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Abstract. Process mining offers powerful techniques for discovering,
analyzing, and enhancing real-world business processes. In this context,
Petri nets provide an expressive means of modeling process behavior.
However, directly analyzing and comparing intricate Petri net presents
challenges. This study introduces PetriNet2Vec, a novel unsupervised
methodology based on Natural Language Processing concepts inspired
by Doc2Vec and designed to facilitate the effective comparison, clus-
tering, and classification of process models represented as embedding
vectors. These embedding vectors allow us to quantify similarities and
relationships between different process models. Our methodology was
experimentally validated using the PDC Dataset, featuring 96 diverse
Petri net models. We performed cluster analysis, created UMAP visual-
izations, and trained a decision tree to provide compelling evidence for
the capability of PetriNet2Vec to discern meaningful patterns and rela-
tionships among process models and their constituent tasks. Through a
series of experiments, we demonstrated that PetriNet2Vec was capable
of learning the structure of Petri nets, as well as the main properties used
to simulate the process models of our dataset. Furthermore, our results
showcase the utility of the learned embeddings in two crucial downstream
tasks within process mining enhancement: process classification and pro-
cess retrieval.

Keywords: Process Mining · Model enhancement · Embedding vectors
· Petri Nets

1 Introduction

Modern business process models exhibit a level of complexity that renders tradi-
tional analysis tools insufficient for comprehensive understanding and optimiza-
tion [20]. This challenge demands innovative approaches capable of extracting
complex relationships governing process behavior.

Process discovery techniques leverage event data to extract, analyze, and
visualize the actual execution of business processes. Generally, a data-driven
approach with advanced algorithms is used to construct models, such as Petri
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nets, that accurately capture sequences of activities, i.e. transitions (activity),
and places (state) [16]. Petri nets are mathematical and visual modeling tools
used to describe distributed systems. These networks allow us to assess pro-
cess performance, identify bottlenecks, and uncover hidden patterns through
conformance-checking techniques. Ultimately, facilitating process enhancement
and optimization.

Traditional process mining core capabilities often fall short when faced with
the scale and complexity of modern processes [7]. They may struggle to han-
dle the vast amounts of data generated and lack the sophistication to uncover
complex patterns that machine learning techniques could reveal [3].

Embedding vectors are numerical representations of objects or concepts in
a continuous vector space [9]. Commonly used in Natural Language Processing
(NLP) related tasks, which often involve machine learning algorithms. Embed-
ding vectors capture semantic relationships between entities. In process mining,
embeddings can provide a powerful means of representing complex process struc-
tures and relationships within process models [19]. For example, we can embed
individual activities, control flow structures, or entire process models in vec-
tor representations. This enables sophisticated similarity analysis, identification
of analogous patterns, and application of predictive modeling techniques that
would be difficult to achieve with traditional process representations.

Our proposed approach enables us to encode both the structural information
of Process models, in Petri net format, and the individual tasks into compact
vector representations (i.e. embedding vectors), facilitating various downstream
tasks such as similarity analysis and process discovery.

1.1 Problem statement

Given a set M = {M1,M2, . . . ,Mn} of n Process Models, where each process is
represented by a Petri net in PNML format, our goal is to learn a d-dimensional
embedding vector x ∈ Rd for each model Mj ∈ M. The matrix representation
of all models will be denoted as X ∈ Rn×d, with each row representing an
embedding vector. Our objective is to capture the structural dependencies of
sequential tasks within the processes, facilitating similarity comparisons between
models using cosine distance on vector embedding space.

Furthermore, since each model in M comprises several sequences of tasks
and the total number of unique tasks across all processes is denoted as T =
{t1, t2, . . . , tk}, we also aim to learn an embedding vector ti ∈ Rd for each task.
The matrix of all task embeddings will be denoted as T ∈ Rk×d, with each
row representing an embedding vector. These task embedding vectors serve to
capture the inherent characteristics of each task within the process sequences.

2 Related works

Process comparison is crucial in conformance analysis, process enhancement,
knowledge transfer, and process retrieval. Existing techniques for process com-
parison broadly fall into three categories: behavioral analysis, structural analysis,
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and task comparison [22]. Behavioral strategies focus on the order of activities
within execution logs, while structural approaches analyze the process model as a
graph. Task comparison offers a granular view, looking at relationships between
individual activities [4].

