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Rydberg atom array with optical tweezers is a promising candidate for a fault-tolerant quan-
tum computer, thanks to its good properties such as scalability, long coherence time and optical
accessibility for communication. A big barrier to overcome is non-Pauli errors, erasure errors and
leakage errors. Conventional work has revealed that leakage error is convertible to erasure error.
A remaining problem is that such (converted) erasure errors continuously happen and accumulate.
The previous proposal involved transporting atoms directly from the reservoir area, where atoms
are stored for spare, to the computational area, where the computation and the error correction
are processed, to correct atom loss. However, transporting atoms takes a long time and has side
effects on surrounding qubits in practice. In this study, we evaluate the effects on planar code by
circuit-based Monte Carlo simulation which has depolarizing errors and erasure errors, and propose
a new scheme to tolerate that problem, namely, k-shift erasure recovery scheme. Our scheme uses
online code deformation to tolerate erasures and repeatedly transfers the logical qubit from an im-
perfect array in which erasure errors accumulated to another perfect array in which erasure errors
have been fixed by offline optical tweezers, to tolerate a large (accumulated) number of erasures.
Furthermore, our scheme corrects erasure errors of atom arrays while logical qubits are evacuated
from that area to correct; therefore, manipulating optical tweezers for erasure correction does not
disturb qubits that compose logical data. We believe that our scheme provides practical directions
for Rydberg atom quantum computers to realize feasible fault-tolerance.

I. INTRODUCTION

Scalable and universal quantum computers are ex-
pected to be the computers for the next generation be-
yond classical computers. Rydberg atomic quantum
computers are particularly promising candidates for scal-
able quantum computers, as they demonstrated key func-
tionalities required for fault-tolerant quantum computa-
tion [1, 2]. Rydberg atoms have desirable properties as
qubits, such as long coherence time and high controlla-
bility in the array. However, there are typical hurdles
to overcome, erasing of atoms, which is the disappear-
ance of qubits caused naturally by the escape of atoms
on which the qubit is encoded from optical tweezers, and
leakage errors, which are the leakage of atom states from
computational quantum state space caused by such as
imperfect operation of Rydberg interactions applied to
execute quantum gates.

In addition, it has been shown that leakage errors and
atom loss are detectable by Rydberg gates [3], and a
method to convert leakage errors to erasure errors by
Rydberg excitation has also been proposed [4–6]. Thus,
the atom loss and leakage errors can be treated as erasure
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errors by the above techniques.
Fortunately, surface codes are known to have a toler-

ance to erasure errors using super stabilizers [7, 8]. How-
ever, those studies have not revealed the limitation of sur-
face code when erasure errors increase dynamically and
accumulate on an array. This behavior is commonly ob-
served in Rydberg atom quantum computers. Another
problem in acquiring the erasure tolerance for surface
code is how to refill vacant spots with atoms. In previous
studies, atoms were refilled directly into the online array
on which some error correction code is encoded [3, 4].
However, this procedure may have problematic side ef-
fects on dense arrays; it may cause erasure errors when
the transposed atoms are close to other atoms on the ar-
ray (a < 5 µm) [9]. It means that refilling atoms directly
into the online array causes additional errors if an error-
correcting code such as surface code is implemented on
a dense array. Repairing erased atoms may result in a
high possibility of transversal Pauli error chains which is
a typical source of the logical error of the surface code,
leading to a high logical error rate.
In this study, we evaluate the performance of planar

code which has depolarizing errors and dynamically ac-
cumulating erasure errors by circuit-based Monte Carlo
simulation. This simulation assumes dense arrays and
ancillary qubits can be non-destructively measured. The
simulation shows that the surface code on the array, on
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which vacant spots are refilled only when offline, does
not have the threshold of logical error rate and has just
a pseudo-threshold of physical error rate for logical error
rate. Our surface code has the pseudo-threshold, not the
threshold, because the number of operations increases
and the accumulated erasure errors increase on the ar-
ray. The surface code repeats error syndrome measure-
ments and decoding as many times as the code distance
to correct Pauli errors on ancilla qubits and measurement
errors. As a result, the number of accumulated erasure
errors on the array increases along with the time exe-
cuting the error detecting and correcting operations of
surface code.

