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Abstract

Tumor cell migration within the microenvironment is a crucial aspect for cancer progression and, in
this context, hypoxia has a significant role. An inadequate oxygen supply acts as an environmental stressor
inducing migratory bias and phenotypic changes. In this paper, we propose a novel multi-scale mathematical
model to analyze the pivotal role of Snail protein expression in the cellular responses to hypoxia. Starting
from the description of single-cell dynamics driven by the Snail protein, we construct the corresponding
kinetic transport equation that describes the evolution of the cell distribution. Subsequently, we employ
proper scaling arguments to formally derive the equations for the statistical moments of the cell distribution,
which govern the macroscopic tumor dynamics. Numerical simulations of the model are performed in various
scenarios with biological relevance to provide insights into the role of the multiple tactic terms, the impact of
Snail expression on cell proliferation, and the emergence of hypoxia-induced migration patterns. Moreover,
quantitative comparison with experimental data shows the model’s reliability in measuring the impact of
Snail transcription on cell migratory potential. Through our findings, we shed light on the potential of
our mathematical framework in advancing the understanding of the biological mechanisms driving tumor
progression.

Keyworks – Multi-scale mathematical modeling | Hypoxia-driven tumor migration | Snail expression |
Kinetic transport equation

1 Introduction

Migration of tumor cells into the normal tissue under the influence of biochemical and biophysical components
of the micro-environment is one of the hallmarks of cancer [37]. However, because of the highly complex biology
at the cellular and molecular level and in the interactions with the surrounding environment, the exact dynam-
ics driving cell migration are still not completely well understood. Tissue oxygenation is one of the prominent
traits in this context. It has been suggested that oxygen concentration highly influences the switch between
migrating and proliferating cell behavior, the invasiveness, and aggressiveness of the tumor cells. Moreover,
the deprivation of oxygen acts as an environmental stressor, promoting a long series of mutations that strongly
impact the tumor dynamics [54].

Hypoxia, defined as an insufficient supply of oxygen, has long been recognized as a contributing factor to the
tumor microenvironment (TME) [19]. Not only it can induce a pronounced migratory bias of the cells towards
favorable areas, but it can even determine their phenotype and interaction strategies. It has been clinically
observed that, in solid tumors, the oxygen distribution is heterogeneous with oxygen levels ranging from normal
to hypoxic and severe hypoxic [54]. Under hypoxic conditions, tumor cells undergo morphological and molec-
ular changes to adjust their behaviors and acquire the abilities to adapt to hypoxia and escape apoptosis [62].
There are several adaptive responses of tumor cells to hypoxia [19], which may involve the secretion of specific
transcription factors, like hypoxia-inducible factor 1 (HIF-1), the upregulation of hypoxia-inducible angiogenic
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factors, sustaining new vessels formation [70], or the glycolysis activation [63]. Among others, HIF-1 activation
controls the expression of Snail transcription.

The Snail superfamily of transcription factors includes Snail1, Slug, and Scratch proteins [45]. It is well doc-
umented that Snail protein directly represses E-cadherin and thus it is a key inducer of epithelial-mesenchymal
transition, a biological process defining progression from a polarised epithelial cell phenotype to a mesenchymal
phenotype [40, 58]. In addition to regulating epithelial-to-mesenchymal transition (EMT) and cell migration,
overexpression of Snail induces resistance to apoptosis and tumor recurrence [44]. The Snail-mediated survival
of epithelial cells may thus enhance the ability of tumor cells to invade and metastasize. Overexpression of Snail
has been reported to be a sufficient inducer of EMT as well as a predictor for an aggressive tumor phenotype.
It has recently been demonstrated that Snail expression is induced by hypoxic conditions and is regulated by
HIF-1α expression at the transcriptional level [14, 41, 53]. Up-regulation of Snail-1 correlates with metastasis
and poor prognosis, whereas silencing of Snail-1 is critical for reducing tumor growth and invasiveness [7]. Since
such complex processes and their mutual conditioning scenarios are difficult to assess experimentally, mathe-
matical models can help understanding the underlying biological mechanisms, test hypotheses, and even make
predictions.

Cancer progression is a complex process, involving several factors, and taking place as both an individual
and a collective process. Microscopic intracellular dynamics, occurring at the individual level, influence the
mesoscopic behavior of the cells, which determines the macroscopic evolution for the cell population density.
Previous models for tumor invasion have been proposed in discrete or continuous frameworks. The former are
based on the description of individual cell dynamics moving on a lattice [36, 65] and can involve continuous
equations for the evolution of external factors (e.g., chemoattractant concentration, density of ECM fibers, low
pH levels) - the so-called hybrid models [3, 5, 42]. Concerning the latter, different classes of fully continuous
models for tumor cell migration have been developed. Many of them are versions or extensions of a classical
reaction-diffusion model proposed by Murray [56], while more recent works take into account the advection bias
of tumor cells describing motility adjustment to extracellular signals. Some of these are directly set on the
macroscopic scale and rely on balance equations for mass, flux, or momentum [2,4,17], or on integro-differential
equations accounting for the development of specific intra-tumor structure [6, 11, 20, 33, 64, 66] (see also the
review in [47] for settings with multiple taxis in the larger context of cell migration). More recently, the use
of kinetic transport equations (KTEs) in the kinetic theory of active particles (KTAP) framework has been
largely applied to the study of cell migration, in general, [16,18,23,24,38,46,50], and in the specific context of
tumor evolution [13, 22, 29, 30, 47, 49, 73]. Kinetic models are intrinsically multi-scale models that characterize
the dynamics of distribution functions of tumor cells which may depend, besides time and position, on several
kinetic variables, such as microscopic velocity or activity variables. These models use Boltzmann-type equa-
tions for the cell population density and scaling arguments to derive the macroscopic setting. Among those
models, [21,25,26,32,48] accounts for effects of hypoxia or hypoxia-driven acidity on the migration and invasion
process of tumor cells. Concerning the taxis terms obtained in this class of models, in [21, 28, 29, 32] they are
derived from the description of subcellular dynamics for receptor binding, which leads in the mesoscopic KTE
to transport terms w.r.t. the activity variables. In [25,48,50], instead, the use of turning rates depending on the
pathwise gradient of some chemotactic signal leads to various types of taxis at the macroscopic level. Moreover,
in [18, 26, 28], forces and stress, acting on the cells and depending on the chemical and physical composition
of the environment, translates into transport terms w.r.t. the velocity variable in the corresponding KTE. In
particular, in [28], the authors consider a flux-limited description of the transport terms. Flux limitations have
been introduced in the modeling of cell motility to reduce the infinite speed of propagation triggered by linear
diffusion and the excessive influence of the latter on the spread of cells. Their derivation from KTEs has been
provided formally in [10] and rigorously in [59]. In both cases, the derivation is based on an appropriate choice
of the signal response function involved in the turning operator and depends on the directional derivative of
the signal. In [28], instead, an alternative approach based on characterizing velocity dynamics at the single-cell
level is proposed. Lastly, concerning the mathematical modeling of Snail dynamics, several works have been
proposed for theoretically studying Snail’s role in the epithelial-to-mesenchymal transition process, especially
looking at the interactions among microRNAs and transcription factors - miR-34, miR-200, Zeb, and Snail - at
the single-cell level [43, 51,67], while its connection to cellular motility has not been largely investigated.

In the present work, we propose a multi-scale mathematical modeling approach for describing tumor inva-
sion in response to tissue hypoxia, investigating the interplay between molecular signaling pathways and cell
dynamics. The model connects single-cell behavior driven by Snail expression with macroscopic scale dynamics
describing tumor migration in the tissue. Starting from the approach proposed in [28], we introduce a novel
description of the internal variable dynamics for Snail expression and we account for flux-limited operators in
the single-cell velocity dynamics. At the mesoscopic level, cell evolution is described in terms of a classical
kinetic transport equation with different formulations for the proliferative operator. From this description, us-
ing proper up-scaling arguments, we derive the macroscopic setting. Moreover, we numerically investigate the
model’s capability of capturing different biologically relevant scenarios concerning hypoxia and Snail effects on
cell migration and proliferation. We show how the model is reliable in replicating different experimental results
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and offers new perspectives for interpreting experimental findings.
The paper is organized as follows. Section 2 provides the setup of microscopic and mesoscopic equations for

the dynamics of tumor cells. Section 3 contains the derivation of the macroscopic equation for tumor cell density
evolution, which features flux-limited chemotaxis towards increasing oxygen concentrations and self-diffusion,
as well as a proliferation term modeling the inverse correlation between moving and proliferating cell capability
in two possible manner. In Section 4, four numerical experiments are proposed to show both the qualitative
behavior of the proposed model in different scenarios and its capability to qualitatively replicate experimental
data concerning Snail impact of tumor cell migration in different oxygen conditions. Finally, Section 5 provides
a discussion of the main outcome of our model, along with some perspectives.

2 Modeling

In this note, we propose a multi-scale model for describing tumor progression in response to tissue hypoxia,
whose influence on the cancer cells is mediated by Snail dynamics. Following the well-established literature
regarding multi-scale models for tumor invasion [22,26,29,32,46], the model setting proposed here is built using
the classical tools and methods of kinetic theory. Our main aim is to obtain a detailed description of the tumor
cell dynamics, taking into account the effect of microscopic signaling pathways in the mechanisms of tumor
response to hypoxia.

Starting from the microscopic level of interaction between cells and oxygen, we consider the dynamics of
the Snail signaling pathway which is involved in the cell response to hypoxic microenvironmental conditions.
Moreover, following [28], we provide a microscopic description of velocity dynamics that depend on oxygen
and macroscopic cell density tactic gradient, with Snail expression influencing cell motility. Then, we set up
the corresponding kinetic transport equation describing the evolution of the cell distribution in relation to
the prescribed microscopic dynamics. Performing a proper model upscaling, we obtain the equations for the
statistical moments of the cell distribution. These describe the dynamics of tumor cells, which are driven by
limited diffusion and oxygen-mediated drift, and the evolution of the average Snail expression of the tumor
population.

