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Abstract

To continue from our previous work Phys.Rev.D109(2024),073007, we derive the full Standard

Model prediction of the most general free neutron differential decay rate with all massive particles

(neutron, proton and electron) polarized, including the O(1/mN ) recoil corrections and O(α/π)

radiative corrections. For the latter we adopt the newly-developed pseudo-neutrino formalism which

is compatible to realistic experimental setups, in which neutrinos and photons are not detected.

We also provide readily-executable Mathematica notebooks to evaluate these corrections.
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I. Introduction

This paper is a direct sequel to our previous work, Ref.[1]. In that paper, we studied

for the first time consequences to the free neutron decay assuming that the polarization of

the outcoming proton could be measured. This gives rise to a very rich decay correlation

structure which can be used as a powerful tool not only to probe new physics beyond the

Standard Model (BSM), but also to test the consistency of the effective field theory (EFT)

description of BSM physics (which assumes new degrees of freedoms (DOFs) are heavy) and

to search for signals of light new DOFs. This effort was partially motivated by the recent

discrepancy in the determination of the axial-to-vector ratio λ from the electron-neutrino

correlation a [2, 3] and the beta asymmetry parameter A [4], which is difficult to be explained

within the EFT framework.

To make full use of this new formalism, one requires a precise Standard Model (SM)

prediction of the new correlation coefficients in order to isolate the small BSM effects from

experimental measurements. In Ref.[1] we studied only the tree-level SM contributions,

accompanied by the Fermi function [5] and the virtual radiative corrections. In this paper

we complete the task by including all the SM higher-order corrections up to 10−4, which cover

the full O(1/mN ) recoil corrections and the O(α/π) radiative corrections. While the former

is straightforward, the latter is more complicated as its depends on the actual experimental

setup. In particular, it was recently pointed out [6] that the “conventional” treatment of

the so-called outer radiative corrections [7–9] is incompatible to actual experiments as it

depends on the neutrino momentum ~pν (the “neutrino” formalism) which is never actually

measured, and cannot be deduced directly from the electron and proton momenta when an

extra (undetected) photon is emitted. To circumvent this problem, the differential decay rate

must be expressed in terms of fully-measurable quantities; possible choices are {~pe, Ep} (the

“recoil” formalism) [6, 10–16] and {~pe,Ω′
ν} (the “pseudo-neutrino” formalism) [17], where Ω′

ν

is the solid angle of the “pseudo-neutrino” momentum ~p′ν ≡ −~pe − ~pp. The applicability of

the first method is more restrictive because half of the angular observables are integrated

out, which make it difficult to describe many spin-dependent correlations (e.g. the neutrino

asymmetry parameter B). The pseudo-neutrino formalism, on the other hand, is capable to

describe all correlations of interest and thus will be adopted in this work.

The content of this work is arranged as follows. In Sec.II, III we lay out the theory
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framework for the O(1/mN) recoil corrections and O(α/π) radiative corrections, respec-

tively; the full SM expression including such corrections are presented in Sec.IV. In Sec.V

we compare our results to all existing results of recoil and radiative corrections (to the best

of our knowledge) that do not involve the proton polarization. A brief summary is provided

in Sec.VI. Some technical details in this work, as well as some basic instructions to utilize

the supplemented Mathematica notebooks, are given in the Appendices.

II. Framework for recoil corrections

In this section we describe the theory foundation for the 3-body final state contribution

(n(pn) → p(pp) + e(pe) + ν̄(pν)) to the neutron differential decay rate, that allows us to

incorporate the O(1/mN) recoil corrections. Our derivation follows closely to that in Ref.[18].

We start from the 3-body decay rate formula:

Γ3 =
1

2mn

∫

d3pp
(2π)32Ep

d3pe
(2π)32Ee

d3pν
(2π)32Eν

(2π)4δ(4)(pn− pp− pe − pν)|M3|2 ≡
∫

dΠ3|M3|2 ,
(1)

where M3 is the 3-body decay amplitude. Using the spatial delta function to integrate out

~pν , we can simplify the 3-body phase space as:
∫

dΠ3 =
1

16(2π)5mn

∫

dΩedΩν

∫ Em

me

dEepe

∫

dEν

Eν

mn − Ee + pec
×

δ

(

Eν −
Em −Ee

1− Ee−pec

mn

)

, (2)

where Em ≡ (m2
n −m2

p +m2
e)/(2mn) is the exact electron end-point energy, pe ≡ |~pe|, and

c ≡ p̂e · p̂ν is the cosine of the angle between the electron and neutrino momenta. Notice

that the energy delta function does not impose any constraint to the solid angles Ωe, Ων ,

since Eν remains positive for all values of c.

The recoil corrections come from both the squared amplitude and the phase space, and

let us start with the former. The SM 3-body amplitude reads:

M3 = −GV√
2
LµH

µ . (3)

Let us explain the notations. First, GV = GFVudgV , where GF = 1.1663788(6)×10−5 GeV−2

is the Fermi coupling constant measured from muon decay [19], Vud is the upper left com-

ponent of the Cabibbo-Kobayashi-Maskawa matrix [20, 21], and gV is the neutron vector
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coupling constant (more explanations later); Lµ = ūeγµ(1− γ5)vν and Hµ = ūpΓµun are the

matrix elements of the leptonic and hadronic charged weak current respectively, with the

nucleon vertex function defined as:

Γµ(pp, pn) ≡ γµ(1 + λγ5)−
i

2mN

(µV − 1)σµν(pn − pp)ν −
2mNλ

m2
π

(pn − pp)
µγ5 , (4)

where λ ≡ gA/gV < 0 is the axial-to-vector coupling ratio (more explanations later), µV =

κV +1 ≡ µp−µn ≈ 4.7059 is the weak magnetic moment, mN ≡ (mn+mp)/2 is the averaged

nucleon mass, and mπ is the pion mass. The pseudoscalar coupling is related to the axial

coupling through the partially-conserved axial current (PCAC) relation. Notice that we

have dropped the momentum-dependence of the nucleon form factors in the expression

above, because its effect scales as E2
e/Λ

2 < 10−4, where Λ is the relevant hadronic mass

scale in the form factors. Another important point is that, we have defined the vector and

axial couplings above to include the “inner” radiative corrections:

g2V = g̊2V (1 + ∆V
R) , g2A = g̊2A(1 + ∆A

R) , (5)

where g̊V,A are the pure Quantum Chromodynamics (QCD)-induced vector and axial cou-

plings; in particular, g̊V = 1 barring a possibly-relevant strong isospin symmetry breaking

correction that can be studied using lattice QCD [22]. Tremendous progress is observed in

recent years to the inner corrections: see, e.g. Refs.[23–28] for ∆V
R and Refs.[27, 29–31] for

∆A
R.

An efficient way to keep track of the recoil corrections from the squared amplitude is to

factor out 4mnmp from |M3| and define a “quantum mechanical” squared amplitude:

|M3|2QM ≡ 1

4mnmp

|M3|2 =
G2

V

2
LµνH

µν , (6)

where1

Lµν ≡
∑

sν

LµL
∗
ν = Tr

[

Σe(/pe +me)γµ(1− γ5)/pνγν(1− γ5)
]

Hµν ≡ 1

4mnmp

HµH
∗
ν =

1

4mnmp

Tr
[

Σp(/pp +mp)ΓµΣn(/pn +mn)Γν

]

, (7)

with Γν ≡ γ0Γ†
νγ

0. In this work we assume n, p and e are all polarized, which introduce

three spin projection operators:

Σφ =
1

2
(1 + γ5/sφ) , φ = n, p, e , (8)

1 The Hµν here differs from that in Ref.[17] by a factor 1/(4mnmp).
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with the spin vector sµφ satisfying sφ · pφ = 0, s2φ = 0. In the neutron’s rest frame they take

the following expressions:

sµn = (0, ŝn)

sµp =

(

~pp · ŝp
mp

, ŝp +
~pp · ŝp ~pp

mp(Ep +mp)

)

≈
(

~pp · ŝp
mN

, ŝp

)

sµe =

(

~pe · ~σ
me

, ~σ +
~pe · ~σ ~pe

me(Ee +me)

)

, (9)

with ŝn, ŝp and ~σ the unit polarization vector of n, p and e in their respective rest frame.