To solve this problem, we propose a new scheme to
tolerate erasures, namely k-shift erasure recovery. Our
scheme protects the logical state from erasure errors by
combining the code deformation technique of the sur-
face code, which are extension and contraction opera-
tions, and the atom transportation to rearrange or refill
atoms on the array. This scheme maintains the array
without caring about the decoherence of qubits caused
by the atom transportation of tweezers, thanks to sepa-
rating the operation to maintain the logical qubit from
the maintenance of the atom array. This transportation
of a logical qubit is realizable by not only lattice surgery
but also quantum teleportation including methods using
transversal CNOT gates.

Recently, yet another approach to addressing erasure
qubits has been demonstrated, wherein atoms are coher-
ently transported without disturbing surrounding qubits
in a sparse array on which Rydberg interactions do not
reach unless moving atoms [1, 2]. On the other hand,
our approach considers the erased qubits on dense ar-
rays where Rydberg interactions work between beyond
nearest-neighbors and non-destructive measurements.

Our scheme helps to develop Rydberg quantum com-
puters into fault-tolerant quantum computers by protect-
ing a logical quantum state from both Pauli error and
erasure error.

II. RYDBERG ATOM QUBITS 2-D ARRAY
AND ITS ERROR MODEL

The atomic spices used in the neutral atom quantum
computer are alkali metals such as Rb and Cs, and al-
kaline earth metals such as Yb and Sr. These atoms are
called Rydberg atoms because their interactions are con-
trollable by being excited to Rydberg states which are
states of a large principal quantum number. Using this
interaction, multi-qubits gates can be implemented by
Rydberg blockade [10, 11].

An optical tweezer is a technique to trap a single atom
on a spot focused µm width, which is shaped by a spa-
tial light modulator (SLM), an acousto-optic deflector
(AOD), and an objective lens [11]. The tweezer array
can arrange many single atoms at once and can control
the shape of the array and the distance between atoms

freely [12]. In addition, it is possible to transport a single
atom by moving the optical tweezer potential by manip-
ulating SLM and AOD [1].

A. Rydberg atom qubits

A single atom has multiple energy levels, and two of
them are determined to define a qubit, such as the levels
on a hyperfine structure. An arbitrary single-qubit gates
are realized using Rabi oscillation on qubit sublevels [11].
Multi-qubit gates are realized via a dipole-dipole interac-
tion between Rydberg states, and they are called the Ry-
dberg gates. Let r be the distance between atoms. The
dipole-dipole interaction decreases depending on 1/r6.
The Rydberg gates are applicable among atoms which
are not necessary to be nearest-neighbors in the array as
long as they are close enough for the dipole interaction
to act effectively. The typical two-qubit gate of Rydberg
gate is CZ gate [10]. A CNOT gate is achievable by a
CZ gate headed by and followed by Hadamard gates to
the target qubit. Combining those arbitrary single-qubit
gates and multi-qubit gates, a universal quantum gate
set is achieved on Rydberg atom quantum computers.

B. Leakage errors and atom loss on neutral atom
qubits, and erasure errors

Atomic quantum computers with optical tweezer ar-
rays are not only exposed to Pauli errors on the qubit
space but also leakage errors where the state leaks to out-
side levels of the qubit space, and atom loss where atoms
are erased, such as disappearing from optical tweezer
sites. Some leakage states can be corrected to the qubit
space by optical pumping [3], and other leakage errors
can be converted to erasure errors if their occurrence is
detected [4]. A 2-electron neutral atom has demonstrated
the erasure conversion protocol for leaked states of radia-
tive decay and blackbody radiation error [5, 6].
The atom loss is the atom’s disappearance from the

tweezer site. The existence of an atom on the site is
detectable by quantum circuits such as shown in Fig. 1
with an ancilla qubit [3]. Thus, atom loss can also be
treated as erasure errors.
Combining those discussions, physical errors which in-

clude both leakage errors and atom loss are treated as
erasure errors in the software domain of error correction
as long as their occurrence is detectable. By erasure er-
ror, quantum states ρ are mapped to non-qubit space by
probability pe, i.e.

Ee(ρ) = (1− pe)ρ+ pe |e⟩ ⟨e| , (1)

where |e⟩ is a state on non-qubit space [13].
In the case of the CZ gate operation with a completely

erased qubit, the CZ gate does not work at all, so it is
equivalent to the Identity gate, so it does not cause state
error.
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FIG. 1. The circuit to detect an erased data qubit by Rydberg
gates with an additional ancilla qubit [3].

