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Abstract

The primary challenge of market making in spot precious metals is navigating the liquidity that
is mainly provided by futures contracts. The Exchange for Physical (EFP) spread, which is the price
difference between futures and spot, plays a pivotal role and exhibits multiple modes of relaxation
corresponding to the diverse trading horizons of market participants. In this paper, we introduce a novel
framework utilizing a nested Ornstein-Uhlenbeck process to model the EFP spread. We demonstrate
the suitability of the framework for maximizing the expected P&L of a market maker while minimizing
inventory risk across both spot and futures. Using a computationally efficient technique to approximate
the solution of the Hamilton-Jacobi-Bellman equation associated with the corresponding stochastic
optimal control problem, our methodology facilitates strategy optimization on demand in near real-
time, paving the way for advanced algorithmic market making that capitalizes on the co-integration
properties intrinsic to the precious metals sector.

Key words: Market making, precious metals, internalization-externalization dilemma, hedging, stochas-
tic optimal control, Riccati equations, closed-form approximations.

Introduction
Recent decades have seen a profound transformation in financial markets, driven largely by the widespread
adoption of electronification. This digital evolution has been paralleled by the development of new decision-
making tools for market makers and the emergence of systematic market making for most asset classes.
The case of stocks traded through central limit order books has been discussed extensively (see [9] for
a good example using stochastic optimal control), but OTC markets have also been addressed using the
modelling framework introduced by Avellaneda and Stoikov in [1] (see for instance [3] for the FX market).
These market making models have helped dealers to manage inventory risk through strategic hedging and
quote skewing. In single-asset models, optimal quotes typically vary monotonically with current invento-
ries, influenced by factors such as risk aversion, clients’ pricing sensitivity, and the liquidity on external
platforms. Dealers aim to maximize client flow internalization to mitigate the cost of external execution
and reduce market impact, hedging only when inventories exceed franchise-dependent thresholds (on the
internalization-externalization dilemma, see for instance [2] and [5]).

Multi-asset extensions of market making models have been built to help dealers manage their risk at the
portfolio level (see for instance [3] and [4]). Market makers often deal indeed with large portfolios of assets
of very different liquidity. Illiquid assets may be difficult to internalize and costly to execute in the market.
However the risk associated with illiquid assets may sometimes be partially offset by positions in other
instruments that are more liquid, leaving time to unwind the illiquid asset with less cost. Most existing
models consider the case of asset price dynamics driven by correlated Brownian motions.

Diverging from conventional approaches that focus solely on correlated asset price dynamics, our model
capitalizes on the unique benefits of using co-integrated assets for hedging, regardless of whether the market
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maker proposes quotes in those assets. Co-integration offers indeed a special opportunity for market makers
to tap into enhanced liquidity pools and benefit from mean reversion. This is particularly relevant in the
case of a spot dealer hedging their position through futures, as in the case of precious metals market. While
the interbank spot market does exist, precious metals futures are considerably more liquid, with tighter
spreads and higher volumes. Since the price difference between futures and spot – so-called Exchange
for Physical (EFP) spread – is primarily driven by swap rates which are relatively stable over the market
maker’s intraday risk horizon, the co-integration assumption between spot and futures prices is very natural.1

Our modelling framework builds on the classical foundation laid by [1] and [7] (see the two reference books [6]
and [8] for a detailed discussion). In this framework, a single underlying instrument (spot) price is modelled
by an arithmetic Brownian motion. The arrival rates and size distribution of client trades are modelled
with predetermined intensity kernels. Going beyond the initial academic literature and building on recent
advances, our model considers a dealer quoting in spot who can hedge (with costs) in both spot and futures.
The novelty comes from the modelling of EFP by a nested Ornstein-Uhlenbeck (hereafter nested OU) pro-
cess, as inspired by the observation of multiple relaxation times in the market ranging from hours to days,
possibly related to different trading horizons of different types of traders, as illustrated in Figure 1. This
article expands, therefore, the now classical stochastic optimal control framework for market making by
incorporating the existence of co-integrated and liquid assets. Not only does it address a gap in the existing
academic literature on market making models but also provides a new class of price dynamics compatible
with the approximation techniques developed in [4].

