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LIMITS OF LENGTH FUNCTIONS OF MULTI p-FAMILIES OF IDEALS

THÁI THÀNH NGUY
˜̂
EN AND VINH ANH PHA. M

Abstract. We show the asymptotic relationship between the limit of the normalized length
function of a multi-p−family of ideals and that of its shifted family under linear growth
conditions in a local domain of characteristic p. Examples of multi-p−families of ideals
including products of Frobenius powers of different ideals. We apply our results to obtain
a generalized version of a formula due to Wantanabe-Yoshida for certain p−families using
results from Verma, and to provide an instance of the existence of a mixed multiplicity
version of multi-p-families of ideals.

1. Introduction

It is well-known that for a m-primary ideal I in a commutative Noetherian local ring R,
the Hilbert-Samuel function n → λR(R/In), where λ(M) is the length function of the module
M , coincides with a polynomial for large enough values of n. However, if one considers the
function q → λR(R/I [q]), where q is a power of p and I [q] = 〈xq | x ∈ I〉, the q-th Frobenius
power of I, in the ring R of characteristic p > 0, its behavior is much more complicated.
Kunz’s paper [Kun76] can be seen as one of the first to study the function q → λR(R/I [q]),
namely, the Hilbert-Kunz function of I. Remarkably, Monsky [Mon83] showed that the limit

eHK(I, R) := lim
e→∞

λR(R/I [q])

qd

exists for any m-primary ideal I. The above limit is called the Hilbert-Kunz multiplicity of I.
Much current research concerns the Hilbert-Kunz function and the Hilbert-Kunz multiplicity,
for example, see [HJ18, Tri18, Smi19, GKV21] and the references therein. Besides, the
definition of Frobenius’s power of an ideal in prime characteristic can be extended to arbitrary
non-negative real exponents in [HTW20]. This plays an important role in studying the
singularities of algebraic varieties.

The Newton-Okounkov body theory offers a powerful method for studying the asymptotic
behaviors and invariants in algebraic geometry and commutative algebra. Originated in
the seminal work of Okounkov [Oko96], this construction was systematically developed and
utilized in a study of multiplicity in [LM09, KK12]. In [KK14], Kaveh and Khovanskii
used similar construction of convex bodies associated to graded families of ideals in regular
local rings and other nice local rings to study their multiplicity, extending earlier results in
[RS78, Mus02] with the same spirit. A collection {In}n∈N of ideals is called a graded family
if IpIq ⊆ Ip+q for all p, q ∈ N. Later, Cutkosky successfully extended the method Newton-
Okounkov bodies to study the numerical limits of length functions and multiplicities of
graded families of ideals in a more general setting of local rings ([Cut13, Cut14, Cut15]). For
other uses of the Newton-Okounkov body in studying asymptotic behaviors and properties in
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commutative algebra, see [May14, HN23] and the references therein. In prime characteristic,
an analogous concept namely the p-bodies was introduced by D. J. Hernández and J. Jeffries
in [HJ18] and used to study length functions as well as the Hilbert-Kunz multiplicity and
other related invariants of p-families of ideals in local rings. A collection of ideals I = {Iq}

∞
q=1

in R indexed by powers of p is called a p-family if I
[p]
q ⊆ Ipq for all q. Recently, much attention

has been drawn to p-families in terms of the similarities and differences between them and
graded families, especially about multiplicities. Many results showed the existence of the
mixed multiplicities of a multi-graded family of ideals. However, the existence of a positive
characteristic version of the mixed multiplicities of a multi-p- family is still unresolved.

Cutkosky-Sarkar-Srinivasan [CSS19] initiated the study of mixed multiplicities of graded
families of ideals for the case of m−primary filtration. Recently, under mild assumptions,
namely the linear growth conditions (see below for details), the notion of mixed multiplici-
ties has been extended to graded families of m-primary ideals by the work of Cid-Ruiz and
Montaño [CRM22]. They also observed some important results such as a “Volume = Multi-
plicity formula” for mixed multiplicities of graded families. In their study, one of the main
tools is to show the asymptotic relationship between the limit of the normalized length func-
tion of a multi-graded family of ideals and that of its shifted family under mild conditions.
More specifically, let {J(1)}n∈N, . . . , {J(r)}n∈N be graded families of non-zero ideals, and let
{I(1)}n∈N, . . . , {I(s)}n∈N be m-primary graded families of ideals, for n = {n1, . . . , nr} ∈ Nr

and m = {m1, . . . , ms} ∈ Ns the two following limits exist and are equal

lim
p→∞

lim
m→∞

λ(J(p)mn/I(p)mmJ(p)mn)

pdmd
= lim

m→∞

λ(Jmn/ImmJmn)

md
,

where

J(p)mn := J(1)mn1

p · · ·J(r)mnr

p , I(p)mm := I(1)mm1

p · · · I(s)mms

p ,

Jmn := J(1)mn1
· · ·J(r)mnr

, and Imn := I(1)mm1
· · · I(r)mms

.

In our study, we proved that the result above still holds for the case of p-families of ideals
and derive some interesting applications. We will work with the following setup.

Let (R,m,k) be a Noetherian ring of dimension d and characteristic p > 0 with perfect

residue field k, R̂ denote the m-adic completion of R. Let {J(1)q}
∞
q=1, . . . , {J(r)q}

∞
q=1 be

p-families of non-zero ideals, and let {I(1)q}
∞
q=1, . . . , {I(s)q}

∞
q=1 be m-primary p-families of

ideals. For n = (n1, . . . , nr) ∈ Nr, m = (m1, . . . , ms) ∈ Ns, and q = pe, e ∈ N, we use the
following notation:

Jqn := J(1)qpn1 · · ·J(r)qpnr , Iqm := I(1)qpm1 · · · I(s)qpms ,

J(pb)qn := J(1)
[qpn1 ]

pb
· · ·J(r)

[qpnr ]

pb
, I(pb)qm := I(1)

[qpm1 ]

pb
· · · I(s)

[qpms ]

pb
.

We also define the pair of p-families

(Jn,Hm,n) :=
(

{Jqn}
∞
q=1, {IqmJqn}

∞
q=1

)

and

(J (pb)n,H (pb)m,n) :=
(

{J(pb)qn}∞q=1, {I(p
b)qmJ(pb)qn}∞q=1

)

and for every b ∈ N.

We say that the pair of p-families (J , I) has linear growth if there exists c = c(J , I) ∈ N

such that

m
cq ∩ Jq = m

cq ∩ Iq for every power q of p.
2



In our first main result, we assume the following linear growth conditions on the pair the
above pair families: each (Jn,Hm,n) has linear growth, and that if cm,n := c(Jn,Hm,n),
then c(J (pb)n,H (pb)m,n) = cm,n.p

b for every b ∈ N. It is worth pointing out that the
linear growth condition is a natural condition, and automatically holds, for example, when
J (1),J (2), . . . ,J (r) are the ring R. We now state our first main result that provides us an
important technical tool to study length functions and multiplicities of multi-p-families.

Theorem 1.1 (Theorems 3.9, 3.10). Let (R,m,k) be a Noetherian local ring of dimension

d and characteristic p > 0 such that dim(N(R̂)) < d; here N(R̂) denotes the nilradical of the

m-adic completion R̂. We have that the following limits exist and are equal

lim
b→∞

lim
q→∞

λ(J(pb)qn/I(pb)qmJ(pb)qn)

pbdqd
= lim

q→∞

λ(Jqn/IqmJqn)

qd
.

Our first application of Theorem 1.1 is a generalization of results given in [WY01] con-
cerning the length function of multi-p-families, their multiplicities, mixed multiplicities, and
Hilbert-Kunz multiplicities in a 2-dimensional Cohen-Macaulay ring.

Theorem 1.2. Let (R,m) be a 2-dimensional Cohen-Macaulay local ring over characteristic

p > 0 such that dim(N(R̂)) < d, where N(R̂) denotes the nilradical of the m-adic completion

R̂. Let I(1) = {I(1)n}
∞
n=1, . . . , I(s) = {I(s)n}

∞
n=1 be m-primary p-families of ideals such that

(1) I(i)[p]q ⊆ I(i)pq ⊆ I(i)qp for every i = 1, . . . , s.

For every b ∈ N, assume that r(I(i)pb|I(j)pb) = 0 for 1 ≤ i ≤ j ≤ s. Then for any

m = (m1, . . . , ms) ∈ Ns, we have

lim
q→∞

λ(R/Iqm)

q2
=

s
∑

i=1

(

lim
b→∞

e(I(i)pb)

p2b

(

pmi

2

)

+ lim
b→∞

eHK(I(i)pb )

p2b
pmi

)

+
∑

1≤i≤j≤s

lim
b→∞

e(I(i)pb |I(j)pb )

p2b
pmipmj .