One may now expand the squared amplitude as

|M3|2QM = EeEν

{

F (0)(~pe,Ων) +
1

mN

F (1)(~pe, Eν ,Ων) + ...

}

. (10)

F (0) is the result in the non-recoil limit, while F (1) contains the leading recoil correction to

the squared amplitude. The expansion is most easily doable by first expressing the proton

momentum as:

pp = pn − pe − pν = (mn − Ee −Eν ,−~pe − ~pν) , (11)

and writing mn = mN + δm/2, mp = mN − δm/2, with δm ≡ mn − mp. After that, we

rescale the hadron masses as2:

mN → mN/ǫ , mπ → mπ/ǫ , (12)

and expand |M3|2QM to O(ǫ) to get Eq.(10). It is useful to note that F (0) depend only on ~pe,

Ων and not on Eν . This is because in the non-recoil limit the neutrino momentum appears

linearly (and only linearly) through the lepton tensor as /pν . Since pµν = Eν(1, p̂ν), so after

scaling out Eν the rest must be Eν-independent.

We plug Eq.(10) back into Eq.(2) and perform the following expansion [18]:

mpE
2
ν

mn − Ee + pec
≈ (Em − Ee)

2

{

1 +
3Ee −Em − 3pec

mN

}

(13)

which encodes the leading recoil corrections from the phase space. That gives the following

master formula

Γ3 =
1

128π5

∫

dΩedΩν

∫ Em

me

dEepeEe(Em −Ee)
2 ×

{

F (0)(~pe,Ων) +
(3Ee − Em − 3pec)F

(0)(~pe,Ων) + F (1)(~pe, Em − Ee,Ων)

mN

+ ...

}

(14)

2 Although mπ ≪ mN , we have checked that the contribution from the pseudoscalar form factor scales as

E2
e/m

2
π < 10−4, which can be dropped given our precision goal.
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that accounts for the first-order recoil effects in the 3-body decay from both the phase space

and the squared amplitude. Notice that we have replaced Eν → Em − Ee in F (1) since this

term is already suppressed by 1/mN .

We include, as a supplementary material, a Mathematica notebook recoil.nb to demon-

strate explicitly all the steps above.

III. Framework for radiative corrections

Next we study the O(α/π) radiative corrections, which include both one-loop and

bremsstrahlung corrections; the two have to be added to ensure the infrared-finiteness

of the final result. The former has already been studied in Ref.[1] and here we only need

to compute the bremsstrahlung contribution which concerns the 4-body decay n(pn) →
p(pp) + e(pe) + ν̄(pν) + γ(k).

We start from 4-body decay rate formula:

Γ4 =
1

2mn

∫

d3pp
(2π)32Ep

d3pe
(2π)32Ee

d3pν
(2π)32Eν

d3k

(2π)32Ek

(2π)4δ(4)(pn − pp − pe − pν − k)|M4|2

≡
∫

dΠ4|M4|2 . (15)

As advertised in the Introduction, we adopt the pseudo-neutrino formalism [17] by defining

an experimentally-measurable pseudo-neutrino momentum:

p′ν ≡ pn − pp − pe ≡ (E ′
ν , ~p

′
ν) . (16)

In 3-body decay, p′ν and pν are equivalent so nothing in Sec.II has to be changed. On the

other hand, the 4-body phase space takes the following form in the non-recoil limit:
∫

dΠ4 ≈ 1

512π6mnmp

∫

dΩedΩ
′
ν

∫ Em

me

dEepe

∫ E′

ν

0

dp′
νp

′
ν
2
∫

d3k

(2π)32Ek

d3pν
(2π)32Eν

×(2π)4δ(4)(p′ν − pν − k) , (17)

where p
′
ν ≡ |~p′ν |, and notice that p

′
ν 6= E ′

ν in general. Rigorously speaking, the upper limit

of Ee should be taken as the “zeroth-order” electron end-point energy E0
m ≡ mn −mp in the

non-recoil limit, but since the 4-body contribution itself is already O(α/π)-suppressed, one

may replace E0
m → Em to be consistent with the 3-body formula, which results only in a

O(α/π×Ee/mN ) correction that can be neglected. With the same reason, one simply takes

E ′
ν ≈ Em − Ee everywhere in the O(α/π) contribution.
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The 4-body amplitude, after neglecting recoil corrections, takes the following form:

M4 ≈ −GV e√
2

(

p · ε∗
p · k − pe · ε∗

pe · k

)

HµL
µ +

GV e√
2

(

kµε∗ν − kνε∗µ − iǫµναβkαε
∗
β

2pe · k

)

HµLν

≡ M4I +M4II , (18)

where we may drop the weak magnetism and pseudoscalar form factors in Hµ as they

are recoil-suppressed. Also, we take pn, pp → p in the 4-body amplitude with p2 = m2
N .

Following Ref.[17], we split the squared amplitude as:

|M4|2QM ≡ 1

4m2
N

|M4|2 = |M4I|2QM + 2Re {M4IM∗
4II}QM + |M4II|2QM , (19)

where

|M4I|2QM = −G2
V e

2

2

(

p

p · k − pe
pe · k

)2

HµνL
µν ≡ |M4I|2QM,a + |M4I|2QM,b

2Re {M4IM∗
4II}QM = G2

V e
2
Re

{(

p

p · k − pe
pe · k

)

α

(

kρgασ − kσgρα + iǫρσγαkγ
2pe · k

)

HµρL
µ
σ

}

|M4II|2QM = − G2
V e

2

8(pe · k)2
{kµgνα − kνgµα − iǫµνγαkγ} ×

{

kρgσα − kσgρα + iǫρσδαkδ
}

HµρLνσ . (20)

Notice that, in the first equation we have substituted pν = p′ν − k in Lµν , and the “a” and

“b” term correspond to taking the p′ν and −k piece, respectively.

Among various terms in the bremsstrahlung contribution, only |M4I|2QM,a is infrared-

divergent upon integrating over pν , k and p
′
ν , but such integrals can be analytically per-

formed. It combines with the virtual radiative corrections to yield an infrared-finite result

(see Ref.[17] for details). For the remaining, “regular” piece:

|M4|2QM,reg ≡ |M4I|2QM,b + 2Re {M4IM∗
4II}QM + |M4II|2QM , (21)

the pν- and k-integral can be done analytically (see Appendix A, B for details), and the

remaining one-fold integration over p
′
ν is most conveniently carried out numerically. The

full steps to obtain the contribution from |M4|2QM,reg are provided in a second supplemented

Mathematica notebook, bremreg.nb.