Figure 1: EFP spreads in basis points implied from four active futures contracts and spot mid prices of gold
against USD in 2023 (green). Zoom in on 21 July also shows OTC forward rate – OTC FWD – (red) and
demonstrates intraday mean reversion. Daily median difference in basis points between implied EFP and
OTC forward rate (blue) illustrates mean reversion on a weekly scale.

1There are other asset classes were the same mathematical ideas could be used. In FX, one can think of market making
involving Non-Deliverable Forwards and onshore spot liquidity for instance.
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In the forthcoming sections, we begin by introducing our model alongside the key equations that define the
optimal strategies for market makers in the spot precious metals market. We also discuss the merits and
limitations of utilizing nested OU processes. Subsequently, we demonstrate the applicability of the method
from [4] to our general framework. We conclude with an in-depth numerical analysis focused on the gold
market, illustrating the practical implications of our model.

The model

State variables and optimal control problem
We consider a spot market maker in a given precious metal. We denote by (St)t a reference spot price for
that metal and assume that the market maker continuously streams to clients a pricing ladder at the bid,
Sb(t, z) = St − δb(t, z), and at the ask, Sa(t, z) = St + δa(t, z), where z denotes the sizes in ounces (oz).
Transaction likelihood is assumed to depend solely on the distance between the proposed prices and the
reference spot price. Subsequently, we introduce two intensity functions for bid and ask: (z, δ) 7→ Λb(z, δ)
and (z, δ) 7→ Λa(z, δ). We assume that the functions Λb and Λa take the form2

Λb(z, δ) = Λa(z, δ) = Λ(z, δ) = λ(z)f(δ) with f(δ) =
1

1 + eα+βδ
.

The market maker is also capable of hedging their position by trading on various platforms, using either or
both spot and futures (the most liquid contract is typically chosen). The execution rates associated with
the market maker’s activities are modeled by the processes (vSt )t and (vFt )t for spot and futures, respectively.

We denote by (Ft)t the price process of the futures contract and by (Et)t the EFP process, i.e. Ft = St+Et.3
In what follows, we consider a Brownian dynamics for (St)t and a nested OU dynamics4 for (Et)t, i.e.,

dSt = σSdW
S
t , σS > 0

and
dEt = −kE (Et −Dt) dt+ σEdW

E
t , kE , σE > 0,

with
dDt = −kD

(
Dt − D̄

)
dt+ σDdW

D
t , kD, σD ≥ 0, D̄ ∈ R,

where (WS
t ,W

E
t ,W

D
t )t is a three-dimensional Brownian motion with correlation matrix R. In what follows,

we denote by Σ the variance-covariance matrix

σS 0 0
0 σE 0
0 0 σD

R

σS 0 0
0 σE 0
0 0 σD

.

We denote the inventory process of the market maker in spot by (qSt )t and the inventory in the futures
contract by (qFt )t. Mathematically, the dynamics of (qSt )t is formalized by considering the random measures
Jb(dt, dz) and Ja(dt, dz) modeling the times and sizes of OTC trades on the bid and ask sides, respectively.
Subsequently, the inventory dynamics for spot can be expressed as

dqSt =

∞∫
z=0

zJb(dt, dz)−
∞∫

z=0

zJa(dt, dz) + vSt dt,

while the dynamics for the inventory in the futures contract is modelled by

dqFt = vFt dt.

The resulting cash process (Xt)t of the market maker writes

dXt =

∞∫
z=0

Sa(t, z)zJa(dt, dz)−
∞∫

z=0

Sb(t, z)zJb(dt, dz)− vSt Stdt− LS(vSt )dt− vFt Ftdt− LF (vFt )dt,

2Generalizations do not raise difficulties.
3We consider de-seasonalized futures prices with interest rate dependence on time to maturity factored out.
4It is possible to expand the nested dynamics to include more than one level if there is statistical or practical need.
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where the terms LS(vSt ) and LF (vFt ) account for spread costs along with the temporary price impact of the
market maker upon externalizing.5 The functions LS and LF are typically nonnegative, strictly convex,
and asymptotically super-linear. Here, we consider

LS(v) = ψS |v|+ ηSv2 and LF (v) = ψF |v|+ ηF v2.