2.1 Microscopic scale

At this level, we model the dynamics of the microscopic variable y ∈ Y, describing the expression of the Snail
protein, and the microscopic cell velocity v ∈ V, both influenced by the oxygen levels. We assume oxygen to
be time-independent, i.e., O2 = O2(x) has a fixed distribution that does not evolve in time. Possible extensions
of this approach are discussed in Section 5.

2.1.1 Dynamics of Snail protein expression

Concerning Snail protein expression, we model the process of protein synthesization from gene transcription
and its regulation depending on the oxygen dynamics. Snail proteins are transcription factors involved in the
regulation of hypoxia-driven cell migration and invasion [41, 75]. It has been shown in several different types
of human cancer that overexpression of Snail induces invasion and metastasis [12, 60, 61, 75]. The expression
of Snail protein is controlled by the oxygen levels, decreasing when the tumor mass is properly oxygenated.
Relying on the description of the temporal evolution of the total level of Snail proposed in [67], here we model
its dynamics with the following equation:

dy

dt
= gsH(y)H(O2)− γsy , (1)

where gs and γs represent the basal transcription and degradation rates, respectively, while the functions H(·)
model the transcription activation/inhibition mechanisms. We recall here that O2 = O2(x). Generally, the
functions H(G) can be described as

H(G) =
1 + λG

G
G0

1 + G
G0

,

where G is a generic agent influencing the transcription and G0 its reference value. In particular, λG > 1 models
an activation mechanism supported by the agent G, while λG < 1 refers to an inhibition mechanism driven by
G. In the case of Snail, it has been shown that it has a self-regulatory (inhibition) mechanism [27, 52], which
we describe as

H(y) =
1

1 + y
y0

,

with y0 maximum Snail expression.
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Observation 1. The assumption λG = 0 is made to avoid overloading the model with further parameters.
However, other choices of this function can be included in the model.

Concerning O2, it exerts an inhibitory mechanism on the transcription of Snail. However, for the definition of
the microscopic dynamics and the derivation of the macroscopic model, we keep a general expression for the
function H(O2). We then specify the value of the parameter λO2 used for the numerical simulations in Table 1.
Rescaling y/y0 ⇝ y and gs/y0 ⇝ gs, we simplify the notation as

dy

dt
= gs

1

1 + y
H(O2)− γsy := G(y,O2) (2)

with y ∈ Y = (0, 1). Looking at its quasi-steady state solutions y∗, we observe that

dy

dt
= 0 ⇐⇒ gs

1

1 + y
H(O2)− γsy = 0

⇐⇒ [gsH(O2)− γsy(1 + y)]
1

1 + y
= 0

⇐⇒ y(1 + y) =
gs
γs
H(O2)

⇐⇒ y2 + y − gs
γs
H(O2) = 0

⇐⇒ y = −1

2

(
1±

√
1 + 4

gs
γs
H(O2)

)
.

As y represents a biological quantity accounting for the expression of Snail, no negative values are admitted.
Thus, the only acceptable steady-state solution for our system is given by

y∗ =
1

2

(√
1 + 4

gs
γs
H(O2)− 1

)
.

Observation 2. To ensure that the equilibrium distribution y∗ belongs to Y, we have to require that

gs
γs

max
x∈Rn

{H(O2(x))} < 2 . (3)

If we consider an inhibitory function H(O2) such that λO2 = 0, than the condition reads gs < 2γs.

2.1.2 Dynamics of cell velocity

Concerning the microscopic velocity v, we model the mechanism by which cells tend to migrate by aligning to
two different gradients. Precisely, increasing gradients of oxygen attract tumor cells towards better oxygenated
areas, while tumor cells tend to avoid crowded regions with high cell densities. In both cases, the smaller the
amount of Snail expression, the lower the cell’s tendency to move along the directions of these gradients. Under
these assumptions, the preferred direction of a cell can be modeled by a weighted sum of the two gradients.
Thus, velocity dynamics are modeled with the following equation

dv

dt
= g(y,O2,M)− a2v , (4)

where the function g(y,O2,M) describes cell acceleration, while the second term models cell deceleration, with
a2 a positive constant scaling cell deceleration. Cells, in fact, tend to slow down or randomly move in the
absence of external signals. Concerning cell acceleration, we set

g(y,O2,M) = a1b(y,O2,M) . (5)

Here, b(y,O2,M) is the vector gradient modeling cell alignment along the directions given by the gradient of
oxygen O2 and the gradient of macroscopic tumor cell density M , while a1 is a positive constant scaling cell
acceleration. As introduced above, we assume that the cell’s tendency to follow oxygen gradient is enhanced by
high Snail expression, which is one of the mechanisms of cell response to hypoxia. At the same time, since low
levels of Snail promote high levels of E-cadherin expression [45, 68], which is responsible for cell-cell adhesion,
we assume that cell tendency to avoid high cell density region is also positively regulated by y. In fact, high
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levels of Snail would promote less adhesion between cells and, thus, a more enhanced tendency to escape from
the tumor core. Thus, we choose

b(y,O2,M) = y

β ∇xO2√(
O2,0

X

)2

+ |∇xO2|2
− (1− β)

∇xM√(
KM

X

)2

+ |∇xM |2

 . (6)

Here, KM and O2,0 are reference values for tumor cells and oxygen, X > 0 is a constant to be selected in
correspondence to appropriate time and length scales, while the parameter β ∈ (0, 1) weights the contributions
of the two tactic terms, depending on the main microenvironmental cue. Thus, (4) can be written as

dv

dt
= a1y

β ∇xO2√(
O2,0

X

)2

+ |∇xO2|2
− (1− β)

∇xM√(
KM

X

)2

+ |∇xM |2

− a2v =: S(v, y, O2,M) . (7)

We observe that g(y,O2,M) is bounded

|g(y,O2,M)| = |a1 b| < a1

and, thus, the speed s = |v| < a1
a2

:= sub, with sub an upper bound for cell speed. Finally, we complete the

microscopic level system by modeling the changes in the cell position x ∈ Rn as

dx

dt
= v . (8)

Thus, collecting equations (2), (7), and (8), the complete system for the microscopic level dynamics reads

dx

dt
= v ,

dv

dt
= a1 y

β ∇xO2√(
O2,0

X

)2

+ |∇xO2|2
− (1− β)

∇xM√(
KM

X

)2

+ |∇xM |2

− a2v ,

dy

dt
= gs

1

1 + y
H(O2)− γsy .

(9)

2.2 Mesoscopic scale

At this level, we consider the cell density distribution p(t,x,v, y) : [0, T ] × Rn × V × Y → R, depending on
time t, position x ∈ Rn, microscopic velocity v ∈ V, and internal variable for Snail protein expression y ∈ Y.
In particular, the microscopic velocity vector v can be written as v = sϑ with cell speed s ∈ (0, sub) and cell
direction ϑ ∈ Sn−1. For describing the mesoscopic dynamics of tumor cells, we consider the following kinetic
transport equation:

∂p

∂t
+∇x · (vp) + ∂

∂y
(G(y,O2)p) +∇v · (S(v, y, O2,M)p) = P[p] . (10)

Here, the functions G(y,O2) and S(v, y, O2,M) are given by (2) and (7), respectively, while the operator P[p]
describes the proliferation process. We generally describe it as

P[p] = µ1(M,O2, s)

∫
Y

µ2(y
′)χ(t,x, y, y′)p(t,x,v, y′)dy′ .

Here, the coefficient function µ1(M,O2, s) accounts for the possible effect of cell speed and oxygen level changes,
as well as overcrowding of the environment, on cell proliferation. Instead, the integral operator, involving the
coefficient function µ2(y) and the kernel χ(t,x, y, y′) describes the role of Snail expression in the proliferation
process. In particular, χ(t,x, y, y′) is the probability kernel representing the likelihood of cells to receive a Snail
expression regime y after the division of a cell with Snail expression y′. We propose two possible choices for the
proliferation term expression, both based on the assumption that cell capabilities of moving and proliferating
are inversely correlated (go-or-grow hypothesis [72] and tradeoffs [35]).
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• In the first case, we assume that

µ1(M,O2, s) := µ
sub − s∗

sub

(
1− M

KM

)
O2

O2,0 +O2
and µ2(y) := 1 ∀y ∈ Y.

Moreover, we assume that the level of Snail expression in a daughter cell is equal to the one of its mother,
i.e., the kernel χ(t,x, y, y′) = δ(y − y′). With these assumptions, the proliferative operator reads

P1[p] = µ
sub − s∗

sub

(
1− M

KM

)
O2

O2,0 +O2
p(t,x,v, y) (11)

With this choice, the impact of proliferation-migration tradeoffs is taken into account by relating µ1(M,O2, s)
to cell speed in a decreasing manner. This allows to account for the impact of y only in an indirect manner,
namely through the variation of s. Moreover, as the adaptation of speed to the surrounding environment
is faster than the proliferation time, the velocity is approximated by its steady-state v∗ and the corre-
sponding speed is denoted by s∗ = |v∗|.

• For the second case, we assume that

µ1(M,O2, s) := µ

(
1− M

KM

)
O2

O2,0 +O2
and µ2(y) := 1− y ∀y ∈ Y.

With this choice, the mentioned tradeoffs are taken into account in the integral term, which models a
reduced proliferation for high levels of Snail expression. In particular, we assume that the kernel does not
depend on the level of Snail expression of the mother cell, i.e., χ = χ(t,x, y), and distribution of the level
of Snail expression in a daughter cell is symmetrical around the quasi-steady-state y∗, i.e.,∫

Y

(y − y∗)χ(t,x, y)dy = 0 .

