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Abstract

Insufficient overlap between the melt pools produced during Laser Powder Bed Fusion (L-

PBF) can lead to lack-of-fusion defects and deteriorated mechanical and fatigue performance.

In-situ monitoring of the melt pool subsurface morphology requires specialized equipment

that may not be readily accessible or scalable. Therefore, we introduce a machine learning

framework to correlate in-situ two-color thermal images observed via high-speed color imaging

to the two-dimensional profile of the melt pool cross-section. Specifically, we employ a hybrid

CNN-Transformer architecture to establish a correlation between single bead off-axis thermal

image sequences and melt pool cross-section contours measured via optical microscopy. In this

architecture, a ResNet model embeds the spatial information contained within the thermal

images to a latent vector, while a Transformer model correlates the sequence of embedded

vectors to extract temporal information. Our framework is able to model the curvature

of the subsurface melt pool structure, with improved performance in high energy density

regimes compared to analytical melt pool models. The performance of this model is evaluated

through dimensional and geometric comparisons to the corresponding experimental melt pool

observations.
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Introduction

Laser Powder Bed Fusion (L-PBF) is a metal additive manufacturing process, which

decreases material waste and increases local control when compared to conventional manu-

facturing processes [1, 2]. Due to these advantages, L-PBF has become a useful production

technique for industrial applications requiring parts with complex internal structure [3–7].

During L-PBF, a product is iteratively built by fusing successive layers of metal alloy powder

together, using a laser heat source to induce melting at a specific cross-section [8]. How-

ever, due to the process complexity and short length-time scales involved during L-PBF, the

stochastic formation of defects can increase performance variability, limiting adoption for

use cases with strict part specifications [9, 10]. For instance, the transient behavior of the

instantaneous molten metal zone near laser impact with the substrate directly changes the

residual stress, microstructure, and porosity within the part [11–13]. Unstable vapor cavities

within the part can collapse and cause spherical gas voids, and insufficient melting between

layers results in lack-of-fusion porosity [14, 15]. These defects have a significant effect on the

mechanical and fatigue performance of the finalized parts, localizing stress and reducing the

life cycle until fatigue induced failure [16–18].

The formation of porosity during L-PBF is intrinsically linked to the morphology of the

melt pool during printing [19, 20]. Therefore, several methods for estimating the morphology

of the melt pool during printing have been proposed. Analytical methods based on simplified

models of the heat transfer phenomena during L-PBF provide rapid estimates of the melt

pool size, but lose accuracy in high energy density regimes of the melting process [20–22].

Multiphysics simulations produce more accurate models of the melt pool behavior during

printing, accounting for phase change, vaporization, and variable absorptivity effects [10,

23, 24]. However, these simulations are based upon nominal specifications of the process

conditions, and do not generalize to cases where unexpected phenomena lead to variations

in the input conditions [25]

Due to the challenges involved in estimating the morphology of the melt pool with both
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simulation-based and experimental approaches, recent work has leveraged machine learning

with experimental in-situ monitoring and simulation modeling to create estimates of the

defect formation behavior during printing [26–30]. Machine learning techniques have shown

promise in navigating the high-dimensional, uncertain search spaces within scientific and

engineering applications [31–33]. Therefore, these techniques are also readily applicable to

the task of correlating in-situ monitoring information to post-build, ex-situ characterization.

Early approaches to machine learning enabled process monitoring were based on layerwise

optical monitoring. In-situ optical monitoring enables process monitoring of the powder bed

at distance from the build plate, providing information on the current state of the powder

bed surface [34–36]. Gobert et al. demonstrate the use of a high resolution digital single-lens

reflex camera to correlate layerwise images of the process to the presence of defects within

X-ray CT data [35]. In related work, Scime et al. demonstrate the use of bag-of-words

clustering to correlate filter responses applied to optical images to potential defect classes

[36]. However, it can be difficult to resolve temporal process events to these optical images,

as they are typically observed following the completion of an entire layer [37]. Additionally,

the large scale of this monitoring system may not always resolve small, localized pore defects

[38].

In response, researchers have developed small-scale thermal imaging tools for monitoring

the behavior of the melt pool, enabling more direct linkage to the melt pool dimensions and

defect regimes. For instance, Gaikwad et al. monitored the melt pool with coaxial high-speed

video cameras at two different wavelengths [25]. From this data, they designed features to

link the sensor information to the type of porosity present. In an alternate work, Larsen et al.

present FlawNet, a method to detect anomalous melt pool instances potentially indicative of

porosity through autoregressive training on the temporal dynamics of the melting process [39].

