patient
did in fact relapse during follow up, at the time indicated by the red marker. The fact that the red
marker is above the magenta curve indicates that this particular prediction carried positive apparent
Shannon information.

3 Results

To facilitate understanding of the plots in the results, in Figure 3 we show the predicted probability
density of time of recurrence for one individual patient whose prediction based on biomarkers has positive
information. We also show the prior. The fact that the prediction has value (positive apparent Shannon
information) is indicated by the fact that the red marker, indicating the actual time of relapse, is at a
point on the probability density curve that is higher than the prior.

In the results sections that follow, we show pictures of the predictive results made in the 1/2 test
scenario, for Bayesian and Cox models, both for patients who relapse and patient who are relapse free.
We then give in tables the results of all the other prediction scenarios addressed.

In addition, we note that the Bayesian algorithm achieved Bootstrapped concordance of 94%, which
compares with 86% achieved by the Cox proportional hazards model using the same biomarkers in [1].
However, we stress that this result is not important, and not representative of behaviour on truly unseen
data, as described in appendix B.

3.1 Predictions on time of relapse

3.1.1 Patients observed to relapse

Figure 4 shows all the predictions of relapse time made on patients in the 1/2 test set who did actually
relapse during follow-up. Also shown is the prior prediction without benefit of biomarkers or other
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Figure 4: All the patients in the test set, unseen during training, who relapsed during follow up. The
magenta line is the prior probability density of relapse time (months post-op); the blue curves are the
predictions of probability density of relapse time, one for each patient. The red blobs indicate the time
when the patient actually relapsed.

clinical data. The blue lines indicate the predicted probability density of relapse based on the biomarkers.
The red markers indicate the time the patient actually relapsed. Where the prediction (red marker)
has a higher probability than the prior, the biomarker data is giving useful information; where the red
marker is below the prior, the biomarker data is misleading.

As can be seen, 36 of the 45 times the patients did actually relapse had higher predicted probability
density at that time than predicted under the prior, showing that for these patients the predictions had
positive value (and positive apparent Shannon information). Only on nine of the 45 patients was the
biomarker-predicted density lower than the prior density, on just four of these below three quarters of
the prior density.

Figure 5 in contrast shows the predictions of time of relapse interpreted according to the Cox proportional
hazards model, interpreted leniently (spreading each “spike” of relapse probability evenly over the range
of time nearer to that spike than to others). A number of features stand out. First, of the 45 patients
who relapsed during follow-up, 23 have predicted probability density at the time of relapse lower than
that of the prior, of which 20 are below three-quarters of the prior density. Second, all patients are
predicted to have certain times which carry far higher risk of relapse than others, for example at 17.7
months and at 38.8 months post-op.

Because some might consider that the Cox proportional hazards model’s predictions were poor because of
maximum-likelihood-induced “overtraining”, we also looked at a model similar to the Cox proportional
hazards model but in which the basal hazard rate was assumed constant over time. The corresponding
plot is shown in Figure 6. 25 of the 45 patients have received worse predictions than they could have
had from the prior, 22 of them with less than three-quarters of the density under the prior.
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Figure 5: Similar plot to Figure 4 but made using the Cox proportional hazards model, interpreted
leniently.

3.1.2 Patients not observed to relapse

Turning attention to the remaining patients who didn’t relapse during follow-up, Figure 7 shows the
Bayesian predictions for the remaining patients who remained relapse-free at the end of follow-up.

For 149 of the 185 patients, the predicted probability of leaving follow-up relapse-free is greater than that
under the prior, while 36 of the 185 patients have predicted probability of leaving follow-up relapse-free
below that under the prior.

In Figure 8 the corresponding plot for Cox model predictions, interpreted leniently, is shown; 31 of the
185 patients have predicted probability of leaving follow-up relapse-free below that under the prior.

3.1.3 Measurement of prediction quality for all patients not seen during training

As described in [2], the measure used for prediction quality is the apparent Shannon information, which
we report in nepers. Apparent Shannon information reports the log of the geometric mean of the ratio
of the predicted probability density at time of relapse to that under the prior (in the case of patients
observed to relapse) or of the ratio of predicted probability of still being relapse-free at the end of
follow-up to that under the prior (in the case of those not observed to relapse). A value of x nepers
means that that average ratio is ex. It is positive if on average the prediction is better than the prior.

On computing the apparent Shannon information for predictions on all patients in the test set (not seen
during training, whether or not observed to relapse) in the 1/2 scenario, the mean posterior apparent
Shannon information content of the Bayesian predictions was +0.109 (+0.021 to +0.192) nepers (mean,
2.5 and 97.5 centiles of the posterior distribution), positive with probability 0.993.