With these assumptions, the proliferative operator reads

P2[p] := µ

(
1− M

KM

)
O2

O2,0 +O2

∫
Y

(1− y′)χ(t,x, y)p(t,x,v, y′)dy′ (12)

In both cases, the macroscopic cell density M is given by

M :=

∫
V

∫
Y

p(t,x,v, y)dydv . (13)

The introduced descriptions of the proliferation process are such that proliferation is reduced for highly motile
cells, with a direct or indirect effect of Snail expression. In both case, the parameter µ represents the constant
tumor proliferation rate and we also include a direct effect of oxygen on tumor cell proliferation, which is
enhanced at higher oxygen levels. We will compare, then, the corresponding macroscopic models in the numerical
experiment 2 in Section 4.

3 Derivation of macroscopic system

Due to the high dimension of (10), solving directly this kinetic equation has to face several challenges, especially
related to its complexity and to a high computational cost. Therefore, in this Section we aim at deducing a
macroscopic counterpart of (10).

3.1 Assumptions

To obtain a closed system of macroscopic equations from the integration of (10) w.r.t y and v, we need to make
the following assumptions on the moments of the distribution function:

∇x ·
∫
V

(v − v∗)(vi − v∗i )pdv ≈ 0 ,

∫
V

∫
Y

(vi − v∗i )(y − y∗)pdydv ≈ 0 ,

∫
V

∫
Y

(y − y∗)2pdydv ≈ 0 .

Precisely, with vi we indicate the i-th component of the velocity vector v, while y∗ and v∗ are the steady-state
solutions of microscopic equations (2) and (7), respectively. With these assumptions, we state that some of
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the second-order moments for the tumor cell distribution w.r.t. deviations of v and y from their steady-states
are negligible, as well as the second-order moment w.r.t y. These are reasonable choices since the microscopic
dynamics of protein expression and velocity changes happen faster in comparison to the kinetic behavior of
tumor cells.

Considering the rescaling described in the above Sections, the domains Y and V are given by Y = (0, 1) and
V = Bn

sub
(0) = (0, sub)×Sn−1. Following the approach proposed in [22,25,28,29], we assume the distribution p

to be compactly supported in the V ×Y space. Precisely, for equation (10), boundary conditions w.r.t. these
variables need to be prescribed at the inflow boundary of Y and V. Considering the dynamics in (2), a protein
expression state y ∈ ∂Y is part of the inflow boundary if G(y,O2) ·n ≤ 0 for n outward normal on the boundary.
Given ∂Y = {0, 1}, it holds

G(0, O2) · n = gsH(O2) · (−1) < 0

G(1, O2) · n = (2 gsH(O2)− γs) · (1) ≤ 0 if condition (3) holds.
(14)

Thus, the inflow boundary of Y coincides with ∂Y and boundary conditions can be prescribed on the whole
∂Y. Instead, considering the dynamics in (7) and a velocity vector v ∈ ∂V, we have that |v| = sub and the
outward normal n = v/sub. The velocity vector v is part of the inflow boundary if S(v, y, O2,M) · n ≤ 0, i.e.,

S(v, y, O2,M) · n =
a1
sub

(b(y,O2,M) · v)− a2
sub

(v · v)

≤ a1
sub

|b(y,O2,M)| |v| − a2
sub

|v|2

≤ a1 − a2sub = 0 .

(15)

Thus, the inflow boundary of V coincides with ∂V and boundary conditions can be prescribed on the whole
∂V. Precisely, (14) and (15) allow to conclude that the characteristics of the transport part of equation (10)
that start in Rn ×V ×Y do not leave this set.

3.2 Equation for the moments

Here, we upscale (10) to obtain the equation for the macroscopic cell density M(t,x). Firstly, we rescale the
quantities introduced above as p/KM ⇝ p,M/KM ⇝M , O2/O2,0 ⇝ O2, and s

∗/sub ⇝ s∗. Then, we introduce
a small parameter ε≪ 1 to rescale time and space as

t̂ = εκt , x̂ = εx ,

ĝs = ε−νgs , γ̂s = ε−νγs ,

with κ, ν > 0. The rescaling of the reaction rates gs and γs means the rescaling of dy/dt, while the negative power
of ε is chosen to reflect the fact that these dynamics are the fastest among all included processes. Moreover,
assuming that 1/X is of order ε, we observe that v̂∗ = v∗. For simplicity of writing, we drop the hat symbol
from all variables and, thus, equation (10) reads

εκ
∂p

∂t
+ ε∇x · (vp) + ε−ν ∂

∂y
(G(y,O2)p) +∇v · (S(v, y, O2,M)p) = εκPk[p] (16)

where

G(y,O2) = gs
1

1 + y
H(O2)− γsy ,

S(v, y, O2,M) = a1y

(
β

∇xO2√
1 + |∇xO2|2

− (1− β)
∇xM√

1 + |∇xM |2

)
− a2v ,

and Pk[p] would be given by either

P1[p] = µ(1− s∗) (1−M)
O2

1 +O2
p(t,x,v, y) (17)

or

P2[p] := µ (1−M)
O2

1 +O2

∫
Y

(1− y′)χ(t,x, y)p(t,x,v, y′)dy′ , (18)

7



which corresponds to the rescaled versions of (11) or (12), respectively. Together with the introduced macro-
scopic tumor density (13), let consider the following notations for the moment of the distribution function
p:

m(t,x, y) :=

∫
V

p(t,x,v, y)dv , mv(t,x, y) :=

∫
V

vp(t,x,v, y)dv ,

mv
i (t,x, y) :=

∫
V

vip(t,x,v, y)dv , Mv
i (t,x) =

∫
Y

∫
V

vip(t,x,v, y)dvdy ,

Mv(t,x) =

∫
Y

∫
V

vp(t,x,v, y)dvdy , My(t,x) =

∫
Y

∫
V

yp(t,x,v, y)dvdy .

Considering (16) and integrating w.r.t v we derive the equation for m(t,x, y), i.e.,

εκ
∂m

∂t
+ ε∇x · mv + ε−ν ∂

∂y
(G(y,O2)m) +

∫
V

∇v · S(v, y, O2,M)pdv = εκ
∫
V

Pk[p]dv , (19)

Here ∫
V

∇v · S(v, y, O2,M)p dv = 0

for the boundary conditions imposed on v, while for the proliferative operator we have either∫
V

P1[p]dv =

∫
V

µ(1− s∗) (1−M)
O2

1 +O2
p(t,x,v, y)dv = µ(1− s∗) (1−M)

O2

1 +O2
m(t,x, y) = P1[m]

or ∫
V

P2[p]dv =

∫
V

µ (1−M)
O2

1 +O2

∫
Y

(1− y′)χ(t,x, y)p(t,x,v, y′)dy′dv

= µ (1−M)
O2

1 +O2

∫
Y

(1− y′)χ(t,x, y)m(t,x, y′)dy′ = P2[m] .

Thus, the equation for m(t,x, y) reads

εκ
∂m

∂t
+ ε∇x · mv + ε−ν ∂

∂y
(G(y,O2)m) = εκPk[m] . (20)

Considering again (16), multiplying it by vi and integrating w.r.t v we derive the equation for mv
i (t,x, y), which

is the i-th component of the vector mv, i.e.,

mv :=


mv

1

mv
2

...

mv
n

 .

The equation for mv
i reads

εκ
∂mv

i

∂t
+ ε

∫
V

vi∇x · (vp)dv + ε−ν

∫
V

vi
∂

∂y
(G(y,O2)p)dv +

∫
V

vi∇v · (S(v, y, O2,M)p)dv = εκ
∫
V

viPk[p]dv .

Here,∫
V

vi∇x · (vp)dv = ∇x ·
∫
V

vi(vp)dv = ∇x ·
∫
V

(vi − v∗i )(v − v∗)pdv +∇x ·
∫
V

(viv
∗ + v∗i v − v∗i v

∗)pdv

= ∇x · (v∗mv
i + v∗im

v − v∗i v
∗m)

(21)
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for the assumption in Section 3.1, while

∫
V

vi∇v · (S(v, y, O2,M)p)dv =

∫
V

vi∂vi(Sip)dv +

N∑
j=1
j ̸=i

∫
V

vi∂vj (Sjp)dv

=

∫
N⋃

j=1
j ̸=i

Vj

∫
Vi

vi∂vi(Sip) dvi dṽ +

N∑
j=1
j ̸=i

∫
N⋃

k=1
k ̸=j

Vk

vi

∫
Vj

∂vj
(Sjp) dvj dṽ

where dṽ is (n-1)-th components vector such that

v = (vi, ṽ) ∈ Vi ×
⋃
j=1
j ̸=i

Vj = V .

Under the boundary conditions in Section 3.1, the second term on the right-hand-side is equal to 0, while using
the chain rule the first term reduces to

∫
N⋃

j=1
j ̸=i

Vj

∫
Vi

vi∂vi(Sip) dvi dṽ =

∫
N⋃

j=1
j ̸=i

Vj

[
vi (Sip)|∂Vi

−
∫
Vi

Sipdvi

]
dṽ = −

∫
V

Sipdv

= −a1 y

(
β

(∇xO2)i√
1 + |∇xO2|2

− (1− β)
(∇xM)i√
1 + |∇xM |2

)
m+ a2m

v
i

= −gi(y,O2,M)m+ a2m
v
i ,

where gi(y,O2,M) represents the i-th component of the vector function g(y,M,O2) defined in (5). Concerning
the proliferative operator, we have either∫
V

viP1[p]dv =

∫
V

viµ(1− s∗) (1−M)
O2

1 +O2
p(t,x,v, y)dv = µ(1− s∗) (1−M)

O2

1 +O2
mv

i (t,x, y) = P1[m
v
i ]

or ∫
V

viP2[p]dv =

∫
V

viµ (1−M)
O2

1 +O2

∫
Y

(1− y′)χ(t,x, y)p(t,x,v, y′)dy′dv

= µ (1−M)
O2

1 +O2

∫
Y

(1− y′)χ(t,x, y)mv
i (t,x, y

′)dy′ = P2[m
v
i ] .