The market maker wants to maximize the expected utility of the Mark-to-Market value of their portfolio at
the end of the period [0, T ] minus a penalty corresponding to remaining inventories. We assume that the
market maker has a CARA utility function, and maximizes

E
[
− exp

(
−γ

(
XT + qSTST + qFT FT −K

(
(qST )

2 + (qFT )
2
)))]

by selecting δb, δa, vS and vF , where γ indicates the market maker’s risk aversion and K ≥ 0 is a penalty
constant.

Solution
We denote by u : [0, T ] × R6 → R the value function of this stochastic control problem. The Hamilton-
Jacobi-Bellman equation associated with it is:

0 = ∂tu− kE (E −D) ∂Eu− kD
(
D − D̄

)
∂Du+

1

2
Tr(Σ∇2

SEDu) + Lbu+ Lau

+ sup
vS

(
vS∂qSu−

(
LS(vS) + vSS

)
∂xu

)
+ sup

vF

(
vF∂qF u−

(
LF (vF ) + vF (S + E)

)
∂xu

)
, (1)

with terminal condition u(T, x, qS , qF , S, E,D) = − exp
(
−γ

(
x+ qSS + qF (S + E)−K

(
(qS)2 + (qF )2

)))
,

where

Lbu(t, x, qS, qF, S, E,D)=

∞∫
0

sup
δb
f(δb)

(
u(t, x− z(S − δb), qS+ z, qF, S, E,D)− u(t, x, qS, qF, S, E,D)

)
λ(z) dz

Lau(t, x, qS, qF, S, E,D)=

∞∫
0

sup
δa
f(δa)

(
u(t, x+ z(S + δa), qS− z, qF, S, E,D)− u(t, x, qS, qF, S, E,D)

)
λ(z)dz.

This equation can be simplified through the use of the ansatz

u(t, x, qS , qF , S, E,D) = − exp
(
−γ

(
x+ qSS + qF (S + E) + θ(t, qS , qF , E,D)

))
,

where θ : [0, T ]× R4 → R is a differentiable function such that θ(T, qS , qF , E,D) = −K
(
(qS)2 + (qF )2

)
.

The partial differential equation associated with θ is indeed the following:

0 = ∂tθ − kE (E −D)
(
qF + ∂Eθ

)
− kD

(
D − D̄

)
∂Dθ +

1

2
Tr(Σ̃∇2

EDθ)

−γ
2

 qS + qF

qF + ∂Eθ
∂Dθ

⊺

Σ

 qS + qF

qF + ∂Eθ
∂Dθ

+ JHθ +HS
(
∂qSθ

)
+HF

(
∂qF θ

)
(2)

where Σ̃ is the submatrix of Σ obtained by removing the first row and the first column, HS and HF are the
Hamiltonian functions defined by

HS : p ∈ R 7→ sup
vS

(
vSp− LS(vS)

)
and HF : p ∈ R 7→ sup

vF

(
vF p− LF (vF )

)
,

5We have not considered permanent market impact here for the sake of simplicity. We might assume that both spot and
futures external transactions (i.e. the processes (vSt )t and (vFt )t) affect the spot price equally, without altering the EFP spread.
Under the assumption of linear permanent market impact, our model remains effective. For more details on market impact,
see the reference book [12] and the recent paper [10] on the importance to have a good market impact model.

4



and

JHθ(t, q
S , qF , E,D) =

∞∫
0

zH

(
z,
θ(t, qS , qF , E,D)− θ(t, qS + z, qF , E,D)

z

)
λ(z)dz

+

∞∫
0

zH

(
z,
θ(t, qS , qF , E,D)− θ(t, qS − z, qF , E,D)

z

)
λ(z)dz

with H : (z, p) ∈ (0,+∞)× R 7→ sup
δ

f(δ)
γz (1− e−γz(δ−p)).