III. SURFACE CODE WITH ERASURE
ERRORS

A. Surface code

The surface code is one of the topological quantum er-
ror correction codes [14, 15]. Let us consider a qubit
array arranged on a square lattice in which the data
qubits (white circle) are on each edge and the ancilla
qubits for the error syndrome measurements (blue and
orange circle) are on face and vertex as shown in Fig. 2a.
To define the stabilizer group of the surface code for an
ideal array without erasures Sideal, we define the star and
plaquette operators

Xs =
⊗

e∈∂∗v

Xe, Zp =
⊗
e∈∂p

Ze, (2)

where v, e, p are the vertices, edges, and faces of the
square lattice, and ∂, ∂∗ are the boundary operators of
the square lattice and its dual lattice, respectively. The
boundary of the code is classified into two types, called
the smooth boundary where Xs ends up, and the rough
boundary where Zp ends up.

B. Error detection and decoding

The encoded state |ψL⟩ is stabilized by S as con-
structed above. The errors on this state are determined
by the measuring eigen-values corresponding to the sta-
bilizer generators S ∈ G whether +1 or −1, which pro-
vides information about the Pauli errors that occurred in
the qubit array. By performing indirect measurements of
the star (plaquette) operator as in Fig. 2c via the or-
ange (blue) auxiliary qubits in Fig. 2a, we obtain this
information. This measurement is called syndrome mea-
surement. A set of one trial of syndrome measurement
corresponding to each element of G constructed as above
is called Big-T. For a planar code with code distance d,
perform d sets of Big-T syndrome measurements.
Even if measurement errors occur during syndrome

measurements, repeating syndrome measurements d
times makes the logical qubit tolerant against measure-
ment errors.

The error syndromes contain the information of errors.
To decode those syndromes into Pauli errors, we form
the graph N as shown in [16] and it is called N a Nest.
At first, regard each syndrome as a vertex in N . Then,
Connect these vertices to the edge that corresponds to a
spacial, Pauli error on each data qubit. Also, connect the
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FIG. 2. (a) A figure of stabilizer generators G̃ of the surface
code. The large white circles are data qubits, respectively.
The orange (blue) grey squares are stabilizer generators of
XXXX (ZZZZ) for star (plaquette) operators, respectively.
The small orange (blue) grey circles are ancilla qubits for syn-
drome measurements. If a data qubit at the position of the
circle with a diagonal line disappears, the stabilizer generators
around it are merged and a super star (plaquette) operator of
a large orange (blue)polygon is added as a new stabilizer gen-
erator to maintain the function as an error correction code.
(b) The figure shows an example of the time evolution of a
qubit array encoded by the surface code with code distance
= 5. The blue circles are data qubits, and the small orange
and blue circles are ancilla qubits for syndrome measurements
of X⊗4 and Z⊗4, respectively. The bottom layer shows the
situation before the syndrome measurement, and there are no
erased qubits. The hierarchy represents the number of syn-
drome measurements, and the number of erased qubits (red
circles) increases as the number of measurements increases.
(c) A circuit of syndrome measurements for the surface code.
The shaded parts in blue and orange are syndrome measure-
ments of X⊗4 and Z⊗4, respectively.

vertices to edges each of which corresponds to a tempo-
ral measurement error of each syndrome. By estimating
the most likely pairs for the vertices where the syndrome
measurement outcomes flip, +1 to −1 or −1 to +1 on
the Nest, both computation errors and measurement er-
rors are detected and corrected. There are algorithms to
estimate the most likely pair for the vertices [16–18]. A
typical algorithm is the Minimum Weight Perfect Match-
ing (MWPM) [19].

C. Previous works for erasure errors

Erasure errors can be classified into three: static era-
sure errors, dynamic erasure errors which can be cor-
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rected immediately, and dynamic erasure errors which
cannot be corrected immediately.

1. Static erasure errors

In a system where erasure errors happen statically, you
can know the position of erasure errors before executing
quantum computation and the number of erasure errors,
and they are not changed during the execution. The typ-
ical case of static erasure errors is the fabrication error of
such as superconducting quantum circuits [8, 20]. Static
erasure errors are not errors occurring during computa-
tion but imperfections occurring before the computation.
However, the static erasure error has many points in com-
mon with erasure errors: the absence of qubits causes
them, their locations are heralded, and stabilizer mod-
ification is required to deal with them, as explained in
the following sections. This type of erasure can be cor-
rected by super stabilizers. There are two ways to con-
struct super stabilizers, Stace and Barrett method [7] and
Nagayama method [8]. The idea of Stace and Barrett’s
method is simple and easy to construct super stabiliz-
ers. The super stabilizers can be made by multiplying
stabilizers related to erased data qubits like Fig. 2a. The
star and plaquette stabilizers are merged into a super
stabilizer in the same way, which means the deployment
of it is symmetric. This method generates junk qubits
as side effects, which are created on the extra degree of
freedom caused by reducing two stabilizers for an erased
data qubit. The super stabilizers decrease the threshold
of state error rate even though junk qubits do not cause
logical errors. On the other hand, Nagayama’s method,
in which super stabilizers and weight-reduced stabilizers
are used together, is an improved version of Stace and
Barrett’s method. This method does not generate junk
qubits, but the deployment of super stabilizers is asym-
metric.