IV. Full expression

Now we are ready to write down the full SM prediction of the differential rate of polarized

neutron decaying to polarized p and e, including O(α/π) and O(1/mN) corrections. It is
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C C0 δCan,1 δCan,2

a 1−λ2

1+3λ2

2(1−β2)
β

tanh−1 β + 4(1 − ln 4)
(

1
β
tanh−1 β − 1

)

0

A −2λ(λ+1)
1+3λ2

2(1−β2)
β

tanh−1 β 0

B 2λ(λ−1)
1+3λ2 4(1 − ln 4)

(

1
β
tanh−1 β − 1

)

0

G −1 2(1−β2)
β

tanh−1 β 0

H λ2−1
1+3λ2

me

Ee
−2β tanh−1 β + 4(1 − ln 4)

(

1
β
tanh−1 β − 1

)

0

K λ2−1
1+3λ2 2

(

Ee+me

pe

− β
)

tanh−1 β + 4(1 − ln 4)
(

1
β
tanh−1 β − 1

)

0

L 0 0 −2π(λ2−1)me

(1+3λ2)pe

N 2λ(λ+1)
1+3λ2

me

Ee

−2β tanh−1 β 0

Q 2λ(λ+1)
1+3λ2 2

(

Ee+me

pe

− β
)

tanh−1 β 0

R 0 0 4πλ(λ+1)me

(1+3λ2)pe

T −2λ(λ−1)
1+3λ2

2(1−β2)
β

tanh−1 β + 4(1 − ln 4)
(

1
β
tanh−1 β − 1

)

0

Ã 2λ(λ−1)
1+3λ2

2(1−β2)
β

tanh−1 β 0

B̃ −2λ(λ+1)
1+3λ2 4(1 − ln 4)

(

1
β
tanh−1 β − 1

)

0

Ñ −2λ(λ−1)
1+3λ2

me

Ee

−2β tanh−1 β 0

Q̃ −2λ(λ−1)
1+3λ2 2

(

Ee+me

pe

− β
)

tanh−1 β 0

R̃ 0 0 −4πλ(λ−1)me

(1+3λ2)pe

T̃ 2λ(λ+1)
1+3λ2

2(1−β2)
β

tanh−1 β + 4(1 − ln 4)
(

1
β
tanh−1 β − 1

)

0

Table I. Coefficients for the analytic part of the outer radiative corrections.

given in terms of the pseudo-neutrino formalism as follows:

(

dΓ

dEedΩedΩ′
ν

)

SM

=
peEe(Em −Ee)

2

128π5
F (Ee)

(

1 +
α

2π
δan(Ee, c

′)
)

G2
V (1 + 3λ2)

×
{

1 + gSM +
1

1 + 3λ2

[

1

mN

grecoil +
α

2π
greg
brem

]}

. (22)

Let us explain all the entries at the right hand side of Eq.(22):

1. F (Ee) is the well-known Fermi function [5].

2. δan(Ee, c
′) is the “universal” part of the outer radiative corrections (loop + bremsstrahlung)
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C C0 δCan,1 δCan,2

X 1−λ2

1+3λ2 0 0

ã 1−λ2

1+3λ2

2(1−β2)
β

tanh−1 β + 4(1 − ln 4)
(

1
β
tanh−1 β − 1

)

0

G̃ λ2−1
1+3λ2

2(1−β2)
β

tanh−1 β 0

H̃ λ2−1
1+3λ2

me

Ee
−2β tanh−1 β + 4(1− ln 4)

(

1
β
tanh−1 β − 1

)

0

K̃ λ2−1
1+3λ2 2

(

Ee+me

pe

− β
)

tanh−1 β + 4(1− ln 4)
(

1
β
tanh−1 β − 1

)

0

L̃ 0 0 −2π(λ2−1)me

(1+3λ2)pe

Ą −2λ(λ−1)
1+3λ2

me

Ee

−2β tanh−1 β + 4(1− ln 4)
(

1
β
tanh−1 β − 1

)

0

ą −2λ(λ+1)
1+3λ2

me

Ee

−2β tanh−1 β + 4(1− ln 4)
(

1
β
tanh−1 β − 1

)

0

Ń 2λ(λ+1)
1+3λ2

2(1−β2)
β

tanh−1 β + 4(1 − ln 4)
(

1
β
tanh−1 β − 1

)

0

ń 2λ(λ−1)
1+3λ2

2(1−β2)
β

tanh−1 β + 4(1 − ln 4)
(

1
β
tanh−1 β − 1

)

0

Ó 0 0 4πλ(λ+1)me

(1+3λ2)pe

ó 0 0 4πλ(λ−1)me

(1+3λ2)pe

Ź −2λ(λ+1)
1+3λ2 2

(

Ee+me

pe

− β
)

tanh−1 β + 4(1− ln 4)
(

1
β
tanh−1 β − 1

)

0

ź −2λ(λ−1)
1+3λ2 2

(

Ee+me

pe

− β
)

tanh−1 β + 4(1− ln 4)
(

1
β
tanh−1 β − 1

)

0

Table II. (Cont.) Coefficients for the analytic part of the outer radiative corrections.

in the pseudo-neutrino formalism, first defined in Ref.[17]:

δan(Ee, c
′) = −2

(

4− ln
4(Em −Ee)

2

m2
e

)(

1

β
tanh−1 β − 1

)

+
3

2
ln

m2
N

m2
e

− 11

4

+2 ln

(

1− βc′

1 + β

)

− 1

β
Li2

(

2β

1 + β

)

− 1

β
Li2

( −2β

1− β

)

− 2

β
Li2

(

β(c′ + 1)

1 + β

)

+
2

β
Li2

(

β(c′ − 1)

1− β

)

− 2

β
(tanh−1 β)2 + 2(1 + β) tanh−1 β , (23)

with c′ ≡ cos θeν′ = p̂e · p̂′ν = ~pe · ~p′ν/(pep
′
ν), ~β = pe/Ee and β = |~β|. Notice that,

unlike traditional Sirlin’s function, this function is angle-dependent.

3. gSM resembles the SM-contribution to the tree-level correlations gJTW+gEF+gsp+gspsn
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❅
❅
❅
❅❅

η

i
a b c d

1
Ee(9λ

2 − 4λµV + 3)
−me(λ

2 − 2λµV + 1)
4Eeλ(µV − 3λ)

3Ee(λ
2 − 1)

+2Emλ(µV − λ) +2Emλ(λ− µV )

2
Ee(−5λ2 + λ(3µV − 7) + µV )

0 Ee(λ+ 1)(5λ − µV ) 0
+Em(λ+ 1)(λ − µV )

3
Ee(7λ

2 − λ(3µV + 5) + µV )
me(1− λ)(λ− µV )

Ee(1− λ)(7λ − µV )
0

+2Emλ(µV − λ) +Em(1− λ)(µV − λ)

4

Ee(−9λ2 + 4λµV − 3)

0

2Ee

Ee+me

{2Eeλ(3λ− µV )

−3E2
e
(λ2−1)

Ee+me
+2Emλ(λ− µV ) +Emλ(µV − λ)

+me(4λ
2 − λµV + 1)

}

5 2me(2λ
2 − λµV − 1) 2Emλ(µV − λ) −3me(λ

2 − 1) 0

6 me(λ+ 1)(5λ − µV ) −Em(λ+ 1)(λ− µV ) me(λ+ 1)(µV − 5λ) 0

7

Ee(5λ
2 + λ(7 − 3µV )− µV )

0 Ee(λ+ 1)(µV − 5λ) 0−Em(λ+ 1)(λ − µV )

−2meλ(µV − 1)

8
−Ee(7λ

2 − λ(3µV + 5) + µV )
0

Ee(λ−1)
Ee+me

{Ee(7λ − µV )
0

+2Emλ(λ− µV ) +Em(µV − λ) + 6meλ}

9
Ee(5λ

2 − λ(3µV + 7) + µV )
0 Ee(1− λ)(5λ − µV ) 0

−Em(λ− 1)(λ − µV )

10
Ee(−7λ2 + λ(3µV − 5) + µV )

me(λ+ 1)(λ− µV )
Ee(λ+ 1)(7λ − µV )

0
+2Emλ(λ− µV ) +Em(λ+ 1)(µV − λ)

11 me(1− λ)(5λ − µV ) Em(λ− 1)(λ − µV ) me(λ− 1)(5λ − µV ) 0

12

−Ee(5λ
2 − λ(3µV + 7) + µV )

