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Simulations of lattice gauge theories on noisy quantum hardware inherently suffer from violations
of the gauge symmetry due to coherent and incoherent errors of the underlying physical system
that implements the simulation. These gauge violations cause the simulations to become unphysical
requiring the result of the simulation to be discarded. We investigate an active correction scheme
that relies on detecting gauge violations locally and subsequently correcting them by dissipatively
driving the system back into the physical gauge sector. We show that the correction scheme not only
ensures the protection of the gauge symmetry, but it also leads to a longer validity of the simulation
results even within the gauge-invariant sector. Finally, we discuss further applications of the scheme
such as preparation of the many-body ground state of the simulated system.

The quantum simulation of lattice gauge theories is one
of the most important applications of quantum comput-
ers, given that the fundamental field theories that govern
modern physics are gauge theories. However, error pro-
cesses in noisy intermediate-scale (NISQ) quantum de-
vices may violate the gauge symmetry that is essential
for the viability of the simulation. Here, we show that en-
gineered dissipation can overcome these limitations and
protect the validity of the results for much longer simu-
lation times.

The main challenge when implementing a quantum
simulation of a lattice gauge theory is that the gauge
symmetry has to be explicitly programmed into the de-
vice [1–5]. For current NISQ devices, this means that un-
avoidable errors will generically lead to violations of the
gauge symmetry and result in the creation of quantum
states that are unphysical simulation results. To solve
this problem, several solutions have been offered. One
solution is to integrate out the redundant degrees of free-
dom. This however typically results in non-local inter-
actions [6], increasing the complexity of the simulation.
Other approaches include modifications to the Hamilto-
nian to attribute an energy penalty to a gauge violation
[7], adding (random) gauge transformations during time
evolution in order to stochastically cancel gauge errors
[8, 9] or detecting gauge violations using oracles and re-
jecting simulations with gauge violations [10].

In our work, we build on the vast work on the real-
ization of engineered dissipation channels for quantum
many-body systems [11–25]. Specifically, we detect gauge
violations during the time evolution and apply local cor-
rection operations in real time to fix any gauge viola-
tions that might occur. We investigate the effects of our
scheme on the accuracy of simulations and show control
over the temperature of the system as an additional ben-
efit of our approach. We exemplify our result for a Z2
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lattice gauge theory, however, generalization of our work
to other lattice gauge theories is straightforward.

A. Model gauge theory

For concreteness, we focus on a paradigmatic Z2 lattice
gauge theory as one of the simplest, yet non-trivial lattice
gauge theories [26]. The Hamiltonian is of the form

H0 =

N∑
j=1

[
Ja(σ

+
j τ

z
j,j+1σ

−
j+1 + h.c.)− Jfτ

x
j,j+1

]
. (1)

acts on N matter sites, each of which can contain either
the vacuum or a hard-core boson. These are described by
the Pauli ladder-operators σ+/−. In between the matter

sites j and j+1 sit gauge link variables τ
x/z
j,j+1, represented

by Pauli x/z matrices. Therefore, the system can be
mapped to 2N qubits. Following [26], we use periodic
boundary conditions and set the matter-field coupling
Ja = 1 and the electric field energy Jf = 0.54. Gauge-
invariance of this Hamiltonian is defined by the Gauge
operators

Gj = 1− (−1)jτxj−1,jσ
z
j τ

x
j,j+1, (2)

which satisfy [H0, Gj ] = [Gj , Gl] = 0 ∀j, l. Once initial-
ized in an eigenvalue g0 of the gauge operators, the time-
evolution should therefore not change this eigenvalue.
However, during a simulation of such a lattice gauge

theory on a quantum simulator, unitary and non-unitary
errors can break gauge invariance, leading to gauge eigen-
values g deviating from the initial g0. We incorporate
these unitary effects by adding a small gauge variant per-
turbation

H1 =

N∑
j=1

[
(σ+

j (c1τ
−
j,j+1 + c2τ

+
j,j+1)σ

−
j+1 + h.c.)