Thus, the equation for mv
i reads

εκ
∂mv

i

∂t
+ ε∇x · (v∗mv

i + v∗im
v − εv∗i v

∗m)+ ε−ν ∂

∂y
(G(y,O2)m

v
i )− (gi(y,O2,M)m− a2m

v
i ) = εκPk[m

v
i ] . (22)

Therefore, the system for the n+1 variables (m,mv
1 ,m

v
2 , ..,m

v
n) is given by

εκ+ν ∂m

∂t
(t,x, y) + ε1+ν∇x · mv(t,x, y) +

∂

∂y

(
G(y,O2)m(t,x, y)

)
= εκ+νPk[m](t,x, y) ,

εκ+ν ∂m
v
i

∂t
(t,x, y) + ε1+ν∇x ·

[
v∗mv

i + v∗im
v − v∗i v

∗m
]
(t,x, y) +

∂

∂y

[
G(y,O2)m

v
i (t,x, y)

]

= εν
[
gi(y,O2,M)m(t,x, y)− a2m

v
i (t,x, y)

]
+ εκ+νPk[m

v
i ](t,x, y) ∀i = 1...n .

(23)
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We remark that ∇x ·mv =
n∑

j=1

∂xjm
v
j . Then, integrating (20) w.r.t y, for the assumptions in Section 3.1, we

immediately get

εκ
∂M

∂t
(t,x) + ε∇x ·Mv(t,x) = εκ

∫
Y

Pk[m] (24)

where for the proliferative operator we have either∫
Y

P1[m]dy =

∫
Y

µ(1− s∗) (1−M)
O2

1 +O2
m(t,x, y)dy = µ(1− s∗) (1−M(t,x))

O2

1 +O2
M(t,x)

or ∫
Y

P2[m]dy =

∫
Y

µ (1−M(t,x))
O2

1 +O2

∫
Y

(1− y′)χ(t,x, y)m(t,x, y′)dy′dy

= µ (1−M)
O2

1 +O2

∫∫
Y

(1− y′)χ(t,x, y)m(t,x, y′)dy′dy

= µ (1−M(t,x))
O2

1 +O2
(M(t,x)−My(t,x)) .

Instead, integrating (22) w.r.t. y, we obtain

εκ
∂Mv

i

∂t
+ ε∇x · (v∗Mv

i + v∗iM
v − v∗i v

∗M) + ε−ν

∫
Y

∂

∂y
(G(y,O2)m

v
i )dy −

∫
Y

(gi(y,O2,M)m− a2m
v
i )dy

= εκ
∫
Y

Pk[m
v
i ]dy ,

where the first integral vanishes for the boundary conditions in Section 3.1. Concerning the second integral on
the left-hand-side, we have ∫

Y

(gi(y,O2,M)m− a2m
v
i )dy = g̃i(O2,M)My − a2M

v
i ,

where

g̃i(O2,M) = a1

(
β

(∇xO2)i√
1 + |∇xO2|2

− (1− β)
(∇xM)i√
1 + |∇xM |2

)
. (25)

Instead, the proliferative operator reads either∫
Y

P1[m
v
i ]dy =

∫
Y

µ(1− s∗) (1−M)
O2

1 +O2
mv

i (t,x, y)dy = µ(1− s∗) (1−M)
O2

1 +O2
Mv

i (t,x)

or ∫
Y

P2[m
v
i ]dy =

∫
Y

µ (1−M)
O2

1 +O2

∫
Y

(1− y′)χ(t,x, y)mv
i (t,x, y

′)dy′dy

= µ (1−M)
O2

1 +O2

Mv
i −

∫∫
Y

y′χ(t,x, y)mv
i (t,x, y

′)dy′dy



= µ (1−M)
O2

1 +O2

Mv
i −

∫
Y

∫
V

(vi − v∗i )y p(t,x,v, y)dydv − v∗i

∫
Y

∫
V

y p(t,x,v, y)dydv



= µ (1−M)
O2

1 +O2

(
Mv

i −
∫
Y

∫
V

(vi − v∗i )(y − y∗) p(t,x,v, y)dydv
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− y∗
∫
Y

∫
V

(vi − v∗i )p(t,x,v, y)dydv − v∗i

∫
Y

∫
V

y p(t,x,v, y)dydv

)

= µ (1−M(t,x))
O2

1 +O2
(Mv

i (t,x)− y∗Mv
i (t,x)− v∗iM

y(t,x) + y∗v∗iM(t,x)) .

Therefore, we obtain

εκ
∂Mv

i

∂t
(t,x) + ε∇x · [v∗Mv

i + v∗iM
v − v∗i v

∗M ] (t,x)− [g̃i(O2,M)My(t,x)− a2M
v
i (t,x)] = εκ

∫
Y

Pk[m
v
i ]dy .

(26)

Finally, multiplying (20) by y and integrating w.r.t. y we obtain

εκ
∂My

∂t
+ ε∇x ·

∫
Y

yMvdy + ε−ν

∫
Y

y
∂

∂y

(
G(y,O2)m

)
dy = εκ

∫
Y

yPk[m](t,x, y)dy .

Here,

∇x ·
∫
Y

yMvdy = ∇x ·
∫
Y

∫
V

y(vp)dvdy = ∇x ·

∫
Y

∫
V

(v − v∗)(y − y∗)pdvdy +

∫
Y

∫
V

(v∗y + vy∗ − v∗y∗)pdvdy


= ∇x · (v∗My + y∗Mv − v∗y∗M)

thanks to the assumption in Section 3.1, while

∫
Y

y
∂

∂y

(
G(y,O2)m

)
dy =

y(Gm)|∂Y −
∫
Y

G(y,O2)mdy

 = −
∫
Y

G(y,O2)mdy = −
∫
Y

(
gs

1

1 + y
H(O2)− γsy

)
mdy

= γsM
y − gsH(O2)

∫
Y

1

1 + y
mdy .

Considering the Taylor expansion of
1

1 + y
around y∗ we get

1

1 + y
=

1

1 + y∗ + y − y∗
≈ (1 + y∗)−1 − (1 + y∗)−2(y − y∗) + (1 + y∗)−3(y − y∗)2 +O((y − y∗)2) .

Thus, ignoring the higher-order terms of this expansion, we obtain

∫
Y

1

1 + y
mdy =

∫
Y

(
(1 + y∗)−1 − (1 + y∗)−2(y − y∗) + (1 + y∗)−3(y − y∗)2

)
mdy

= (1 + y∗)−1M − (1 + y∗)−2My + y∗(1 + y∗)−2M ,

i.e.,

∫
Y

y
∂

∂y

(
G(y,O2)p

)
dy = γsM

y − gs
H(O2)

1 + y∗

(
M − 1

1 + y∗
(My − y∗M)

)

= −gs
H(O2)

(1 + y∗)2
(1 + 2y∗)M +

(
γs + gs

H(O2)

(1 + y∗)2

)
My .

The proliferative operator, instead, reads either∫
Y

yP1[m]dy =

∫
Y

µ(1− s∗) (1−M)
O2

1 +O2
ym(t,x, y)dy = µ(1− s∗) (1−M)

O2

1 +O2
My(t,x)
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or

∫
Y

yP2[m]dy =

∫
Y

µ (1−M)
O2

1 +O2

∫
Y

y(1− y′)χ(t,x, y)m(t,x, y′)dy′dy

= µ (1−M)
O2

1 +O2

∫
Y

yχ(t,x, y)dy

∫
Y

(1− y′)m(t,x, y′)dy′



= µ (1−M)
O2

1 +O2
(M −My)

∫
Y

(y − y∗)χ(t,x, y)dy + y∗
∫
Y

χ(t,x, y)dy


= µ (1−M(t,x))

O2

1 +O2
y∗ [M(t,x)−My(t,x)] .

Thus, the equation for My reads

εκ
∂My

∂t
(t,x) + ε∇x · [v∗My + y∗Mv − v∗y∗M ] (t,x)− ε−νgs

H(O2)

(1 + y∗)2
(1 + 2y∗)M(t,x)

+ ε−ν

(
γs + gs

H(O2)

(1 + y∗)2

)
My(t,x) = εκ

∫
Y

yPk[m](t,x, y)dy .

(27)

Thus, the system for M(t,x), Mv(t,x), and My(t,x) reads

εκ−1 ∂M

∂t
(t,x) +∇x ·Mv(t,x) = εκ−1

∫
Y

Pk[m](t,x, y)dy ,

εκ
∂Mv

i

∂t
(t,x) + ε∇x · [v∗Mv

i + v∗iM
v − v∗i v

∗M ] (t,x)− (g̃i(O2,M)My(t,x)− a2M
v
i (t,x))

= εκ
∫
Y

Pk[m
v
i ](t,x, y)dy , ∀i = 1...n ,

εκ+ν ∂M
y

∂t
(t,x) + ε1+ν∇x · [v∗My + y∗Mv − v∗y∗M ] (t,x)− gs

H(O2)

(1 + y∗)2
(1 + 2y∗)M(t,x)

+

(
γs + gs

H(O2)

(1 + y∗)2

)
My(t,x) = εκ+ν

∫
Y

yPk[m](t,x, y)dy .