While these works show promise in detecting porosity within the finalized part, these models

are built upon binary classification algorithms, and do not directly characterize the degree

of porosity present in the material, or account for potential pore formation mechanisms.
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Therefore, we propose an approach that links experimental, high-speed in-situ videos of

the melt pool to the ex-situ melt pool morphology beneath the surface. Specifically, high-

speed off-axis image sequences of the melt pool surface temperature observed during printing

are collected and mapped to the corresponding solidified melt pool cross-section. The ability

to predict the melt pool contour from surface images provides a pathway towards in-situ con-

trol for defect mitigation. Our model employs a transformer-based architecture, originally

developed for sequence modeling in natural language processing tasks [40], to analyze these

image sequences. The transformer architecture uses attention mechanisms to learn how ele-

ments in a sequence affect each other and inform downstream prediction tasks. To reduce the

complexity of our model, we decompose the architecture into spatial and temporal compo-

nents. Specifically, we leverage a convolutional encoder to model the spatial information, and

the transformer model to extract temporal information. With this framework, we also exam-

ine the influence of transfer learning from multiphysics simulation data to the experimental

domain to reduce the requirements for manual data collection. The performance of the model

is evaluated by comparing the dimensions of the predicted cross-sectional areas the shape

of the predicted contours, and the Intersection-over-Union (IoU) score of the contour recon-

structions. Finally, we validate our model through comparisons to ex-situ characterization

of multi-track prints.

Methodology

Self-Attention

We develop a hybrid-CNN architecture to correlate thermal images of the melt pool

surface to the morphology of the subsurface contour, while considering the temporal variation

of the melt pool. At the core of the transformer model is the concept of self-attention, which

is reviewed briefly below [40, 41].

The transformer encoder module implements attention to understand the temporal rela-

tionships across different frames of the input sequence. Attention is a deep learning paradigm

4



T
ra

n
sf

o
rm

er
E

n
co

d
er

20µsn

22500 FPS

t1

R
es

N
et

t2

R
es

N
et

...

tn

R
es

N
et

z1

z2

z3

dmax
A

Softmax

(
Q · KT

√
dk

)
× V

Output Embedding

Add & Norm

Feed Forward

Add & Norm

Multi-Head

Attention

Positional Encoding

Frame Embedding

T
ra

n
sf

o
rm

e
r

E
n
c
o
d
e
r

4×

Output

Input

Q K V

Build Plate

Laser
High-Speed Camera

Optical Microscope

Cooled Build Plate

a)

b)

Cross-SectionThermal Images

Figure 1: a) A schematic of the architecture used for mapping the image sequence to the below surface
melt pool morphology. In this schematic, n observed melt pool thermal signatures are linked to the below
surface melt pool shape. b) The architecture of the transformer encoder module. The core of the transformer
encoder block is the multi-head attention step, which computes query (Q), key (K), and value (V ) matrices
that encode the relationships and dependencies between the frames of the video sequence.

for reasoning over sequential data while preserving long-range dependencies [40, 42]. In recur-

rent models that do not apply attention, a hidden state vector is trained to store the relevant

information contained within a given sequence [43, 44]. However, at longer sequence lengths,

the information available at early timesteps has a weaker influence on the model prediction

than the more recent steps. Attention-based models learn a weighting of the relative impor-

tance of each element within the sequence, eliminating this effect. Within self-attention, the

model learns what the most relevant aspects of the data are to each element in the sequence.

This is implemented by developing a learned query, key and value matrix to compute the

attention weights. The similarity between the query vector, q, and the key vector k, is used

to weight the value vector.
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Specifically, the attention scores given a matrix of query vectors, Q, key vectors, K, and

value vectors, V , is given as

a = Softmax

(
Q ·KT

√
dk

)
× V (1)

During multi-head self-attention, this approach is conducted in parallel over smaller sec-

tions of the intermediate query, where the query, key, and value vectors are divided along

the channel dimension to create multiple instances of self-attention. In this scenario, the

attention outputs are recombined from each head to form the final output.

Temporal Transformer Architecture

While fully transformer-based architectures have been leveraged for computer vision tasks,

the computational expense of performing spatial and temporal attention within a single

transformer model is significant [45, 46]. Additionally, transformer models sacrifice inductive

biases for representational power, and therefore, perform optimally in large dataset scenarios.

However, due to the smaller size of the annotated datasets that can be readily collected

during process monitoring compared to traditional computer vision tasks [47], we modify

the transformer approach to balance the inductive biases provided through a CNN-based

embedding with the representation power of the transformer paradigm. As the thermal image

resolution is relatively small and the spatial relationships within the image remains consistent

across the samples in the dataset, spatially applied attention is less valuable. However,

the temporal behavior of the melt pool can be complex, and encoding this behavior via

attention leverages the intended functionality of the transformer architecture to model long-

range sequential relationships. Therefore, the temporal relationships between these latent

vectors are extracted with self-attention layers. In this implementation, each frame is first

embedded with a ResNet architecture to a learned embedding space [48]. Consistent with the

terminology used for transformer architectures, the latent vector for each frame is referred

to as a token [40]. Next, the token corresponding to each frame of the image sequence is

6



concatenated with a sinusoidal positional embedding vector indicating where the frame lies

within the sequence. A randomly initialized readout token is appended to the temporal

sequence of tokens derived from the image sequence. This readout token is designed to store

global information about the entire sequence. Finally, self-attention is computed across the

sequence of tokens, and the embedded representation of the global behavior of the sequence

is stored in this readout token. The readout token is then reconstructed to an estimate of the

depth contour with a fully-connected network. This model is trained to minimize the mean

squared error between the contour representation derived from experimental measurement,

and the predicted contour representation.