In particular, if R is an analytically unramified, Cohen-Macaulay local rings of dimension
2 and the families of ideals satisfy the condition in the above theorem, then the result holds.

Our next application of Theorem 1.1 is one instance where one can define by showing the
existence of a mixed multiplicity version of multi-p−families of ideals.

Theorem 1.3 (Theorems 4.17,4.18). Let (R,m,k) be a Noetherian local domain of dimen-

sion d and characteristic p > 0 with the fraction field F. Consider a collection of ideals M in

R such that there exists a valuation ϑ so that ϑ(I ·J) = ϑ(I)+ϑ(J) for any ideals I, J ∈ M.

Let I(1) = {I(1)q}
∞
q=1, . . . , I(1) = {I(s)q}

∞
q=1 be p-families of ideals in such collection M.

Suppose that there is a non-degenerate linear transformation T such that T (C) ⊆ Rd
≥0.

Furthermore, for every b ∈ N, suppose that the closure of the p-body

∆(S, ϑ(I(i)pb) =
∞
⋃

q=1

(

1

q
ϑ(I(i)

[q]

pb
) + Cone(S)

)

is a cobounded C-convex region. Then the limit

lim
q→∞

λ(R/I(pb)qn)

qd

coincides with a homogeneous polynomial in pn1 , . . . , pns of total degree equal to d.
3



As a consequence, for each b ∈ N, set

PI(pb)(p
n1, . . . , pns) = lim

q→∞

λ(R/I(pb)qn)

qd
.

Then there exists a homogeneous polynomial of total degree d with real coefficients, denoted

PI, such that

PI(p
n1, . . . , pns) = lim

b→∞
PI(pb)(p

n1, . . . , pns) = lim
q→∞

λ(R/Iqn)

qd
,

for all (n1, . . . , ns) ∈ N.

Acknowledgments. The authors thank Huy Tài Hà for his comments and suggestions. The
first author is partially supported by the NAFOSTED (Vietnam) under the grant number
101.04-2023.07. This is part of the second author’s PhD thesis.

2. Preliminaries

In this section, we recall terminology and results that will be used often in the paper. For
other unexplained terminology from algebra and convex geometry, we refer the interested
readers to the following texts [HJ18, Zie95].

2.1. Convex Geometry. A convex cone is a subset of Rd that is closed under taking an
R-linear combination of points with non-negative coefficients. Denote Cone(U) ⊆ Rd the
convex cone that is the closure of the set of all linear combinations

∑

i λiui with ui ∈ U
and λi ∈ R≥0. A cone in Rd has a non-empty interior if and only if the real vector space it
generates has dimension d. We call such a cone full-dimensional.

A cone is pointed if it is closed and if there exists a vector a ∈ Rd such that 〈u, a〉 > 0 for
all u ∈ C \ {0}, where 〈−,−〉 is the usual inner product in Rd.

If C is a pointed cone and α is a non-negative real number, we define:

H = Hα := {u ∈ Rd | 〈u, a〉 < α}

a truncating half-space for C.

2.2. Semigroups. A semigroup is a subset of Zd that contains 0 and is closed under ad-
dition. A semigroup S is finitely generated if there exists a finite subset S0 ⊆ S such that
every element of S can be written as an N-linear combination of elements of S0. A subset
T ⊆ S of a semigroup S is called an ideal of S if T +S ⊆ T . A semigroup S is called pointed

if, whenever a ∈ S and −a ∈ S, we must have a = 0. A semigroup S is called standard if
S − S = Zd, and the full dimensional cone generated by S in Rd is pointed.

2.3. p-systems and p-bodies.

Definition 2.1. [HJ18, Definition 4.3] A collection of subsets T• = {Tq}
∞
q=1 of a semigroup

S indexed by q = pe (p is a prime) is called a p-system if it satisfies the following conditions

(1) Tq is an ideal of S for all q,
(2) pTq ⊆ Tpq for all q.
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Definition 2.2. [HJ18, Definition 4.4] The p-body associated to a given p-system of ideals
T• of a semigroup S in Zd is defined by

∆(S, T•) =

∞
⋃

q=1

1

q
Tq + Cone(S).

We recall the following two useful results used extensively in our paper. These results can
be considered the p-body versions of similar results in the Newton-Okounkov body theory
[KK12, LM09].

Theorem 2.3. [HJ18, Theorem 4.10] For a standard semigroup S in Zd, a p-system T• in

S, and a truncating halfspace H for Cone(S), we have:

lim
q→∞

#(Tq ∩ qH)

qd
= VolRd(∆(S, T•) ∩H).

Theorem 2.4. [Das23, Theorem 3.18] For a standard semigroup S in Zd, a p-system T• in

S, and a truncating halfspace H for Cone(S). Then for any ε > 0, there exists q0 such that

if q ≥ q0 the following inequality holds

lim
e→∞

#((peTq + S) ∩ peqH)

pedqd
≥ VolRd(∆(S, T•) ∩H)− ε.

2.4. Valuations and OK-valuations. Let F be a field and F× = F \ {0}. Fix a ∈ Rd, and
fix an embedding Zd →֒ R given by v 7→ 〈a,v〉. An a-valuation on a field F with the value
group Zd is a surjective group homomorphism ϑ : F× → Zd with the property that

ϑ(xy) = ϑ(x) + ϑ(y),

ϑ(x+ y) ≥a min{ϑ(x), ϑ(y)}.

Here, by u ≥a v, we mean 〈a,u〉 ≥ 〈a,v〉. For N ⊆ F, let is ϑ(N) := ϑ(N×) the image of N
under ϑ, where N× = N \ {0}. Given a point u ∈ Zd, we define:

F≥u := {x ∈ F|ϑ(x) ≥a u} ∪ {0} and F>u := {x ∈ F|ϑ(x) >a u} ∪ {0}.

The valuation ring (Vϑ,mϑ,kϑ) of F is associated to ϑ, that is, Vϑ = F≥0, and mϑ = F>0. A
local domain (R,m,k) is said to be dominated by (Vϑ,mϑ,kϑ) if (R,m,k) is a local subring
of (Vϑ,mϑ,kϑ), i.e., m ⊆ mϑ.

Following the work of Cutkosky [Cut13, Cut14], Hernández and Jeffries in [HJ18] defined
a distinguished class of valuations, namely, the OK-valuations, that extend the notion of
“good valuations” with “1-dimensional leaves” that were defined and used by Kaveh and
Khovanskii in their work on Newton-Okounkov body [KK12].

Definition 2.5. [HJ18, Definition 3.1] Let (R,m,k) be a local domain of dimension d with
fraction field F, and fix a Z-linear embedding of Zd →֒ R. If a valuation ϑ : F× → Zd on F

with the value group Zd and local ring (Vϑ,mϑ,kϑ) satisfies the following conditions:

(1) R is strongly dominated by Vϑ,
(2) the resulting extension of the residue fields k →֒ kϑ is finite, and
(3) there exists a point v ∈ Zd such that for every a ∈ Z≥0, we have R ∩ F≥av ⊆ m

a,

then we say that (Vϑ,mϑ,kϑ) is OK relative to R. A local domain R of dimensional d is
said to be OK if there exists a valuation on its fraction field with value group Zd that is OK
relative to R.

5



Setup 2.6. [HJ18, Setup 5.8] For the rest of this section, we fix a d-dimensional local domain

(R,m,k) of characteristic p > 0 with the perfect residue field k and the fraction field F, a

Z-linear embedding Zd →֒ R induced by a ∈ Rd, and a valuation ϑ : F×
։ Zd that is OK

relative to R. We use S to denote the semigroup ϑ(R) in Zd, and C to denote the closed

cone in Rd generated by S.

Note that ϑ(R) is a standard semigroup.

Remark 2.7. By assumption, R is a local subring of V . Therefore, if M is an R-submodule

of F and u ∈ Zd, then the quotient
M ∩ F≥u

M ∩ F>u

has a k-vector space structure induced by the

R-module structure on M . By definition, this space is nonzero if and only if there exists an
element m ∈ M with ϑ(m) = u.

Definition 2.8. [HJ18, Definition 3.9] Let M be a R-submodule of F and 1 ≤ h ≤ [kϑ : k],
define

ϑ(h)(M) =

{

u ∈ Zd | dim
k

(

M ∩ F≥u

M ∩ F>u

)

≥ h

}

.