Under classical assumptions on the intensities (here on the function f – see for instance [8]), it can be proved
that, given a smooth solution to the equation (2), the optimal controls are given by6

δb∗(t, z) = δ̄

(
z,
θ(t, qSt−, q

F
t , Et, Dt)− θ(t, qSt− + z, qFt , Et, Dt)

z

)
δa∗(t, z) = δ̄

(
z,
θ(t, qSt−, q

F
t , Et, Dt)− θ(t, qSt− − z, qFt , Et, Dt)

z

)
vS∗
t = HS ′ (

∂qSθ(t, q
S
t−, q

F
t , Et, Dt)

)
vF∗
t = HF ′ (

∂qF θ(t, q
S
t−, q

F
t , Et, Dt)

)
(3)

where δ̄(z, p) = f−1 (γzH(z, p)− ∂pH(z, p)).

Remarks on nested OU processes
Optimal quoting and hedging strategies in our model are contingent upon current inventories and the cur-
rent values of the processes (Et)t and (Dt)t. While the EFP and inventories are directly observable, (Dt)t is
not, introducing a challenge for practical implementation. However, assuming (Dt)t is fixed as in a simple
OU model where kD = σD = 0 leads to market makers engaging in overly confident statistical arbitrage.
This could lead indeed to strategies that are strongly reliant on the EFP mean reverting to the constant
value of the process (Dt)t.

To encourage caution, our model introduces variability in (Dt)t by setting kD and σD to positive values.
These parameters can then be viewed as hyperparameters, allowing market makers to modulate their con-
fidence. With that vision, the current value of the process (Dt)t might be estimated or pragmatically chosen.

Another point of view consists in statistically estimating all the parameters and filtering the signal to
get an approximation of (Dt)t at all times. For that purpose, we can assume a correlation structure

R =

1 ρ 0
ρ 1 0
0 0 1

 with ρ ∈ [−1, 1]. Then, all the parameters can be estimated using classical maximum

likelihood (without observing (Dt)t) methods because (Et)t is a Gaussian process whose covariance function
is known in closed form. Once parameters are estimated, we use filtering techniques to write

dSt = σSdŴ
S
t

dEt = −kE
(
Et − D̂t

)
dt+ σEdŴ

E
t

dD̂t = −kD
(
D̂t − D̄

)
dt+ 1√

1−ρ2

kE

σE
ν2t dŴ

D
t

where
D̂t = E [Dt|(Ss)s≤t, (Es)s≤t] , ν2t = V (Dt|(Ss)s≤t, (Es)s≤t) ,

and

ŴS
t =WS

t , ŴE
t =WE

t +
kE
σE

∫ t

0

(Ds − D̂s)ds, ŴD
t =

ŴE
t − ρŴS

t√
1− ρ2

6Because qS is not a continuous process, we consider in (5) the left limit of qS at time t denoted by qSt−.
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define a three-dimensional Brownian motion adapted to the natural filtration of the processes (St)t and

(Et)t with correlation structure R̂ =

1 ρ 0

ρ 1
√
1− ρ2

0
√
1− ρ2 1

 of rank 2.

Using standard Bayesian filtering techniques, (ν2t )t is in fact deterministic and satisfies

dν2t
dt

= − 1

1− ρ2
k2E
σ2
E

ν4t − 2kDν
2
t + σ2

D.

In particular, assuming we have observed the spot and futures prices for a long time, we can replace ν2t by
its asymptotic value:

ν2∞ =
σ2
D

kD +

√
k2D + 1

1−ρ2

k2
E

σ2
E
σ2
D

.

Our market making problem can then be solved by replacing the unobservable process (Dt)t by the observ-
able process (D̂t)t up to the replacement in equation (2) of R by R̂ and σD by

σ̂D =
1√

1− ρ2
kE
σE

ν2∞ = σD
ξ

kD +
√
k2D + ξ2

, where ξ =
1√

1− ρ2
kE

σD
σE

.

Approximation technique
Approximating numerically the solution θ of equation (2) using grid methods poses challenges due to the
high dimensionality of the state space and the complex geometry of the frequently visited inventory states
at optimality. To avoid grids, we adopt a methodology similar to that described in [4], which involves ap-
proximating equation (2) with a closely related equation. The solution to that equation, denoted by θ̌, will
be a quadratic polynomial and serve as an approximation to the original value function θ. Consequently, θ̌
will be utilized in lieu of θ in (5) to derive strategies that are nearly optimal.