2. Instantly correctable erasure error

Some systems may have erasure errors happening dy-
namically during computation. In this case, the number
of erasure errors changes during the computation. Mech-
anisms to detect the positions of erased qubits have been
investigated, depending on the physical and architectural
systems [3, 4, 21]. There are two types of erasure errors,
i.e., in some systems, erasure errors remain, and in oth-
ers, they don’t.

A typical example of the first type is neutral atom
quantum computers; erasure errors remain unless spe-
cial operations are executed to fix erasure errors. Such
a special operation is, i.e., to refill the erased position
with a new atom instantly. Such refilling is achieved by
conveying atoms with optical tweezers. In the erasure
conversion approach [4, 22], the qubit information is ex-
actly erased, but the atom may remain in its position. In

that case, it works to get erased qubits, which are in a
completely mixed state, incorporated with the surround-
ing stabilizers, and projected to the proper code word
state of the quantum error correcting code. However,
conveying atoms with optical tweezers in this approach
may disturb qubits along the path across the atom ar-
rays.
A typical example of the latter type is one-way quan-

tum computation with a 3-D cluster state [21, 23]. Be-
cause all qubits are going to be measured and disrupted
anyway, erasure errors in a layer corresponding to a Big-
T do not remain in the next Big-T. Thus, this model
has the erasure-tolerance of up to 25 % erasure rate [23],
though we don’t actually ”correct” the erased qubits.

3. Accumulating, dynamic erasure errors

Some systems, typically neutral atom array quantum
computers, cannot correct dynamic erasure and leakage
errors sequentially after detecting their events since con-
veying atoms into the online array disturbs other qubits.
Consequently, the number of erasure errors in the ar-
rays increases over time. In such cases, the surface code
doesn’t work properly because the distribution of erased
qubits always changes over time, and error detection and
decoding don’t work properly around erased qubits.
In this study, we propose a scheme of surface code to

deal with dynamic erasure errors and leakage errors that
cannot be corrected in ordinary error correction cycles.
This model corresponds to the Rydberg atomic quantum
computer with optical tweezer arrays, which cannot con-
vey atoms to the online array on which logical qubits are
encoded.

IV. ERROR CORRECTION UNDER
ACCUMULATED DYNAMIC ERASURE ERRORS

A. The main problem

Let us consider the situation where the erasure er-
rors occur dynamically and cannot be corrected sequen-
tially after detecting erasures. This situation corresponds
to the Rydberg atomic quantum computer with optical
tweezer arrays, which cannot convey atoms to the online
array on which logical qubits are encoded because it may
cause adverse effects such as decoherence or repulsion be-
tween atoms.

B. Generating stabilizer generators

In the case of the erasure errors occurring on the data
qubits, you can maintain the function of the error cor-
rection by removing stabilizer generators related to the
erased data qubits from the stabilizer group S =< G >
and adding the super star (plaquette) operators to the
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stabilizer group by multiplying the removed stabilizer
generators. Here, we use Stace’s method to compose sta-
bilizers into a super stabilizer. Let us assume that a data
qubit has been erased, as in the center of Fig. 2a. Two
star stabilizer generators act on this erased data qubit,
let’s call them Xi, Xj ∈ G. To exclude the erased data
qubit from the code, we remove Xi and Xj from G and
add

Xij = XiXj (3)

to G. On the plaquette stabilizer side as well, two stabiliz-
ers share the erased data qubit. Thus, you can compose
these in the same way. Even when multiple erasures ex-
ist, instead of the stabilizers that share the erased data
qubits, we can insert the stabilizer created by multiply-
ing them to generate the deformed stabilizer group. We
denote the new generators formed in this way as G̃. The
stabilizer group S̃ =< G̃ >, which have G̃ as their gener-
ators, newly stabilize the planar code state of the qubit
array containing erasures.