Existing research on process model similarity analysis offers valuable tools,
but certain limitations demand further attention. Behavioral methods can lack
effectiveness when variations in terminology mask similarities between processes [6].
This issue is particularly pronounced in localized comparison methods, where
direct node-to-node comparisons fail to grasp similarities between models from
different domains. Additionally, both behavioral and structural techniques fre-
quently encounter exponential complexity stemming from concurrency and loops
within process models [6]. Furthermore, structural approaches reliant on graph
edit distance face computational scalability challenges with large graphs due to
their NP-Hard complexity [28].

Behavioral process comparison focuses on the execution sequences observed
in event logs. Van Der Aalst et al. [24] emphasize the value of direct log anal-
ysis in uncovering process behavior. Dijkman et al. [4] introduce the concept of
“causal footprints”, which capture the temporal dependencies between activities
to represent process behavior. Kunze et al. [10] highlight relationships between
exclusivity and strict order as key behavioral aspects. Van Dongen et al. [25]
develop behavioral metrics for quantifying process similarities and differences.
Sánchez-Charles et al. [23] extend this by proposing a behavioral distance mea-
sure to compare process behavior holistically.

Alternatively, structural methods examine the overall process model as a
graph, analyzing elements like node relationships, paths, connectivity, and con-
trol flow. Standard techniques utilize edit graph distance to calculate the simi-
larity between process graphs [5]. More nuanced methods consider richer infor-
mation, such as node types (e.g., AND/XOR) and sequential information [15].
Zhou et al. [29] enhance structural techniques by incorporating insights from ex-
ecution logs and weighting graph edges based on their frequency. While valuable
for analyzing overall process flow, such techniques may not fully capture fine-
grained behavioral variations that arise from the diverse execution of process
activities.

Task comparison provides a detailed analysis of activity relationships within
process models. Node-by-node techniques excel at identifying subtle differences,
while block-based methods reveal more significant structural changes [12,4,1,27].
Recent clustering approaches hold the potential for comparing localized process
sections [18]. However, these localized clustering methods may struggle when
analyzing processes with highly variable flows or behavioral patterns.

In the domain of Similarity-based retrieval of semantic graphs, Hoffman et
al. [8] proposed an approach employing Graph Neural Networks (GNNs) for
process mining, framing it as a graph matching challenge. Despite the inherent
complexity of GNNs, necessitating larger datasets for effective training, their
methodology shows significant promise, particularly in retrieval scenarios essen-
tial to Process-Oriented Case-Based Reasoning (POCBR) within smart manu-
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facturing - a focus distinct from our current study. Nonetheless, in Section5.4, we
comprehensively evaluate our methodology, specifically in the realm of semantic
retrieval tasks for process models, utilizing PetriNet2Vec. This assessment un-
derscores the resilience and adaptability of our retrieval approach, highlighting
its potential for broader applications in the field.

The optimal comparison strategy hinges on the desired analytical depth and
specific research questions. While current techniques offer valuable insights, their
limitations suggest the need for a method that offers a more holistic view of
process execution, considering both behavioral patterns and the broader process
structure. Our proposed approach addresses these needs. Firstly, it considers the
entire process and its structure, mirroring structural approaches. Secondly, it
enables the comparison of multiple processes and clusters, echoing the strengths
of most behavioral approaches.

3 Background

3.1 Learning embeddings with doc2vec and graph2vec

The doc2vec methodology [11], an extension of the word2vec concept, has become
popular for enabling the simultaneous learning of embedding vectors for both
documents and individual words. In word2vec [14], a word is predicted based on
the words in its context. Figure 1 illustrates the functioning of the CBOW (Con-
tinuous Bag-of-Words) approach. While this figure is useful for illustrating the
word2vec concept, we can reinterpret the optimization objective function during
training as a binary classifier, predicting P (1|wi, wc) when the word wi is part
of the word context wc = {. . . , wi−2, wi−1, wi+1, wi+2, . . . }. Thus, if wi is not in
the context wc, then we have P (0|wi, wc). Then, during training, the negative
sampling strategy generates positive and negative example pairs (wi, wc).

Extending this formulation to learn embeddings for documents is straight-
forward. We can add a vector dn to the context wc, treating it as a new word
representing the entire document (Figure 1b). Thus, the optimization objec-
tive that allows learning an embedding for this ‘new word’ becomes predicting
P (1|wi, wc, dn) when the word wi belongs to the context wc and has also been
sampled from the document dn, otherwise P (0|wi, wc, dn) when wi is not present
in the document dn.

