
ar
X

iv
:2

40
4.

11
62

4v
1

 [
m

at
h.

G
M

]
 1

1
A

pr
 2

02
4

Token Space: A Category Theory Framework for AI

Computations∗

Wuming Pan

panwuming@scu.edu.cn

College of Computer Science, Sichuan University, Chengdu, P.R. China, 610065

Abstract

This paper introduces the Token Space framework, a novel mathematical construct designed
to enhance the interpretability and effectiveness of deep learning models through the appli-
cation of category theory. By establishing a categorical structure at the Token level, we
provide a new lens through which AI computations can be understood, emphasizing the
relationships between tokens, such as grouping, order, and parameter types. We explore
the foundational methodologies of the Token Space, detailing its construction, the role of
construction operators and initial categories, and its application in analyzing deep learning
models, specifically focusing on attention mechanisms and Transformer architectures. The
integration of category theory into AI research offers a unified framework to describe and
analyze computational structures, enabling new research paths and development possibili-
ties. Our investigation reveals that the Token Space framework not only facilitates a deeper
theoretical understanding of deep learning models but also opens avenues for the design
of more efficient, interpretable, and innovative models, illustrating the significant role of
category theory in advancing computational models.

Keywords: Token Space, Category Theory, Deep Learning, Attention Mechanisms, Trans-
former Models, Computational Models, AI Computations

1 Introduction

During the last sixty years, category theory has become a tangible and profoundly impactful
force in reshaping the journey of mathematical discourse. It has served as a vital foundational
tool that enhances our understanding of the complex web of relationships between diverse math-
ematical ideas and structures. Category theory proves to be one of the essential building blocks
for modern mathematics [1] [2]. The consideration of computational structures through the
prism of category theory, especially within the frameworks of machine learning and deep learn-
ing , brings a novel, structurally abundant angle. This approach expands current theoretical
frameworks, enabling novel research paths and development possibilities. One of the examples
is Optics, which is possibly one of the more characteristic example consumers of category theory.
It describes modular access and modification of separate parts of such data structures , which
is necessary for managing large-scale solutions or structures that should not be altered after
creation. Deep learning contains other category theory-based aspects alongside Optics, such
as functors, natural transformations, and limits that improve existing methods of dealing with
mathematical objects and provide new angles of research and understanding.

Category theory shifts the focus from the objects themselves to the relationships between objects
as defined by morphisms (structure-preserving maps), offering a unified descriptive framework
for diverse structures. This shift from objects to relationships is significantly meaningful for

∗This is a draft, completed on April 11, 2024.

1

http://arxiv.org/abs/2404.11624v1
mailto:panwuming@scu.edu.cn

computational models in deep learning. Optics, as one of the tools in category theory, is
particularly suitable for deep learning because they can express the composability and data
transformation processes between layers of neural networks. This allows complex neural network
architectures to be managed and optimized through more abstract structures.

Furthermore, tools from category theory, including Optics, elegantly handle processes like for-
ward and backward propagation in deep learning. These processes fundamentally involve com-
plex mappings of data and gradient flows in high-dimensional spaces. Through the framework of
category theory, we can construct and understand these processes in a unified and compositional
manner, which is crucial for developing new deep learning algorithms and theories.

However, understanding and interpreting deep learning models remains a challenge, partly be-
cause we lack a unified and formalized method to describe and analyze their structure. This
paper introduces the concept of Token Space, aiming to fill this gap by providing a new math-
ematical framework for deep learning. Token Space is a framework built on the foundation of
category theory, defining Tokens and their combinations and sequences as basic building blocks
to construct a complex category with universal expressiveness. This approach allows us to view
layers within neural networks as mappings between combinations of Tokens, offering a new way
to understand the structure and behavior of deep learning models. Through this formalized
representation, we can not only gain insights into the complex relationships between network
layers but also explore new areas of network design, optimize existing architectures, and enhance
the interpretability and generalizability of models.

The introduction of Token Space represents an innovative integration between category theory
and the field of machine learning. It provides a common language and framework for under-
standing across two seemingly unrelated disciplines, opening new directions for research and
potentially guiding us toward more efficient, interpretable machine learning models. This paper
will detail the theoretical foundations of Token Space, explore its application in constructing
and analyzing deep learning models, and anticipate its potential value and challenges in future
research.

By combining the theory and practice of deep learning models, Token Space not only offers a new
perspective for current machine learning research but also paves the way for interdisciplinary
collaboration and theoretical innovation, demonstrating the significant role of category theory
in advancing computational models. We believe the concept of Token Space will become a key
tool in understanding and designing the next generation of machine learning models.