Remark 2.9. Let M be a R-submodule of F. For all 1 ≤ h ≤ [kϑ : k], ϑ(h)(M) is an ideal
of S. In fact, for any g ∈ R×, with v = ϑ(g), and any u ∈ Zd, the map

M ∩ F≥u

M ∩ F>u

→
M ∩ F≥u+v

M ∩ F>u+v

defined by [m] 7→ [gm] is a k-linear injection. Therefore ϑ(h)(M) + S ⊆ ϑ(h)(M).

The following lemma is very useful to compute the length function of M via the number
of integral points in its associated semigroup.

Lemma 2.10. [HJ18, Lemma 3.11] If M is a R-submodule of F and v ∈ Zd, then

λD(M/M ∩ F≥v) =

[kϑ:k]
∑

h=1

#
(

ϑ(h)(M) ∩H
)

,

where H is the halfspace {u ∈ Rd : 〈u, a〉 < 〈v, a〉}.

2.5. p-families of ideals.

Definition 2.11. [HJ18, Definition 5.1] A sequence of ideals I = {Iq}
∞
q=1 in a ring R indexed

by powers of p is called a p-family if I
[p]
q ⊆ Ipq for all q, where J [p] = 〈xp | x ∈ J〉 denotes

the p-th Frobenius power of the ideal J .

p-families of ideals are ubiquitous in characteristic-p commutative algebra. Examples
include the family of pe-th Frobenius powers of an ideal, the termwise product, sum, or
intersection of an arbitrary collection of p-families defines a p-family as well as termwise
expansion, contraction via a map, or saturation with respect to some ideal of p-families (see
[HJ18, Examples 5.6, 5.7]).

Remark 2.12. Given a p-family of ideals I in a local ring (R,m), the ideals in this family
are m-primary if and only if I1 is m-primary. Indeed, if ma is contained in I1 for some positive
integer a, and I1 is generated by b elements, then, by the pigeon-hole principle,

m
abq ⊆ Ibq1 ⊆ I

[q]
1 ⊆ Iq.

6



In other words, if c = ab, then m
cq ⊆ Iq for all q a power of p.

Let (R,m,k) be a d-dimensional local OK-domain with an OK-valuation ϑ. We observe
that if x ∈ R, then p · ϑ(x) = ϑ(xp). Thus, if we choose any p-family I of ideals, then

(1) ϑ(Iq) is an ideal of the semigroup ϑ(R) = S, and

(2) pϑ(Iq) ⊆ ϑ(I
[p]
q ) ⊆ ϑ(Ipq).

Therefore {ϑ(Iq)}
∞
q=1 is a p-system of ideals in S.

Note that ϑ(h)(Iq) is an ideal of S for every q, but the collection ϑ(h)(I) = {ϑ(h)(Iq)}
∞
q=1

might not be a p-system unless we assume that k is perfect, see [HJ18, Remark 5.9]. However,
one still can uniformly approximate ϑ(h)(I) by ϑ(I).

Theorem 2.13. [HJ18, Corollary 5.10] Let R be a d-dimensional local OK domain with OK

valuation ϑ. For a p-family of ideals I in D we have

lim
q→∞

#(ϑ(h)(Iq) ∩ qH)

qd
= VolRd(∆(S, ϑ(I)) ∩H),

where S = ϑ(R), C = Cone(S) and H is any truncating half-space of C.

We sometimes use the notation [ϑ(h)(I)]q for ϑ(h)(Iq). We also have the following lemma
whose proof can be deduced from [HJ18, Lemma 5.21].

Lemma 2.14. Let (R,m,k) be a d-dimensional reduced local ring of positive characteristic,

and I,J be sequences of ideals of R indexed by the powers of p such that mcq ⊆ Iq ⊆ Jq for

some positive integer c and for all q = pe, e ∈ N. Let P1, . . . , Pn be the minimal primes of R
and Ri = R/Pi, then there exists γ > 0 such that for all q,

∣

∣

∣

∣

∣

n
∑

i=1

λRi
(JqRi/IqRi)− λR(Jq/Iq)

∣

∣

∣

∣

∣

≤ γ.qd−1.

Proof. It follows from [HJ18, Lemma 5.21] that there exist δ1, δ2 > 0 such that for all q,
∣

∣

∣

∣

∣

n
∑

i=1

λRi
(JqRi/IqRi)− λR(Jq/Iq)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

(λRi
(Ri/IqRi)− λRi

(Ri/JqRi))− (λR(Rq/Iq)− λR(Rq/Jq))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

n
∑

i=1

λRi
(Ri/IqRi)− λR(Rq/Iq)

)

−

(

n
∑

i=1

λRi
(Ri/JqRi)− λR(Rq/Jq)

)
∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n
∑

i=1

λRi
(Ri/IqRi)− λR(Rq/Iq)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

i=1

λRi
(Ri/JqRi)− λR(Rq/Jq)

∣

∣

∣

∣

∣

≤δ1.q
d−1 + δ2.q

d−1 = γ.qd−1, where γ := δ1 + δ2.

�
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3. Length Functions of p− Families with Linear Growth Condition

The purpose of this section is to provide the main technical results for our applications
in the next section. We show the existence of certain limits of length functions and relate
the limits to the volume of p-families. Our methods utilize the standard treatment using
truncation families and shifted families, which is analogous to that for graded families in
[Cut14, CSS19, CRM22]. We first fix the following setup.

Setup 3.1. Let (R,m,k) be a d-dimensional complete local domain of characteristic p > 0.
Let J = {Jq}

∞
q=1 and I = {Iq}

∞
q=1 be p-families of non-zero ideals, such that Jq ⊇ Iq for

every q = pe, e ∈ N. For every a ∈ Z≥0, define Jpa = {Jpa,q}
∞
q=1 to be the pa-th truncated

p-family, with the element

Jpa,pe =















Jpe if e ≤ a
∑

i, j ≥ 0

i+ j = e

J
[pj ]

pa,pi
if e > a.

Likewise, define Ipa := {Ipa,q}
∞
q=1 given by the above rule.

From the definition and p−family property of J , we have Jpa,pe ⊆ Jpe for all e ∈ Z≥0.
Moreover, the truncated families possess the following special property.

Definition 3.2. A p-family I = {Iq}
∞
q=1 is said to be of finite type if there exists a power of

p, says q′, such that I
[pe]
q′ = Iq′pe for all e ∈ Z≥0.

Lemma 3.3. For every a ∈ Z≥0, the family Jpa = {Jpa,q}
∞
q=1 is a p-family of finite type.

Proof. For a fix a, by induction on e ≥ a+ 1, we have

Jpa,pe = J
[pe]
1 + J [pe−1]

p + · · ·+ J
[pe−a]
pa .

In particular, for e ≥ a + 1, J
[pb]
pa,pe = Jpa,pepb for all b ∈ Z≥0. Thus, Jpa is a p-family of finite

type. �

The following definition includes a condition on p-families that is needed in our main
results. This is a natural condition in our context and was used in the context of graded
families, see [Cut14, Theorem 6.1] and [CRM22].

Definition 3.4. Assume Setup 3.1. We say that the pair of p-families (J , I) has linear
growth if there exists c = c(J , I) ∈ N such that

m
cq ∩ Jq = m

cq ∩ Iq for every power q of p.

We note that the above condition holds when J and I are m-primary, see Remark 2.12.

Our first main result provides an approximation for the volume of the p-body of a p-
family by that of its truncated families. This result can be thought of as the p-body version
to [CSS19, Proposition 4.3] and [CRM22, Lemma 2.5].

Theorem 3.5. Adopt the context of Setup 2.6, and fix a p-family of ideals J in R. Then

we have

lim
a→∞

VolRd(∆(S, ϑ(h)(Jpa)) ∩H) = VolRd(∆(S, ϑ(h)(J )) ∩H).
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for all 1 ≤ h ≤ [kϑ : k] and any truncating half-sapce H.

Proof. Since k is perfect, then ϑ(h)(J ) is a p-system of ideals in S It follows that for every
e, a ∈ Z>0 and 1 ≤ h ≤ [kϑ : k], we have

peϑ(h)(Jpa) + S ⊆ ϑ(h)(J
[pe]
pa ) + S ⊆ ϑ(h)(J

[pe]
pa ) ⊆ ϑ(h)(Jpa,pape).