To obtain our new equation, we employ instead of LS and LF the quadratic approximations ĽS(v) = ηSv2

and ĽF (v) = ηF v2. Subsequently, we substitute HS and HF in (2) by

ȞS : p ∈ R 7→ sup
vS

(
vSp− ĽS(vS)

)
=

p2

4ηS
and ȞF : p ∈ R 7→ sup

vF

(
vF p− ĽF (vF )

)
=

p2

4ηF
.

Also, following [4], we approximate the function H by a quadratic function

Ȟ(p) = α0 + α1p+
1

2
α2p

2.

We then obtain the following partial differential equation:

0 = ∂tθ̌ − kE (E −D)
(
qF + ∂E θ̌

)
− kD

(
D − D̄

)
∂D θ̌ +

1

2
Tr(Σ̃∇2

ED θ̌)

−γ
2

 qS + qF

qF + ∂E θ̌

∂D θ̌

⊺

Σ

 qS + qF

qF + ∂E θ̌

∂D θ̌

+ JȞ θ̌ +
1

4ηS
(
∂qS θ̌

)2
+

1

4ηF
(
∂qF θ̌

)2
(4)

with terminal condition θ̌(T, qS , qF , E,D) = −K
(
(qS)2 + (qF )2

)
, whose solution θ̌ will be our approxima-

tion of θ.

As announced above, the interest of the above approximation is that the solution to (4) is a polynomial of
degree 2 in qS , qF , E, and D. Let us make indeed the following ansatz:

θ̌(t, qS , qF , E,D) = −


qS

qF

E
D


⊺

A(t)


qS

qF

E
D

−


qS

qF

E
D


⊺

B(t)− C(t),
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where A : [0, T ] 7→ M4(R), B : [0, T ] 7→ R4, and C : [0, T ] 7→ R are differentiable functions such that

A(T ) =


−K 0 0 0
0 −K 0 0
0 0 0 0
0 0 0 0

 , B(T ) =


0
0
0
0

 and C(T ) = 0.

Plugging this polynomial ansatz into (4) yields a system of ODEs for A, B, and C:7

{
A′(t) = A(t)MAA(t) +A(t)UA + UA⊺

A(t) +RA

B′(t) = A(t)MAB(t) +A(t)V B + UA⊺
B(t)

where

MA =

 4α2

∫ +∞
0

zλ(z)dz + 1
ηS 0

0 1
ηF

02×2

02×2 −2γΣ̃

 , UA =


02×2 02×2

γ

(
0 1 0
0 0 1

)
Σ

1 1
0 1
0 0

 kE −kE
0 kD

 ,

RA = −1

2
γ

(
I2 02×1

02×2 02×1

)
Σ

(
I2 02×2

01×2 01×2

)
− 1

2
kE


0 0 0 0
0 0 1 −1
0 1 0 0
0 −1 0 0

 and V B =


0
0
0

−2kDD̄

 .

This system of ODEs can easily be solved numerically. It leads to the following approximations of the
optimal controls: 

δ̌b∗(t, z) = δ̄

z(eS)⊺A(t)eS + 2


qS

qF

E
D


⊺

A(t)eS + (eS)⊺B(t)



δ̌a∗(t, z) = δ̄

z(eS)⊺A(t)eS − 2


qS

qF

E
D


⊺

A(t)eS − (eS)⊺B(t)



v̌S∗
t = HS ′

−2(eS)⊺A(t)


qS

qF

E
D

− (eS)⊺B(t)



v̌F∗
t = HF ′

−2(eF )⊺A(t)


qS

qF

E
D

− (eF )⊺B(t)

 ,

(5)

where eS =


1
0
0
0

 and eF =


0
1
0
0

.

Remark 1. It is important to note that in (5), we employ the original functions δ̄, HS and HF without
resorting to quadratic approximations. The only function approximated is θ, which is replaced by θ̌. In
the terminology of reinforcement learning, this is equivalent to approximating the true value function and
then selecting greedy actions based on this approximation. In particular, the spread effects introduced by the
functions LS and LF are duly considered.

7We only report here the equations for A and B, as C is irrelevant for the computation of the optimal strategy.
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Numerical results and discussion
For illustration, we consider market making in spot gold (XAUUSD) with access to futures liquidity.