]
(3)

+

N∑
j=1

σ+
j σ

−
j (c3τ

z
j,j+1 + c4τ

z
j−1,j) (4)
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to the Hamiltonian, resulting in the complete Hamilto-
nian

H = H0 + λH1. (5)

The precise values of the dimensionless coupling con-
stants ci are not important, in line with previous work
we set them to c1 = 0.51, c2 = −0.49, c3 = 0.77,
c4 = 0.21 [26]. Incoherent errors are represented by
single-site Lindbladian jump operators Li acting on all
matter and link sites, resulting in the model dynamics
being described by the Lindblad master equation

ρ̇ = i[ρ,H] +
∑
i

[
LiρL

†
i −

1

2
ρL†

iLi −
1

2
L†
iLiρ

]
. (6)

As Li we investigate bit-flips
√
γσx and phase-flips

√
γσz

on matter and link sites, and alternatively spontaneous
emission

√
γσ− =

√
γ(σx − iσzσx) on all sites.

We quantify the gauge violation by

ε(t) =
1

N

∣∣∣∣∣∣
N∑
j=1

⟨Gj(t)⟩ −
N∑
j=1

⟨Gj(0)⟩

∣∣∣∣∣∣ = 1

N

N∑
j=1

⟨Gj(t)⟩ ,

(7)

where the last equation holds by the choice of the initial
gauge ⟨Gj(0)⟩ = 0 ∀j.

B. Active gauge correction scheme

We imagine the above lattice gauge theory to be simu-
lated in a Trotterized manner on a digital quantum com-
puter, where time-evolution is split into small time-steps,
which are implemented by unitary operations [6, 27–29].
After a variable number of time-steps, mid-circuit mea-
surements of all gauge operators can be performed, e.g.
using the circuit from Fig. 1, making use of the fact that
the gauge operators and the Hamiltonian all mutually
commute. [10] shows how to do this for general lattice
gauge theories. This yields a sequence of gauge eigenval-
ues corresponding the each gauge operator (G1, ..., GN ).
We can now react to this measured gauge syndrome and
apply unitary operations to restore the original gauge
(G1, ..., GN ) = (0, ..., 0).

In order find a set of possible correction operators,
we first study the action of bit-flips and phase flips on
the gauge eigenvalue. The gauge operators Gj have two
eigenvalues 0 and 2. A bit-flip on matter site j will flip
the eigenvalue of Gj . Similarly, a phase-flip on link site
j will flip the eigenvalue of the operators Gj and Gj+1.
On the other hand, bit-flips on link sites and phase-flips
on matter sites do not result in a change of the gauge
eigenvalue. This is summarized in Table I. It therefore
makes sense to separate the errors into gauge-variant, i.e.
gauge violating errors and the remaining gauge-invariant
errors.

Error Gauge eigenvalues
Gj−i, Gj , Gj+1

σx
j 0, 2, 0

σz
j 0, 0, 0

τx
j,j+1 0, 0, 0

τz
j,j+1 0, 2, 2

TABLE I. Summary of how single qubit errors affect the
gauge.

Since not all errors are visible to the gauge operators,
one can not hope to achieve full error correction from
the gauge theory alone. It is possible to extend the lat-
tice gauge theory to a full quantum error correcting code
by adding more degrees of freedom and formulating con-
straints on these [30]. Instead we here investigate phe-
nomena that to not require extra qubit resources.

H H

H H

|0⟩

FIG. 1. Circuit for performing the ancilla assisted stabilizer
measurement necessary to detect a gauge violation. The three
qubits correspond to the three sites that the gauge operator
acts on.

The gauge syndromes in Table I suggests the following
correction scheme:

• If a sequence (Gj−i, Gj , Gj+1) = (0, 2, 0) is mea-
sured, a correcting bit-flip is applied to matter site
j.

• If a sequence (Gj , Gj+1) = (2, 2) is measured, a
correcting phase-flip is applied to link site j.