Thus, by Theorem 2.13 and Theorem 2.4, for a fixed ε ∈ R>0, there exists a0 ∈ N such that
if a ≥ a0 and for any truncating halfspace H , we have

VolRd(∆(S, ϑ(h)(J )) ∩H) ≥ VolRd(∆(S, ϑ(h)(Jpa)) ∩H)

= lim
e→∞

#(ϑ(h)(Jpa,pape) ∩ papeH)

padped

≥ lim
e→∞

#((peϑ(h)(Jpa) + S) ∩ papeH)

padped

≥ VolRd(∆(S, ϑ(h)(J )) ∩H)− ε.

(2)

The statement now follows as ε is arbitrary. �

Before proceeding to our next estimation results, we fix the following setup of multi-p-
families including the shifted families and the truncated families.

Setup 3.6. We adopt Setup 3.1 and further assume that the residue field k is perfect. Let

J (1) = {J(1)q}
∞
q=1, . . . ,J (r) = {J(r)q}

∞
q=1 be p-families of non-zero ideals, and let I(1) =

{I(1)q}
∞
q=1, . . . , I(s) = {I(s)q}

∞
q=1 be p-families of m-primary ideals. For n = (n1, . . . , nr) ∈

Nr, m = (m1, . . . , ms) ∈ Ns, a, b ∈ N, and q = pe, e ∈ N, we use the following notation:

Jqn := J(1)qpn1 · · · J(r)qpnr , Iqm := I(1)qpm1 · · · I(s)qpms ,

J(pb)qn := J(1)
[qpn1 ]

pb · · ·J(r)
[qpnr ]

pb ,Jpa(pb)qn := J(1)
[qpn1 ]

pa,pb · · · J(r)
[qpnr ]

pa,pb ,Jpa,qn := J(1)pa,qpn1 · · · J(r)pa,qpnr ,

I(pb)qm := I(1)
[qpm1 ]

pb · · · I(s)
[qpms ]

pb , Ipa(pb)qm := I(1)
[qpm1 ]

pa,pb · · · I(s)
[qpms ]

pa,pb , Ipa,qm := I(1)pa,qpm1 · · · I(s)pa,qpms .

We also define the pairs of p-families

(Jn,Hm,n) :=
(

{Jqn}
∞
q=1, {IqmJqn}

∞
q=1

)

,

(J (pb)n,H (pb)m,n) :=
(

{J(pb)qn}∞q=1, {I(p
b)qmJ(pb)qn}∞q=1

)

and

(Jpa,n,Hpa,m,n) :=
(

{Jpa,qn}
∞
q=1, {Ipa,qmJpa,qn}

∞
q=1

)

.

In the rest of this section, we further assume that each (Jn,Hm,n) has linear growth, and
that if cm,n := c(Jn,Hm,n), then c(J (pb)n,H (pb)m,n) = cm,n.p

b for every b ∈ N. It is worth
pointing out that under the assumptions in Setup 3.1 that R is a complete local domain, by
[HJ18, Corollary 3.7], the existence of an OK valuation as in Setup 2.6 is guaranteed. We
also note that the linear growth condition automatically holds when J (1),J (2), . . . ,J (r)
are all given by the ring R. Furthermore, if, for instance, those p-families I and J are given
by Frobenius powers of ideals, then the condition c(J (pb)n,H (pb)m,n) = cm,n.p

b is satisfied.

The following result provides an approximation of the volume of (truncations) of the p-
body of p-families via their shifted families.
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Lemma 3.7. Assume Setup 3.6. Moreover, assume that J (i) and I(j) are all of finite type

for 1 ≤ i ≤ r and 1 ≤ j ≤ s. For every m = (m1, . . . , ms) ∈ Ns and n = (n1, . . . nr) ∈ Nr we

have

lim
b→∞

lim
q→∞

#
(

[

ϑ(h)
(

J (pb)n
)]

q
∩ pbqH

)

pbdqd
= VolRd

(

∆
(

S, ϑ(h) (Jn)
)

∩H
)

and

lim
b→∞

lim
q→∞

#
(

[

ϑ(h)
(

H (pb)m,n

)]

q
∩ pbqH

)

pbdqd
= VolRd

(

∆
(

S, ϑ(h) (Hm,n)
)

∩H
)

for all 1 ≤ h ≤ [kϑ : k] and any truncating half-sapce H, where, for instance,
[

ϑ(h) (Am,n)
]

pb

denotes the pb-th element of ϑ(h) (Am,n).

Proof. We fix m = (m1, . . . , ms) ∈ Ns and n = (n1, . . . nr) ∈ Nr and consider the following
p-families:

(Am,n,Bm,n) =
(

{J(pb)n}∞b=1, {I(p
b)mJ(pb)n}∞b=1

)

.

Note that c(Am,n,Bm,n) = cm,n, then

q
[

ϑ(h) (Am,n)
]

pb
+ S ⊆

[

ϑ(h)
(

J (pb)n
)]

q
+ S ⊆

[

ϑ(h)
(

J (pb)n
)]

q
⊆
[

ϑ(h) (Am,n)
]

pbq
,

for all q = pe, e ∈ N, b, h ∈ N. More precisely, the first and second containment hold since
ϑ(h) (Am,n) and ϑ(h)

(

J (pb)n
)

are p-system of ideals in S, and the last containment follows

by the fact that
[

J (pb)n
]

q
⊆ [Am,n]pbq as ideals of R. Similarly,

q
[

ϑ(h) (Bm,n)
]

pb
+ S ⊆

[

ϑ(h)
(

H (pb)m,n

)]

q
⊆
[

ϑ(h) (Bm,n)
]

pbq
.

for all q = pe, e ∈ N, b, h ∈ N. Thus, by Theorem 2.13 and Theorem 2.4, for a fixed ε ∈ R>0,
there exists b0 ∈ N such that if b ≥ b0 we have

VolRd(∆(S, ϑ(h)(Am,n)) ∩H) = lim
q→∞

#
(

[

ϑ(h) (Am,n)
]

pbq
∩ pbqH

)

pbdqd

≥ lim
q→∞

#
(

[

ϑ(h)
(

J (pb)n
)]

q
∩ pbqH

)

pbdqd

≥ lim
q→∞

#
((

q
[

ϑ(h) (Am,n)
]

pb
+ S

)

∩ pbqH
)

pbdqd

≥ VolRd(∆(S, ϑ(h)(Am,n)) ∩H)− ε.

(3)

and similarly,

VolRd(∆(S, ϑ(h)(Bm,n)) ∩H) ≥ lim
q→∞

#
(

[

ϑ(h)
(

H (pb)m,n

)]

q
∩ pbqH

)

pbdqd
≥ VolRd(∆(S, ϑ(h)(Bm,n)) ∩H)− ε,

(4)

for every h ∈ Z>0 and any truncating half-space H . Then, since ǫ is arbitrary, by taking
the limits as b → ∞, from Inequalities (3) and (4), and Theorem 2.13 we deduce that

(5) lim
b→∞

lim
q→∞

#
(

[

ϑ(h)
(

J (pb)n
)]

q
∩ pbqH

)

pbdqd
= VolRd(∆(S, ϑ(h)(Am,n)) ∩H)
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and

(6) lim
b→∞

lim
q→∞

#
(

[

ϑ(h)
(

H (pb)m,n

)]

q
∩ pbqH

)

pbdqd
= VolRd(∆(S, ϑ(h)(Bm,n)) ∩H)

Now, by the assumption of finite type, there exists a power of p, say g, such that

J(i)[p
n]

g = J(i)png and I(j)[p
n]

g = I(j)png for all n ≥ 0, 1 ≤ i ≤ r, 1 ≤ j ≤ s.

Therefore,
J(qg)n = Jqgn and I(qg)mJ(qg)n = IqgmJqgn

for all q = pe, e ∈ N. Hence, by Theorem 2.13 we obtain

VolRd(∆(S, ϑ(h)(Jn)) ∩H) = lim
q→∞

#
(

[

ϑ(h) (Jn)
]

qg
∩ qgH

)

qdgd

= lim
q→∞

#
(

[

ϑ(h) (Am,n)
]

qg
∩ qgH

)

qdgd

= VolRd(∆(S, ϑ(h)(Am,n)) ∩H),

(7)

and similarly,

VolRd(∆(S, ϑ(h)(Hm,n)) ∩H) = VolRd(∆(S, ϑ(h)(Bm,n)) ∩H)(8)

The conclusion follows from combining (5), (6), (7), and (8). �

One can also interpret the left-hand side of the formulae in Lemma 3.7 as the volume of
certain analog of p-body. The following remark illustrates that fact, which is in the spirit of
[CRM22, Lemma 2.8] but also provides a correction to that result.