On the other hand the predictions of the Cox proportional hazards contained −0.001 (−0.131 to +0.120)
nepers of information, less than that in the Bayesian model with posterior probability 0.927 . The

9



Figure 6: Plot corresponding to Figure 4 and Figure 5 but for the constant-hazard Cox model.

Figure 7: Predictions of probability of still being relapse-free for patients who actually were relapse-free
at end of follow-up. The magenta curve is the prior decumulative distribution, there is one blue curve
per patient, and each green blob indicates the time at which follow-up for that patient ceased with the
patient free of relapse.
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Figure 8: Similar plot to Figure 7 but made using predictions from the Cox proportional hazards model,
interpreted leniently.

constant-hazard Cox model gave +0.046 (−0.073 to +0.160) nepers of information, lying somewhere
between the poor performance of the Cox proportional hazards model and the better performance of
the Bayesian model.

3.2 Predictions on order of relapse

Simple concordance in the above scenario was 0.824 for the Bayesian model, 0.795 for the Cox propor-
tional hazards model, and 0.753 for the constant-hazard Cox model. However, concordance is calculated
simply from whether the model predicts a probability of more than 0.5 that the patient who relapsed
earlier would do so, and takes no account of whether predictions on correct concordance were confident
(near probability 1) or unconfident (near 0.5). Apparent Shannon information content takes appro-
priate account of this, and using this measure the Bayesian model gave 0.288 (0.278 to 0.299) nepers
of information about order of relapse, the Cox model 0.181 (0.165 to 0.196), and the constant-hazard
Cox model 0.128 (0.105 to 0.151) nepers, with posterior probabilities greater than 0.99 for all three
comparisons being in this order.

3.3 Summary of results in other training scenarios

Table 1 in the appendix section A shows the results of analyses in the other training scenarios; caveats
are listed in the caption to the table. Comparisons between the different methods are shown in Table 2.
The general tenor of these results is that the Bayesian method is better than the constant hazard Cox
model which in turn is better than the standard proportional hazards Cox model. There is, however,
one possible exception: in the 8/8 scenario only (where in each case eight different trained algorithms
are being invoked on each side of the comparison) there is a probability of about 0.78 that the constant-
hazard Cox model may give more information than the Bayesian model about time of relapse.
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4 Discussion

Bayesian inference provides optimal inference and prediction for any completely mathematically specified
inference problem, given appropriate programming resource, computing power and computation time. In
other words if the prior distribution and likelihood are precisely known, then the posterior distribution
calculated by Bayesian inference provides the best possible outcome prediction, as measured by the
highest possible value of the apparent Shannon information measure, which is then equal to the true
mutual information between input data and the variable being predicted.

Unfortunately in many real life problems neither prior (in the sense here of the distribution of recurrence
time over all patients) nor likelihood is precisely known. While both can be chosen to reflect the beliefs
of the investigator, there is no guarantee that the investigator’s beliefs will match reality. Bayesian
model choice provides optimal choice between a number of such mathematical formulations of prior
and likelihood given a dataset, but cannot itself provide the formulations from which to choose. Under
these circumstances, which match the present case, comparison of algorithms approximating the true
optimal algorithms can be compared using estimates of the apparent Shannon information content of
the predictions on unseen data[2]. Such comparison will place as joint worst all algorithms which predict
to be impossible an outcome which actually happens.

In this instance, the Cox model is exactly such an algorithm, as it predicts that relapses can only occur
at times at which relapses occurred in the training set. In order to give the Cox model some leeway in
interpretation, its predictions of relapse time were deliberately blurred in order to improve its perfor-
mance under this very exacting performance measure – the blurred version turns out to provide almost
exactly zero apparent information about time of relapse in the 1/2 scenario, a distinct improvement on
the −∞ returned by the unblurred Cox model.

An alternative way of removing the overconfidence of the Cox model is to remove the assumption that
the hazard rate for any patient varies with time. This results in the constant-hazard Cox model we have
investigated here. As can be seen from its predictions, however, this model always predicts that the
highest hazard of relapse is immediately after surgery, and that it declines steadily over time – which is
clearly contrary to real-life experience.

The Bayesian model presented here is as far as we know the first such model for prostate cancer to
consider the variation of relapse hazard with biomarker concentrations to be smooth, as is intuitively
believable. It is also the first model to be shown to provide more apparent Shannon information than
the Cox model and indeed the first to be shown to provide positive apparent information relative to such
a prior. In all but possibly one of the scenarios considered it provides more than the constant-hazard
variant of the Cox model also, and in the remaining scenario it does so with probability 0.79 .