In both cases, all gauge eigenvalues are subsequently
restored to the physical sector after correction. This
scheme could now be applied stroboscopically after a
fixed number n of Trotter steps, each evolving the system
by time dt, using mid-circuit measurements and real-time
feedback [31, 32].
For our numerical simulations, we instead choose a differ-
ent but equivalent formulation based on jump operators.
We define P 0

j and P 2
j as the projectors that project into

the two eigenvalues 0 and 2 of Gj . In fact, here this
means that P 2

j = Gj/2 and P 0
j = 1−P 2

j . We then define
the correction jump operators as

Cx
j =

√
γcσ

x
j P

0
j−1P

2
j P

0
j+1 and (8)

Cz
j =

√
γcτ

z
j,j+1P

2
j P

2
j+1, (9)

which correct the two gauge syndromes given above
and annihilate any other sequence of gauge eigenvalues.
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γc = 1
n·dt is the correction rate and specifies how many

correction operations are applied per unit time. We then
simulate the dynamics of the correction scheme by us-
ing these operators as additional jump operators in the
master equation. This is equivalent to the stroboscopic
application of the correction circuit since the latter cor-
responds to a Trotterized form of the master equation
dynamics [2].

10−2 10−1 100 101 102 103

Time t

10−5

10−4

10−3

10−2

10−1

100

ε

γc = 0

γc = 10−3

γc = 10−2

γc = 10−1

γc = 100

γc = 101

γc = 102

FIG. 2. The gauge violation (7) is tracked over time for
different correction rates γc, starting from the ground-state
(λ = 10−2, γ = 10−3, N = 4). Higher correction rates result
in smaller gauge violations.

The result of this correction scheme in action can be
seen in Figure 2. Without gauge correction (γc = 0), the
gauge violation ε increases linearly until a steady-state of
maximal gauge violation is reached. Turning on the cor-
rection (γc > 0) results in this steady-state violation to be
suppressed inversely proportional to the correction rate
γc. This shows that this scheme is effective in suppress-
ing gauge errors and therefore prevents the simulation of
the lattice gauge theory to turn unphysical. We note that
since the gauge operators mutually commute, our scheme
implements a form of stabilizer pumping [2, 33, 34].

C. Sympathetic cooling during gauge correction

We now make a slight modification to the Hamiltonian
by adding the gauge violation as a new term

H → H + g
1

N

N∑
j=1

Gj . (10)

This associates an energy penalty g to a gauge violation.
We choose g = 1 and show a dependence of our results
on this choice in the appendix. While such a term can be
used to reduce gauge violations stemming from coherent
errors such as in H1 [7], they cannot directly suppress
incoherent errors such as the ones in the master equa-
tion (6). However, the combination with our dissipative
gauge correction scheme realizes a setup corresponding
to a sympathetic cooling of the gauge-invariant sector
[35]. Here, the gauge-invariant sector is the system to
be cooled, while the gauge degrees of freedom act as a

bath. The gauge degrees of freedom are rapidly cooled
into the ground state of having no gauge violations, while
the coherent gauge errors in Eq. (4) lead to a system-
bath coupling and allow energy to be dissipated out of
the gauge-invariant sector.
This is similar to the cooling schemes shown in [35] and

[36, 37], with the crucial difference that these schemes
require extra bath degrees of freedom to be artificially
added to achieve cooling, therefore increasing the cost of
the simulation. Here, the bath is implemented by the
gauge degrees of freedom and does not require any addi-
tional resources.

0 1000 2000 3000

Time t

−2

−1

0

1

H
g
(t

)

γ = 0

γ = 10−5

γ = 10−4

γ = 10−3

γ = 10−2

Ground state
energy (H0)

FIG. 3. Cooling is demonstrated by the gauge sector energy
(11) decreasing during time evolution. The steady state en-
ergy depends on the incoherent error rate γ (λ = 0.1, γc =
1, N = 3, σ− decay).