(28)

Now, we consider the expansion of the previously introduced moments in the form

M =M0 + εM1 +O(ε2) ,

Mv =Mv
0 + εMv

1 +O(ε2) ,

My =My
0 + εMy

1 +O(ε2) ,

such that M0 = lim
ε→0

M . As the focus of this study is on the tumor response to hypoxia and, thus, the influence

of the environmental chemotactic cue given by the oxygen levels, cell movement has a very clear directional
component. Therefore, following the well-established literature [8, 9, 23, 34, 39], we consider here a hyperbolic
limit of the moment system (28), i.e., we choose κ = 1. Passing formally to the limit ε → 0 in (28), from the
first equation we get

∂M0

∂t
(t,x) +∇x ·Mv

0 (t,x) =

∫
Y

Pk[m0](t,x, y)dy , (29)

where m0 is the zero-order term in the expansion of the moment m(t,x, y). Then, from the equation for Mv
i in

(28), we get

g̃i(O2,M0)M
y
0 − a2M

v
i,0 = 0 ⇐⇒ Mv

i,0 =
g̃i(O2,M0)

a2
My

0 (30)
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that, considering the vector Mv
0 with i-th component Mv

i,0, means

Mv
0 =

g̃(O2,M0)

a2
My

0 (31)

with

g̃(O2,M0) = a1

(
β

∇xO2√
1 + |∇xO2|2

− (1− β)
∇xM0√

1 + |∇xM0|2

)
.

Finally, from the last equation in (28), we obtain

−gs
H(O2)

(1 + y∗)2
(1 + 2y∗)M0 +

(
γs + gs

H(O2)

(1 + y∗)2

)
My

0 = 0, ⇐⇒ My
0 =

gsH(O2)(1 + 2y∗)

γs(1 + y∗)2 + gsH(O2)
M0 . (32)

Thus, plugging (32) into (31), and the latter in (29), we obtain the following equation for the evolution of the
macroscopic cell density M0

∂M0

∂t
(t,x) +∇x ·

[
F (y∗, O2(x))M0(t,x)

(
β

∇xO2(x)√
1 + |∇xO2(x)|2

− (1− β)
∇xM0(t,x)√

1 + |∇xM0(t,x)|2

)]
= Pk[M0](t,x)

(33)
where we set the velocity field (or chemotactic sensitivity)

F (y∗, O2(x)) :=
a1
a2

gsH(O2(x))(1 + 2y∗)

γs(1 + y∗)2 + gsH(O2(x))
, (34)

while the proliferative operator is given by either

P1[M0](t,x) =

∫
Y

P1[m0](t,x, y)dy = µ(1− s∗) (1−M0(t,x))
O2(x)

1 +O2(x)
M0(t,x) (35)

or

P2[M0](t,x) =

∫
Y

P2[m0](t,x, y)dy = µ (1−M0(t,x))
O2(x)

1 +O2(x)

(
1− a2

a1
F (y∗, O2(x))

)
M0(t,x) . (36)

Since we are interested in the impact of the microscopic Snail protein expression of a cell on the overall macro-
scopic evolution of the population, for the simulation described in Section 4 we also analyze the evolution of
My

0 that is linked to the average expression of the Snail protein in the cell population. Thus, discarding the
subscripts 0, the resulting macroscopic system reads
∂M

∂t
(t,x) +∇x ·

[
F (y∗, O2(x))M(t,x)

(
β

∇xO2(x)√
1 + |∇xO2(x)|2

− (1− β)
∇xM(t,x)√

1 + |∇xM(t,x)|2

)]
= Pk[M ](t,x) ,

My(t,x) =
a2
a1
F (y∗, O2(x))M(t,x) .

(37)

4 Numerical experiments

We perform 2D numerical simulations of the resulting macroscopic system (37) to analyze in-silico scenarios of
tumor progression under varied oxygen conditions and Snail expressions. Numerical simulations are conducted
using a self-developed code in Python 3.10.12, whose details are provided in Section 4.1. The parameter values
used for the simulations are reported in Table 1. Sections 4.2, 4.3, 4.4, and 4.5 present the results of the four
main numerical experiments.

Experiment 1 - In Section 4.2, we analyze the differences in cell migration and Snail distribution over
time between a chemotactic dominated scenario and an anti-crowding dominated scenario by varying the
value of the weighting parameter β and, thus, its impact on cell motion.

Experiment 2 - In Section 4.3, we investigate the impact of Snail expression on cell proliferation, and
we compare the model’s evolution using the two different choices of the proliferative operator given in (11)
and (12).
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Experiment 3 - In Section 4.4, we show our model capabilities to quantitatively replicate experimental
results from two different studies on human cancer cells. Firstly, we consider the findings of [53] regarding
the effect of Snail over-expression or knockdown on the migration capability of human breast cancer cells.
Secondly, we refer to the comparison presented in [71], where the effects of hypoxia and a combination of
hypoxia and Snail knockdown on the motility of human hepatocarcinoma cells are studied.

Experiment 4 - In Section 4.5, we analyze the hypoxia-driven spatial distribution of Snail expression
within a tumor and we show its consistency with the results shown in [53].

Parameter Description Value (unit) Source

gs basal Snail transcription rate 1.5 (molecules · min−1) [52]

γs basal Snail degradation rate 0.0021 (min−1) [51]

a1/a2 scaling velocity parameter 0.1 (mm · min−1) This work

β weighting parameter for tactic contribution varying in [0-1] This work

µ tumor proliferation rate [6-9]· 10−4 (min−1) [25,69]

Table 1: Model parameters. The table provides the dimensional values for the parameters involved in setting (37)
and used in the numerical experiments.

4.1 Numerical method

To perform numerical simulations of the model, we adapt the numerical method presented in [15] to our problem
structure. In detail, we rewrite the first equation of (37) as

∂M

∂t
(t,x) = −T (y∗, O2,M)(t,x) + Pk[M ](t,x) (38)

where

T(y∗, O2,M)(t,x) = ∇x ·

[
F (y∗, O2(x))M(t,x)

(
β

∇xO2(x)√
1 + |∇xO2(x)|2

− (1− β)
∇xM(t,x)√

1 + |∇xM(t,x)|2

)]
(39)

rules the movement of cells, while Pk[M ](t,x) is the proliferation term defined in (35) (k = 1) and (36) (k = 2).
Setting x = (x1, x2), we consider the geometric domain Ω = [x1,min, x1,max]× [x2,min, x2,max] ⊆ R2, where
we introduce a uniform Cartesian mesh consisting of the cells Cj,k := [x1,j− 1

2
, x1,j+ 1

2
] × [x2,k− 1

2
, x2,k+ 1

2
], for

j = 0, . . . , Nx1 and for k = 0, . . . , Nx2 , of size ∆x1 ×∆x2. We adopt a splitting method, accounting first for the
conservative part T(y∗, O2,M) and, then, for the reaction term Pk[M ]. Precisely, defining

Mj,k(t) =
1

∆x1∆x2

∫
Cj,k

M(t, x1, x2)dx ,

for the conservative part we adopt the general semi-discrete finite-volume scheme given by

Tj+ 1
2 ,k

= u+
j+ 1

2 ,k
ME

j,k + u−
j+ 1

2 ,k
MW

j+1,k

Tj,k+ 1
2
= v+

j,k+ 1
2

MN
j,k + v−

j,k+ 1
2

MS
j,k+1 .

Here:

• (·)+ and (·)− indicate the positive and negative part of their arguments, respectively, i.e., (·)+ = max{0, ·}
and (·)− = min{0, ·};

• the apices E, W, N, S indicate East, West, North, and South and correspond to the evaluation of the
piecewise linear reconstruction using the following first-order truncation of Taylor expansion

M̃(x1, x2) =Mj,k + (∂x1
M)j,k(x1 − x1,j) + (∂x2

M)j,k(x2 − x2,k), (x1, x2) ∈ Cj,k

at the cell interfaces (x1,j+ 1
2
, x2,k), (x1,j− 1

2
, x2,k), (x1,j , x2,k+ 1

2
), (x1,j , x2,k− 1

2
), respectively;
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• defining

Uj,k = F (y∗(x1,j , x2,k), O2(x1,j , x2,k))

(
β

∇xO2(x1,j , x2,k)√
1 + |∇xO2(x1,j , x2,k)|2

− (1− β)
∇xM(t, x1,j , x2,k)√

1 + |∇xM(t, x1,j , x2,k)|2

)
,

then u := Ux1
and v := Ux2

are the components of U along the horizontal and vertical axis respectively.

Note that the derivatives in the middle points are evaluated as

(∂x1
M)j+ 1

2 ,k
=
Mj+1,k −Mj,k

∆x1
, (∂x2

M)j,k+ 1
2
=
Mj,k+1 −Mj,k

∆x2

, while the derivatives in the nodes are initially evaluated as

(∂x1
M)j,k =

Mj+1,k −Mj−1,k

2∆x1
, (∂x2

M)j,k =
Mj,k+1 −Mj,k−1

2∆x2

and then corrected using a generalized minmod limiter in order to preserve the positivity of the linear recon-
struction M̃ (for further details see [15]). For the time discretization, we use the forward Euler method. We
denote with apex l the discretized time step, i.e.,

tl = t0 +

l−1∑
i=1

∆ti .

To optimize the performances, we use adaptive time steps obtained by imposing the positivity-preserving CFL

∆tl ≤ ∆Tl := min

{
∆x1
4a

,
∆x2
4b

}
where a = max

j,k

(
|ul

j+ 1
2 ,k

|
)
and b = max

j,k

(
|vl

j,k+ 1
2

|
)
. Therefore, starting from the discretized initial condition

M0
j,k provided for each j = 0, . . . , Nx1 and for k = 0, . . . , Nx2 , given that M l

j,k is the numerical approximation

of Mj,k(t
l), the numerical scheme reads

M
l+ 1

2

j,k =M l
j,k − ∆tl

∆x1

(
T l
j+ 1

2 ,k
− T l

j− 1
2 ,k

)
− ∆tl

∆x2

(
T l
j,k+ 1

2

− T l
j,k− 1

2

)
M l+1

j,k =M
l+ 1

2

j,k +∆tl(Pk)
l+ 1

2

j,k

(40)

for l = 1, . . . , Nl. In the proposed experiments, we set the spatial domain Ω = [0, 50] × [0, 50]mm2 and we
consider the time t ∈ [0, T ], with T > 0. Dealing with a limited domain, we set no entry flux boundary
conditions.