0 Ee(λ− 1)(5λ − µV ) 0+Em(λ− 1)(λ − µV )

+2meλ(µV + 1)

13
Ee(7λ

2 + λ(5 − 3µV )− µV )
0

−Ee(λ+1)
Ee+me

{Ee(7λ− µV )
0

+2Emλ(µV − λ) +Em(µV − λ) + 6meλ}

14 3Ee(1− λ2) me(λ
2 − 1) 0 3Ee(λ

2 − 1)

15 3Ee(λ
2 − 1) 0 2Eeme

Ee+me
(1− λ2) 3E2

e
(1−λ2)

Ee+me

Table III. The recoil coefficients rηi.
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❅
❅
❅
❅❅

η

i
a b c d

16 2me(λ
2 − 1) 0 3me(1− λ2) 0

17 me(1− λ)(5λ− µV ) Em(λ− 1)(λ− µV ) 6meλ(λ− 1) 0

18 me(1 + λ)(µV − 5λ) Em(λ+ 1)(λ− µV ) 6meλ(λ+ 1) 0

19 me(1− λ)(λ+ µV ) 0 0 0

20 −me(1 + λ)(λ+ µV ) 0 0 0

21
2Ee(λ+ 1)(3λ − µV )

0 −6Eeλ(λ+ 1) 0
+Em(λ+ 1)(µV − λ)

22
2Ee(λ− 1)(3λ − µV )

0 −6Eeλ(λ− 1) 0
+Em(λ− 1)(µV − λ)

23
2Ee(λ+ 1)(µV − 3λ)

0 6Eeλ(λ+ 1) 0
+(Em −me)(λ+ 1)(λ − µV )

24
2Ee(λ− 1)(µV − 3λ)

0 6Eeλ(λ− 1) 0
+(Em −me)(λ− 1)(λ − µV )

25 me(λ− 1)(λ − µV ) Em(1− λ)(λ− µV ) 0 0

26 me(λ+ 1)(µV − λ) Em(1 + λ)(λ− µV ) 0 0

27 −2λ(Ee − Em)(λ− µV ) 0 0 0

28 2λ(Ee −Em)(λ− µV ) 0 0 0

29 2Eeλ(λ+ µV ) 0 0 0

30 -2Eeλ(λ+ µV ) 0 0 0

Table IV. (Cont.) The recoil coefficients rηi.
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that appear in Ref.[1]:

gSM = aβc′ + ŝn ·
[

A~β +Bp̂′ν

]

+ ~σ ·
[

G~β +Hp̂′ν +K
~pe

Ee +me

βc′ + L~β × p̂′ν

]

+~σ ·
[

Nŝn +Q
~pe

Ee +me

ŝn · ~β +Rŝn × ~β

]

+ T~σ · ~βŝn · p̂′ν

+ŝp ·
[

Ã~β + B̃p̂′ν

]

+ ~σ ·
[

Ñ ŝp + Q̃
~pe

Ee +me

ŝp · ~β + R̃ŝp × ~β

]

+ T̃~σ · ~βŝp · p̂′ν

+ŝp · ŝn [X + ãβc′] + ŝp · ŝn~σ ·
[

G̃β + H̃p̂′ν + K̃
~pe

Ee +me

βc′ + L̃~β × p̂′ν

]

+Ą~σ · ŝpŝn · p̂′ν + ą~σ · ŝnŝp · p̂′ν + Ńŝp · p̂′ν ŝn · ~β + ńŝn · p̂′ν ŝp · ~β

+Óŝp · p̂′ν~σ ·
(

~β × ŝn

)

+ óŝn · p̂′ν~σ ·
(

~β × ŝp

)

+Źŝp · p̂′ν ŝn · ~β
σ · ~pe

Ee +me

+ źŝn · p̂′ν ŝp · ~β
σ · ~pe

Ee +me

, (24)

but with a few modifications. First, p̂ν is replaced by p̂′ν = ~p′ν/p
′
ν in accordance to the

pseudo-neutrino formalism. Second, the correlation coefficients C = a, ..., ź in gSM are

renormalized by the (non-universal) analytic part of the outer radiative corrections

(loop + bremsstrahlung):

C(Ee) = C0
(

1 +
α

2π
δCan,1(Ee)

)

+
α

2π
δCan,2(Ee) . (25)

Here, C0 is the zeroth-order SM contribution, while δCan,1 and δCan,2 are obtained by

regrouping the separate pieces that appeared in Refs.[1, 17]3:

δCan,1(Ee) = δCvI(Ee)− δ1vI(Ee) + ∆ν′δIa2(Ee) , δCan,2(Ee) =
1

1 + 3λ2
δCvII(Ee) , (26)

where ∆ν′ = 1(0) if the correlation structure involves (does not involve) p̂′ν . The

analytic expressions of C0, δCan,1 and δCan,2 are provided in Table I-II.

4. grecoil represents the O(1/mN ) recoil corrections, from both the squared amplitude and

3 A special case: If C0 = 0, then we may set δC
an,1 = 0 for simplicity.
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the phase space:

grecoil = r1 + r2ŝn · ~β + r3ŝn · p̂′ν + r4~σ · ~β + r5~σ · p̂′ν + r6~σ · ŝn + r7ŝn · ~β
~σ · ~pe

Ee +me

+r8~σ · ~βŝn · p̂′ν + r9ŝp · ~β + r10ŝp · p̂′ν + r11~σ · ŝp + r12ŝp · ~β
~σ · ~pe

Ee +me

+ r13~σ · ~βŝp · p̂′ν

+r14ŝn · ŝp + r15ŝn · ŝp~σ · ~β + r16ŝn · ŝp~σ · p̂′ν + r17~σ · ŝpŝn · p̂′ν + r18~σ · ŝnŝp · p̂′ν
+r19~σ · ŝpŝn · ~β + r20~σ · ŝnŝp · ~β + r21ŝp · p̂′ν ŝn · ~β + r22ŝn · p̂′ν ŝp · ~β

+r23ŝp · p̂′ν ŝn · ~β
~σ · ~pe

Ee +me

+ r24ŝn · p̂′ν ŝp · ~β
~σ · ~pe

Ee +me

+ r25ŝn · p̂′ν~σ · p̂′ν + r26ŝp · p̂′ν~σ · p̂′ν

+r27ŝp · p̂′ν ŝn · p̂′ν + r28ŝp · p̂′ν ŝn · p̂′ν~σ · ~β + r29ŝp · ~βŝn · ~β + r30ŝp · ~βŝn · ~β
~σ · ~pe

Ee +me

,

(27)

where the analytic expressions of the functions

rη(Ee, c
′) = rηa(Ee) + rηb(Ee)

me

Ee

+ rηc(Ee)βc
′ + rηd(Ee)β

2c′2 , η = 1, ..., 30 (28)

are derived in our supplemented Mathematica notebook recoil.nb and are summarized

in Tab.III-IV. It is worthwhile to mention that, in the zeroth-order expression, an extra

factor of c′ defines a new correlation structure (e.g. G and K in Eq.(24)), but we do

not do the so to grecoil otherwise Eq.(27) would be too long. Therefore, we classify

different structures in grecoil only by their spin correlations. The same is for greg
brem

below.