The graph2vec algorithm is a powerful formulation that allows us to learn
to embed vectors for graph representation [17]. Given a graph Gn = (V,N)
consisting of a set of vertices V and edges N , graph2vec naturally extends the
principles of doc2vec. By analogy, each node in the graph can be seen as a word
Vi ≡ wi, with the neighboring nodes Vc ≡ wc directly connected to Vi, serving as
its context. Consequently, if each node is associated with a token tk, as depicted
in Figure 1c, we can concurrently learn embeddings for the entire graph hn and
for each individual node.

This approach outperforms other graph embedding techniques because it
trains on various graph samples and incorporates neighborhood information for
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(a) Word2vec. (b) Doc2vec. (c) Graph2vec.

Fig. 1. Subfigure 1a depicts the CBOW approach for word2vec. Subfigure 1b demon-
strates the incorporation of the document ID from which the words were sampled.
Subfigure 1c illustrates a graph where the yellow nodes represent the ‘context’ of node
wi, while adhering to the same nomenclature used in doc2vec for the words within the
context of wi.

every node. Thus, it helps the neural network learn complex graph structures
more effectively. As a result, graph2vec embeddings can accurately capture simi-
larities between graphs with similar structures, making them highly useful across
different downstream applications [2].

3.2 Cluster algorithm

As discussed in the previous sections, one of the objectives of this work is to
learn embedding for each Petri net model and group them by similarity. For
this purpose, we adopted a version of the Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) clustering algorithm with
cosine distance [13].

HDBSCAN stands out as a sophisticated clustering algorithm capable of
effectively identifying clusters of various shapes and densities. Its hierarchical
clustering methodology allows it to autonomously discern clusters at various
density levels without prior knowledge of the ideal cluster count, providing flex-
ibility in estimating the number of clusters present. Furthermore, thanks to
implementing cosine distance, HDBSCAN demonstrates proficiency in handling
high-dimensional data spaces, such as those found in text data or feature vectors.

Cosine similarity is a robust measure for clustering sparse data commonly
encountered in vector embedding, accommodating fluctuations in vector magni-
tudes. This characteristic makes it particularly suitable for tasks where tradi-
tional techniques like k-means fail, especially when dealing with non-Euclidean
distances such as cosine similarity. Unlike k-means, which faces challenges in
combining the average centroid calculation with cosine distance due to their in-
herent incompatibility, HDBSCAN with cosine distance presents a versatile and
effective solution for clustering sparse, high-dimensional data, positioning it as
the chosen method for our application.
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The output of HDBSCAN can be combined with the Silhouette score to
evaluate the quality of formed clusters when ground truth labels are unavailable.
This coefficient measures how well each data point fits into its assigned cluster,
with values ranging from -1 to 1. A score near 1 indicates that data points
are well within their clusters and far from others, while negative values close
to -1 suggest poor cluster fit. Scores around 0 imply potential cluster overlap.
Additionally, the average Silhouette score serves as a global measure, providing
insights into the overall quality of the formed clusters.

3.3 Process models dataset

Our research leverages the PDC Dataset [26], specifically curated for the Process
Discovery Contest. This dataset encompasses a total of 96 Petri net models
stored in PNML format. As a specialized class of models, Petri nets present a
versatile range of configurations, rendering them indispensable for evaluating
process discovery algorithms and techniques.

The dataset is derived from a base model named pdc2023_000000.pnml and
spans various configurations denoted by specific letters from A to F, such as
pdc2023_ABCDEF.pnml. Each letter stands for a different configuration param-
eter:

A: Dependent Tasks (Long-term Dependencies), configured as 0 (No) or 1 (Yes).
If Yes, bypass connections are added to shortcut long-term dependent tran-
sitions;

B: Loops, configured as 0 (No), 1 (Simple), or 2 (Complex), determining the
treatment of transitions initiating loops and shortcuts between the loop and
main branches;

C: OR constructs, configured as 0 (No) or 1 (Yes), controlling transitions in-
volving only inputs or generating only outputs for OR-joins and OR-splits;

D: Routing Constructs (Invisible Tasks), configured as 0 (No) or 1 (Yes), making
certain transitions invisible when set to Yes;

E: Optional Tasks, configured as 0 (No) or 1 (Yes), enabling the skipping of
visible transitions with the addition of invisible transitions when set to Yes;
and

F: Duplicate Tasks (Recurrent Activities), configured as 0 (No) or 1 (Yes),
involving the relabeling of transitions to account for duplicate tasks when
set to Yes.