C. Composition of super stabilizer and decoding
on dynamic erasure

Dynamic erasure errors may occur while executing the
stabilizer circuits. Therefore, we should perform era-
sure detection before measuring syndromes for all sta-
bilizer generators, i.e., just before each syndrome mea-
surement in each Big-T. Based on the distribution of
detected erased qubits, we can construct the super sta-
bilizer as described above and then perform syndrome
measurements corresponding to the stabilizer generators
that include the super stabilizer. Let us consider updat-
ing the stabilizer generators for each Big-T to adapt to
erasure errors dynamically occurring. We have to detect
erasure errors and their distribution on the array in ev-
ery Big-T to compose the stabilizer generators based on
the result of detecting the erasure distribution. The pro-
cedure to compose the stabilizer generator is described
in Chap. IVB. In this study, to efficiently find the sta-
bilizer pair to be composed, we compose them using the
Union Find algorithm, as described in the pseudo-code
in Algorithm. 1.

For a surface code with a code distance of d, we re-
peat syndrome measurements and erasure detections d
times as described in Chap. III B, and based on these
results, we create a Nest N . If an erasure error occurs
to a data qubit, we can create a Nest N adapting to
the super stabilizer S̃ by setting the weight of the corre-
sponding edge to 0 [7, 23]. In our error model, erasures
accumulate, unlike the model in [23]. Thus, once an era-
sure error occurs, the weight of the edge is kept to be 0
after that. By matching vertices where the eigenvalues
in syndrome measurement flip with a Minimum Weight
Perfect Matching (MWPM) problem solver in N , we can
estimate where the Pauli errors happen.

V. NUMERICAL SIMULATION AND ITS
ANALYSIS

A. Error models and assumptions in our simulation

In our simulation, we performed a circuit-based Monte
Carlo error simulation to investigate the behavior of log-
ical error and catastrophic corruption of the array. We
considered Pauli errors, which occur in the qubit space,
and erasure errors for errors occurring in physical qubits.
We assumed that the Pauli errors occurring in the qubit
space are depolarizing errors. The depolarizing error on a
single-qubit is defined as an error channel where the three
Pauli operators X,Y, Z are applied with equal probabil-
ity pdep/3, i.e.,

E(ρ) = (1− pdep)ρ+
pdep
3

∑
M∈X,Y,Z

MρM†. (4)

Similarly, the depolarizing error that acts on two-qubits
with probability pdep is defined as,

E(ρ) = (1− pdep)ρ+
pdep
15

∑
M∈P

MρM† (5)

Here, the set P is,

P = {IX, IY, IZ,XI,XX,XY,XZ,
Y I, Y X, Y Y, Y Z,ZI, ZX,ZY, ZZ}

(6)

.

As described above, the erasure and heralded leak-
age errors can be considered an erasure error channel
as Equation (1). In this simulation, we assumed that
both erasure and leakage errors can be detected simul-
taneously before performing the syndrome measurement
for all ancilla qubits and that the leakage error can be
converted to an erasure error. Erasure errors occur with
probability pe for each gate operation, and once an era-
sure occurs, it cannot be recovered immediately. This
model corresponds to the situation involving difficulties
in refilling single atoms to the atomic tweezer array, such
as additional erasure caused by the tweezer transporta-
tion [9].

B. Composition of super stabilizers

We determine the stabilizer generators to be composed
based on the results of the detected erased qubits. We
compose the stabilizer generators using Stace’s method.
We find the set of stabilizer generators to be composed
with a Union Find structure, as shown in the pseudo-
code in Algorithm 1. We can execute this algorithm to
generate stabilizer generators for a system with erasure
in O(logN) time steps for N qubits.
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Algorithm 1 The method to compose super stabilizers
via Union Find algorithm

1: function union find(stabilizers)
2: uf ← UnionFindStructure(stabilizers)
3: for all stabilizer0← stabilizers do
4: data qubits← stabilizer.data qubits
5: for all qubit← data qubits do
6: if qubit is erased then
7: stabilizer1 ←

Find another stabilizer(qubit)
8: uf.union(stabilizer0, stabilizer1)
9: end if

10: end for
11: end for
12: return uf
13: end function
14: function create stabilizers(ideal stabilizers)
15: uf ← union find(ideal stabilizers)
16: roots← uf.roots()
17: new stabilizers ←

merge stabilizers(root, ideal stabilizers) ▷
This function merges stabilizers belonging to the same
tree using Stace’s way.