5. Finally, greg
brem encodes the contribution from the “regular” part of the bremsstrahlung.

It takes the following form:

greg
brem = δreg

1 + δreg
2 ŝn · ~β + δreg

3 ŝn · p̂′ν + δreg
4 ~σ · ~β + δreg

5 ~σ · p̂′ν + δreg
6 ~σ · ŝn + δreg

7 ŝn · ~β
~σ · ~pe

Ee +me

+δreg
8 ~σ · ~βŝn · p̂′ν + δreg

9 ŝp · ~β + δreg
10 ŝp · p̂′ν + δreg

11 ~σ · ŝp + δreg
12 ŝp · ~β

~σ · ~pe
Ee +me

+ δreg
13 ~σ · ~βŝp · p̂′ν

+δreg
14 ŝn · ŝp + δreg

15 ŝn · ŝp~σ · ~β + δreg
16 ŝn · ŝp~σ · p̂′ν + δreg

17 ~σ · ŝpŝn · p̂′ν + δreg
18 ~σ · ŝnŝp · p̂′ν

+δreg
19 ~σ · ŝpŝn · ~β + δreg

20 ~σ · ŝnŝp · ~β + δreg
21 ŝp · p̂′ν ŝn · ~β + δreg

22 ŝn · p̂′ν ŝp · ~β

+δreg
23 ŝp · p̂′ν ŝn · ~β

~σ · ~pe
Ee +me

+ δreg
24 ŝn · p̂′ν ŝp · ~β

~σ · ~pe
Ee +me

+ δreg
25 ŝn · p̂′ν~σ · p̂′ν + δreg

26 ŝp · p̂′ν~σ · p̂′ν

+δreg
27 ŝp · p̂′ν ŝn · p̂′ν + δreg

28 ŝp · p̂′ν ŝn · p̂′ν~σ · ~β + δreg
29 ŝp · ~βŝn · ~β + δreg

30 ŝp · ~βŝn · ~β
~σ · ~pe

Ee +me

+δreg
31 ŝp · p̂′ν ŝn · ~β~σ · p̂′ν + δreg

32 ŝn · p̂′ν ŝp · ~β~σ · p̂′ν + δreg
33 ŝp · p̂′ν ŝn · p̂′ν~σ · p̂′ν + δreg

34 ~σ · p̂′ν ŝn · ~β

+δreg
35 ~σ · p̂′ν ŝp · ~β + δreg

36 ŝn · ~βŝp · ~β~σ · p̂′ν , (29)
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where the functions δreg
η = δreg

η (Ee, c
′) (η = 1, ..., 36) result from the integration of

Eq.(21) over pν , k and p
′
ν . They are too complicated to be displayed analytically, but

are evaluated numerically in the supplemented Mathematica notebook bremreg.nb.

V. Comparing to existing literature

Since we claim to have derived the SM prediction to the most general neutron differential

decay rate, an important step is to compare our result to all special cases available in existing

literature. We do this for both the recoil and radiative corrections.

A. Recoil corrections

Since the O(1/mN) recoil corrections involve only the 3-body decay process, there is no

difference between p̂ν and p̂′ν and we can directly compare our result with existing literature

for the differential decay rare, either with integrated or unintegrated Ων .

1. Polarized n and unpolarized p, e

Cases with polarized neutron and unpolarized proton and electron are most frequently

studied. We compare our r1–r3 with the expression of dΓ/(dEedΩedΩν) in, e.g. Refs.[30, 32,

33] (notice: λthere = −λhere), which we find perfect agreement4 .

2. Polarized e and unpolarized n, p

We compare our r4, r5 with the expression of dΓ/(dEedΩedΩν) in Ref.[34], which we find

perfect agreement.

3. Polarized n, e and unpolarized p

Recoil corrections to correlations that involve the simultaneous polarization of neutron

and electron are studied in Refs.[35, 36]. These references focused on the differential decay

4 A typo is present in the expression of c
(A)
1 in the supplementary material of Ref.[30], while Ref.[33] has

the correct expression.
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rate with integrated neutrino solid angle, dΓ/(dEedΩe). To compare with our result, we

need to perform the Ω′
ν integration:

dΓ

dEedΩe

=

∫

dΩ′
ν

dΓ

dEedΩedΩ′
ν

=

∫

dΩν

dΓ

dEedΩedΩν

, (30)

where the following identities are useful in dealing with the azimuthal angle in Ω′
ν :

∫

dΩ′
ν~s · p̂′ν =

∫

dΩ′
ν

c′

β
~s · ~β

∫

dΩ′
ν~s1 · p̂′ν~s2 · p̂′ν =

∫

dΩ′
ν

[

3c′2 − 1

2β2
~s1 · ~β~s2 · ~β +

1− c′2

2
~s1 · ~s2

]

∫

dΩ′
ν~s1 · p̂′ν~s2 · p̂′ν~s3 · p̂′ν =

∫

dΩ′
ν c

′

[

5c′2 − 3

2β3
~s1 · ~β~s2 · ~β~s3 · ~β

+
1− c′2

2β

(

~s1 · ~β~s2 · ~s3 + ~s2 · ~β~s1 · ~s3 + ~s3 · ~β~s1 · ~s2
)

]

. (31)

Using this we obtain, for the ŝn · ~σ structure, the following identity:

1

2

∫ 1

−1

dc′
(

r6 +
1− c′2

2
r25

)

=
me

Ee

[(

16

3
λ2 −

(

4

3
κV − 10

3

)

λ− 2

3
(κV + 1)

)

Ee

−
(

4

3
λ2 −

(

4

3
κV +

2

3

)

λ− 2

3
(κV + 1)

)

Em

]

. (32)

Meanwhile, for the ŝn · ~β~σ · ~β structure we obtain the following identity:

1

2

∫ 1

−1

dc′
(

r7 +
Ee +me

Ee

[

c′

β
r8 +

3c′2 − 1

2β2
r25

])

=

(

22

3
λ2 −

(

10

3
κV − 4

3

)

λ− 2

3
(κV + 1)

)

Ee

−
(

4

3
λ2 −

(

4

3
κV +

2

3

)

λ− 2

3
(κV + 1)

)

Em

+
(

2λ2 − 2(κV + 1)λ
)

me . (33)

The right hand side of these two equations has a slight difference in the O(λ) terms from

the corresponding expressions in the aforementioned references (e.g. Eq.(7) in Ref.[35])

which, we believe, indicate typos in the latter. Our full derivation of the recoil corrections

is provided in recoil.nb so interested readers can easily check its correctness.

B. Radiative corrections

The main obstacle in comparing our result of the radiative corrections to existing litera-

ture based on the neutrino formalism is that Ω′
ν 6= Ων , so

dΓ

dEedΩedΩ′
ν

6= dΓ

dEedΩedΩν

. (34)
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Fortunately, the two formalisms have to reconcile once the respective neutrino or pseudo-

neutrino solid angle is integrated out, as indicated in Eq.(30); that allows us to at least

compare our results with literature for the Ω′
ν-integrated expression, again making use of

Eq.(31) for the azimuthal angles. We adopt the notations by Ivanov et al. (cited below) for

the various functions for the outer corrections in the neutrino formalism.

1. Spin-independent structure

For this structure, we checked numerically that our result satisfies the following identity:

gn(Ee) =
1

4

∫ 1

−1

dc′
[

δan(Ee, c
′) +

1− λ2

1 + 3λ2
βc′
(

δan(Ee, c
′) + δaan,1(Ee)

)

+
δreg
1 (Ee, c

′)

1 + 3λ2

]

, (35)

where gn(Ee) is one-half of the well-known Sirlin’s function g(Ee) [7].

2. The ŝn · ~β structure

For this structure, we checked numerically that our result satisfies the following identity:

−2λ(λ+ 1)

1 + 3λ2
(gn(Ee) + fn(Ee)) =

1

4

∫ 1

−1

dc′
[

−2λ(λ+ 1)

1 + 3λ2

(

δan(Ee, c
′) + δAan,1(Ee)

)

+
2λ(λ− 1)

1 + 3λ2

c′

β

(

δan(Ee, c
′) + δBan,1(Ee)

)

+
δreg
2 (Ee, c

′)

1 + 3λ2

+
c′

β

δreg
3 (Ee, c

′)

1 + 3λ2

]

, (36)

where fn(Ee) can be found, e.g. in Eq.(A9) of Ref.[35]. These two identities had in fact

already been verified in our previous paper, Ref.[17].