Experimental Details

The 316L SS no-powder experiments were conducted on the TruPrint 3000 commercial

L-PBF machine, which has a maximum laser power of 500 W and a maximum scanning

velocity of 3 m/s. A high-speed color camera (Photron FASTCAM mini-AX200) with a high-

magnification lens (Model K2 DistaMax™ with two NTX 2x extenders, standard objective

lens, and Edmunds Optics tri-band filter 87-246) was mounted above the machine’s front

viewport, which contained two laser-blocking viewports (Edmunds Optics hot mirror 64-

460). This imaging hardware is identical to the previous work by Myers and Quirarte et al.

[49]. For all of the single beads, the high-speed camera was operated with a frame rate of

22,500 frames/sec, giving a field of view of 512 pixels by 512 pixels. The aperture was set

near the half position, and the videos are taken with exposure times, ∆t, of 4 µs and 20 µs.

The hatch scans were imaged with a frame rate of 6,400 frames/sec to allow for a larger field

of view (1024 pixels by 1024 pixels). In all cases, the instantaneous pixel field of view is

approximately 5.6 µm on the build plate. Using the low exposure time (4 µs) allows for the

measurement of peak temperatures in the melt pool, but due to the signal noise floor of the

camera, lower temperatures are not measurable [49]. Increasing the exposure time to 20 µs

allows for the measurement of lower temperatures in the melt pool but results in saturation

of the highest temperatures. The argon flow rate in the machine was set to 1.6 m/s, with an
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oxygen concentration between 0.2 % and 0.4 %. Each of the single beads were programmed

to be 10 mm long with a lateral spacing of approximately 0.4 mm between them. The laser

incidence angle is approximately 15 to 20 degrees, which causes the melt pool cross-section

to be angled, especially in keyholing cases.

Figure 2: a) The melt pool surface temperature images are sampled at intervals of 44 µs, corresponding to a
frame rate of 22500 frames per second. The temperature distribution changes from frame to frame. At low
exposure times, more of the melt pool structure is visible, but the temperature core of the melt pool near
the laser is saturated. At lower exposure times, less of the melt pool is directly observable, but the center of
the melt pool is no longer saturated. b) Optical micrographs of the cross-sectioned tracks at varying energy
densities. c)The melt pool depth contour profiles for varying energy densities. There are slight variations
due to the uncertainty present between successive melt tracks.
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The 12-bit raw high-speed videos of the melt pool are then converted to both monochrome

images and two-color thermal images. In both cases, the raw image is first demosaiced

linearly, padded with zeroes, and cropped around the melt pool. The monochrome image

is created by taking the red channel, multiplying it by a factor of 16, and writing it as a

monochrome 16-bit TIF image. The ratiometric temperature is created by applying the two-

color thermal imaging technique for a color camera using the red and green channels, which

has been demonstrated for both LPBF and larger-scale directed energy deposition (DED)

processes [49, 50]. For the two-color thermal image, the temperature is only calculated at

pixels with red and green 12-bit signals between 150 digital levels and 4000 digital levels.

After the single bead scans were run, the 316L SS plates were cross-sectioned, mounted,

sanded, and polished. To identify the melt pool boundary, the polished samples were electro-

etched following procedure 13b in the ASTM Standard Practice for Microetching Metals and

Alloys (E-407). Then, the melt pool boundary profile was extracted from microscope images

of the cross-sections by drawing around the edge of the melt pool in the ImageJ software.

Four single beads were processed at each of the sixty-four combinations of power and velocity

with eight powers ranging from 50 W to 400 W and eight velocities ranging from 0.3 m/s

to 2.4 m/s. However, not all of the melt pool cross-sections were measurable due to either

small melt pool size, over-etching, or under-etching.

Data Processing

Once the thermal images are extracted from the monitoring system, a series of image

pre-processing steps are applied to prepare the dataset for machine learning inference. First,

the thermal image is cropped to a 360×360µm area around the image to maintain spatial

agreement between consecutive frames and remove extraneous blank pixels. Next, to reduce

the temporal variation of the sequence attributable to noise, we apply a sequential moving

window averaging operation. Specifically, each frame of the processed input video sequence is

constructed as a spatial average of the k raw frames immediately preceding and succeeding the

current raw frame, tn. Following the temporal averaging operation, overlapping sequences of
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each video are constructed as the model input. To create these overlapping sequences image

frames i to i + m, where m is a tunable hyperparameter defining the window size of the

sequence. This window is then shifted by one frame to form the next subsequence for model

input, spanning frame i + 1 to frame i + m + 1. With this data augmentation operation, we

increase the amount of informative sequences that can be extracted from each combination of

processing parameters. Samples from the thermal image dataset before processing is applied

are shown in Figure 2a).