18: return new stabilizers
19: end function

The composition of the stabilizer generators reduces
the effective code distance. The length of the shortest
logical operator (composed of corresponding physical op-
erator chain; hence, we can discuss the “length” of logical
operators here) that transverses the larger stabilizer gen-
erator to be composed of normal ones is shorter than
the shortest logical operator on the usual surface code
with no erasures. The existence of a shorter logical op-
erator means that the effective code distance becomes
shorter. If the erasure errors happen continuously be-
tween the boundaries such as Fig. 3, a larger stabilizer
generator that connects between boundaries will be com-
posed. This lattice no longer has enough code distance
and does not have a logical qubit to tolerate Pauli errors,
i.e., the effective code distance becomes 2. Therefore, if
erasure errors exist across the array, we grant that the
logical qubit has been destroyed in this study.

Ancilla qubits are also exposed to erasure errors. How-
ever, its effect is possibly mitigated by reusing ones for
other stabilizers because ancilla qubits can be shared
by multiple stabilizers because they are initialized ev-
ery time they are used. Thus, we check whether any
ancilla held by the super (or normal) stabilizer is alive,
and if it is not, we try to find a sharable ancilla qubit
placed within the second nearest neighbor of the original
ancilla qubit. If any sharable ancilla qubit is not found,
we regard this logical qubit as also destroyed.

C. Decoding Pauli errors

The nest N gets a more irregular shape in every Big-T
by composing some stabilizer generators to super stabi-
lizers as described above. To adopt this deformation,

𝑍!

𝑋!

FIG. 3. A surface code of code distance d = 5 with erasure
errors, which include shortened logical operators by super sta-
bilizers. The blue and red line represents the shortest X and
Z logical operators, XL and ZL. The XL are shortened to
d = 3 and the ZL are shortened to d = 2 because of super
stabilizers to adapt to erasure errors. The ZL of d = 2 no
longer has the tolerance against Z errors.

vertices in N get removed or merged. Actually, by set-
ting the weight of the edge corresponding to erased data
qubits on the nest N to 0, matching and decoding of Ñ
including the super stabilizers is still possible [7]. For
a surface code with a code distance of d, we perform
erasure detections and syndrome measurements d times.
Erasure detection is theoretically possible with the cir-
cuit in Fig. 1. In this study, we did not employ this
circuit explicitly and assumed that erasure detection al-
ways succeeds immediately without executing dedicated
erasure-detecting circuits in the simulation. After era-
sure detections and syndrome measurements, we created
a Nest Ñ as described above, in which vertices hold the
flips of measurement results. We used the Minimum
Weight Perfect Matching (MWPM) Decoder to decode
error syndromes in the Nest into error placements in our
simulation [19].

We first check if a logical qubit was destroyed due to
erasure errors and then whether a logical Pauli X error
occurred. We can acquire the complete error distribution
by tracking the Pauli frames, which are exactly the er-
ror information, classically in simulation, in contrast to
real devices. The occurrence of the logical X error is de-
termined by the parity of the number of X error chains
crossing the logical Z operator on a boundary. The in-
formation of error syndromes involves perfect syndrome
measurements at the last Big-T, not to misunderstand
correctable, computational errors as measurement errors.
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D. Numerical results

First, we calculated the threshold between the logi-
cal qubit error rate and the physical Pauli error rate,
for each erasure error rate. The result of sweeping pdep
with fixed pe is shown in Fig. 4. The results show that
qubits cannot tolerate the increase in erasure error rate,
depending on the number of repetitions of Big-T which
depends on the code distance if the erasure error rate is
too high. This model has just a pseudo-threshold, which
is the threshold-like behavior around the crossing point-
like region, even if the model, in principle, does not obey
the threshold theorem in the asymptotic limit. Each data
point in the graph is calculated from the number of error
events nlogical in 105 attempts, each of which executes the
whole circuit, i.e., plogical = nlogical/10

5. Note that the
numerical results are not smooth in the region of small
pdep. This is because the logical error probabilities in
this region were too low to acquire enough error events
in numerical simulation to make the graph smooth.

It is known that this error model does not have a
threshold for erasures (pe,th = 0) analytically. The ra-
tio of qubits disappearing after repeating Big-T d times,
which applies α gates to a qubit, is

R = 1− (1− pe)
αd. (7)

Therefore, in the limit of d → ∞, R → 1. This means
that erasure errors cannot be attenuated, regardless of
how much the code distance is extended, as long as era-
sure errors continue to accumulate.