We show this in Figure 3, where we start in a high-
energy product state and demonstrate how the dissipa-
tive time-evolution drives the system to lower energy
states. To ensure that any energy difference is not a
direct consequence of the gauge penalty (10), we only
measure the energy of the system in the physical sector
as

Hg(t) =
Tr[PH0Pρ(t)]

Tr[Pρ(t)]
, (11)

where P =
∏

j P
0
j is the projector into the physical gauge

sector. Depending on the magnitude of the competing
heating caused by the dissipative errors, an energy close
to the ground state can be reached. This final state is
then stable under further time evolution, i.e. is protected
from further heating. We show this by directly solving
for the steady state of the time evolution by computing
the eigenvector of the Liouvillian corresponding to the
zero-eigenvalue. The results in Figure 4 (lower left) show
three distinct phenomena: (i) For low correction rates
γc, energy is not removed fast enough to compete with
heating, hence no significant cooling is achieved. (ii) For
too high correction rates, gauge errors are removed too
quickly and therefore do not have time to interact with
the physical gauge sector by means of the unitary errors.
Therefore cooling is also not observed in this ”quantum
Zeno” regime. (iii) In between these two extremes lies
a regime where optimal cooling is achieved. If a gauge
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error occurs, it has time to interact with the physical sec-
tor and a subsequent correction removes its high energy
contributions. The steady-state gauge violation εss that
is achieved scales mostly as εss ∼ γ

γc
, as evident from

Fig. 4 (upper left). Exceptions to this rule are regimes
of weak correction where the gauge violation saturates
as well as intermediate regimes with low incoherent error
rates where coherent errors dominate the gauge violation.
Remarkably, these results are quite insensitive to the ex-
act nature of the incoherent errors. In Figure 4 (right)
we show the same results for spontaneous emission σ−

acting on all matter and link sites and the results still
hold. The dependence of these results on the magnitude
of coherent errors and the gauge penalty is shown in the
appendix.

10−5

10−3

10−1

ε s
s

a) Dephasing + Bitflips

γ=10−2

γ=10−3

γ=10−4

γ=10−5

γ=10−6

γ=10−7

γ=0

b) Spont. emission

10−4 10−2 100 102

Correction rate γc

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

H
g
,s
s

c)

Ground state energy (H0)

10−4 10−2 100 102

Correction rate γc

d)

FIG. 4. The steady state gauge violation (a) and b)) from
Eq. (7) and gauge sector energy (c) and d)) from Eq. (11)
is shown for various correction rates γc and errors with rate
γ on all sites. Maximum cooling is achieved in intermediate
correction regimes where correction rates are not too small to
be effective and not too large to fall into the Zeno regime, as
explained in the main text (a) and c): Dephasing and bit-
flips on all sites, b) and d): Spontaneous emission on all sites,
λ = 0.03, N = 3).

D. Stabilizing quantum simulations

Next, we apply our scheme to increase the accuracy of
observables during a simulated time evolution. To this
extent, we start the system in a Ja = 0 eigenstate and
then quench to the previously used Ja > 0 and track the
dynamics of observables over time. Figure 5 show the
trajectory of the observable

O =
∑
j

τxj−1,jτ
x
j,j+1, (12)

i.e. a link-link correlator. In the appendix, we show re-
sults for more observables. The lower panels show the

deviation of the observable from the exact, noise-free dy-
namics. This deviation is time-averaged over a running
window of 10 time units for improved legibility.
We first focus on gauge-variant errors, i.e., bit-flips on

matter sites and phase-flips on link sites. Since bit and
phase errors can be exchanged by a local unitary transfor-
mation, this scenario is equivalent to the case where only
bit or phase errors occur on all sites. Experimental plat-
forms where one type of error dominates over the other
are quite common, ranging from trapped ions [38, 39] to
solid-state spin qubits [40].
As incoherent gauge-variant errors are localized single-

qubit errors, their presence causes in correlations to
quickly decay to zero if no correction is present, while
the noise free evolution shows interesting dynamics even
for long times. As evident from Fig. 5 (lower left), turn-
ing on the gauge corrections restores these dynamics and
prevents a decay of the correlators. In this scenario with
only gauge-invariant errors, the gauge corrections repre-
sent a full error correction of individual errors, as every
error is visible as a gauge violation and can uniquely be
decoded and corrected. We note that this works most re-
liably if the correction rate is faster than the timescale of
the Hamiltonian to be simulated. However, this is guar-
anteed in digital quantum simulation approaches where
the individual parts of the Hamiltonian are implemented
in a Trotterized form and the correction is carried out
after each Trotter step.
If we also turn on the gauge-invariant errors, the pro-