Following the extraction of the cross-sectional melt pool contours, we featurize the con-

tours for accurate prediction. Sample contours for the melt pool are shown in Figure 2b)

for three laser conditions. By creating multiple tracks for each power-velocity combination,

we observe variations in the morphology of the melt pool contour as the nominally specified

parameters are held constant. In order to represent the contour, the melt pool cross-section

is represented as a truncated signed distance function defined over a 2-D image [51]. Each

pixel of this image stores the cartesian distance to the nearest point on the melt pool bound-

ary. This distance is defined to be negative for points within the melt pool, and positive for

points outside the melt pool. Therefore, the exact shape of the melt pool contour can be

reconstructed by finding the iso-contour at 0 of the signed distance representation. In this

work, we use a 64 × 64 image representation, where each pixel corresponds to a rectangular

6.25 µm by 5.46 µm area. This representation establishes the bounds of the predicted con-

tour image as the maximum melt pool width and maximum melt pool depth observed over

the entire dataset.

Results

Dataset Details

To evaluate the performance of the proposed framework, we train the temporal trans-

former model to map video sequences of the melt pool thermal image to the corresponding

melt pool depth cross-sections and examine the similarity of the reconstructed melt pools.

10



The experimental monitoring dataset used for this work consists of 40 of the 64 unique

combinations of laser power and laser scan speed used to print single bead tracks, with the

remaining 24 omitted from the dataset due to the absence of measurable melt pool cross-

sections. This corresponds to 40 unique surface thermal image sequences at each exposure

time, corresponding to 3425 image frames available at a 4 µs exposure time and 3753 image

frames available at a 20 µs exposure time.

We separate the dataset into training and testing partitions based on a 75% training,

25% testing split. Specifically, 25% of the power-velocity combinations present within the

dataset are not considered during training in order to evaluate the performance of the model

on unseen data. The train-test split is applied in the space of power-velocity combinations

to avoid data leakage in the temporal sequences.

A temporal averaging filter of n = 5 frames is applied to the input video sequence to

remove small-scale temporal fluctuations from the dataset. Following this, each video is sub-

divided into overlapping subsequences of 50 frames each to provide the model with temporal

information about the melt pool motion. The transformer model is trained for 50 epochs

with a learning rate of 1×10−4 and a mini-batch size of 12. A weight decay factor of 1×10−3

and a dropout factor of 0.1 is applied as a regularization factor to reduce overfitting. A

sinusoidal positional encoding is applied within the model to provide information regarding

the relative order of each frame within the input video sequence. The temperature values

within the surface thermal images are normalized by the maximum possible intensity of the

16-bit TIF representation to lie within the range [0, 1].

Metrics

We evaluate model performance by examining the geometrical properties of the generated

melt pool cross-section. Specifically, the melt pool area and melt pool depth is compared to

a series of experimental measurements taken at similar processing conditions. We compare

these two dimensional metrics for agreement, in addition to the intersection-over-union (IoU)

score, which directly measures the overlap between the predicted and experimental ground
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truth melt pools within the dataset. The intersection over union score is defined as a ratio

of the overlap area between the ground truth and predicted contours to the combined area

of the ground truth and predicted contours.

Additionally, we compute the mean absolute error (MAE) and the Pearson R2 of the

correlation between the ground truth and predicted dimensional metrics.

The Pearson R2 coefficient is given by

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
(2)

and the MAE is given by

MAE =
1

n

n∑

i=1

|yi − ŷi| (3)

Finally, we also establish metrics focused on preserving the shape of the melt pool contour.

To do so, we calculate the MAE between the points defining the predicted melt pool contour,

and the points defining the ground truth melt pool contour. To facilitate this, we resample

each contour to consist of n = 100 horizontally equidistant points along the surface of the

melt pool, where each horizontal co-ordinate component has a corresponding vertical co-

ordinate component defining the depth of the melt pool at that point. The second metric

used to benchmark the preservation of the melt pool contour shape is the Hausdorff distance

[52]. The Hausdorff distance is introduced to measure the maximum deviation between two

contours, and is measured as the greatest distance from a point on one contour, to the nearest

neighbor on the second contour.

The introduction of these metrics, as a complement to the IoU score, allow us to account

for situations where the overall area of the melt pool may largely match the ground truth

but localized deviations cause the shape of the melt pool to significantly differ in a localized

region.
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Figure 3: a) Sample thermal images of the melt pool over time for P = 200 W, V = 0.9 m/s, P = 350 W, V
= 1.2 m/s, and P = 250 W, V = 0.3 m/s used as input for the depth contour prediction model. A moving
average window is applied temporally for a period of 220 µs (n = 5), and a sequence length of 50 frames is
used for the prediction. A 20 µs exposure time is used as input to the depth contour prediction model. b)
A comparison of the depth contours predicted by the temporal transformer model to the ground truth depth
contours.