All candidate models were systematically generated following a sequential
rule that applies each parameter to the base model. In essence, the characters
in this naming convention serve as flags that, when activated, apply these spe-
cific rules to the process model. For instance, the first four candidate models are
named pdc2023_000000.pnml, pdc2023_000001.pnml, pdc2023_000010.pnml, and
pdc2023_000011.pnml. This nomenclature signifies that the second, third, and
fourth models are variations of the base model, incorporating Duplicate Tasks
(F), Optional Tasks (E), or both (F and E), respectively. Subsequently, the next
configuration D (pdc2023_000100.pnml) is activated, and the procedure repeats.
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Fig. 2. Illustration of the rules applied to a process model. Red dots indicate the effect
caused by each rule. (A) shows a bypass connection, (B) shows a loop, (C) shows an
OR-construct, (D) shows an invisible task, (E) shows an optional task, and (F) shows
a duplicated task and demonstrates an AND split.

Figure 2 illustrates through Petri net segments where these rules have been
applied. This sequential generation process encompasses all possible combina-
tions, where the 25 binary combinations are multiplied by the three configura-
tions of rule B, resulting in a total of 25∗3 = 96 model variations. Understanding
this generation procedure is fundamental to grasping how our learning algorithm
identifies clusters with similar models generated by comparable combinations of
these rules.

4 Methodology for Learning Petri Net Embeddings

Consider the Petri net illustrated on the left side of Figure 3 as an example
of a process model. In this representation, each box represents a transition,
and the circles represent states. The black dot is a token that traverses this
network from left to right, visiting all states along a path. A transition must be
completed to progress from one state to the next. Therefore, transitions represent
tasks that need to be accomplished. Transitions are pivotal elements in these
representations as they denote the activities that constitute the entire process.
Transitions can be labeled using natural language. Here, for consistency and
simplicity, we have labeled them using IDs, namely as t1, t2, and so forth.

In a Petri net, paths are represented by directed arrows, which also denote
temporal dependencies. For instance, the transition t3 cannot be initiated until
the transition t1 is completed. However, some paths can be executed in parallel;
for example, transition t3 can be executed concurrently with t2. This indicates
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Fig. 3. Proposed methodology. On the left, a Petri net representation of a process
model; in the middle, an equivalent representation as a directed graph of transitions;
on the right, a Distributed Memory algorithm used for jointly learning embeddings for
the process and tasks.

that a predecessor transition, like t1, acts like an AND split, where both resultant
paths are taken. Conversely, if a state splits into two paths, it is interpreted as
an XOR split, meaning that only one of the two paths is chosen, such as t2 or the
black transition, but never both. Finally, the black box is a Silent transition and
functioning as a wildcard. In this example, the black box enables skip connections
in the model i.e. permitting optionally execution of t2.

Our hypothesis is that since every transition can be represented in natural
language, and there is a mandatory order dependency between these transitions,
then a path inside the model can be considered equivalent to a sentence in a text
document. Therefore, the set of all possible paths inside the model is equivalent
to a text paragraph. Hence, without loss of generality, we can assume that the
doc2vec methodology can be employed here to learn a vector embedding for
each process model in our dataset. Indeed, we can also jointly learn a vector
embedding for every task by considering the set of all tasks in all models.

The embedding vectors generated by doc2vec carry semantic meanings about
documents and words. Here, these vectors will convey information and meaning
about the process model and about every task across all models. Thus, those
vectors may be useful for downstream tasks, such as model comparison, clus-
tering, or classification. Therefore, by analogy, we named our methodology as
PetriNet2Vec.

Despite its simplicity, a key step in our methodology is mapping a process
model into an equivalent representation suitable for algorithm training and em-
bedding vector learning. Here, we introduce the concept of graph2vec. Prior to
training, we generate a document list containing tasks. To achieve this, we trans-
form each Petri net into an intermediate representation resembling a Directly-
Follows Graph (DFG). DFGs offer a popular and comprehensible format for
representing business processes in process mining. Figure 3 (center) illustrates
a DFG derived from the Petri net on the left. In this graph, we remove places
and directly connect tasks, forming a classic directed graph where each node
represents a task. Using that DFG, we construct tuples (ti, ti+1,mj), where mj