Remark 3.8. For each b ∈ N, similar to Definition 2.1, one can define a collection of subsets
T• = {Tqpb}

∞
q=1 of a semigroup S indexed by q = pe to be a pb-shifted p-system if it satisfies

the following conditions

(1) Tqpb is an ideal of S for all q,
(2) pTqpb ⊆ Tpqpb for all q.

Similarly, one can define a pb-shifted p-family of ideals I = {Iqpb}
∞
q=1 indexed by powers of p

satisfying I
[p]

qpb
⊆ Ipqpb for all q. Note that

{

J (pb)n
}

is a pb-shifted p-family of ideals in R,

thus, ϑ(h)
(

J (pb)n
)

is a pb-shifted p-system in S. One can define a p-body of this system as

∆
(

S, ϑ(h)
(

J (pb)n
))

:=

∞
⋃

q=1

1

qpb
[

ϑ(h)
(

J (pb)n
)]

q
+ Cone(S).

By a version of Theorem 2.3, we have

VolRd

(

∆
(

S, ϑ(h)
(

J (pb)n
)))

= lim
q→∞

#
(

[

ϑ(h)
(

J (pb)n
)]

q
∩ pbqH

)

pbdqd

for any truncating half-space H . Thus, Lemma 3.7 can be rewritten in terms of volumes as

lim
b→∞

VolRd

(

∆
(

S, ϑ(h)
(

J (pb)n
)))

= VolRd

(

∆
(

S, ϑ(h) (Jn)
))
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and
lim
b→∞

VolRd

(

∆
(

S, ϑ(h)
(

H (pb)m,n

)))

= VolRd

(

∆
(

S, ϑ(h) (Hm,n)
))

We are now ready to prove our main result in this section.

Theorem 3.9. Assume Setup 3.6. For n = (n1, . . . , nr) ∈ Nr, m = (m1, . . . , ms) ∈ Ns, and

b ∈ N, we have that the following limits exist and are equal

lim
b→∞

lim
q→∞

λ(J(pb)qn/I(pb)qmJ(pb)qn)

pbdqd
= lim

q→∞

λ(Jqn/IqmJqn)

qd
.

Proof. Fix a ∈ Z>0, and note that I(i)pa,q ⊆ I(i)q and J(i)pa,q ⊆ J(i)q for all 1 ≤ i ≤ s and
1 ≤ j ≤ r, and q = pe, e ∈ N. We fix n = (n1, . . . , nr) ∈ Nr, m = (m1, . . . , ms) ∈ Ns, and for
simplicity of notation, we set

(J ,H ) := (Jn,Hm,n), (J (pb),H (pb)) := (J (pb)n,H (pb)m,n), and c = c(J ,H ).

As in Lemma 2.10, for the point v in Definition 2.5, and set w = cv, then R ∩ F≥qw =
R ∩ F≥cqv ⊆ m

cq. Since

J ∩m
cq = H ∩m

cq and J (pb) ∩m
cpbq = H (pb) ∩m

cpbq,

then

J ∩ F≥qw = H ∩ F≥qw and J (pb) ∩ F≥qpbw = H (pb) ∩ F≥qpbw,

Therefore, we can write

λ

(

Jqn

IqmJqn

)

= λ

(

Jqn

Jqn ∩ F≥qw

)

− λ

(

IqmJqn

IqmJqn ∩ F≥qw

)

, and that

λ

(

J(pb)qn

I(pb)qmJ(pb)qn

)

= λ

(

J(pb)qn

J(pb)qn ∩ F≥qpbw

)

− λ

(

I(pb)qmJ(pb)qn

I(pb)qmJ(pb)qn ∩ F≥qpbw

)

.

Let a′ := a+max{n1, . . . , nr, m1, . . . , ms}. It is not hard to check that we get the inclusions
Jpa,q ⊆ Jpa′ ,qn ⊆ Jqn = Jq for all q = pe, e ∈ N. In fact, the first inclusion comes from the

fact that J(i)
[q/pt]
ptpni

⊆ J(i)pa′ ,qpni for all 1 ≤ i ≤ r, 0 ≤ t ≤ a, and all q power of p as each

J (i) is a p-family. The second inclusion follows since J(i)pa,q ⊆ J(i)q for all 1 ≤ j ≤ r, and
q = pe, e ∈ N. Thus, by Lemma 2.10 and Theorem 2.13, with the half-space H given by all
u such that 〈u, a〉 < 〈w, a〉, where a is the vector defining the valuation in Section 2.4, we
obtain the following

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(Jpa)) ∩H) = lim
q→∞

1

qd
· λ

(

Jpa,q

Jpa,q ∩ F≥qw

)

≤ lim
q→∞

1

qd
· λ

(

Jpa′ ,qn

Jpa′ ,qn ∩ F≥qw

)

≤ lim
q→∞

1

qd
· λ

(

Jq

Jq ∩ F≥qw

)

=

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(J )) ∩H).

(9)
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Similarly, we also have Hpa,q ⊆ Ipa′ ,qmJpa′ ,qn ⊆ IqmJqn = Hq for all q = pe, e ∈ N, thus,

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(Hpa )) ∩H) ≤ lim
q→∞

1

qd
· λ

(

Ipa′
,qmJpa′

,qn

Ipa′
,qmJpa′

,qn ∩ F≥qw

)

≤

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(H )) ∩H).

(10)

Therefore, using Theorem 3.5 (apply the limit as a → ∞ to the left most term of each
inequality (9), (10)), we have for any fixed ε > 0, there exists a := a(ε) ∈ Z>0 such that
(11)
[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(J ))∩H) ≥ lim
q→∞

1

qd
·λ

(

Jpa′
,qn

Jpa′
,qn ∩ F≥qw

)

≥

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(J ))∩H)−
ε

2
, and

(12)
[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(H ))∩H) ≥ lim
q→∞

1

qd
·λ

(

Ipa′
,qmJpa′

,qn

Ipa′
,qmJpa′

,qn ∩ F≥qw

)

≥

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(H ))∩H)−
ε

2
.

On the other hand, as each I(i)pa′ and each J (j)pa′ is a p-family of finite type, thus by
Lemma 3.7, we have

lim
b→∞

lim
q→∞

1

pbdqd
· λ

(

Jpa′(p
b)qn

Jpa′ (p
b)qn ∩ F≥qpbw

)

=

[kϑ:k]
∑

h=1

lim
b→∞

lim
q→∞

#
(

ϑ(h)
(

Jpa′ (p
b)qn
)

∩ pbqH
)

pbdqd

=

[kϑ:k]
∑

h=1

VolRd

(

∆
(

S, ϑ(h)
(

Jpa′ ,n

))

∩H
)

= lim
q→∞

[kϑ:k]
∑

h=1

#
(

ϑ(h)
(

Jpa′ ,qn

)

∩ qH
)

qd

= lim
q→∞

1

qd
· λ

(

Jpa′ ,qn

Jpa′ ,qn ∩ F≥qw

)

,

(13)

and, similarly,
(14)

lim
b→∞

lim
q→∞

1

pbdqd
· λ

(

Ipa′ (p
b)qmJpa′ (p

b)qn

Ipa′ (p
b)qmJpa′(p

b)qn ∩ F≥qpbw

)

= lim
q→∞

1

qd
· λ

(

Ipa′ ,qmJpa′ ,qn

Ipa′ ,qmJpa′ ,qn ∩ F≥qw

)

.

On the other hand, for every b ∈ Z>0, we have the inclusions

Jpa′ (p
b)qn ⊆ J (pb)q ⊆ Jpbq and Ipa′ (p

b)qmJpa′ (p
b)qn ⊆ H (pb)q ⊆ Hpbq.
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Therefore by Equalities (13), (14), and Lemma 2.10 there exists b0 := b0(a) such that if
b ≥ b0 we have

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(J )) ∩H) = lim
q→∞

[kϑ:k]
∑

h=1

#
(

[

ϑ(h)(I )
]

pbq
∩ pbqH

)

pbdqd

≥ lim
q→∞

[kϑ:k]
∑

h=1

#
(

[

ϑ(h)(I (pb))
]

q
∩ pbqH

)

pbdqd

≥ lim
q→∞

[kϑ:k]
∑

h=1

#
(

ϑ(h)(Jpa′ (p
b)qn) ∩ pbqH

)

pbdqd

= lim
q→∞

1

pbdqd
· λ

(

Jpa′ (p
b)qn

Jpa′ (p
b)qn ∩ F≥qpbw

)

≥ lim
q→∞

1

qd
· λ

(

Jpa′ ,qn

Jpa′ ,qn ∩ F≥qw

)

−
ε

2
,

(15)

and similarly

[kϑ:k]
∑

h=1

VolRd(∆(S, ϑ(h)(H )) ∩H) ≥ lim
q→∞

1

pbdqd
· λ

(

Ipa′ (p
b)qmJpa′(p

b)qn

Ipa′(p
b)qmJpa′ (p

b)qn ∩ F≥qpbw

)

≥ lim
q→∞

1

qd
· λ

(

Ipa′ ,qmJpa′ ,qn

Ipa′ ,qmJpa′ ,qn ∩ F≥qw

)

−
ε

2
.