Nonetheless, the total amount of apparent information provided by the Bayesian model amounts to only
0.1 nepers; in other words, the uncertainty on time of relapse is reduced on average by a factor of only
about 11%. Nonetheless the nature of the apparent information measure is that if one bet successively
the entirety of a starting fund on the predictions holding true according to the scheme detailed in [2]
against somebody who knew only the prior, one would make money at 11% per patient in the long term
without diversification. It also makes best use of the information that the chosen biomarkers do provide
and gives a platform for improving the biomarker set to improve the prediction quality.

It is possible that further combinations of input data, prior and likelihood be presented by ourselves
or others in the future, and we would recommend that the performance of such biomarker and model
combinations is judged against their ability to provide apparent Shannon information on probability
and time of relapse, the measure which most sensitively distinguishes the performance of prediction
methods at the top end of the quality range. It is likely that given biomarkers yet to be discovered, the
information content of such predictions will be able to be increased further.
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A Tables

Information content (nepers)
Type Scenario Method Concord 0.025q mean median 0.975q
time 1/2 Bayes n/a 0.021 0.109 0.109 0.192
time 1/2 Cox n/a -0.131 -0.001 -0.000 0.120
time 1/2 CoxCH n/a -0.073 0.046 0.047 0.160
order 1/2 Bayes 0.824 0.278 0.288 0.288 0.299
order 1/2 Cox 0.795 0.165 0.181 0.181 0.196
order 1/2 CoxCH 0.753 0.105 0.128 0.128 0.151
time 10/e Bayes n/a 0.043 0.075 0.075 0.108
time 10/e Cox n/a -0.131 -0.022 -0.015 0.047
time 10/e CoxCH n/a -0.109 -0.000 0.005 0.076
order 10/e Bayes 0.839 0.302 0.308 0.308 0.313
order 10/e Cox 0.838 0.219 0.225 0.226 0.231
order 10/e CoxCH 0.839 0.294 0.301 0.301 0.308
time 8/8 Bayes n/a 0.043 0.107 0.106 0.172
time 8/8 Cox n/a 0.004 0.061 0.061 0.121
time 8/8 CoxCH n/a 0.090 0.138 0.138 0.186
order 8/8 Bayes 0.871 0.347 0.353 0.353 0.359
order 8/8 Cox 0.839 0.213 0.219 0.219 0.224
order 8/8 CoxCH 0.856 0.299 0.307 0.307 0.314

Table 1: Summary of absolute results of each method. The Type column indicates whether the prediction
was being made on time of relapse or pairwise order of relapse. The Scenario column indicates which of
the scenarios of section 2.8 is being used. The method column gives the prediction method used: Bayes,
Cox Proportional Hazard (leniently interpreted) or Cox Constant Hazard, as described in sections 2.7
and 3.1.1. The column headed Concord shows the raw concordance rate for predictions of pairwise
order of relapse. The remaining four columns indicate the apparent Shannon information content of
the method and its posterior quantiles and mean. Note that the 10/e scenario involves multiple tests
on many patients, which have been treated as independent for the purposes of analysis, and uses ten
different trained algorithms. While the 8/8 scenario uses each patient as an unseen test patient exactly
once, it uses eight different trained algorithms.
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A − B A/max(B, 0)
Method A Method B Scenario Type P (A > B) 0.025q mean median 0.975q 0.025q mean median 0.975q

Bayes Cox 1/2 time 0.927 -0.039 0.110 0.110 0.265 0.526 Inf 644.162 Inf
Bayes CoxCH 1/2 time 0.808 -0.080 0.063 0.062 0.207 0.320 Inf 2.293 Inf

CoxCH Cox 1/2 time 0.710 -0.123 0.047 0.047 0.221 -Inf Inf 3.278 Inf
Bayes Cox 10/e time 0.994 0.018 0.096 0.091 0.209 1.428 Inf Inf Inf
Bayes CoxCH 10/e time 0.956 -0.009 0.075 0.071 0.186 0.873 Inf 14.923 Inf

CoxCH Cox 10/e time 0.634 -0.109 0.021 0.021 0.154 -Inf Inf 0.575 Inf
Bayes Cox 8/8 time 0.850 -0.043 0.045 0.045 0.132 0.563 Inf 1.749 28.213
Bayes CoxCH 8/8 time 0.219 -0.111 -0.031 -0.031 0.049 0.300 0.745 0.773 1.465