4.2 Experiment 1: chemotactic or anti-crowding dominated motion

In this first experiment, we simulate our model with the aim of comparing cell behaviors in two different
scenarios. We consider a first scenario in which cell movement is dominated by a chemotactic attraction toward
increasing oxygen concentrations, strongly reducing the impact of the natural cell anti-crowding mechanism.
Instead, in a second scenario, we emphasize the role of anti-crowding dynamics, which helps cells to avoid highly
dense regions.

Considering the macroscopic system (37), we note that the parameter β ∈ (0, 1) impacts the motility behav-
ior of cells, weighting the influence of oxygen and cell density gradients on the direction of tumor cell migration.
Higher values of β imply a stronger impact of chemotaxis compared to anti-crowding dynamics. Thus, to cap-
ture the two described scenarios, we choose β = 0.98 to emphasize the role of chemotactic movement toward
increasing oxygen concentrations, while β = 0.8 to account for a stronger effect of the anti-crowding mechanism.
In our experiment, we consider a fixed oxygen source located in the top-right corner of the domain Ω and whose
expression is given by

O2(x) = AO2 e
−
(x− xO2

)2

θ2O2 (41)

with AO2
= 0.8, xO2

= [45, 45]mm, and θO2
= 34mm. For the tumor cells, we assume that the initial tumor

mass M(t = 0,x) :=M0(x) is located in the opposite (bottom-left) corner of the domain Ω and it is defined as
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M0(x) = AM e
−
(x− xM )2

θ2M (42)

with AM = 0.9, xM = [9, 9]mm, and θM = 3mm. The initial configuration of this setting is shown in Figure 1.

Figure 1: Experiment 1: initial conditions and setting. Left: initial Gaussian distribution of the tumor cells M0,
centered in xM = [9, 9]mm in the domain Ω = [0, 50] × [0, 50]mm2, together with the level plot for the fixed Gaussian
distribution of oxygen O2(x), centered in xO = [45, 45]mm. Right: 1D profiles of tumor (continuous line) and oxygen
(dashed line) distributions along the bisecting line (light gray line in the 2D plot) of the domain Ω. x̄ indicates the
spatial position along this bisecting line.

To better characterize the dynamics we divide the domain into four different zones depending on the relative
oxygen conditions, which trigger cell motility and proliferation. Figure 2 and the related Table 2 summarize
the combination of the environmental conditions in each of these areas along the 1D section of the domain.

Figure 2: Experiment 1: spatial distribution of the environmental conditions triggering cell motility.
Graphical representation of the 1D section defined by the bisecting line of the domain Ω and its subdivision into four
different areas depending on the combination of high/low motility, random/directed motion, and low/high proliferation
capability of the tumor cells. Profiles of the oxygen distribution (black continuous line) and tactic sensitivity F (y∗, O2(x̄))
(blue dashed line) are shown, together with the oxygen gradient direction (red arrow). x̄ indicates the spatial position
along this bisecting line.

The results of this first experiment are illustrated in Figure 3. Precisely, the left column refers to the simulations
obtained for β = 0.98 (chemotactic dominated scenario), while the right column to β = 0.8 (anti-crowding
dominated scenario). The simulations track the evolution of the tumor mass over a time range of approximately
T = 21 days. In the first row of Figure 3, we illustrate the progression of the tumor mass in the domain Ω at
four different temporal steps. The contour plot illustrates the density map, while the contour lines represent the
tumor’s edge (defined by a density threshold corresponding to 10% of the carrying capacity). To better visualize
the differences in the tumor evolution in the two scenarios we consider a 1D section of the domain Ω illustrating
the tumor profile along the bisecting line. Moreover, in order to account for the epigenetic trait information,
for every value y ∈ Y and every time t, we evaluate the fraction of tumor mass having an equilibrium Snail
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Zone O2 ∇O2 F motility direction proliferation

0 low low high high random low

1 low high high high directed low

2 high high low low directed high

3 high low low low random high

Table 2: Summary of the environmental conditions. The table reports and summarizes the information received
by the cells in the four identified areas shown in Figure 2.

expression y∗ lower than y, i.e.,

Cy∗(t, y) =

∫
Dy

M̄(t,x)dx

where Dy = {x ∈ Ω : y∗(x) ∈ (−∞, y)} and M̄(t,x) is the normalized tumor density distribution, and we
introduce the quantity

cy∗(t, y) = ∂yCy∗(t, y) ,

which provides an indication of the fraction of mass that, at a given time t, has a certain Snail expression y ∈ Y.
For this quantity, we evaluate mean η(t), mode ψ(t), and standard deviation σ(t) as

η(t) =

∫
Y

ycy∗(t, y)dy ,

ψ(t) = argmax
y∈Y

(cy∗(t, y)) ,

σ(t) =

√√√√∫
Y

y2cy∗(t, y)dy − η(t)2 .

Integrating the information about the environmental conditions (Figure 2) with the data concerning the expres-
sion of Snail (third row of Figure 3), we can better grasp the features characterizing the two depicted scenarios.
Depending on β, cell behaviors towards more oxygenated regions show evident differences. Initially, low oxygen
concentration corresponds to high Snail expression and they collectively contribute both to a high tactic sensi-
tivity F (y∗, O), driving cell drift, and a low proliferation rate. Thus, as the mass is initially situated in an area
characterized by low oxygenation, this oxygen deprivation triggers cell motility. As the mass progresses towards
the upper right corner (temporal step t1), the low oxygen levels still induce a more motile than proliferative
cell phenotype, enforced by a high mean η(t) of cy∗(y, t) (depicted in the third row of Figure 3). By the time
t1, the mass has spread enough to develop a smoother profile, resulting in a reduced density gradient in favor
of stronger chemotactic motion due to the oxygen gradient. This is particularly evident for β = 0.98. Cells are,
thus, accelerated and move more compactly towards the oxygen source, and this is evidenced in both columns
of Figure 3 by the reduction in mass width orthogonal to the chemotactic gradient between times t1 and t2,
confirming cell convergence towards the oxygen Gaussian distribution. As the cells reach areas closer to the
source (temporal step t2), a still strong oxygen gradient is countered by increased oxygenation levels, and, thus,
inhibition of motility in favor of an enhanced proliferation rate. This results also in a lower level of η(t) (third
row of Figure 3). This combination results in masses developing a distinct tail to the left, with some cells
remaining outside the region of orderly motility due to lower oxygen levels. Many motile cells originating from
less oxygenated areas ”push” against a slowing front where cells are less motile, but contribute to the increase of
the density due to their proliferative capability. At the final time t3, the mass has reached a region characterized
by high oxygenation levels with an almost negligible oxygen gradient. At this stage, ordered motile dynamics
become nearly absent and the mean η(t) has reached a lower stable value. This is particularly evident in the
scenario with β = 0.98, where the mass tends to regain a more radial symmetry and slightly expands under the
influence of density pressure driven by proliferative dynamics and anti-crowding.

From a qualitative viewpoint, in both scenarios the dynamics are initially characterized by a diffusing mass
that expands orthogonally to the direction of chemotactic motion (more evident for β = 0.8) and then by a di-
rect movement towards the oxygen source. Moreover, in both cases, the presence of flux-limited operators in the
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Figure 3: Experiment 1: chemotactic or anti-crowding dominated motion. Evolution of model (37) in a
chemotactic dominated (β = 0.98, left column) or anti-crowding dominated (β = 0.8, right column) scenario. Top row:
evolution of the tumor mass in the domain Ω = [0, 50]× [0, 50]mm2 at four different time steps, i.e., initial time t = 0d
(continuous light pink line), and progression at t = 6.25d (dot pink line), t = 12.5d (dashed dark pink line), and t = 20.8d
(dot-dashed purple line). Middle row: 1D profiles of the tumor mass evolution along the bisecting line (light gray line
in the 2D plot) of the domain Ω at the same time steps used in the top row. x̄ indicates the spatial position along
this bisecting line. Bottom row: evolution in the (t, y)-space of the distribution cy∗(t, y), together with its mean η(t),
standard deviation σ(t), and mode ψ(t). References to the four selected time steps are repeated in each graph using
consistent color and line styles. Parameter values are set as reported in Table 1.

18



drift term determines steep and well-defined invasion fronts, reducing the typical artificial tails characterizing
linear diffusion and, thus, its excessive influence on cell spread. However, comparing the experiments conducted
for the two scenarios makes it evident how conditions favoring anti-crowding dynamics can lead to significant
changes in tumor shape even for small variations in β. In fact, when anti-crowding is the dominant mechanism,
cells tend to move toward the location of the oxygen source with a large spread in the domain, with respect to
the chemotactic dominated scenario, which shows cells compactly migrating towards more oxygenated regions.
Looking at the tumor profiles at time t1 and t2 (second row in Figure 3), the differences in height and the size
of the mass support are evident. This is reflected also in the evolution of mean, mode, and standard deviation
of cy∗(y, t). In fact, for higher values of β, mean η and mode ψ show a similar trend over time. However, the
lower β, the greater the differences in their evolution. This is because the larger spread of the tumor mass and
the slower cell movement in the domain keep the value of the mean higher for a longer time. Moreover, this
determines the wider variety of values covered by the distribution and, thus, a larger standard deviation.