tective effect of the correction is reduced, but does not
vanish entirely. The corrected dynamics still show re-
duced errors as compared to the uncorrected ones. Since
only the gauge-variant errors can be corrected, one may
assume the simulation to be similar to an uncorrected
simulation with only gauge-invariant errors. The effect
of the correction is therefore to reduce the magnitude of
the incoherent errors.
While sympathetic cooling requires moderate coherent

errors λ and comparatively small correction rates γc, sta-
bilizing time evolution does not require coherent errors
but higher correction rates. Hence λ and γc are the cru-
cial parameters that govern which of the two regimes are
explored. Depending of the desired use-case, the coherent
errors are either a result of simulation errors, or can be
artificially added to engineer the cooling effect. Hence it
is possible to tune both parameters to achieve the desired
application.

E. Discussion

We have demonstrated that an active error correction
scheme can successfully suppress gauge errors in lattice
gauge theory simulations, inversely proportional to the
correction rate. We showed how this gauge correction
scheme can be interpreted as a sympathetic cooling setup
and showed that this allows for tuning the parameters to
the point where even ground states can be prepared and
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a) Only gauge-variant errors
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b) Dephasing + Bitflips

Noise-free
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Time t
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γc = 102

γc = 101

γc = 100

γc = 10−1

γc = 0

FIG. 5. a) and b): The link-link correlator (12) is shown as a
function of time for various correction rates γc. Without cor-
rection, the correlator decays, but the noise free dynamics can
be restored by the correction scheme. c) and d): Deviation
from the noise free dynamics, time-averaged across 10 time
units for improved legibility. (λ = 0.04, γ = 0.01, N = 4).

stabilized. This cooling scheme is very robust and its
effects can be seen no matter the exact structure of the
coherent errors, incoherent errors or the nature of the
correction scheme. Our results can be directly applied to
efforts to simulate lattice gauge theory on present NISQ
devices [41]. Finally we showed that this scheme can
increase the accuracy of observables during simulation
and therefore acts like a precursor to error correction.
It is particularly suitable in situations where errors are
anisotropic as the scheme turns into full error correction
in this case. However even without assumptions about
the structure of the error, the scheme allows steady states
of observables to be estimated more accurately.
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I. Tavernelli, and D. S. Wang, First-Order Phase
Transition of the Schwinger Model with a Quantum
Computer, arXiv e-prints , arXiv:2312.12831 (2023),
arXiv:2312.12831 [hep-lat].

[42] J. Johansson, P. Nation, and F. Nori, QuTiP 2: A python
framework for the dynamics of open quantum systems,
Comput. Phys. Commun. 184, 1234 (2013).

ACKNOWLEDGMENTS

Master-equation time-evolution trajectories and
steady-state computations were computed using the
Qutip library [42]. This work was funded by the
Quantum Valley Lower Saxony (QVLS) through the
Volkswagen foundation and the ministry for science and
culture of Lower Saxony and by Germany’s Excellence
Strategy – EXC-2123 QuantumFrontiers – 390837967.

COMPETING INTERESTS

The authors declare no competing interests.