Baseline Performance

First, we evaluate the performance of our proposed model on the varying monitoring

configurations used to collect the surface thermal image dataset. The corresponding IoU

scores are computed for four different configurations of the melt pool image, contrasting the

performance with monochrome images to the performance with temperature images, and

contrasting the performance of images collected with a 4 µs exposure time to those collected

with a 20 µs exposure time. We examine these results for one sample configuration in Figure
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3, where temperature estimates at a 20 µs exposure time are provided for analysis. Figure

3a) demonstrates the temporal variation of the melt pool once a moving average window

of n = 5 frames is applied to the image sequence. The core structure of the melt pool is

preserved over time, and variation is localized to the lower temperature fringes of the melt

pool surface image. Figure 3b) demonstrates sample prediction contours for the three sample

melt pool sequences shown in Figure 3a). Close agreement is observed qualitatively between

the morphology of the ground truth melt pool cross-section and the predicted melt pool

cross-section.

a) b)

Figure 4: A comparison of the U-Net and Temporal Transformer prediction performance as a function of
sequence length. a) The mean absolute error of the resampled predicted contour points, compared to the
resampled ground truth contour points as a function of the sequence length. (b) The Hausdorff distance
between the predicted contour points, and the ground truth contour points.

The performance of the transformer model on each configuration is listed in Table 2.

Notably, we observe that the most accurate predictions are obtained with the temperature

estimates derived from the ratiometric temperature images. The IoU of the predicted cross-

sections appears is almost identical between an exposure time of E = 4µs, and an exposure

time of E = 20µs. With this configuration, the trained model achieves the lowest error

between the predicted and experimentally observed melt pool dimensions, and the largest

IoU score.

Similarly, we examine the influence of the sequence length chosen for the sub-sequence
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Table 1: Contour Evaluation Results
E = 4 µs E = 20 µs

Model Architecture IoU ↑ Hausdorff Distance ↓ Contour Error ↓ IoU ↑ Hausdorff Distance ↓ Contour Error ↓
Temporal Transformer 0.764 ± 0.038 20.086 ± 3.956 9.917 ± 3.001 0.767 ± 0.012 19.234 ± 1.301 8.138 ± 1.804
ViT 0.767 ± 0.017 25.546 ± 0.347 11.230 ± 0.323 0.790 ± 0.013 24.559 ± 0.016 9.166 ± 0.735
UNet 0.763 ± 0.017 26.538 ± 3.006 11.759 ± 0.724 0.763 ± 0.055 30.471 ± 2.124 13.372 ± 1.794

Table 2: Thermal Image Processing Results

Exposure Time, E 4 µs 20 µs

Image Format IoU ↑ IoU ↑
Monochrome 0.726 ± 0.026 0.747 ± 0.008
Temperature 0.767 ± 0.041 0.769 ± 0.014

definition on the prediction quality of the melt pool cross-sections (Figure 4). As the sequence

length increases, the performance of the model improves, increasing from an area correlation

R2 of 0.78 at a sequence length of a single frame to an area correlation R2 of 0.88 at a

sequence length of 40 frames. From this analysis, at longer sequence lengths the model is

able to observe longer-range temporal dependencies, and is less sensitive to the instantaneous

fluctuations of the melt pool temperature due to the short time-scale phenomenon occurring

in the process. While a longer sequence length may lead to increased performance, it also

limits the timescale at which laser control would be possible with this system.

Model Comparison

To evaluate the performance of the proposed model, we benchmark the observed perfor-

mance against architectures designed to only consider the spatial component of the melt pool

structure, neglecting the temporal information. Specifically, we compare the performance of

a U-Net architecture and a Vision Transformer architecture to the performance observed

with our proposed model [41, 53]. These models have shown demonstrated success in related

computer vision tasks similar to the task presented here, such as image segmentation and

depth estimation. To adapt the task for these 2-D architectures, we apply the same data

augmentation strategy to divide each image sequence into multiple sub-sequences of a speci-

fied length. However, the images within each sub-sequence are then mean-aggregated in time
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to construct a single 2-D input image for each sub-sequence.

Figure 5: A comparison of the extracted melt pool dimensions for contour predictions on the test partition
of the experimental dataset, for three different model architectures. a) The area correlation between the
ground truth and predicted melt pool contours, for the U-Net, Vision Transformer, and Temporal Transformer
models. The dotted lines indicate a deviation of ±6500 µm2 from the ideal prediction. b) The area correlation
between the ground truth and predicted melt pool contours, for the U-Net, Vision Transformer, and Temporal
Transformer models. The dotted lines indicate a deviation of ±45 µm from the ideal prediction.

Each model is trained for 50 epochs on the same train-test dataset split, and the pre-

processing steps are held constant. More details regarding the specific configuration of each

model are provided in the Appendix. We evaluate the performance of each of the three

architectures for two different exposure times on the surface temperature estimates (Table

1).

We first examine the comparison between a U-Net architecture for this task, and the

implemented transformer architecture. We find that our model out-performs the U-Net on

the contour shape metrics, and achieves comparable accuracy on the IoU metric. Specifically,

the ±1σ confidence interval of the temporal transformer network falls directly within the

confidence interval of the U-Net architecture’s performance on the IoU metric. We graphically

compare the performance of the three models by comparing the experimental melt pool
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dimensions with the dimensions of the corresponding predicted melt pool (Figure 5. When

examining the model predictions on a process parameter basis, we observe that at higher

energy densities, the variation within the predicted melt pool dimensions becomes more

significant (Figure 5). However, the implemented transformer architecture has much less

variation in the predictions produced over time by a single model. Notably, our model is

able to achieve this performance with significantly smaller model with 7.5 ×106 parameters,

compared to the 8 ×107 parameters within the implemented standard U-Net model.