CoxCH Cox 8/8 time 0.973 -0.001 0.076 0.077 0.152 0.987 Inf 2.266 35.758
Bayes Cox 1/2 order 0.999 0.089 0.108 0.107 0.126 1.461 1.596 1.594 1.758
Bayes CoxCH 1/2 order 0.999 0.136 0.160 0.160 0.186 1.910 2.262 2.255 2.761

CoxCH Cox 1/2 order 0.001 -0.080 -0.053 -0.053 -0.025 0.571 0.705 0.707 0.852
Bayes Cox 10/e order 0.999 0.075 0.083 0.083 0.091 1.324 1.367 1.366 1.414
Bayes CoxCH 10/e order 0.945 -0.002 0.007 0.007 0.016 0.995 1.024 1.024 1.055

CoxCH Cox 10/e order 0.999 0.066 0.075 0.075 0.085 1.288 1.335 1.334 1.385
Bayes Cox 8/8 order 0.999 0.126 0.134 0.134 0.142 1.568 1.614 1.614 1.662
Bayes CoxCH 8/8 order 0.999 0.037 0.046 0.046 0.056 1.118 1.151 1.151 1.186

CoxCH Cox 8/8 order 0.999 0.079 0.088 0.088 0.097 1.356 1.402 1.402 1.450

Table 2: Comparisons between the different methods. Comparisons in terms of delivered apparent
Shannon information have been considered both as differences and as ratios; in the latter case Inf
denotes infinite ratio because the inferior method produced zero or negative information content.

B Harrell’s bootstrapping procedure gives wrong results

In this appendix we describe Harrell’s bootstrapping procedure for assessing the quality of a prediction,
and give a hypothetical example illustrating how it gives wrong answers.

B.1 Harrell’s bootstrapping procedure

Harrell’s Bootstrapping procedure([8], page 372), applied to a general “measure of correctness” α of a
general classification algorithm, proceeds as follows:

1. Collect a dataset D; train algorithm on all of D; measure resulting performance α on all of D; call
the resulting value A.

2. Draw a subset S of D of the same size as D, with replacement. (S then usually contains multiple
copies of many elements of D, and as the number of elements in D approaches infinity, the fraction
of elements of D represented at least once in S approaches 1− e−1 ≈ 0.63.)

3. Train on S; measure performance α on S; call the resulting value B.

4. Train on S; measure performance α on D; call the resulting value C.

5. Define O = B − C , the “optimism” on this subset S.

6. Repeat steps 2 to 5 a number of times and take the average value of O.

7. Report the measured value of α to be A−O.

The intuitive idea here is that measuring performance on the training set gives overoptimistic results by
some value O, the “optimism”. Steps 2 to 6 aim to measure O, and step 7 adjusts the value measured
on the training set by subtracting O from it.

In an ideal world we would now list the conditions under which the above procedure can be shown to
give results that are reliable. However, we are daunted by the length and difficulty of this task and
instead refer the reader to [9, 10], and give a very simple example that this procedure gets totally wrong.
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B.2 Example where Harrell’s bootstrapping method gives wrong results

This hypothetical example illustrates how Harrell’s bootstrapping can give wildly wrong results.

Suppose we train an algorithm on photos of people, telling it which are male and which female, but that
the algorithm simply memorises each photo and the corresponding correct answer, then when shown a
photo to classify reports the correct answer if it has seen the photo before, and otherwise says male or
female at random.

Suppose moreover that the population of the world is infinite1, and that a randomly chosen member of
the population is male with probability 0.5 and otherwise female.

Let us now draw a finite training set D of photos at random, so that approximately half of them will
be male, and “train” the “algorithm” on D. The resulting algorithm will clearly be useless in real life,
because the probability that a randomly chosen member of the infinite population is in the finite set D
is zero, so the probability the algorithm will correctly classify a photo of that person is 0.5.

Now after step 2 of Harrell’s procedure, approximately 63% of the photos in D will also be in S.
Therefore we will get the results

A = 1.0, B = 1.0, C ≈ 0.63 +
1− 0.63

2
≈ 0.82, O = B − C ≈ 0.18, A−O ≈ 0.82

so that we end up reporting that we can get 82% of photos correctly classified.

However, on encountering a genuinely new photo that the algorithm hasn’t seen before, the probability
that it was in D is zero, so the probability of correctly classifying it is 0.5, so that the true performance
on unseen data is actually on 50% correct. Thus in this example Harrell’s bootstrapping procedure is
seriously misleading.

However, exactly the same result applies to any situation where

1. The input data tell us only about the classification of exactly that point, and nothing about any
other point; and

2. There are so many possible data points that we will never see the same one twice; and

3. The classification algorithm is flexible enough to effectively memorise the training set.
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