4.3 Experiment 2: impact of Snail expression on cell proliferation

In the second experiment, we focus on the proliferative dynamics characterizing tumor cells. Here, we concen-
trate on the scenario where chemotaxis drives cell motility and compare two proliferative models: P1, introduced
in (35), and P2, introduced in (36). It is worth recalling that the shared elements in these two modeling choices
are: (i) a proliferative rate inversely proportional to cell density; (ii) an increase in proliferative activity correlat-
ing with higher levels of available oxygen; (iii) the assumption that cells capabilities of moving and proliferating
are inversely correlated. What distinguishes these approaches is the epigenetic or phenotypic characterization
of the duality between cells’ motility and proliferative dynamics. In the case of P1, the factor (1− s∗) ensures a
direct correlation between higher Snail expression and lower proliferative activity. Instead, the environmental
factor has an indirect impact on the trade-off characterization, as oxygen density influences proliferative activity
only indirectly by determining Snail expression. In contrast, for P2, the factor 1− a2

a1
F
(
y,O2(x)

)
ensures that

the proliferative activity decreases as F (y∗, O2(x)) increases, which is directly proportional to Snail expression
and inversely proportional to oxygen density.

To compare these two proliferative choices, we conduct two simulations under identical environmental and
initial conditions for tumor and oxygen, as well as for the same values of the model parameters. The only
difference between the simulations lies in the formulation of the proliferative term. To quantify the results, we
consider the 1D section of the domain Ω along the bisecting line (similar to the previous experiment) and we
show the difference between the tumor densities resulting from (37) with P1 (MP1

(t,x)) or P2 (MP2
(t,x)) at

four equally spaced time points: t1 = 5.2d, t2 = 10.4d, t3 = 15.6d, and t4 = 20.8d. Moreover, defining

Q(t) =

∫
Ω

M(t,x)dx (43)

as the total amount of tumor cells in the spatial domain, we introduce the percentage mass increment of tumor
mass from the initial configuration as

I%(t) = 100 ·
(
Q(t)−Q(0)

Q(0)

)
(44)

with Q(0) := Q(t = 0), we compute the center of mass of the tumor

Υ(t) =

∫
Ω

xM̄(t,x)dx

with M̄(t,x) =M(t,x)/Q(t), and the velocity of the center of mass

V(t) = ∂tΥ(t) . (45)

Results of this experiment are shown in Figure 4. Precisely, the top row illustrates the evolution of the difference
between MP1

(t,x) and MP2
(t,x) along the 1D section. In the bottom row, we depict the temporal evolution of

the mass increase I%, defined in (44), (left plot) and the velocity of the center of mass, defined in (45), along
the bisecting line (right plot).

Analysis of the plot in the top row reveals that the difference is consistently positive, supporting the intuitive
notion that a stronger trade-off is determined in the case of P2, where both the epigenetic trait and environmental
factor directly contribute to module proliferation. This observation is further corroborated by the bottom-row
plots of Figure 4. In fact, we notice that the final percentage increment is six times higher for the epigenetic-
driven duality (P1) with respect to the case in which there is a direct contribution of both epigenetic trait and
environmental factor (P2). Considering, instead, the evolution for the center of mass, from the bottom-right
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Figure 4: Experiment 2: impact of Snail expression on cell proliferation. Top: 1D profiles representing the
evolution along the bisecting line of Ω of the difference between the solution of the tumor equation in (37) with the
proliferation term given in (35) (MP1(t, x̄)) and the solution of tumor equation (37) with the proliferation term given in
(36) (MP2(t, x̄)) at four different time steps, i.e., t = 5.2d, t = 10.4d, t = 15.6d, and t = 20.8d. x̄ indicates the spatial
position along this bisecting line. Bottom: quantification of percentage tumor mass increment (left plot) and velocity
of the center of mass (right plot) over time with the two choices of the proliferative operator. The continuous gray line
refers to the choice (35), while the dashed black line to (36). Vertical lines in the bottom-row plots mark the selected
times depicted in the first row. References to the four selected time steps are repeated in each graph using consistent
color and line styles. Parameter values are set as reported in Table 1.

plot of Figure 4 we observe a perfect overlap of its velocity dynamics throughout the experiment. This confirms
the fact that any observed differences can be solely attributed to the proliferative dynamics resulting from the
distinct trade-offs under analysis, while the spatial dynamics are not affected.

4.4 Experiment 3: impact of Snail expression and hypoxia on cancer cell migration

In this third experiment, we aim to assess the impact of Snail expression and exposure to hypoxia on cancer
cell migration. Our goal is to validate our model by replicating experimental results that investigate the role of
hypoxia in cell migration and determine whether motility can be triggered by various factors, including inhibition
or up-regulation of Snail expression. To achieve this, we specify the parameter values and the environmental
conditions such that they replicate different experimental scenarios, and we compare the resulting outcomes
with empirical observations.

We consider the parameter gs, accounting for Snail transcription and, starting from the reference value
of gs = 1.5 (molecules ·min−1), used for the experiments in Section 4.2 and 4.3, we define up-regulation and
down-regulation of Snail expression by setting as gs = 2.1 (molecules ·min−1) and gs = 0.9 (molecules ·min−1),
respectively. This corresponds to variations of 0.6 above and below the reference value. To ensure that the
condition (2) holds true in all the scenarios, we consider a slightly higher value for Snail degradation rate
with respect to the previous experiments, i.e., we set γs = 0.03 (min−1). For the environmental conditions,
by referring to [55] we consider levels of oxygenation compatible with normoxia (7%) and pathological hypoxia
(1%) and we set the scaling factor O2,0 such that, in our model, these conditions are represented by O2 = 0.7
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and O2 = 0.1.
We aim at qualitatively replicating the experimental findings proposed in [53] and [71]. Specifically, in [53]

the authors investigate human breast cancer cells (cell lineage MCF-7). In their experiment, they analyze fold
change in tumor cell migration by migration assays using Transwell migration chambers. Precisely, cells are
suspended in upper Transwell chambers in serum-free media and allow to migrate towards a serum gradient
(10%) in the lower chamber for 6 hours. The experiment is repeated in normoxic conditions by transiently
overexpressing and silencing Snail protein expression. Instead, in [71], the authors employ a similar methodology
with the human hepatocellular carcinoma (cell lines HepG2). They assess cell motility with the same migration
assays comparing experiments conducted in normoxic and hypoxic conditions.

We replicate the chamber setup by considering our square domain Ω intersected by a vertical membrane
aligned parallel to the x2 axis and positioned at x1 = 25mm. A 1D section of the chamber setup is illustrated
in Figure 5. Here, the left part of the domain (for x1 < 25 mm) represents the upper chamber, where all cells

Figure 5: Experiment 3: initial conditions and setting. 1D graphical illustration of the setting implemented
for studying the impact of Snail expression and hypoxia on cancer cell migration. The domain Ω is divided into two
chambers. Tumor cells are distributed in the upper chamber, i.e., in ΩU = [0, 25]× [0, 50]mm2, accordingly to (46), while
no cells are initially located in the bottom chamber, i.e., in ΩB = [25, 50] × [0, 50]mm2. Two different linear oxygen
distributions (for normoxia and hypoxia scenarios) are represented as dashed black lines. The central membrane dividing
the two chambers is shown in green.

are initially distributed following

M0(x) =


AM x1 < xs

AMe
−
(x1 − xs)

2

θ2M x1 ≥ xs

(46)

where AM = 0.9, xs = 10mm and θM = 3mm. We consider the following linear expression for the oxygen
distribution

O(x) = Omin +
(Omax −Omin)

50
x1

with Omin = 0.7 and Omax = 1.0 in normoxic conditions, while Omin = 0.1 and Omax = 0.4 in hypoxic
conditions. This choice establishes a fixed oxygen gradient along the chamber, which is consistent with the
biological setting. We conduct five experiments, which are summarized in Table 3.
Under the aforementioned conditions, we allow cells to move in response to the environmental stimuli for a
duration of T = 6 hours. Subsequently, we measure the quantity of tumor mass that has passed through the
membrane as

Q̃(t) =

∫
ΩB

M(t,x)dx ,

where ΩB = [25, 50]× [0, 50]mm2 represents the bottom chamber.
We designate the results obtained in scenario (A) as the control case and we use them to normalize the

outcomes of the other experiments. Figure 6 collects all the results of the five tests. In the top row, we show the
results related to the scenarios (A), (B), and (C) and we compare them with the data taken from [53], while in
the bottom row, we refer to scenarios (A), (D), and (E) and we compare the results with the data taken from [71].
Each row comprises two columns. The left column provides a map of the values taken by F (y∗, O2) against
various levels of oxygenation and Snail transcription, while the right column provides histograms comparing the

21



Name Oxygenation Snail expression

A normoxia control

B normoxia up-regulated

C normoxia down-regulated

D hypoxia control

E hypoxia down-regulated

Table 3: Summary of the conducted experiments. The table shows the information regarding tissue oxygenation
and Snail expression in the five scenarios analyzed in Section 4.4.

results of in-vitro (black) and in-silico (red) experiments.

Figure 6: Experiment 3: impact of Snail expression and hypoxia on cancer cell migration. Left: representation
of the level curve of the tactic sensitivity F (gs, O2) with respect to the Snail transcription rate gs and the oxygen
concentration O2. The parameter combinations referring to the five analyzed scenarios are indicated with gray bullets.
Right: comparison between in-vitro (black) and in-silico (red) results concerning the fold change in cell migration
(relative to control) in the five different scenarios. Precisely, in the top-right panel MCF-7 cells are considered in normal
conditions (control, scenario A), with Snail overexpression (B), or with Snail knockdown (C). In-vitro data were obtained
from Figure 3B and 3D in [53]. In the bottom-right panel, HepG2 cells are considered in normoxic conditions (control,
A), hypoxic conditions (D), or hypoxic conditions with Snail silencing, indicated as Snail siRNA (E). In-vitro data were
obtained from Figure 1A and 1E in [71]. In both cases, in-silico results were obtained by simulating equation (37)
under normoxic and hypoxic conditions and for different values of the parameter gs. Means ± std in the simulations are
obtained by varying the parameter gs within a range of ±0.05.