We also examine the influence of applying attention temporally by evaluating the per-

formance of our model against a conventional Vision Transformer (ViT) that only operates

spatially on individual 2-D images. This Vision Transformer model applies attention in the

spatial axis, dividing the input image into sub-windows, or patches, of size 16 x 16, and learn-

ing how each patch attends to the other patches within the image [41]. This paradigm allows

for prediction over complex images with features at multiple scales, however, at the cost of

computational requirements that grow quadratically with the number of patches. Therefore,

we compare the choice of applying attention spatially as opposed to temporally by bench-

marking the performance of our model against a conventional vision transformer. Following

this comparison, we note that our implemented model also outperforms the ViT model on the

melt pool shape metrics, and achieves equivalent performance on the Intersection-over-Union

benchmark. Similarly to the U-Net benchmark discussed earlier, we are able to achieve this

performance with fewer parameters by combining the inductive biases within convolutional

networks with the sequence learning abilities of transformer models.

Pre-Training

To alleviate the data requirements for training the model, we investigate the integration of

simulation data with experimental observations. The process of cross-sectioning and etching

samples becomes time-consuming at large scales, therefore, reducing the number of annotated

labels required will increase the efficiency of this framework for future applications.

The approach implemented for integrating simulation data with experimental data is
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Figure 6: a) Sample thermal images of the FLOW-3D simulated melt pool over time for P = 340 W, V =
1.05 m/s, P = 370 W, V = 0.45 m/s, and P = 430 W, V = 0.7 m/s used as input for the depth contour
prediction model. b) A comparison of the depth contours predicted by the temporal transformer model to
the depth contours obtained via FLOW-3D simulation.

based upon transfer learning, where models are first trained via simulation results and sub-

sequently fine-tuned on experimental observations. In this framework, a model will first be

trained to predict the melt pool cross-sectional morphology using simulation-based surface

images and cross-sections. To do so, we create a dataset of 300 SS316L single-track bare

plate runs using the CFD software FLOW-3D® [54]. FLOW-3D is a multiphysics package

which solves the coupled partial differential equations governing mass transfer, heat transfer,

and momentum transfer within the melt pool. FLOW-3D incorporates considerations for the

physical phenomena taking place during the melting process, including phase change, laser
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reflection, and evaporation. A more detailed description of these considerations is provided

within [30, 49].

These simulations are constructed with FLOW-3D (Version 12.0, Release 7) to cover the

power-velocity space with a laser power range of 130 W to a laser power of 500 W at an

increment of 30 W, and a velocity range of 0.3 m/s to 1.5 m/s at an increment of 0.05 m/s.

To extract the equivalent melt pool contour from the simulation data, we define a time-

aggregated composite melt pool that compiles the maximum temperature seen for a specific

grid cell over the entire length of the simulation. Next, we apply an iso-contour at a threshold

T ∗, which is defined to be halfway between the solidus and liquidus temperatures. For each

simulation, we extract the surface temperature profiles by projecting the three-dimensional

free surface of the melt pool onto a flat plane.

Tsurface = max
z

T (x,y, z)

To ensure consistency with the experimental monitoring data, the input thermal images

and target depth contours are rescaled to match the experimental monitoring resolution.

Specifically, a 320µm by 320 µm area around the laser is extracted and upscaled by a factor

of two to obtain a 64 × 64 pixel image resolution. Further interpolation and grid rescaling

is applied to ensure the spatial resolution of the simulated surface thermal images matches

the 5.6 µm pixel resolution of the experimental thermal images.

We train the model for 100 epochs on the FLOW-3D dataset to examine its performance

in simulation, free of measurement noise. The results of the training process are shown in

Figure 6. Notably, we achieve an R2 of 0.98 on the melt pool depth and width computed

from the predicted contours, and an IoU of 0.99 for the overlap between the predicted and

simulation contours.

To examine the learned embedding space of the model trained on simulated surface tem-

peratures, we perform dimensionality reduction on the 128-dimensional readout token opti-

mized during the training process. To examine how this token changes throughout the dataset
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in a visually intuitive manner, we apply the dimensionality reduction algorithm t-distributed

Stochastic Neighbor Embedding (t-SNE), to produce a reduced order 2-dimensional vector

representation for each sample in the dataset [55]. The correlation of these low-dimensional

representations with the properties of the melt pool are shown in Figure 7, where each point

represents the compressed read-out token associated with a specific data sample. In Figure

7a), intuitive trends are observed within the 2-dimensional latent space. Specifically, samples

with similar depths in the unseen test dataset are observed to be clustered together in the

latent space, and a smooth transition between the shallow melt pools and deeper melt pools

is also apparent. In Figure 7b), these trends are also shown to hold for the energy density

of each melt pool, also demonstrating that the model is able to learn generalizable, intuitive

representations of the underlying physical mechanisms of melt pool formation.

a) b)

Figure 7: Accuracy metrics after fine-tuning a model trained on FLOW-3D with experimentally collected
data. The model is able to recover performance comparable to the full experimental dataset more quickly
than a model trained from a random initialization. Each model instance was trained for 100 epochs on the
FLOW-3D dataset, and finetuned for 10 epochs on a subset of the experimental data. a) The R2 of the area
correlation compared between the pretrained model and a randomly initialized model. b) The Intersection-
over-Union score of the area correlation compared between a pretrained model and the randomly initialized
model.