(16)

The result now follows by combining the Inequalities (11) with (15), and (12) with (16) as
ǫ is arbitrary. �

Theorem 3.10. Let (R,m,k) be a Noetherian local ring of dimension d and characteristic

p > 0 with perfect residue field k such that dim(N(R̂)) < d; here N(R̂) denotes the nilradical

of the m-adic completion R̂. Let J (1) = {J(1)q}
∞
q=1, . . . ,J (r) = {J(r)q}

∞
q=1 be p-families of

non-zero ideals, and let I(1) = {I(1)q}
∞
q=1, . . . , I(s) = {I(s)q}

∞
q=1 be m-primary p-families

of ideals. For n = (n1, . . . , nr) ∈ Nr, m = (m1, . . . , ms) ∈ Ns, and b, a ∈ N, we follow the

notations in Setup 3.6. Then, we have that the following limits exist and are equal

lim
b→∞

lim
q→∞

λ(J(pb)qn/I(pb)qmJ(pb)qn)

pbdqd
= lim

q→∞

λ(Jqn/IqmJqn)

qd
.

Proof. By passing through the m-adic completion R̂, we can assume R is a complete local
ring. By the assumption and [HJ18, Corollary 5.18], we can also assume R is complete and
reduced. Suppose that the minimal primes of R are {P1, . . . , Ps}. Let Ri = R/Pi for every
1 ≤ i ≤ s. Then each Ri is a complete local domain for i = 1, . . . , s. By Lemma 2.14, we
have

lim
b→∞

lim
q→∞

λ(J(pb)qn/I(pb)qmJ(pb)qn)

pbdqd
=

s
∑

i=1

lim
b→∞

lim
q→∞

λRi
(J(pb)qnRi/I(p

b)qmJ(pb)qnRi)

pbdqd
,
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and

lim
q→∞

λ(Jqn/IqmJqn)

qd
=

s
∑

i=1

lim
q→∞

λRi
(JqnRi/IqmJqnRi)

qd
.

Therefore, combining the two equations above with Theorem 3.9, we have

lim
b→∞

lim
q→∞

λ(J(pb)qn/I(pb)qmJ(pb)qn)

pbdqd
=

s
∑

i=1

lim
b→∞

lim
q→∞

λRi
(J(pb)qnRi/I(p

b)qmJ(pb)qnRi)

pbdqd

=

s
∑

i=1

lim
q→∞

λRi
(JqnRi/IqmJqnRi)

qd
.

= lim
q→∞

λ(Jqn/IqmJqn)

qd
.

�

4. Applications

In this section, we use our technical results from the previous section and results in [Ver91]
to obtain a general version of results in [WY01] concerning the length function of multi-
p-families, their multiplicities, mixed multiplicities, and Hilbert-Kunz multiplicities in a
2-dimensional Cohen-Macaulay ring. We also show an instance where one can define by
showing the existence of a mixed multiplicity version of multi-p−families of ideals.

4.1. p-families in Cohen-Macaulay local ring of dimension 2.

Setup 4.1. Let (R,m,k) be a Noetherian local ring of dimension d and characteristic p > 0

with perfect residue field k such that dim(N(R̂)) < d, where N(R̂) denotes the nilradical of the

m-adic completion R̂. Let I(1) = {I(1)q}
∞
q=1, . . . , I(s) = {I(s)q}

∞
q=1 be m-primary p-families

of ideals such that

(17) I(i)[p]q ⊆ I(i)pq ⊆ I(i)qp for every i = 1, . . . , s

For every b ∈ N and m = (m1, . . . , ms) ∈ Ns we follow the same abbreviations from Setup

3.6. The sequence (I(1), . . . , I(s)) of p-families is simply denoted by I.

In the setup above, the first containment of (17) is obvious but the second containment
is not true for a general p-family. One of the simplest examples is to consider the p-families
I(i) = {I(i)q}

∞
q=1 obtained from picking the elements indexed by powers of p of m-primary

graded families of ideals I(i) = {I(i)n}
∞
n=1 for i = 1, . . . , s. The following example shows

that there is no obvious way to fill a p-family with property (17) to a graded family.

Example 4.2. Consider R = Fp[x, y, z]. Let I = (x, y) and J = (z) be ideals in R. We
construct a p-family of ideals K = {Kq}

∞
q=1 in R as follows

Kpn = Kp
pn−1 + J [p] for all n ∈ Z.

It is obvious that K
[p]
q ⊆ Kp

q ⊆ Kqp for every i = 1, . . . , s.

Property (17) also leads us to an interesting question.

Question 4.3. For what p−family can we add more ideals to make it a graded family?

Certainly, we cannot fill in a Frobenius powers family to obtain a graded family.
15



Proposition 4.4. Let I = {Iq}
∞
q=1 be a p-family of ideals in R such that I

[p]
q ⊆ Ipq ⊆ Iqp for

all q = pe, e ∈ N. Then

lim
q→∞

e(Iq)

qd
= d! lim

q→∞

eHK(Iq)

qd
.

Proof. Since I
[pb]
q ⊆ Ip

b

q ⊆ Iqpb for all b ∈ N, q = pe, e ∈ N, then

(18) λ
(

R/Iqpb
)

≤ λ
(

R/Ip
b

q

)

≤ λ
(

R/I [p
b]

q

)

.

It follows that

lim inf
q→∞

lim
b→∞

λ(R/Iqpb)

pbdqd
≤ lim inf

q→∞
lim
b→∞

λ(R/Ip
b

q )

pbdqd
and lim sup

q→∞

lim
b→∞

λ(R/Ip
b

q )

pbdqd
≤ lim sup

q→∞

lim
b→∞

λ(R/I
[pb]
q )

pbdqd
.

On the other hand, note that lim
q→∞

lim
b→∞

λ(R/I
[pb]
q )

pbdqd
= lim

q→∞

eHK(Iq)

qd
. Moreover, by [Das23,

Theorem 3.2], we have

lim
q→∞

lim
b→∞

λ(R/Iqpb)

pbdqd
= lim

q→∞

λ(R/Iq)

qd
= lim

q→∞

eHK(Iq)

qd
.

Hence, we get

lim
q→∞

eHK(Iq)

qd
≤ lim inf

q→∞
lim
b→∞

λ(R/Ip
b

q )

pbdqd
≤ lim sup

q→∞

lim
b→∞

λ(R/Ip
b

q )

pbdqd
≤ lim

q→∞

eHK(Iq)

qd
.

Therefore, the limits

lim
q→∞

e(Iq)

qd
= d! lim

q→∞
lim
n→∞

λ(R/Inq )

ndqd
= d! lim

q→∞
lim
b→∞

λ(R/Ip
b

q )

pbdqd

exist and are equal to d! lim
q→∞

eHK(Iq)

qd
. �

Question 4.5. In general for any p-family of ideals I = {Iq}
∞
q=1, does the limit lim

q→∞

e(Iq)

qd

exist?

With Theorem 3.10 and the property that I(i)
[p]
q ⊆ I(i)pq ⊆ I(i)qp for every i = 1, . . . , s

and q = pe, e ≥ 0, we have the following consequence:

Theorem 4.6. Assume Setup 4.1. For m = (m1, . . . , ms) ∈ Ns, and b ∈ N, we have that

the following limits exist and are equal

lim
b→∞

lim
q→∞

λ(R/I(pb)qm)

pbdqd
= lim

b→∞
lim
q→∞

λ(R/I(1)
[q].pm1

pb
· · · I(s)

[q].pms

pb
)

pbdqd
= lim

q→∞

λ(R/Iqm)

qd
,

where I [q].p
m

= (I [q])p
m

= (Ip
m

)[q] for any ideal I ⊂ R.