is a unique identifier for the j-th process model in the dataset.
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To train PetriNet2Vec, we represent a model as the set of all possible tran-
sition pairs within it. Furthermore, we adopted the Distributed Memory (DM)
algorithm implemented by the Gensim [21] library in Python, as illustrated on
the right side of Figure 3. The diversity of process models in the training dataset
ensures that some pairs of transitions are more frequent in some process models
than others, and some transition pairs may even exist in some models but not
in others. Therefore, by training using the described tuples, we can ensure that
the learned vectors represent every model uniquely, carrying information about
their structure. During training, we aim to maximize the probability of task ti+1

being in the context of task ti and model mj . We train on the entire dataset,
maximizing the average probability loss:

maximaze:
1

M

M∑
j

1

T

T∑
i

logP (ti+1|ti,mj), (1)

where T represents the set of all tasks and M denotes the set of all models
involved.

This training method does not require any model labels or supervision; in
other words, this embedding training is unsupervised. To improve the separabil-
ity between the learned vectors, we adopted the negative sampling strategy [14].
With this approach, in every training epoch, some pairs are randomly sampled
from other models to form negative tuples for training that do not exist in the
current model being trained. With negative sampling, the maximization objec-
tive becomes P (1|ti+1, ti,mj), i.e., predict 1 when the task ti+1 is in the context
of task ti and model mj . Nevertheless, all these sampling and training epochs
occur in parallel for speed and efficiency improvements.

5 Results

5.1 Cluster analysis

As previously discussed, specific tasks within our Petri net models may be un-
specified, denoted by black boxes. We face two choices in developing our method-
ology: we can adopt a generic and uniform name for all black boxes in all mod-
els, for instance, using the ‘None’ token, akin to an out-of-vocabulary token
in word2vec, or uniquely label each black box according to its position in the
network„ referred to as ‘nx’ transitions from Figure 4. These alternatives for
constructing the task dictionary (also known as the dictionary of tokens) influ-
ence the embedding vectors we aim to learn during PetriNet2Vec model training.
Thus, our initial inquiry delves into how the quality of the clusters is impacted
under each scenario.

Figure 4 illustrates the histograms depicting task distributions across all mod-
els when employing the ‘None’ token versus individually naming black boxes.
A comparative analysis reveals stark differences in task frequencies. Utilizing
unique names for black boxes necessitates the Distributed Memory (DM) algo-
rithm to learn a more extensive set of embedding vectors, given the expanded



10 J. G. Colonna et al.

(a) Methodoly 1 (‘None’)

(b) Methodoly 2

Fig. 4. Caption for this figure with two images
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token dictionary. While this might offer an advantage in distinguishing struc-
tures between models, our relatively modest dataset for training implies that
the resultant vectors may suffer in quality. In essence, attempting to learn more
embedding vectors without sufficient sample Petri net models compromises the
final cluster quality across models. Therefore, due to these constraints, method-
ology 1, which entails a more straightforward approach with a smaller token
dictionary, has a better chance of converging to more discriminative embedding
vectors. This assertion finds validation in the results presented in Table 1.

Table 1 compares the silhouette scores for the two methodologies. The left-
most column denotes the size of embeddings dn, while the adjacent columns vary
the hyperparameter named ‘minimum cluster size’ within the HDBSCAN clus-
tering algorithm. Lower minimum cluster sizes elevate the probability of forming
smaller clusters, whereas higher values tend to yield larger, amalgamated clus-
ters. Given the silhouette score’s sensitivity to cluster size, caution is warranted
in adjusting this parameter beyond these bounds. After numerous iterations, we
identified an acceptable range between 2 and 4.

Silhouette scores were computed by running each methodology ten times,
with 1000 training epochs for each investigated embedding size. The central
values in the table represent the averages across these runs, while values in
parentheses are standard deviations. Consistently, Methodology 1 yields superior
silhouette scores compared to Methodology 2, indicating more cohesive clusters.
Optimal results were attained with dn = 8 and a minimum cluster size of four.
However, slight overlaps in standard deviations across the dn = 8 row suggest
that any minimum cluster size, i.e., 2, 3, or 4, could be considered viable for
grouping PNML models using HDBSCAN and cosine distance. Henceforth, we
will adhere to and explore Methodology 1, employing embeddings of size dn = 8
and a minimum cluster size of 4.

Table 1. Comparison of silhouette scores between Methodology 1 and Methodology
2. Silhouette scores were averaged across ten runs with 1000 training epochs for each
embedding size. Methodology 1 consistently yields superior results, particularly evident
with an embedding size of dn = 8.