We also calculated the evolution of the logical error
rate when decoding and error correction operations are
repeated. The Fig. 5 shows the evolution of the logical
error rate against the number of error correction (Big-T)
loops when the depolarizing error rate per each gate oper-
ation is fixed at pdep = 1×10−4 and the erasure error rate
per each gate operation pe is shifted from 0 to 1.0×10−5.
It can be seen that the logical error rate increases with the
accumulation of erased physical qubits in the array, par-
ticularly as error detection and correction operations are
repeatedly performed. Also, the Fig. 5 shows that there
are many occurrences of the logical qubit destruction due
to array destruction or the absence of alternative ancilla
qubits when the erasure error rate is high or when the
code distance is extended. This is because the longer the
code distance, the deeper the circuit is to correct mea-
surement errors, increasing the ratio of erased qubits on
the array. Meanwhile, the figure shows that the logical
error rate is suppressed by extending the code distance in
some parameter regions such as pe =< 1× 10−5 and the
number of error correction iterations is lower than 10.

VI. k-SHIFT ERASURE RECOVERY

Our numerical simulation demonstrated that the repe-
tition of the stabilizer circuit accumulates erased qubits,
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FIG. 4. The numerical result of Pauli error rate thresh-
old for each erasure error rate pe. Each colored line repre-
sents the logical error rate plogical vs. the depolarizing error
rate per gate operation pdep (horizontal axis) with code dis-
tances 3, 5, 7, 9, 11 and 15. The erasure error rate pe is fixed
in each graph. The black dash line represents the break even,
plogical = pdep.

the effective code distance decreases continuously, and fi-
nally, the code loses the Pauli error tolerance required.
To solve this problem, we propose moving the logical
qubit from the atom array with accumulated erasure er-
rors to a new atom array free from erased qubits by com-
bining the expansion and reduction operations of the sur-
face code by code deformation [15] as shown in Fig. 6,
namely, k-shift erasure recovery. Our proposal is a series
of two steps below:

1. Repeat the surface code procedure tolerable against
state errors, leakage errors, and erasure errors and
execute quantum computation, with adapting ac-
cumulating erasure errors.

2. Transfer the logical qubit to another perfect atom
array when the amount of erasure errors likely
makes the error tolerance of the surface code below
the required level of error tolerance. Then, refresh
the old atom array that contains erased qubits to
make the atomic qubit array perfect again.

This series of steps divides the functionality to exe-
cute quantum computation with protection against state
errors and endure against erasure errors, and the func-
tionality to correct erasure errors. Our scheme makes
the logical qubit not suffer from the unexpected effects
caused by fixing the atom array by evacuating the logical
qubit from the imperfect array.
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FIG. 5. The numerical result between the number of repe-
titions of the syndrome measurement and the logical failure
rate (solid line) which includes both the logical Pauli error
and the logical qubit destruction (dashed line) after the rep-
etition. The upper and lower figures show the result with the
code distance d = 11 and d = 15, respectively. The depolar-
izing error rate per gate operation is fixed at pe = 1 × 10−4

in both graphs. Each colored line represents the erasure error
rate pe. The band with each line represents the standard de-
viation of the logical error rate. Each dashed line represents
the logical qubit destruction rate described in Sec. VB.

Consider a qubit array A1 on which a logical qubit of
the planar surface code is encoded, and another qubit
array A2 on which nothing is encoded exist at first. We
must iterate its syndrome measurement and error cor-
rection to correct Pauli errors on A1. However, this it-
eration increases the erasure ratio and finally makes its
logical error rate higher than the requirement, such as
10−15 [24]. Our protocol performs code deformation to
move the logical qubit on A1 to the new perfect array A2

before the logical error probability of the logical qubits
becomes higher than the required error rate, due to the

i) Extend logical qubit 𝐴! into 𝐴!𝐴"

ii) shrink logical qubit into 𝐴" and refill erased sites on 𝐴!

𝐴! 𝐴"

FIG. 6. The process of transferring a logical qubit via code
deformation.

accumulation of erased qubits. First, initialize qubits
in A2 appropriately to |0⟩ or |+⟩. Then, perform d syn-
drome measurements and decode and correct errors based
on the measurement results to complete expansion of the
logical qubits of the size d × d on A1 into logical qubits
of d × 2d crossing on A1 and A2. After that, measure
the data qubit on A1 in Z or X basis depending on the
direction of the boundary expanding, to complete shrink-
ing the logical qubit to the size d × d on A2. From the
result of direct measurement on data qubits, determine
and record the parity of the X or Z logical operator.