Next, let us recall some results from [Ver91].
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Definition 4.7. [Ver91, Definition 2.7] Let (R,m) be a 2-dimensional CM local ring. Let I
and J be m-primary ideals. If

e(I|J) = λ(R/IJ)− λ(R/I)− λ(R/J)

we write r(I|J) = 0. Here the mixed multiplicity of I and J can be defined by

e(I|J) =
1

2
(e(IJ)− e(I)− e(J)).

Theorem 4.8. [Ver91, Proposition 2.9] Let (R,m) be a 2-dimensional CM local ring. Let

I1, I2, . . . , Ig be m-primary ideals. If r(Ii|Ij) = 0 for 1 ≤ i ≤ j ≤ g, then for all non-negative

integers r1, . . . , rs

λ(R/Ir11 . . . Irss ) =

g
∑

i=1

(

e(Ii)

(

ri
2

)

+ λ(R/Ii)ri

)

+
∑

1≤i≤j≤g

e(Ii|Ji)rirj.

By using the theorem above, we can describe explicitly the limit lim
q→∞

λ(R/Iqm)

qd
when R is a

2-dimensional Cohen-Macaulay local ring with dim(N(R̂)) < 2 and perfect residue field.

Theorem 4.9. Let (R,m) be a 2-dimensional CM local ring. Assume Setup 4.1. For every
b ∈ N, we assume that r(I(i)pb|I(j)pb) = 0 for 1 ≤ i ≤ j ≤ s. Then for m = (m1, . . . , ms) ∈
Ns, we have

lim
q→∞

λ(R/Iqm)

q2
=

s
∑

i=1

(

lim
b→∞

e(I(i)pb)

p2b

(

pmi

2

)

+ lim
b→∞

eHK(I(i)pb )

p2b
pmi

)

+
∑

1≤i≤j≤s

lim
b→∞

e(I(i)pb |I(j)pb )

p2b
pmipmj .

Proof. By Theorem 4.8, for each b ∈ N, we have

λ(R/I(1)
[q].pm1

pb
· · · I(s)

[q].pms

pb
) =

s
∑

i=1

(

e(I(i)
[q]

pb
)

(

pmi

2

)

+ λ(R/I(i)
[q]

pb
)pmi

)

+
∑

1≤i≤j≤s

e(I(i)
[q]

pb
|I(j)

[q]

pb
)pmipmj .

Note that by [HTW20, Proposition 3.4], since (IJ)[p] = I [p]J [p], we have that for all q = pe,

I(1)
[q].pm1

pb
· · · I(s)

[q].pms

pb
= (I(1)p

m1

pb
· · · I(s)p

ms

pb
)[q].

Moreover, since e(I(i)
[q]

pb
) = q2e(I(i)pb) for all 1 ≤ i ≤ s ([Han03, Theorem 3.2]), we have

e(I(i)
[q]

pb
|I(j)

[q]

pb
) =

1

2

(

e(I(i)
[q]

pb
.I(j)

[q]

pb
)− e(I(i)

[q]

pb
)− e(I(j)

[q]

pb
)
)

=
q2

2

(

e(I(i)pbI(j)pb)− e(I(i)pb)− e(I(j)pb)
)

= q2e(I(i)pb|I(j)pb).

Therefore,

lim
q→∞

λ(R/I(1)
[q].pm1

pb
· · · I(s)

[q].pms

pb
)

q2

=

s
∑

i=1

(

e(I(i)pb)

(

pmi

2

)

+ eHK(I(i)pb)p
mi

)

+
∑

1≤i≤j≤s

e(I(i)pb|I(j)pb)p
mipmj .
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By Theorem 4.6 taking the limits give

lim
q→∞

λ(R/Iqm)

q2
= lim

b→∞
lim
q→∞

λ(R/I(1)
[q].pm1

pb
· · · I(s)

[q].pms

pb
)

q2p2b

= lim
b→∞

1

p2b

[

s
∑

i=1

(

e(I(i)pb)

(

pmi

2

)

+ eHK(I(i)pb)p
mi

)

+
∑

1≤i≤j≤s

e(I(i)pb|I(j)pb)p
mipmj

]

=
s
∑

i=1

(

lim
b→∞

e(I(i)pb)

p2b

(

pmi

2

)

+ lim
b→∞

eHK(I(i)pb)

p2b
pmi

)

+
∑

1≤i≤j≤s

lim
b→∞

e(I(i)pb |I(j)pb)

p2b
pmipmj .

Finally, we show that all coefficients of the polynomial above exist. Since r(I(i)pb|I(j)pb) = 0
for 1 ≤ i ≤ j ≤ s we have

e(I(i)pb |I(j)pb) = λ(R/I(i)pbI(j)pb)− λ(R/I(i)pb)− λ(R/I(j)pb).

It follows that for every 1 ≤ i ≤ j ≤ s, the limit

lim
b→∞

e(I(i)pb|I(j)pb)

p2b
= lim

b→∞

λ(R/I(i)pbI(j)pb)

p2b
− lim

b→∞

λ(R/I(i)pb)

p2b
− lim

b→∞

λ(R/I(j)pb)

p2b

exists by [HJ18, Theorem 5.15]. Also, by Proposition 4.4, lim
b→∞

e(I(i)pb)

p2b
exists. �

Example 4.10. (1) One of the examples that satisfies the theorem above is a pseudo-

rational local ring of dimension 2 with characteristic p > 0 such that dim(N(R̂)) < 2,
and all ideals in Setup 4.1 are m-primary complete ideals, see [Ree81, WY01] for
more details. It can be considered as a generalization of a result of Wantanabe and
Yoshida [WY01, Proposition 4.6].

(2) In Setup 4.1, if the m-primary p-families I(1) = {I(1)q}
∞
q=1, . . . , I(s) = {I(s)q}

∞
q=1

are subfamilies of m-primary graded families of ideals I(1) = {I(1)n}
∞
n=1, . . . , I(s) =

{I(s)n}
∞
n=1 respectively, then the formula in Theorem 4.9 coincides with the result

about the mixed multiplicities of the given graded families as in [CRM22, Theorem
3.3 and Corollary 3.5].

4.2. Mixed multiplicities-like coefficients of polynomials given by length func-

tions. In this subsection, we will work with the following special valuation.

Setup 4.11. Let (R,m,k) be a Noetherian local domain of dimension d of characteristic

p > 0 with perfect field k. Consider a collection of ideals M in R such that there exists a

valuation ϑ so that ϑ(I · J) = ϑ(I) + ϑ(J) and ϑ(I [p]) = pϑ(I) for any ideals I, J ∈ M. Let

I(1) = {I(1)q}
∞
q=1, . . . , I(1) = {I(s)q}

∞
q=1 be p-families of ideals in such collection M.

Example 4.12. Let M be the collection of all monomial ideals and I, J ∈ M. Using
the notation as in Section 2.4, consider any valuation ϑ given by a whose coordinates are
algebraically independent over Z, we have that ϑ(f) 6= ϑ(g) for any monomials f 6= g. We
claim that ϑ(I · J) = ϑ(I) + ϑ(J). In fact, let a ∈ ϑ(I), and b ∈ ϑ(J), then a = ϑ(x) and
b = ϑ(y) for some x ∈ I and y ∈ J . We have a + b = ϑ(x) + ϑ(y) = ϑ(xy) ∈ ϑ(I · J),
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hence ϑ(I) + ϑ(J) ⊆ ϑ(I · J). Conversely, let x =
∑

i

xiyi ∈ I · J where xi ∈ I, yi ∈ J are

monomials, thus

ϑ(x) = ϑ

(

∑

i

xiyi

)

= min
i
{ϑ(xiyi)} = min

i
{ϑ(xi) + ϑ(yi)} ∈ ϑ(I) + ϑ(J).

Also, for such valuation, since I is a monomial ideal, for any f ∈ I [p], we can write f =
∑

fix
p
i where xi ∈ I and fi are monomials. Using the same argument as above, we get

ϑ(f) = ϑ(fi) + pϑ(xi) ∈ pϑ(I) for some i. This shows ϑ(I [p]) = pϑ(I).

Proposition 4.13. Assume Setup 4.11. For every b ∈ N, and n = (n1, . . . , ns) ∈ Ns, we

have

∆(S, ϑ(I(pb)n) := ∆(S, ϑ(I(1)
[pn1 ]

pb
· · · I(s)

[pns ]

pb
)) =

s
∑

i=1

pni∆(S, ϑ(I(i)pb),

where ∆(S, ϑ(I(i)pb) =
∞
⋃

q=1

(

1

q
ϑ(I(i)

[q]

pb
) + Cone(S)

)

for i = 1, . . . , s.