Methodology 1 (‘None’) Methodology 2
dn 2 3 4 2 3 4
4 0.61 (0.10) 0.69 (0.04) 0.69 (0.04) 0.56 (0.05) 0.62 (0.04) 0.51 (0.07)
8 0.71 (0.02) 0.72 (0.02) 0.73 (0.01) 0.48 (0.03) 0.45 (0.02) 0.25 (0.03)
16 0.47 (0.01) 0.45 (0.03) 0.38 (0.03) 0.32 (0.02) 0.32 (0.02) 0.21 (0.02)
32 0.42 (0.02) 0.41 (0.00) 0.34 (0.02) 0.29 (0.01) 0.28 (0.01) 0.17 (0.01)

5.2 Visual Cluster Assessment

After determining the size of the embedding vectors and running the HDBSCAN
algorithm with cosine distance, it was found that the models naturally cluster
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into nine groups. The silhouette plot depicted in Figure 5a illustrates the distri-
bution of models across these clusters. Higher silhouette values indicate better
inner cluster cohesion. The dashed vertical red line represents the average sil-
houette across all clusters, measuring the overall quality of the formed groups.
Clusters with more members appear wider. The smallest cluster size identified
by HDBSCAN was eight, while the largest was seventeen.

Since the process models are represented by vectors of size 8, it is necessary
to employ dimensionality reduction techniques to visualize them. We chose the
UMAP technique to project these models into two dimensions, as shown in Fig-
ure 5b. In this scatter plot, each point represents a process model (a Petri net)
from our dataset. The colors of the points correspond to the clusters identified
in the Silhouette plot. We opted for UMAP for two reasons: its 2D projection is
non-linear and can be performed using cosine distance. This figure demonstrates
excellent quality and separation among the groups formed by the embedding
vectors. However, it is important to note that we are observing a distorted rep-
resentation of an 8-dimensional vector space, so some groups of points may not
be well accommodated in 2D.

(a) Silhouette scores of formed clusters. (b) UMAP projection.

Fig. 5. Visual assessment. Left: Silhouette plot of model clusters with average silhou-
ette indicated. Right: UMAP projection of process models with cluster colors.

Upon closer examination within the cluster members, we observed emerg-
ing patterns related to the formation rules used to generate this dataset, as de-
scribed in Section 3.3. For example, the process models within cluster C0 include
Petri nets4: ‘000000’, ‘000010’, ‘001000’, ‘001010’, ‘100000’, ‘100010’, ‘101000’,
‘101010’, all of which lack loops (rule B = 0), invisible tasks (rule D = 0), and
duplicated tasks (rule F = 0). We observed similar patterns in other clusters,
4 These are abbreviated names of the models; for instance, ‘pdc2023_101010.pnml’ is

shortened to ‘101010’.
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characterized by different combinations of these rules. This raises an interesting
question: Can we identify the formation rules common to all cluster members?
To investigate this further, we fitted a decision tree using learning embedding as
feature vectors and the cluster identifier as labels. The resulting tree is shown in
Figure 6. This tree perfectly fits our clusters, revealing the common formation
rules shared by all members of each formed cluster. For instance, all members
of cluster C7 lack duplicated tasks (rule F = 0) but have invisible tasks (rule
D = 1), loops (rule B = 1 or B = 2), and OR-splits (rule C = 1). This strong
coherence among cluster members indicates that our methodology discovers the
structural properties of the process models.

F

D

B

C0 C1

B

C4 C

C8 C7

D

B

C2 C3

B

C5 C6

0

0

0 1,2

1

0 1,2

0 1

1

0

0 1,2

1

0 1,2

Fig. 6. Decision Tree revealing common formation rules within clusters. The most
discriminative rule F , which distinguishes between having or not having duplicated
tasks, serves as the root of this tree.

Finally, Figure 7 displays the first four members of cluster C0, including the
base model and their neighbors. From these models, it can be observed that none
of them contain loops, invisible tasks, or duplicated tasks.