3. The ~σ · ~β structure

For this structure, we checked numerically that our result satisfies the following identity:

− (gn(Ee) + fn(Ee)) =
1

4

∫ 1

−1

dc′
[

−
(

δan(Ee, c
′) + δGan,1(Ee)

)

+
λ2 − 1

1 + 3λ2

me

Ee

c′

β

(

δan(Ee, c
′) + δHan,1(Ee)

)

+
λ2 − 1

1 + 3λ2

Ee

Ee +me

βc′
(

δan(Ee, c
′) + δKan,1(Ee)

)

+
δreg
4 (Ee, c

′)

1 + 3λ2
+

c′

β

δreg
5 (Ee, c

′)

1 + 3λ2

]

.

(37)
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4. The ŝn · ~σ structure

For this structure, we checked numerically that our result satisfies the following identity:

2λ(λ+ 1)

1 + 3λ2

me

Ee

(

gn(Ee) + h(1)
n (Ee)

)

=
1

4

∫ 1

−1

dc′
[

2λ(λ+ 1)

1 + 3λ2

me

Ee

(

δan(Ee, c
′) + δNan,1(Ee)

)

+
δreg
6 (Ee, c

′)

1 + 3λ2
+

1− c′2

2

δreg
25 (Ee, c

′)

1 + 3λ2

]

,

(38)

where the correct analytic expression of h(1)
n (Ee) (and h

(2)
n (Ee) below) is given in the Erratum

of Ref.[35].

5. The ŝn · ~β~σ · ~β structure

For this structure, we checked numerically that our result satisfies the following identity:

2λ(λ+ 1)

1 + 3λ2

Ee

Ee +me

(

gn(Ee) + h(2)
n (Ee)

)

=
1

4

∫ 1

−1

dc′
[

2λ(λ+ 1)

1 + 3λ2

Ee

Ee +me

(

δan(Ee, c
′) + δQan,1(Ee)

)

−2λ(λ− 1)

1 + 3λ2

c′

β

(

δan(Ee, c
′) + δTan,1(Ee)

)

+
Ee

Ee +me

δreg
7 (Ee, c

′)

1 + 3λ2
+

c′

β

δreg
8 (Ee, c

′)

1 + 3λ2

+
3c′2 − 1

2β2

δreg
25 (Ee, c

′)

1 + 3λ2
+

c′

β

δreg
34 (Ee, c

′)

1 + 3λ2

]

. (39)

Thus, we have checked that our results of outer radiative corrections are consistent to all

known results in literature.

VI. Summary

This work provides a solid theory foundation for the proposal in Ref.[1] to measure

experimentally the proton polarization in the free neutron decay. We computed the SM-

induced, O(1/mN ) recoil corrections and O(α/π) radiative corrections to the most general

neutron differential decay rate, with n, p and e all polarized; the former is fully analytic, while

the latter is analytic apart from a regular p
′
ν-integration which is performed numerically.

Our choice of independent variables (Ee,Ωe,Ω
′
ν) are all measurable quantities in experiments

with no ambiguity caused by emissions of extra photons. We compare our results to special
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cases in existing literature and identify possible typos in the latter. Together with the EFT

analysis in Ref.[1], it opens a new window for the precision test of the SM and the search

for new physics.
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A. Scalar integrals in the bremsstrahlung contribution

An important step to evaluate the “regular” bremsstrahlung contribution to the differ-

ential decay rate is to compute analytically the phase space integration of |M4|2QM,reg (see

Eq.(21) with respect to the momenta pν and k. For terms in the squared amplitude indepen-

dent of various spin vectors, this corresponds to evaluating scalar integrals of the following

form (p1 = p, p2 = pe):

Ii,j(p1, p2) ≡
∫

d3k

(2π)32Ek

d3pν
(2π)32Eν

(2π)4δ(4)(p′ν − pν − k)
1

(p1 · k)i(p2 · k)j
, (A1)

where i, j are integers. In the next Appendix we show that integrations of terms with

spin vectors can also be reduced to such scalar integrals. Ref.[37] gave the first analytic

expressions of these integrals for values of {i, j} relevant to the study of semileptonic kaon

decays (beware of the the difference in normalization with this paper), which are also quoted

in Ref.[17]. For beta decays involving two or more polarizations, we need one more integral,

namely I−3,2, which we present here for the first time. Here we summarize the integrals that
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we need (the other half can be obtained by Ii,j(p1, p2) = Ij,i(p2, p1)):

I0,0(p1, p2) =
1

8π
(A2)

I−1,0(p1, p2) =
α1

16π
(A3)

I1,0(p1, p2) =
1

8πβ1

ln
α1 + β1

α1 − β1

(A4)

I2,0(p1, p2) =
1

2πm2
1p

′2
ν

(A5)

I1,1(p1, p2) =
1

4πγ12p′2ν
ln

p1 · p2 + γ12
p1 · p2 − γ12

(A6)

I1,−1(p1, p2) =
1

8π

(

(p1p2 : p
′
ν)

β2
1

+
p′2ν (p2p

′
ν : p1)

2β3
1

ln
α1 + β1

α1 − β1

)

(A7)

I2,−1(p1, p2) =
1

8π

(

2(p2p
′
ν : p1)

m2
1β

2
1

+
(p1p2 : p

′
ν)

β3
1

ln
α1 + β1

α1 − β1

)

(A8)

I−2,1(p1, p2) =
1

8π

[

(p′2ν )
2(p1p

′
ν : p2)

2

4β5
2

ln
α2 + β2

α2 − β2
+

p′2ν (p2p1 : p
′
ν)(p1p

′
ν : p2)

β4
2

+
α2(p2p1 : p

′
ν)

2

2β4
2

+

(

β2
2β

2
1 − (p2p1 : p

′
ν)

2

4β4
2

)(

α2 −
m2

2p
′2
ν

2β2
ln

α2 + β2

α2 − β2

)]

(A9)

I−2,2(p1, p2) =
1

8π

[

p′2ν (p1p
′
ν : p2)

2

m2
2β

4
2

+
p′2ν (p1p

′
ν : p2)(p2p1 : p

′
ν)

β5
2

ln
α2 + β2

α2 − β2

+
(p2p1 : p

′
ν)

2

β4
2

−
(

β2
2β

2
1 − (p2p1 : p

′
ν)

2

2β4
2

)(

2− α2

β2

ln
α2 + β2

α2 − β2

)]

(A10)

I−3,2(p1, p2) =
1

64πβ7
2

{

3
[

2α2
1β

4
2δ + 2α1α2β

2
2(β

2
1β

2
2 − 3δ2) + α2

2(5δ
3 − 3β2

1β
2
2δ)

+β2
1β

4
2δ − β2

2δ
3
]

ln
α2 + β2

α2 − β2

+
2

α2
2 − β2

2

[

2α3
1β

7
2 − 6α2

1α2β
5
2δ

+6α1(α
2
2(3β

3
2δ

2 − β2
1β

5
2) + β2

1β
7
2 − 2β5

2δ
2)

+α2β2δ(3α
2
2(3β

2
1β

2
2 − 5δ2)− 9β2

1β
4
2 + 13β2

2δ
2)
]}

(A11)

where we have defined:

αi ≡ pi · p′ν
βi ≡

√

α2
i −m2

i p
′2
ν

γ12 ≡
√

(p1 · p2)2 −m2
1m

2
2

(ab : c) ≡ (a · c)(b · c)− c2(a · b) (A12)

and δ ≡ (p1p2 : p
′
ν) in I−3,2 for simplicity.
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B. Tensor integrals in the regular bremsstrahlung contribution

If there are polarized massive particles, then we also need to deal with integrals that

contain extra factors of kµ (up to 3 for neutron beta decay) in the numerator, which will be

later contracted to the spin vectors. In this Appendix we outline the systematic approach

to evaluate these tensor integrals.