As clearly shown in Figure 6, for both the breast cancer and the hepatocarcinoma cases, the model is able to
effectively replicate the experimental data. Specifically, in the case of breast cancer, the in-silico results closely
resemble those obtained in the in-vitro experiments for the scenario (B). In scenario (C), any discrepancy
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appears to be merely apparent, as the in-silico results fall within the error band of the in-vitro experiments,
which notably exhibits a wider range of data. For hepatocarcinoma, there is a remarkably high correspondence
between the in-vitro and in-silico data, and experiments (D) and (E) show a notable match. Furthermore, it is
worth noticing how the level curves of F (gs, O2) (left column of Figure 6) provide insight into the experimental
observations. Specifically, previous experimental works have noticed that the knockdown of Snail nullifies the
motility advantage gained under hypoxic conditions (D) compared to normoxia (A), bringing the motility to a
level comparable with the control case (as observable by comparing scenarios (E) and (A)). In our case, this can
be observed a priori by looking at the location of the corresponding bullets on the level plot of F (gs, O2): (A)
and (E) are located, in fact, almost on the same level curve. This implies that, given equal cell density (ensured
at least initially with identical initial conditions) and a consistent oxygen gradient (maintained at the same
value across the domain and for all oxygenation conditions in this experiment), the term governing cell speed
assumes comparable values in both experiments (slightly lower for (E)). Therefore, comparable levels of fold
changes in cell migration are expected as well as the slight discrepancy in the number of cells passing through
the membrane between the two cases.

4.5 Experiment 4: hypoxia-driven ring structure in tumor and Snail distributions

As last experiment, we refer to additional results shown in [53], where the authors investigate the expression of
Snail in non-invasive ductal carcinoma in situ (DCIS), an early breast cancer, considering a model system of
hypoxia in-vivo. Considering a central necrotic area, their analysis of several DCIS samples revealed a typical
pattern of HIF-1α expression, with increasing staining intensity approaching the areas of necrosis, and similar
spatial distribution for the nuclear expression of Snail, gradually increased approaching the necrosis (see Figure
6 in [53]). In particular, the authors show that hypoxia induces Snail expression independently of other EMT
markers.

To qualitatively reproduce these observations, we simulate an initial tumor mass located in the center of
the domain. We assume an oxygen distribution that decreases towards the center of the domain, leading to
highly hypoxic (or necrotic) areas due to higher consumption in regions with higher cell density. The initial
condition for cancer cells is given by (42) setting AM = 1, xM = [25, 25]mm, and θM = 5mm, while for the
fixed oxygen distribution we consider 1 − O(x), with O(x) defined by (41) and AO2 = 0.8, xO2 = [25, 25]mm,
and θO2

= 13mm. The initial conditions for tumor cells and oxygen are illustrated in Figure 7.

Figure 7: Experiment 4: initial conditions and setting. Left: initial Gaussian distribution of the tumor cells M0,
located at position xM = [25, 25]mm in the domain Ω = [0, 50] × [0, 50]mm2, together with the level plot for the fixed
Gaussian distribution of oxygen O2, located at the same position. Right: 1D profiles of tumor (continuous line) and
oxygen (dashed line) distribution along the bisecting line (light gray line in the 2D plot) of the domain Ω. x̄ indicates
the spatial position along this bisecting line.

Figure 8 collects the results of this experiment at four time steps: t0 = 0h, t1 = 5h, t2 = 20h, and t3 = 35h. The
first row depicts a 2D representation of the tumor mass, including a density map and contour lines highlighting
the tumor’s edge (defined by a density threshold corresponding to 10% of the carrying capacity). From system
(37), defined the average expression of the Snail protein in the cell population as

M̄y(t,x) =
My(t,x)

M(t,x)
=
a2
a1
F (y∗, O2) for x ∈ supp(M) , (47)

we illustrate its evolution in the second row of Figure 8. Finally, in the third row, the 1D section of the tumor
mass density along the bisecting line at the four specified time steps is shown.
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Figure 8: Experiment 4: hypoxia-driven ring structure in tumor and Snail distribution. Evolution of model
(37) with the initial conditions shown in Figure 7. Top row: evolution of the tumor mass M(t,x) in the domain
Ω = [0, 50]× [0, 50]mm2 at four different time step, i.e., initial time t0 = 0h (continuous light pink line), progression at
t1 = 5h (dot pink line), t2 = 20h (dashed dark pink line), and t3 = 35h (dot-dashed purple line). Middle row: evolution
of the average My(t,x) defined in (47) at the same time steps. Bottom row: 1D profiles of the tumor mass evolution
along the bisecting line (light gray line in the first 2D plot) of the domain Ω at the same time steps. x̄ indicates the
spatial position along this bisecting line. References to the four selected time steps are repeated in each graph using
consistent color and line styles. Parameter values are set as reported in Table 1.

We observe that, initially, both anti-crowding and chemotactic stimuli point in the same direction, which
tends toquickly move the cells away from the central hypoxic region, where cell density is high and oxygen
concentration is low. Consequently, in this initial phase, cell migration is rapid, leading to a fast transformation
of the peaked initial Gaussian for cell distribution into a smoother bubble profile (as shown at time t1). As time
progresses, the prevalence of chemotactic motion results in a depletion of cells from the central mass, gradually
giving rise to a ring-like structure (times t2 and t3). During this phase, movement starts to slow down due to
two main factors. Firstly, comparing the position of the ring with respect to the oxygen profile (shown in Figure
7), we observe a decrease in motility caused by both high levels of oxygenation (reducing the tactic sensitivity
F (y∗, O2)) and low oxygen gradients (reducing the chemotactic stimulus). Secondly, the slowdown is due to the
anti-crowding mechanism, which, once the void forms at the center of the mass, would induce cells from the
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inner part of the ring to move towards the center, conflicting with the chemoattractant-driven movement. These
observations are also consistent with the plots in the second row of Figure 8, where M̄y(t,x) is shown. They
illustrate how, initially, the average expression of Snail is high, inducing rapid cell migration, and it increases
approaching the central hypoxic core. Then, while the tumor mass moves outward, this expression decreases
as cells reach more oxygenated areas, still maintaining higher values around the inner border of the ring. It is
interesting how the model is able to qualitatively capture the two main dynamics shown in the data from [53].
In fact, the model reproduces both the experimentally observed ring shape of the tumor mass and the spatial
distribution of the average Snail expression, mirroring the findings of the experimental study.

5 Conclusion

The migration of tumor cells in response to oxygen concentration gradients remains a critical area of investigation
in cancer biology. While the role of hypoxia in promoting tumor aggressiveness and metastasis is well recognized,
the exact mechanisms driving cell migration in response to oxygen levels are still an area of investigation and
understanding these mechanisms may be crucial for developing effective therapeutic strategies.

In this study, we developed a novel mathematical model to investigate the interplay between hypoxia,
molecular signaling pathways, and tumor cell migration. Specifically, we proposed a multi-scale model that
naturally integrates single-cell behavior driven by Snail expression with macroscopic scale dynamics describing
tumor migration in the tissue. Our approach employs tools and methods from the kinetic theory of active
particles to construct a kinetic transport equation that describes the evolution of the tumor cell distribution
based on detailed microscopic dynamics. By employing proper scaling arguments, we formally derived the
equations for the statistical moments of the cell distribution. These capture cell density dynamics, influenced
by limited non-linear diffusion and oxygen-mediated drift, and the evolution of the average Snail expression
within the tumor population, which directly relates to tumor migratory capability. Overall, our model offers a
detailed description of macroscopic tumor cell dynamics, considering the effect of microscopic Snail signaling
pathways in the mechanisms of tumor response to hypoxia. This modeling approach represents a promising way
to integrate molecular signaling pathways with cell migration dynamics.

We validated the model in different scenarios with biological relevance, focusing on the role of chemotactic
dominated motion and anti-crowding effects, and analyzing the effect of Snail expression on cell migration and
proliferation. We also showed the reliability of our approach by testing its ability to quantitatively replicate
experimental results from two different studies published in the literature. We investigated the effect of hypoxia
and Snail knockdown on the motility of cancer cells, comparing our results with those presented by [71] on human
hepatocarcinomas. Moreover, we considered the findings of [53] and we replicate in-silico the results regarding
the effect of Snail over-expression and Snail knockdown on the migration capability of human breast cancer cells
in normoxic conditions. We also analyzed the spatial distribution of Snail expression within the tumor mass in
response to hypoxia, showing how the model is able to reproduce the patterns observed experimentally in [53].
These results support the idea that our mathematical framework can offer new perspectives for interpreting
experimental data and understanding the underlying biological mechanisms driving tumor migration.

Moving forward, it will be important to explore the implications of our findings in the context of clinical
outcomes and therapeutic interventions. Particularly, our results highlight the importance of considering the
dynamic regulation of Snail expression in response to hypoxia. This finding underscores the potential significance
of developing strategies to target Snail as a therapeutic approach to control tumor cell migration and metastasis.
Furthermore, incorporating heterogeneous and dynamic environmental factors, such as a non-stationary oxygen
distribution with its consumption by tumor cells, could improve the predictive power of our model and enhance
the quantitative fitting of the experimental data, ultimately leading to a better understanding of tumor invasion.

In summary, the proposed mathematical modeling approach is a novel and valuable tool to integrate detailed
descriptions of microscopic cell dynamics with cell evolution at a macroscopic (tissue) level. In particular, the
multi-scale modeling approach allows to properly derive the macroscopic terms driving cell evolution from
a detailed description of the single-cell dynamics, instead of phenomenological stating them directly at the
macroscopic level. Our findings offer interesting interpretations of the complex dynamics underlying tumor
progression and motility, providing new perspectives for interpreting experimental data and understanding the
biological mechanisms driving tumor development. This also paves the way for personalized medicine approaches
tailored to individual tumor characteristics.
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[65] A. Szabó and R. M. Merks. Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution.
Frontiers in Oncology, 3:87, 2013.
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