5.3 Expanding Our Cluster Analysis to Task Embeddings

Until now, our analysis has primarily focused on the embeddings of models. How-
ever, during PetriNet2Vec training, we also learn task embeddings, meaning that
each task depicted in Figure 4a is also mapped to an 8-dimensional embedding
vector. Employing HDBSCAN on these task embeddings revealed the emergence
of five clusters. Figure 8a displays the Silhouette plot, while Figure 8b illustrates
the 2-dimensional projection of these task vectors. Unlike the clusters of models,
the clusters of tasks exhibit lower quality, and some tasks were not associated
with any cluster, indicated as white dots (or cluster noises). This occurred be-
cause the cosine similarity with their closest neighbor was considered too large
by the HDBSCAN algorithm. Nonetheless, they still exhibit some degree of co-
hesion, and most importantly, they play a significant role during the training of
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(a) Base model ‘000000’ (no active rules).

(b) ‘000010’ (optional tasks).

(c) ‘001000’ (OR-constructs).

(d) ‘001010’ (optional tasks and OR-constructs).

Fig. 7. Process models members of cluster C0.
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model embeddings, granting PetriNet2Vec greater flexibility in accommodating
those model embeddings.

Upon examining the scatter plot in Figure 8a, we observed a tendency for
tasks sharing OR-splits, such as t2, t39, and t40, to be grouped together, likely
owing to their resemblance to text synonyms in doc2vec. By analogy, tasks pre-
ceding an OR-split create alternate paths within the models, enabling the process
to achieve the same subsequent state through diverse routes. Intriguingly, some
white tasks are frequently subject to substitution by black boxes when the D = 1
rule is applied. As these tasks are replaced, their occurrence diminishes in PNML
files, consequently reducing their sampling during training. Moreover, infrequent
tasks exist in models that are not necessarily substituted by black boxes. Anal-
ogously, these tasks mimic the behavior of less frequent words in doc2vec. This
becomes apparent when contrasting the histogram in Figure 4a with Figure 8b,
where less frequent tasks are predominantly denoted as white dots. Nonetheless,
while other analogies may be drawn, it is crucial to acknowledge that certain
cluster artifacts may arise due to the inherent limitations of HDBSCAN.

To extend our analysis beyond the clusters produced by HDBSCAN, we also
examined the similarity matrix depicted in Figure 9. This matrix represents the
cosine similarity between every pair of tasks. The stronger the color, the higher
the similarity. From this matrix, we can address questions like: What are the
most similar (or dissimilar) tasks to a given task in vector space? Since we use a
task dictionary with only task IDs, giving them meaning is challenging. However,
in a dataset with real business process models, these IDs are translated into
interpretable tasks that must be accomplished to navigate the Petri net process
flow. For instance, from this matrix, we can identify the set of tasks most similar
to t36 are t7 and t8, and the most dissimilar are t13 and t25. This highlights that
t13 and t25 lie in a parallel branch to t36.

(a) Silhouette from task embeddings (b) UMAP from task embeddings

Fig. 8. Visual assessment of task embeddings.
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Fig. 9. Cosine similarity matrix illustrating relationships between task embeddings.

5.4 Examples of Downstream Tasks

Once our methodology is complete and the PetriNet2Vec algorithm has been
trained, we can tackle several downstream tasks using the learned embeddings,
such as model or task query for similarity, model or task classification, and
more. Also, we can explore what PetriNet2Vec algorithm has already learned by
examining the relationships between task embeddings and model embeddings.

Our first example of the downstream task is the model query, which involves
randomly selecting a model, obtaining its embedding vector, and consulting the
most similar model in the database by comparing the cosine distance between
the query and each model represented by an embedding vector. Figure 10 demon-
strates this process retrieval task, where model 20 (‘010100’) was the query and
model 22 (‘010110’) was the most similar recovered model. Upon comparing
these two process models, we observe that the only difference is the activation of
rule E, optional paths, in the returned model. This approach can also be adapted
to return multiple answers and rank them accordingly.

Addressing the complexity and significance of querying business process mod-
els provides invaluable insights for large enterprises managing numerous pro-
cesses. It enables them to pinpoint structurally similar processes, facilitating
informed decisions such as merging or replacing process models. Moreover, this
methodology can be extended to identifying similar tasks within processes. Fig-
ure 11 visually demonstrates an investigation of this nature, illustrating the sim-
ilarity between each task embedding and each model embedding. In this figure,
the models are ordered according to the clusters they formed during the appli-
cation of HDBSCAN. Notably, certain task embeddings closely align with all
model embeddings within the same cluster, unveiling compelling patterns. Nev-
ertheless, interpreting task-model embeddings demands caution. Although they
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(a) Query model ‘010100’.