1. With kµ

If one out of the three massive particles is polarized, then we may encounter vector

integrals of the following form:

Iµi,j ≡
∫

d3k

(2π)32Ek

d3pν
(2π)32Eν

(2π)4δ(4)(p′ν − pν − k)
kµ

(p · k)i(pe · k)j
. (B1)

They were first studied in Ref.[17] , which we will briefly recap here to introduce further

discussions. One starts by the following general decomposition of the vector integral:

Iµi,j ≡ a1(i, j)p
µ + a2(i, j)p

µ
e + a3(i, j)p

′µ
ν . (B2)

The functions a1, a2, a3 can be solved by contracting both sides by pµ, peµ and (p′ν)µ

respectively, which gives rise to the following matrix equation:










a1(i, j)

a2(i, j)

a3(i, j)











= M−1











Ii−1,j

Ii,j−1

p′2
ν

2
Ii,j











, (B3)

where

M =











m2
N p · pe p · p′ν

p · pe m2
e pe · p′ν

p · p′ν pe · p′ν p′2ν











(B4)

is a 3 × 3 matrix of which inverse can be easily computed. Here we have used the identity

p′ν · k = p′2ν /2.

2. With kµkν

When there are two polarized particles, we need also the following tensor integral

Iµνi,j ≡
∫

d3k

(2π)32Ek

d3pν
(2π)32Eν

(2π)4δ(4)(p′ν − pν − k)
kµkν

(p · k)i(pe · k)j
. (B5)
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Again, we adopt the most general decomposition:

Iµνi,j = b1(i, j)g
µν + b2(i, j)p

µpν + b3(i, j)p
µ
ep

ν
e + b4(i, j)p

′µ
ν p

′ν
ν + b5(i, j)(p

µpνe + pνpµe )

+b6(i, j)(p
µp′νν + pνp′µν ) + b7(i, j)(p

µ
ep

′ν
ν + pνep

′µ
ν ) . (B6)

In principle, one may solve the functions b1–b7 using exactly the same method, but that

will involve the inversion of a 7 × 7 matrix which is analytically very challenging, and the

numerical inversion of a badly conditioned matrix may also lead to significant errors.

Here we introduce a trick to obtain the analytic expressions of all these coefficients without

inverting a large matrix. We consider the following singly-contracted integral:

Īµi,j ≡ sνI
µν
i,j , (B7)

where sµ is an arbitrary vector. The most general decomposition of this integral reads:

Īµi,j = b̄1(i, j)p
µ + b̄2(i, j)p

µ
e + b̄3(i, j)p

′µ
ν + b1(i, j)s

µ . (B8)

In particular, the coefficient of the sµ term is the same b1(i, j) that appears in Eq.(B6), which

is obvious by contracting pν to both sides of that equation; so we may start by evaluating

b1(i, j). For that purpose, it is useful to define a set of unit vectors from the available vectors

in the integral, namely pµ, pµe and p′µν . First, the temporal unit vector reads:

t̂µ ≡ (1,~0) =
1

mN

pµ . (B9)

Next, we arrange the coordinates such that ~pe aligns with the x-axis. With that we define:

x̂µ ≡ (0, x̂) =
1

pe

(pµe − Eet̂
µ) =

1

pe

(

pµe −
Ee

mN

pµ
)

. (B10)

Finally, we align ~p′ν to contain only x- and y-components. With that we define:

ŷµ ≡ (0, ŷ) =
1

p′
νs

′
(p′µν −E ′

ν t̂
µ−p

′
νc

′x̂µ) =
1

p′
νs

′

(

p′µν − E ′
νpe − p

′
νEec

′

pemN

pµ − p
′
νc

′

pe

pµe

)

, (B11)

where s′ ≡ sin θeν′ .

It is easy to see that

Izzi,j = b1(i, j)g
33 = −b1(i, j) (B12)

because none of the vectors p, pe, p′ν has a z-component. At the same time, the on-shell

momentum of the bremsstrahlung photon satisfies:

−(kz)2 = −(k0)2 + (kx)2 + (ky)2

= −(k · t̂)2 + (k · x̂)2 + (k · ŷ)2

≡ b1a + b1bp · k + b1cpe · k + b1d(p · k)2 + b1e(pe · k)2 + b1f (p · k)(pe · k) , (B13)
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where the coefficients {b1a, ..., b1f} are deducible from Eqs.(B9)–(B11). Plugging this back

into Eq.(B12) gives:

b1(i, j) = b1aIi,j + b1bIi−1,j + b1cIi,j−1 + b1dIi−2,j + b1eIi,j−2 + b1fIi−1,j−1 . (B14)

With b1 determined, we can now deduce the the three remaining coefficients in Eq.(B8).

Moving the b1s
µ term to the left and contracting both sides by pµ, peµ and (p′ν)µ, we obtain

the following matrix equation:










b̄1(i, j)

b̄2(i, j)

b̄3(i, j)











= M−1











pµĪ
µ
i,j − b1(i, j)s · p

peµĪ
µ
i,j − b1(i, j)s · pe

(p′ν)µĪ
µ
i,j − b1(i, j)s · p′ν











= M−1











sµI
µ
i−1,j − b1(i, j)s · p

sµI
µ
i,j−1 − b1(i, j)s · pe

p′2
ν

2
sµI

µ
i,j − b1(i, j)s · p′ν











.

(B15)

Notice that there is no new matrix inversion required in this step apart from the known M−1

from the previous subsection. We then plug the solution back into Eq.(B8) and remove sµ

from both sides because it is an arbitrary vector. That gives:

Iµνi,j = b1(i, j)g
µν +

{

M−1
11 (I

ν
i−1,j − b1(i, j)p

ν) +M−1
12 (I

ν
i,j−1 − b1(i, j)p

ν
e)

+M−1
13 ((p

′2
ν /2)I

ν
i,j − b1(i, j)(p

′
ν)

ν)
}

pµ +
{

M−1
21 (I

ν
i−1,j − b1(i, j)p

ν)

+M−1
22 (I

ν
i,j−1 − b1(i, j)p

ν
e) +M−1

23 ((p
′2
ν /2)I

ν
i,j − b1(i, j)(p

′
ν)

ν)
}

pµe

+
{

M−1
31 (I

ν
i−1,j − b1(i, j)p

ν) +M−1
32 (I

ν
i,j−1 − b1(i, j)p

ν
e)

+M−1
33 ((p

′2
ν /2)I

ν
i,j − b1(i, j)(p

′
ν)

ν)
}

(p′ν)
µ . (B16)

Comparing this to Eq.(B6) yields all the quantities bη(i, j), which can be decomposed similar

to Eq.(B14) as:

bη(i, j) = bηaIi,j + bηbIi−1,j + bηcIi,j−1+ bηdIi−2,j + bηeIi,j−2+ bηf Ii−1,j−1 , η = 1, ..., 7 . (B17)

The analytic expressions of the coefficients {bηa, ..., bηf} (η = 1, ..., 7) can be found in the

supplemented Mathematica notebook bremreg.nb.