A typical pricing ladder size discretization is set as 100, 200, 500, 1000, 2000 and 5000 oz. We assume a
standard client trade intensity represented by

λ(z) =



1600 if z = 100

600 if z = 200

1000 if z = 500

600 if z = 1000

120 if z = 2000

80 if z = 5000

and f(δ) =
1

1 + eα+βδ

where price sensitivity parameters are taken to be α = −0.8 and β = 5bp−1. Gold spot and EFP
volatility parameters are set to σS = 140bp · day−1/2 and σE = 5bp · day−1/2, respectively. Spot-
EFP correlation is typically small and assumed to be zero in this example. EFP price relaxation rate
is kE = 8day−1. We assume first, as a benchmark, a simple OU framework with kD = σD = 0 and D̄ is
fixed at zero. Standard functional dependence of instantaneous market impact on execution rate is assumed:
LS(v) = ϕS |v|+ηSv2 and LF (v) = ϕF |v|+ηF v2 with ϕS = 0.4 bp, ϕF = 0.2 bp, ηS = 7 ·10−8 bp ·day ·oz−1

and ηF = 3 ·10−8 bp ·day ·oz−1. We consider a time horizon of T = 1 hour that ensures convergence towards
stationary quotes and hedging rates at time t = 0. Terminal penalty is set to zero unless specified otherwise.8
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Figure 2: Optimal gold spot pricing ladder (green), spot execution rate (blue) and futures execution rate
(red) as functions of spot inventory for zero (left) and 1000 oz (right) futures inventory. EFP price deviation
is zero, risk aversion γ = 3 · 10−4, other parameters in the text.

Figure 2 demonstrates the variation of optimal market making controls with spot inventory. When there
are no futures in the book, the equilibrium spot position is zero, and the dealer will skew quotes to attract
client flow in the direction towards this equilibrium. As noticed previously (see [2]), there exists a pure
internalization area where skewing will be considered as the only risk reducing option. Larger positions will
also involve hedging in the market. We can see that the onset for hedging with futures is earlier and the
corresponding rate of execution is higher for futures than for spot. This is totally understandable given

8These parameters have been selected by analyzing a subset of HSBC market making franchise. However, they should not
be considered as representative of HSBC but rather of a typical institutional spot gold dealer. Daily turnover in this setup is
approximately $1B. Basis point convention is used for price changes, which is an approximation insignificant in practical terms
given the time frame of the problem [2].
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the liquidity (and thus the cost of trading) difference. A non-zero position in futures leads to a shifted
quasi-equilibrium in spot, corresponding to an EFP position (where each futures position is paired with
another in spot in the opposite direction). It is optimal for the dealer to unwind the underlying risk towards
this point when there is an unbalanced futures or spot position.
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Figure 3: Average gold spot (blue) and futures (red) inventory relaxation following a 1000 oz client spot trade
with a termination condition in 1 hour obtained by numerically averaging 2 · 104 Monte Carlo trajectories.
The dashed line (yellow) shows the dynamics of qS + qF .
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Figure 4: Inventory probability distribution of a spot gold market maker with access to futures hedging.
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Figure 3 illustrates the expected inventory relaxation following a relatively large 1000 oz OTC trade for
γ = 3 ·10−4. It was calculated via Monte Carlo simulation (2 ·104 trajectories) of the model given the initial
condition and optimal controls with terminal penalty K = 10−3. We see that part of the risk is hedged with
futures very quickly. The remaining excess spot risk is unwound via skew (attracting the offsetting client
flow) and spot execution. Figure 2 shows that skew can be quite aggressive for this level of risk aversion,
with offers better than mid price. Effectively, during this fast relaxation stage, the dealer creates an EFP
position which is later unwound very slowly. Figure 4 shows an inventory probability distribution extracted
from a sufficiently long Monte Carlo trajectory (107 seconds). As expected, the system spends most of the
time along the low-risk EFP diagonal.
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Figure 5: Gold spot and futures no-execution zones as functions of spot inventory and volatility-normalised
EFP price deviation. Zero futures inventory, γ = 10−3 (left) and 10−4 (right). No execution in shaded areas,
selling the corresponding instrument above the upper boundary and buying below the lower boundary.
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Figure 6: Gold top of book spot skew as a function of EFP position and volatility-normalised EFP price
deviation. γ = 10−3 (left) and 10−4 (right).
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EFP mean reversion influences optimal controls. EFP deviation from the expected mean shifts the equilib-
rium inventory along with the corresponding execution onsets and quote skew, as shown in Figures 5 and
6. Understandably, when the deviation is negative the dealer will tend to accumulate long EFP position,
and vice versa. Figure 5 demonstrates that EFP mean reversion will only lead to rare direct arbitrage
opportunities under strong risk aversion. This is related to the cost of opportunistically entering into an
EFP position (one would have to cross two spreads). The dealer will instead skew quotes in the required
direction (see Figure 6) and wait for the opportunity to materialize while making spread. With a lower
risk aversion, the appetite to capitalize on EFP mean reversion increases leading to opportunistic execution
at extreme deviations (where the upper futures execution onset is below the lower spot execution onset
and, similarly, where the lower futures execution onset is above the upper spot execution onset). The skew
will be repurposed from EFP risk management to opportunistic skew on EFP deviation, as shown in Figure 6.