(b) Answer model ‘010110’.

Fig. 10. Example of solving a model query using cosine similarity. In this case, the red
dots in (b) highlight the only two differences between the query and the returned mod-
els, providing a clear visual representation of the similarities and differences between
them.
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share the same embedding dimensions, they are different vector spaces. Conse-
quently, the resulting score would not directly translate to a strict interpretation
like model-to-model similarity. Nevertheless, it still offers valuable insights into
the task’s relevance to the model’s knowledge.

Fig. 11. Task and model embeddings’ cosine similarity visualization. Models are
grouped by clusters, separated by vertical dashed lines. This visualization highlights
the relationships learned between tasks and models, facilitating the identification of
similar processes and tasks within the business process model.

Our second example of a downstream task for model embeddings is classify-
ing processes based on formation rules. In this case, we train a classifier using the
embedding vectors as features and the rules described in Section 3.3 as labels.
Six k -NN classifiers were trained using 5-fold cross-validation and cosine dis-
tance. The results can be found in the confusion matrices shown in Figure 12. In
this figure, we can observe that some properties of the models, mainly those that
achieved higher accuracy, were effectively incorporated by our methodology when
creating the embeddings, such as loops, OR-constructs, invisible tasks, and du-
plicated tasks. However, bypass connections (representing long-term tasks) and
optional tasks were more challenging to recognize from the learned embedding,
although the results can still be considered satisfactory. This limitation proba-
bly arises from the fact that our methodology only considers pairs of consecutive
tasks, neglecting, for example, long-term dependencies.

Finally, these examples demonstrate that, in a real-world scenario, our method-
ology could be used to identify properties of business process models.

6 Conclusions

In our study, we introduce a novel approach for mapping process models, rep-
resented as Petri networks, into embedding vectors. Drawing inspiration from
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Fig. 12. Confusion matrices of 1-NN with cosine distance trained to recognize the rules
A, B, C, D, E, and F from the model embeddings. Each subfigure title indicates the
accuracy achieved using the 5-fold cross-validation methodology.

doc2vec, our approach inherits the advantageous characteristics of these meth-
ods while offering its own simplicity and effectiveness in the realm of Process
Mining. Our hypothesis posits that process paths resemble sentences in text
documents, allowing for the application of doc2vec methodology. This analogy
facilitates the learning of vector embeddings for both process models and indi-
vidual tasks, leading to the development of the PetriNet2Vec methodology.

The training process aims to maximize the probability of task sequences
within models. The unsupervised nature of the training, coupled with nega-
tive sampling, ensures that robust vector embeddings are learned, capturing the
nuances of different process models. Through a series of experiments, we demon-
strated that our PetriNet2Vec method was capable of learning the structure of
Petri nets, as well as the main properties used in constructing the process mod-
els in our dataset. Furthermore, our results showcase the utility of the learned
embeddings in two crucial downstream tasks within process mining: process clas-
sification and process retrieval.

Further analysis within clusters revealed common formation rules learned
by PetriNet2Vec, as depicted by the Decision Tree, indicating strong coherence
among cluster members. For instance, examination of cluster C0 (Figure 7) show-
cased models with shared structural properties, such as the absence of loops,
invisible tasks, or duplicated tasks. Additionally, exploring task similarity via co-
sine similarity matrices provided insights into task relationships in vector space,
despite the challenge of interpreting tasks solely by their IDs. By identifying
tasks with the highest and lowest similarities to a given task, we gained valuable
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insights into parallel branches and potential structural relationships within the
process flow.

The code used in these experiments can be found in our Github repository for
reference5. Additionally, our PetriNet2Vec package is now conveniently accessible
as a Python package, installable via the pip tool6. In our future work, we plan
to conduct a case study using real-world data collected from a company, as
opposed to relying on simulated datasets. This will allow us to validate our
findings in a practical, business environment and enhance the applicability of our
research. Additionally, we plan to utilize these embeddings to enhance process
discovery. For instance, we will compare the effectiveness of our approach with
that of a baseline model, aiming to demonstrate improvements in accuracy and
efficiency. Furthermore, we plan to expand our methodology by incorporating
additional tasks into the model’s context. For example, this extension could
involve modifying Equation 1 to include ti−1, ti−2, ti−3, . . . , thereby integrating
a broader task context into the model. This enhancement aims to capture deeper
temporal dependencies, potentially improving the model’s predictive accuracy
and relevance in complex scenarios.
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