3. With kµkνkα

When n, p and e are all polarized, we may encounter tensor integrals of the form:

Iµναi,j ≡
∫

d3k

(2π)32Ek

d3pν
(2π)32Eν

(2π)4δ(4)(p′ν − pν − k)
kµkνkα

(p · k)i(pe · k)j
, (B18)
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which adopts the following general decomposition:

Iµναi,j = c1(i, j)(g
µνpα + gµαpν + gναpµ) + c2(i, j)(g

µνpαe + gµαpνe + gναpµe )

+c3(i, j)(g
µν(p′ν)

α + gµα(p′ν)
ν + gνα(p′ν)

µ) + c4(i, j)p
µpνpα + c5(i, j)p

µ
ep

ν
ep

α
e

+c6(i, j)(p
′
ν)

µ(p′ν)
ν(p′ν)

α + c7(i, j)(p
µpνpαe + pµpαpνe + pνpαpµe )

+c8(i, j)(p
µpν(p′ν)

α + pµpα(p′ν)
ν + pνpα(p′ν)

µ) + c9(i, j)(p
µ
ep

ν
ep

α + pµep
α
e p

ν + pνep
α
e p

µ)

+c10(i, j)(p
µ
ep

ν
e(p

′
ν)

α + pµep
α
e (p

′
ν)

ν + pνep
α
e (p

′
ν)

µ)

+c11(i, j)((p
′
ν)

µ(p′ν)
νpα + (p′ν)

µ(p′ν)
αpν + (p′ν)

ν(p′ν)
αpµ)

+c12(i, j)((p
′
ν)

µ(p′ν)
νpαe + (p′ν)

µ(p′ν)
αpνe + (p′ν)

ν(p′ν)
αpµe )

+c13(i, j)(p
µpνe(p

′
ν)

α + pµpαe (p
′
ν)

ν + pνpαe (p
′
ν)

µ + pνpµe (p
′
ν)

α + pαpµe (p
′
ν)

ν + pαpνe(p
′
ν)

µ) .

(B19)

Using the procedure outlined in the previous subsection, we can in principle deduce all the

functions c1–c13 without inverting a 13×13 matrix. However, as far as this work is concerned,

we only need a fully-contracted integral seµsnνspαI
µνα
i,j . Therefore, we may take a shortcut

and start with the following doubly-contracted integral:

Ĩµi,j ≡ snνspαI
µνα
i,j

= c̃1(i, j)p
µ + c̃2(i, j)p

µ
e + c̃3(i, j)(p

′
ν)

µ + c̃4(i, j)s
µ
n + c̃5(i, j)s

µ
p ,

(B20)

where c̃4 = c2sp·pe+c3sp·p′ν and c̃5 = c2sn·pe+c3sn·p′ν as following Eq.(B19). Now we play the

same game: First, c2 and c3 can be obtained from Izzαi,j = −c1(i, j)p
α−c2(i, j)p

α
e−c3(i, j)(p

′
ν)

α,

where Izzαi,j can be re-expressed in terms of Iµ using Eq.(B13). Next, the three remaining

functions c̃1−3 can be deduced from the matrix equation:











c̃1(i, j)

c̃2(i, j)

c̃3(i, j)











= M−1











snνspαI
να
i−1,j

snνspαI
να
i,j−1 − c̃4(i, j)sn · pe − c̃5(i, j)sp · pe

(p′2ν /2)snνspαI
να
i,j − c̃4(i, j)sn · p′ν − c̃5(i, j)sp · p′ν











. (B21)
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Plugging the solution back into Eq.(B20) and contracting by peµ gives the desired fully-

contracted integral:

seµsnνspαI
µνα
i,j = K1(i, j)sn · spse · p+K2(i, j)sn · pesp · pese · p+K3sn · p′νsp · p′νse · p

+K4(i, j)(sn · pesp · p′ν + sn · p′νsp · pe)se · p+K5(i, j)sn · spse · p′ν
+K6(i, j)sn · pesp · pese · p′ν +K7(i, j)sn · p′νsp · p′νse · p′ν
+K8(i, j)(sn · pesp · p′ν + sn · p′νsp · pe)se · p′ν
+K9(i, j)(sp · pesn · se + sn · pesp · se)

+K10(i, j)(sp · p′νsn · se + sn · p′νsp · se) . (B22)

The functions Kη can be decomposed as:

Kη(i, j) = KηaIi,j +KηbIi−1,j +KηcIi,j−1 +KηdIi−2,j +KηeIi,j−2 +Kηf Ii−1,j−1

+KηgIi−3,j +KηhIi,j−3 +KηiIi−2,j−1 +KηjIi−1,j−2 , η = 1, ..., 10 , (B23)

where the analytic expressions of the coefficients {Kηa, ...,Kηj} (η = 1, ..., 10) can be found

in bremreg.nb.

C. Instructions for the supplemented Mathematica notebooks

We provide two Mathematica notebooks as supplementary materials: “recoil.nb” that

evaluates analytically the recoil coefficients {rηa, ..., rηd} in Eq.(28), and “bremreg.nb” that

evaluates numerically the functions δreg
η (Ee, c

′) in Eq.(29). In this appendix we provide a

brief explanation of their contents.

We used TRACER [38] to perform traces in the squared amplitude and impose on-shell

conditions. The package can be downloaded from https://library.wolfram.com/infocenter/MathSource/2

and is called in the first line of both notebooks.

1. recoil.nb

The notebook recoil.nb consists of three sections:

• The “setup” section defines the 3-body squared amplitude, imposes on-shell conditions

and performs the ǫ-expansion in Eq.(12).
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• The “O(ǫ0)” section evaluates the zeroth-order correlation coefficients, i.e. C0 in Ta-

ble I-II.

• The “O(ǫ1)” section evaluates the recoil coefficients {rηa, ..., rηd} (η = 1, .., 30) in Ta-

ble III-IV.

Simply run the entire notebook to obtain the full result. For sceptical readers, important

parts to check are the implementation of the on-shell conditions, the definition of Lµν , Hµν

and the ǫ-expansion in the “setup” section, and the respective completeness check at the end

of the O(ǫ0), O(ǫ1) sections.

2. bremreg.nb

The notebook bremreg.nb evaluates numerically the functions δreg
η (Ee, c

′) (denoted as

δregη[Ee,cp] in the notebook) in Eq.(29) (η = 1, ..., 36). To use them, simply evaluate the

entire notebook from the beginning to the “regular bremsstrahlung” section, which may take

up to a few minutes. Below we briefly explain the purpose of each section:

• The “squared amplitude” section constructs the “regular” bremsstrahlung squared am-

plitude |M4|2QM,reg in Eq.(21).

• The “(s · k)n replacement” section applies the results in Appendix B to transform the

tensor integrals into scalar integrals. The key is to replace powers of s ·k in |M4|2QM,reg

by powers of p · k and pe · k which give the same result after integrating over pν and k.

• The “isolating different correlations” section identifies the 36 structures in greg
brem and

check their completeness. It also performs the pν , k-integral analytically by replacing

(p · k)−i(pe · k)−j with the corresponding scalar integrals in Appendix A.

• The “functions and parameter” section defines various inputs needed to evaluate the

bremsstrahlung integral:

– The 3× 3 matrix M in Eq.(B4) and its inverse, the coefficients {bηa, ..., bηf} (η =

1, ..., 7) in Eq.(B17), the coefficients {Kηa, ...,Kηj} (η = 1, ..., 10) in Eq.(B23);

– The scalar functions Ii,j in Appendix A;
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– The final integrand before performing the p
′
ν integral (which takes most of the

evaluation time).

• The “regular bremsstrahlung” section defines various numerical inputs (fermion masses,

λ, and the electron end-point energy), and obtain the functions δreg
η (Ee, c

′) by perform-

ing the p
′
ν-integral numerically.

• Finally, the “examples” section demonstrates how one utilizes the functions δreg
η (Ee, c

′).

In particular, the “consistency test” subsection checks the identities in Sec.VB numer-

ically.

A technical detail: The basis vectors x̂µ and ŷµ in Eqs.(B10), (B11) are, strictly speaking,

undefined at Ee = me or c′ = ±1, which means the functions δreg
η (Ee, c

′) cannot be evaluated

at these points, although their limits at Ee → me or c′ → ±1 are totally regular.
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