Model Transfer to Experimental Data

In order to apply the information learned by the model in simulation to the experimen-

tally collected dataset, we first train the model for 100 epochs on the simulation dataset

as described earlier. Next, we fine-tune the trained model on a subset of the training par-
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Figure 8: a) A comparison of the Intersection-over-Union (IoU) metric as a function of the amount of data
used for model training. These comparisons are made for both a model trained with randomly initialized
weights, and a model that has been transfer learned from FLOW-3D simulation data. b) A comparison of
the correlation between the area extracted from the predicted cross-section to the area extracted from the
ground truth cross-section, a function of the amount of data used for model training. These comparisons are
made for both a model trained with randomly initialized weights, and a model that has been transfer learned
from FLOW-3D simulation data.

tition of the single-track melt pool cross-sections. To do so, we initialize the model with

the weights learned from the FLOW-3D training process, and continue the training process

with a randomly selected sample of the training partition of the experimental dataset. We

evaluate the performance of the fine-tuned model on the original test partition of the dataset

as the fraction of training data available as input is varied. In Figure 4a), the correlation

between the ground truth and predicted melt pool cross-sectional areas is shown to increase

dramatically when a model pre-trained on simulation data is used for prediction, compared

to a network with randomly initialized weights. A similar effect is observed in Figure 4b) for

the IoU score of the predicted cross-sections. Therefore, pre-training the model on the melt

pool contours generated via simulation enables predictions with an area correlation of R2 of

0.65, using only 25% of the power-velocity combinations cross-sectioned for this work.

Hatch Spacing Analysis

Finally, we investigate the application of our model towards predicting the overlap be-

tween melt pool contours observed during multi-track printing. The failure of the melt

tracks to correctly overlap can create lack-of-fusion porosity. Therefore, we seek to under-
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Figure 9: We investigate the ability of the machine learning model to predict information about the melt
pool overlap over different hatch spacing values. a) The calculation of the intersection distance from the
melt pool overlap observed at a certain hatch spacing. b) A comparison of the intersection distance observed
after applying the transformer model to predict the melt pool morphology. c) Qualitative examples of the
melt pool overlap behavior predicted at different hatch spacing values and energy densities. d) A sample
optical micrograph of the overlapping scan tracks at h = 125 µm, P = 300 W, V = 1.2 m/s.

stand whether the predicted melt pool contours can be used as an in-situ monitoring tool

for identifying overlap between successive hatches. To do so, we collect high-speed two-color

thermal images of the melt pool following the specifications described above, at a frame rate

of 6400 FPS. Similarly, we again cross-section, polish, and etch the solidified build plate.

With this dataset, we leverage our model trained on single-track runs at varying laser en-

ergy densities to predict the melt pool depth observed at each hatch from the corresponding

thermal image sequence. The results of this analysis are shown in Figure 9. We use the

distance from the surface of the melt pool to the intersection of the hatches as a metric to
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investigate if the overlap is correctly captured. In Figure 9b), we show that the statistics

of the experimentally observed intersection distances match directly with the intersection

distances observed in experiment. In Figure 9c) and Figure 9d), qualitative examples of the

predicted and experimentally observed cross-sectioned tracks are shown. The close agreement

between the ML predicted melt pool overlap and the overlap demonstrated in experiment

demonstrates promise towards using this methodology as a tool for in-situ defect detection.

Conclusion

In this work, a method for predicting the melt pool cross-sectional morphology from

in-situ high-speed two-color thermal imaging of the melt pool surface was created. This is

accomplished through the implementation of a hybrid CNN-Transformer model. By decom-

posing the model architecture into the spatial and temporal components of the prediction

task, we leverage the advantages of both convolutional and attention-based architectures.

Specifically, the stricter inductive bias of convolutional neural networks are leveraged to ex-

tract the spatial information contained within the individual melt pool frames via a ResNet

backbone. Next, the temporal relationships between these encoded thermal image frames

are learned by a transformer model to discover any potential temporal dependency within

the image sequence.

The performance of this framework is evaluated based on the dimensions of the predicted

melt pool, as well as shape-dependent metrics such as the Intersection-over-Union score. The

optimal monitoring configuration for model performance is examined by benchmarking these

metrics for both monochrome images and temperature estimates at different exposure times.