We introduced nested OU processes in this paper to mitigate the latter repurposing which is mainly due
to overconfidence in the OU model. Uncertainty on mean EFP deviation through the introduction of the
stochastic process (Dt)t creates additional risk that is taken into account by risk aversion, resulting in the
dealer being less inclined to keep EFP position. Figure 7 demonstrates the effect of σD on the propen-
sity to capitalize on EFP mean reversion. Here kD = 0.2day−1, γ = 3 · 10−4, and other parameters are
as defined earlier. As expected, the larger is σD, the smaller is the skew and the higher is the arbitrage onset.
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Figure 7: Top of book skew for the volatility-normalized EFP deviation of ϵ ≡ E/σE = 1 and D = 0 along
with the value of ϵ corresponding to spot execution onset as functions of normalized volatility of the mean,
σD/σE , for zero spot and futures inventory and D = 0.

The choice of risk aversion is ultimately in the hands of the dealer. The rule of thumb is to decrease γ while
the expected benefit in P&L exceeds the expected increase in risk. Figure 8 demonstrates the effect of risk
aversion on volume share of hedging, P&L and risk. In this specific example, it is clear that decreasing
γ below 10−4 is questionable as the expected risk increases much faster than P&L. Similarly, increasing γ
above 10−3 is not efficient.
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Figure 8: Volume share of client trades and hedging, hourly P&L and standard deviation of hourly P&L as
functions of risk aversion.
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Figure 9: Optimal market making strategy performance on real market data (XAUUSD, 12 January 2024)
with simulated client flow and risk aversion of γ = 3 · 10−4. Top chart displays implied EFP spread and
dealer’s EFP position during the day, bottom chart shows realised cumulative P&L with open positions
marked to market mid. Insert illustrates volume share of OTC and hedging trades.

Figure 9 illustrates the performance of the optimal strategy over a single trading day on real market data
but with simulated client flow (uniform intensity throughout the day). EFP position clearly echoes the
mean-reverting nature of EFP – the dealer aims to keep EFP risk against the direction of EFP deviation.
Volume share of futures execution significantly exceeds that of spot due to lower cost. Introducing futures
hedging into risk management of OTC spot improves Sharpe ratio by at least 30% (not shown).
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Concluding Remarks
We have extended a stochastic optimal control framework for OTC market making by incorporating co-
integrated liquidity for hedging. Using a computationally efficient approximation technique, our methodol-
ogy facilitates strategy optimization on demand in near real-time. A specific example of spot gold market is
analyzed in detail demonstrating efficient risk management benefiting from access to the significantly more
liquid gold futures with reduced transaction costs while capitalizing on EFP mean reversion. EFP spread is
modeled by a nested OU process describing the observed multiple modes of relaxation corresponding to the
diverse trading horizons of market participants. Interestingly, nested OU processes also appear as a way to
robustify pure OU strategies with uncertainty in the mean reversion parameters, a commonly encountered
case. They could find application in generalizing most of the optimization problems involving classical OU
processes (see for instance the trading problem of [11]).
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