https://doi.org/10.1038/nature12802
https://arxiv.org/abs/1307.4349
https://doi.org/10.1103/PhysRevLett.115.200502
https://doi.org/10.1103/PhysRevLett.117.040501
https://doi.org/10.1103/PhysRevLett.117.040501
http://stacks.iop.org/0953-4075/50/i=2/a=024001
http://stacks.iop.org/2058-9565/3/i=3/a=035002
http://stacks.iop.org/2058-9565/3/i=3/a=035002
https://doi.org/10.1103/PhysRevResearch.2.023214
https://doi.org/10.1103/PhysRevResearch.2.023214
https://doi.org/10.1103/PhysRevResearch.3.033208
https://doi.org/10.1103/PhysRevResearch.3.033208
https://doi.org/10.1103/PhysRevLett.127.220503
https://doi.org/10.1103/PhysRevLett.127.220503
http://arxiv.org/abs/2009.07848
http://arxiv.org/abs/2009.07848
https://arxiv.org/abs/2009.07848
https://doi.org/10.1038/s41534-019-0217-0
https://doi.org/10.1038/s41534-019-0217-0
https://doi.org/10.1038/s41467-024-46402-9
https://doi.org/10.1038/s41534-023-00706-8
https://doi.org/10.1038/s41534-023-00706-8
https://doi.org/10.1038/s41567-023-02076-6
https://doi.org/10.1109/QSW59989.2023.00031
https://doi.org/10.1109/QSW59989.2023.00031
https://doi.org/https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1088/1367-2630/13/8/085007
https://doi.org/10.1088/1367-2630/13/8/085007
https://doi.org/10.1126/sciadv.aaw9268
https://doi.org/10.1126/sciadv.aaw9268
https://doi.org/10.1103/PhysRevA.104.012414
https://doi.org/10.1126/science.adh9932
https://doi.org/10.1126/science.adh9932
https://doi.org/10.1007/s00340-016-6527-4
https://doi.org/10.1103/PhysRevA.108.022606
https://doi.org/10.1103/PhysRevA.108.022606
https://doi.org/10.1103/PhysRevLett.110.067601
https://doi.org/10.1103/PhysRevLett.110.067601
https://doi.org/10.48550/arXiv.2312.12831
https://arxiv.org/abs/2312.12831
https://doi.org/10.1016/j.cpc.2012.11.019


7

10−4 10−3 10−2 10−1 100

Coherent error strength λ

10−4

10−2

100

ε s
s

a)

γ=10−2

γ=10−3

γ=10−4

γ=10−5

γ=10−6

γ=10−7

γ=0

10−4 10−3 10−2 10−1 100

Coherent error strength λ

−3

−2

−1

0

H
g
,s
s

b)

Ground state energy (H0)

Ground state energy (H)

FIG. 6. a) The steady state gauge violation (7) and b) gauge
sector energy (11) is shown for varying coherent error mag-
nitudes λ and spontaneous emission with rate γ on all sites.
(γc = 0.01, N = 3).

Appendix A: Parameter dependencies of steady
state results

Fig. 6 shows the dependence of the achieved cooling
on the magnitude of the coherent errors. Stronger de-
coherence requires more coherent errors, at the cost of
a larger steady-state gauge violation. For smaller deco-
herence rates, the system is not sensitive to the exact
value of the coherent error magnitude. In Figure 7 we
also show the dependence of the cooling results on the
gauge penalty g. The best cooling is achieved when the
gauge penalty lies in a region with many energy transi-
tions of H0 [35]. The steady-state gauge violations here
recover the known result that the gauge penalty alone can
yield a gauge-correcting effect [7] if only unitary errors
are present.

Appendix B: Matter-matter correlations

In special cases, the steady-error of observables may
even be reduced by the correction scheme as shown in
Fig. 8, where a matter-matter correlator is tracked over
time. As with the previous results, gauge-variant errors
can be fully corrected. In contrast to the result in the
main text, the long-term behavior of the uncorrected re-
sults starts to significantly deviate from the true solu-
tion, while the errors of the corrected simulations remain
bounded.
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FIG. 7. a) The steady state gauge violation (7) and b)
gauge sector energy (11) is shown for gauge penalties g and
spontaneous emission with rate γ on all sites. Vertical gray
lines indicate energy transitions in the system Hamiltonian.
(γc = 0.01, N = 3).
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FIG. 8. a) and b): Matter-matter correlator is shown as a
function of time for various correction rates γc. Without cor-
rection, the correlator decays, but the noise free dynamics can
be restored by the correction scheme. c) and d): Deviation
from the noise free dynamics, time-averaged across 10 time
units for improved legibility (λ = 0.04, γ = 0.01, N = 4).
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