Proof. The result can be easily obtained from the fact that

ϑ(I(1)
[pn1 ]

pb
· · · I(s)

[pns ]

pb
)) = pn1ϑ(I(1)pb) + · · ·+ pnsϑ(I(s)pb).

�

Definition 4.14. Let C be a strongly convex closed d-dimensional cone in Rd with apex at
the origin. A closed convex subset Γ ⊂ C is called C-convex region if for any x ∈ Γ and
y ∈ C we have x+ y ∈ Γ. Moreover, a convex region Γ is cobounded if the complement C \Γ
is bounded. In this case the volume of C \ Γ is finite and is called the covolume of Γ and
denoted by Covol(Γ).

Lemma 4.15. Let C ⊂ Rd be a strongly convex closed d-dimensional cone with apex at

the origin and suppose that there is a non-degenerate linear transformation T such that

T (C) ⊆ Rd
≥0. If A,B are cobounded C-convex regions, then so is A+B.

Proof. Since linear transformations preserve convexity, we can assume that C ⊆ Rd
≥0. It is

clear that A+B is convex, cobounded, and A +B + C ⊆ A+B. Hence, it suffices to show
that A + B is closed. Suppose (cn) ⊂ A + B is a sequence that converges to c. There exist
sequences (an) in A and (bn) in B such that cn = an + bn. Since all coordinates of all bn are
nonnegative and lim cn = c, there exists a ball B in Rd

≥0 centered at c such that an ∈ B for
all n large enough. Now as B is compact, there exists a convergent subsequence (akn). Let
lim akn = a, we have a ∈ A since A is closed. Moreover, lim bkn = lim ckn−lim akn = c−a ∈ B
since B is also closed. Therefore, c = a + (c − a) ∈ A + B, and this implies that A + B is
closed as desired. �

Theorem 4.16. Assume Setup 4.11. Furthermore, for every b ∈ N, suppose that the p-body

∆(S, ϑ(I(i)pb) =
∞
⋃

q=1

(

1

q
ϑ(I(i)

[q]

pb
) + Cone(S)

)

is cobounded C-convex where C = Cone(S) . Then the limit lim
q→∞

λ(R/I(pb)qn)

qd
coincides

with a homogeneous polynomial in pn1, . . . , pns of total degree equal to d.
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Proof. By [HJ18, Corollary 5.12] and Proposition 4.13, we have

lim
q→∞

λ(R/I(pb)qn)

qd
= [kϑ : k] · CovolRd(∆(S, ϑ(I(pb)qn)))

= [kϑ : k] · CovolRd(

s
∑

i=1

pni∆(S, ϑ(I(i)pb)).

Then by [KK14, Theorem 2.2], the function CovolRd(
s
∑

i=1

pni∆(S, ϑ(I(i)pb)) is a homogeneous

polynomial of degree d in the pni. It follows that lim
q→∞

λ(R/I(pb)qn)
qd

is also a homogeneous

polynomial of degree d in the pni as desired. �

Theorem 4.17. Assume Setup 4.11. Suppose that there is a non-degenerate linear transfor-

mation T such that T (C) ⊆ Rd
≥0. Furthermore, for every b ∈ N, suppose that the closure of

the p-body ∆(S, ϑ(I(i)pb) is a cobounded C-convex region. Then the limit lim
q→∞

λ(R/I(pb)qn)

qd

coincides with a homogeneous polynomial in pn1 , . . . , pns of total degree equal to d.

Proof. First, using Lemma 4.15 and Proposition 4.13, we get

∆(S, ϑ(I(pb)n) =

s
∑

i=1

pni∆(S, ϑ(I(i)pb).

The proof now goes along the same line with that of Theorem 4.16 once we take the closure
∆(S, ϑ(I(i)pb) in the volume equalities. �

We are now ready to state the main theorem of this subsection.

Theorem 4.18. Assume Setup 4.11 and the conditions in either Theorem 4.16 or Theorem

4.17. Suppose also that dim(N(R̂)) < d. For each b ∈ N, set

PI(pb)(p
n1, . . . , pns) = lim

q→∞

λ(R/I(pb)qn)

qd
.

Then there exists a homogeneous polynomial of total degree d with real coefficients, denoted

PI, such that for all (n1, . . . , ns) ∈ N,

PI(p
n1, . . . , pns) = lim

b→∞
PI(pb)(p

n1, . . . , pns) = lim
q→∞

λ(R/Iqn)

qd
.

In order to prove Theorem 4.18, we are going to use similar strategies as in [CSS19]. Let
us write

PI(pb)(x1, . . . , xs) =
∑

i1+···+is=d

bi1,...,is(p
b)xi1

1 · · ·xis
s .

We first show a version of [CSS19, Lemma 3.1] adapted to our context.

Lemma 4.19 ([CSS19], Lemma 3.1). Suppose that s, d ≥ 1, p is a prime, and a =
(

s−1+d
s−1

)

.

Then there exist n1(i), n2(i), . . . , ns(i) ∈ N for 1 ≤ i ≤ a such that the set of vectors consisting

of all monomials of degree d in pn1(i), pn2(i), . . . , pns(i), 1 ≤ i ≤ a
{(

pdn1(1), p(d−1)n1(1)+n2(1), . . . , pdns(1)
)

, . . . ,
(

pdn1(a), p(d−1)n1(a)+n2(a), . . . , pdns(a)
)}

is a Q-basis for Qa.
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Proof. The argument is similar to that of [CSS19, Lemma 3.1]. Consider the map Λ :
(Q+)

s → Qa defined by Λ(k1, . . . , ks) = (kd
1, k

d−1
1 k2, . . . , k

d
s ). Let P = {pk | k ∈ N} the set

of all powers of p. It suffices to show that the image under Λ of the set (P)s ⊂ (Q+)
s is not

contained in any proper Q-linear subspace of Qa as it implies that we can find a vectors in
(P)s such that their images under Λ are linearly independent, hence, form a basis for Qa.
By contradiction, suppose that Λ((P)s) is contained in a proper subspace, then there exists
a nonzero linear form

L(yd,0,...,0, yd−1,1,0,...,0, . . . , y0,0,...,d) =
∑

i1+...+is=d

ai1,...,isyi1,...,is

on Qa such that L
(

pdn1, p(d−1)n1+n2, . . . , pdns
)

= 0 for all (pn1 , . . . , pns) ∈ (P)s. This means

that the (nonzero) degree d homogeneous polynomial G(x1, . . . , xs) = L(xd
1, x

d−1
1 x2, . . . , x

d
s)

vanishes on (P)s. We show that this is impossible by proving that G ≡ 0 using induction
on s. Indeed, if s = 1, since G(x1) has infinitely many roots (in P), we must have G(x1) ≡
0. Suppose that claim is true for any homogeneous polynomial in s − 1 variables. Write
G(x1, . . . , xs) =

∑d
i=0 gi(x1, . . . , xs−1)x

i
s, and fix (pn1, . . . , pns−1) ∈ (P)s−1. The polynomial

G(pn1, . . . , pns−1 , xs) ∈ Q[xs] has infinitely many solutions, hence, G(pn1 , . . . , pns−1, xs) ≡ 0,
therefore, for all 0 ≤ i ≤ d, gi(p

n1 , . . . , pns−1) = 0. Since (pn1, . . . , pns−1) is arbitrary chosen
in (P)s−1, by induction, gi ≡ 0 for all 0 ≤ i ≤ d, thus, G ≡ 0 as desired. �

Proposition 4.20 ([CSS19], Corollary 4.4). For all i1, . . . , is ∈ N with i1 + · · ·+ is = d, the
limit bi1,...,is = lim

b→∞
bi1,...,is(p

b) exists in R.

Proof. The proof is the same as in [CSS19, Corollary 4.4] since we can use Lemma 4.19 to
show [CSS19, Lemma 3.2] and use Theorem 3.9 in place of [CSS19, Proposition 4.3]. �

We are now ready to prove Theorem 4.18.

Proof of Theorem 4.18. We define a homogeneous polynomial

PI(x1, . . . , xs) =
∑

i1+···+ir=d

bi1,...,irx
i1
1 · · ·xis

s .

For any (n1, . . . , ns) ∈ N, by Theorem 3.10, we have

lim
b→∞

PI(pb)(p
n1, . . . , pns) = lim

b→∞
lim
q→∞

λ(R/I(pb)qn)

qd
= lim

q→∞

λ(R/Iqn)

qd
,

Moreover, by Proposition 4.20, lim
b→∞

PI(pb)(p
n1, . . . , pns) = PI(p

n1, . . . , pns) and this concludes

the proof. �
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