Further comparisons are made between the performance of conventional computer vision

architectures on this task, with our proposed model demonstrating greater stability than a

U-Net or Vision Transformer-based architecture. Finally, we evaluate the utility of transfer-

learning to reduce the amount of experimental data required for robust model training. The

successful development of this model enables the prediction of the melt pool cross-section
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directly from in-situ monitoring information, allowing L-PBF practitioners to have robust

early detection of lack-of-fusion and porosity estimates. Future extensions of this work could

examine the temporal information that is learned by a sequential model at higher sampling

rates for greater insight into the physics underlying the temporal oscillation of the melt pool.

Additionally, experiments with powder applied to the build plate can yield additional insight

into the variability of the observed melt pool during the build process.
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Appendix A. Experimental Data

Figure A.10: Sample thermal images after ratiometric conversion for the power-velocity combinations studied
in this work. a) Thermal images at an exposure time of E = 4 µs. b) Thermal images at an exposure time
of E = 20 µs.

Figure A.11: Optical micrographs of the cross-sectional tracks at varying energy densities, ranging from
Power = 150 - 400W and Velocity = 0.3 - 2.4 m/s.
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Appendix B. FLOW-3D Simulation Details

We simulate a single-track bare plate melting simulation for each unique power-velocity

combination in the FLOW-3D dataset. The simulated build plate is 1000µm × 600µm ×

400µm, in the x, y, and z directions respectively. The x-axis indicates the laser direction

of travel, while the y-axis lies along the width of the generated melt pool, and the z-axis is

defined as the vertical axis. Each simulation is carried out for 500 µs and data is reported at 5

µs intervals, for a total of 100 time-dependent snapshots for each power-velocity combination.

The material parameters used for simulation are reproduced in Table B.3.

Table B.3: Material Parameters used to simulate the SS316L melting process.

Parameter Value Units

Density, ρ, 298 K 7950 kg/m3

Density, ρ, 1923 K 6765 kg/m3

Specific Heat, Cv, 298 K 470 J/kg/K
Specific Heat, Cv, 1923 K 1873 J/kg/K
Vapor Specific Heat, Cv,vapor 449 J/kg/K
Thermal Conductivity, k, 298 K 13.4 W/m/K
Thermal Conductivity, k, 1923 K 30.5 W/m/K
Viscosity, η 0.008 kg/m/s
Surface Tension, σ 1.882 kg/s2

Liquidus Temperature, TL 1723 K
Solidus Temperature, TS 1658 K
Fresnel Coefficient, ϵ 0.15 -
Accommodation Coefficient, a 0.25 -
Latent Heat of Fusion, ∆Hf 2.6 ×105 J/kg
Latent Heat of Vaporization, ∆Hv 7.45 ×106 J/kg

Appendix C. Experimental Data Variability

In order to examine the variation between successive cross-sections at the same power-

velocity combination, we study the statistics of the melt pool dimensions and contour shape

as a function of energy density. To examine the variation in the melt pool dimensions, we

extract the depth of the melt pool for each cross-section available in the dataset. These

melt pool depths are aggregated based on their associated laser power and scan velocity to
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compute the mean and standard deviation, as shown in Figure C.12a). The variability of the

melt pool shape is quantified by examining the overlap between the melt pool cross-sections

present at a specific power-velocity combination. As the Intersection-over-Union score is

defined between two sample objects, we compute the IoU score between every possible pair

of n melt pool cross-sections at a given power-velocity specification to obtain
(
n
2

)
IoU values.

We report the mean and standard deviation of these IoU values in C.12b). Notably, while the

melt pool depth follows a straight-forward relationship with the laser energy density, there

is much more variation in the melt pool contour shapes as a function of energy density. The

mean of all
(
n
2

)
IoU values available for the power-velocity combinations in the dataset is

0.870.

Figure C.12: The variation in the peak cross-section depth (a) and the cross-section melted shape (b) as
a function of energy density. The melted depth variation is measured by taking the mean and standard
deviation of the peak melt pool depth extracted at a specific power and velocity combination. The shape
variation is measured by first calculating the IoU for each of the possible pairs of melt contours that can be
formed from the set of melt pool contours available at a given power and velocity. The mean and standard
deviation of this IoU score is shown here. The error bar indicates ± 1σ of variation.

Appendix D. Machine Learning Architecture Details

The hyperparameter and architectural selections used for the Vision Transformer, Tem-

poral Transformer, and U-Net models respectively are shown in Table D.4.
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Table D.4: Combined Implementation Details

Hyper-Parameter Vision Transformer Temporal Transformer U-Net

Patch/Token Dimension 768 256 -
Encoder Layers - - 4
Expansion Channels - - [64, 128, 256, 512, 1024]
Contraction Channels - - [1024, 512, 256, 128, 64]
Feed-Forward Dimension 3072 1024 -
Heads 12 4 -
ResNet Channel Dimensions - [16, 32, 64, 128] -
Layers 12 4 -
Dropout 0.1 0.1 0.1
Learning Rate 1 × 10−4 1 × 10−4 1 × 10−4

Weight Decay 1 × 10−3 1 × 10−3 1 × 10−3

Epochs 50 50 50
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