Now, qubits in A1 do not hold logical information. So,
we can execute any operation to the qubits, even de-
structive operations, without any concerns. Thus, the
imperfect array with erased qubits in A1 can be recov-
ered by rearranging or refilling the array with a single
atom from the atom reserver. For neutral atom array
quantum computers, optical tweezers have been demon-
strated to work well for such precise movement and in-
sertion of atoms [25]. Our scheme separates the places
to maintain the coherence of the logical qubits via syn-
drome measurements and the places for physical opera-
tions possibly destructive to quantum data to repair the
array, such as rearrangement and refilling the array with
atoms via tweezers. This provides us with the capability
of taking more aggressive rearrangement strategies than
the method of sequentially replenishing erased qubits.

In the same way, the erased qubit on the new array A2

will increase after repeating the error correction. Again,
we can make the system resistant to erasure errors by
transferring the logical qubit to another array before the
logical error probability becomes too high due to the
same reason above. The explanation above uses just two
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pieces of qubit array and corresponds to 2-shift erasure
recovery. This procedure can be expanded to k-shift era-
sure recovery with k pieces of qubit array, depending on
the time needed to fix erasures on the array and the time
until the array can no longer tolerate the accumulation
of erasure errors and Pauli errors. We name this scheme
”k-shift erasure recovery.”

VII. DISCUSSION AND CONCLUSION

In this paper, we have numerically verified the error
correction of surface codes on systems where erasure er-
rors continuously occur, such as neutral atom quantum
computers using optical tweezer arrays. Our work re-
vealed that the threshold for erasure probability is the-
oretically 0 because the accumulation of erasure errors
cannot be stopped and because erased qubits cannot be
corrected unless they are offline arrays. In addition, it
is also revealed that the logical error probability can be
suppressed by increasing the code distance and repeat-
ing error correction if the erasure error rate is sufficiently
low. However, iterating the syndrome detection and cor-
rection operations increases the number of erased qubits
even if on such parameter regions. To solve the prob-
lem that error correction becomes impossible due to the
accumulation of erased qubits, we proposed the k-shift
erasure recovery scheme to protect the logical qubit from
erasure by transferring the logical qubit to a perfect array
using code deformation.

Our scheme allows us to rearrange physical qubits
without concern about their decoherence caused by the
transportation of physical qubits, which occurs as a side
effect of the transport of atoms. Our scheme separates
the rearrangement of qubits, which is too noisy for sur-
rounding qubits, from the coherence-preserving opera-
tion of logical qubits including state error correction and
logical operations. This separation allows for a more dar-
ing rearrangement strategy than conventional methods,
such as sequentially replenishing erased qubits.

In the following, we discuss what we have not consid-
ered in this study and the open problems. The numerical
calculations were performed assuming that each opera-
tion’s probability of erasure errors is uniform. However,
it is known that the Rydberg atomic quantum computer
is prone to leakage errors and erasure of qubits when per-
forming 2-qubit gates [4]. Therefore, it is a future work
to investigate the effect of bias on the erasure error prob-
ability.

We decoded error syndromes using the MWPM de-

coder. Actually, various improved decoders, such as the
Union-Find decoder [17], have also been proposed. The
Union-Find decoder is an almost-linear time decoder for
correcting Pauli errors and erasure errors. Research into
utilizing such decoders instead of MWPM is valuable for
achieving erasure tolerance in Rydberg atomic quantum
computers [4]. It would be interesting to compare their
performance for accumulating, dynamical erasure errors.
It is also necessary to investigate the efficient schedul-

ing and allocating of ancilla qubits for syndrome collec-
tion under this scheme. Rydberg gates allow syndrome
collection with more efficient circulation of ancilla qubits
and more efficient scheduling of syndrome measurements
than the recent study that assumes only nearest-neighbor
interactions [8].
We exemplify our proposal with code deformation to

transfer logical qubits from an imperfect array due to era-
sure errors to a new perfect array. It would be interesting
to compare our scheme of code deformation with that of
other methods, such as ones with quantum teleportation
or transversal swap gates since Clifford gates can be per-
formed transversely on the surface codes. These methods
may transfer logical qubits more efficiently than the code
deformation we equipped in our numerical simulation.
We utilized modularity to repair quantum computers

and to ensure the sustainability of quantum information
processing. Our scheme can be applied to other faults
as well as erasure correction, leveraging quantum net-
works and distributed quantum computing; like classical
cloud computing moves or relocates services and data
from one computer to another to sustain services perma-
nently. Our scheme enables the preservation of logical
qubits from critical faults by transferring them from a
faulted quantum device to a flesh one. Such distributed
maintainability will be fundamental technology for the
reliable and continuous usage of fault-tolerant quantum
computers.
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