Intuitively, the Token Space framework seems particularly well-suited for representing attention
mechanisms and Transformer architectures. The core of attention mechanisms and Transformer
models is their ability to dynamically assign different importance weights to different parts of
the input data and integrate and process information based on these weights. This process
of dynamic weighting and information integration aligns closely with the way Token Space
framework handles combinations and sequences of Tokens.

In Token Space, Tokens can be seen as atomic units of data or information, while the combina-
tions and sequences of Tokens reflect the structure and relationships among data. By combining
and recombining Tokens, it is possible to flexibly express and model the complex interactions
between data, which is precisely what attention mechanisms excel at. For instance, Transformer
models calculate the relationship weights between different Tokens through self-attention mech-
anisms, and then integrate and weight the information based on these weights to capture the
inherent structure and dependencies of the input data.

The Token Space framework provides a formalized representation method for these dynamic
relationships and weight distributions, allowing us to understand and analyze the workings
of attention mechanisms from a more abstract level. By defining appropriate operations and

2

mappings within Token Space, it is possible to precisely describe and simulate the flow and
processing of information in Transformer models, thus offering strong theoretical support for
in-depth study and optimization of such models.

In summary, the integration of category theory, exemplified by tools such as Optics, into machine
and deep learning research fosters a deeper theoretical comprehension and spurs the innovation
of algorithms. Optics underline the significance of category theory in deep learning’s theoretical
exploration, offering a versatile toolkit for computational structures. Simultaneously, the Token
Space framework’s alignment with attention mechanisms and Transformer models illuminates
its capability to articulate and scrutinize advanced models, paving the way for novel insights and
more potent variations. This approach not only enhances theoretical understanding but also
facilitates practical applications, leading to deep learning models that are more interpretable,
efficient, and innovative.

This paper is structured to systematically explore the Token Space and its implications for
AI computations. Section 2, "How is the Token Space Constructed?", lays the foundational
methodologies and theoretical underpinnings of the Token Space. Following this, Section 3,
"Construction Operators and Initial Categories", delves into the specifics of construction op-
erators and initial categories, which include Identity Set Categories, Products of Categories,
Isomorphism between Categories, and Subsets Extension of Subcategories of Set. Section 4
broadens our discussion to Elementary Token Space and Token Topoi, emphasizing the Token
Space.

In Section 5, we turn our attention to "Representing Categories of Structured Objects in Token
Space", probing into how structured object categories are represented within the Token Space.
Section 6 explores the realm of Token Categories, setting the stage for a deeper investigation into
Interior Structure Mapping and Tree Token Classes in Section 7, where we detail the Generation
of Tree Tokens and Tokens Maps between Tree Token Classes. Section 8, "Exploring Structure
Relations of Token Classes", examines the intricate structure relations among Token Classes.
The process of Reification of Tree Token Classes is the focus of Section 9, culminating in Section
10, "Conclusion", where we summarize our findings and outline future research directions.

2 How is the Token Space Constructed?

The initiative behind the construction of the Token Space is to imbue AI computations with
meanings at the Token level, such as token grouping, order, and parameter types. Without
attributing meanings at the Token level, due to the abstract nature of category theory struc-
tures, it becomes quite difficult to grasp the implications and characteristics of computations.
Additionally, this causes morphisms themselves to lack an internal categorical structure. These
factors prevent category theory from being utilized as a tool to thoroughly explore compu-
tational properties, keeping the investigation at the surface level of computational structures.
However, category theory is a very powerful and flexible tool, and employing category theory
concepts more deeply in AI computation research has significant advantages.

To establish a categorical structure at the Token level, this paper employs two fundamental
rules:

1. A set consisting only of identity morphisms constitutes a bi-Cartesian closed category.

2. A category formed by the product of multiple bi-Cartesian closed categories is a bi-
Cartesian closed category.

Token Space uses the former to assign meanings to tokens while being capable of representing
any function as a morphism.

3

3 Construction Operators and Initial Categories

In exploring the foundational concepts of functions and operations within sets, we introduce
some notations that facilitate a deeper understanding of these structures. By viewing functions
as sets of correspondences between elements of two sets, we illuminate the dynamic nature of
functions as mechanisms that establish directional correspondences between individual elements.
This perspective enriches our comprehension of functions as comprehensive structures of cor-
respondences, laying the groundwork for exploring more complex interactions within category
theory.

In delving into the structure and interpretation of functions, along with operations on sets,
we introduce refined notations that illuminate the concept of functions as rich structures of
correspondences. Specifically, a function f : A → B can be envisioned in two complementary
ways. On one hand, as a traditional mapping from elements of set A to set B, and on the other,
as a set of explicit correspondences between individual elements, expressed as follows:

f = {(x, f(x)) | x ∈ A}

f = {x 7→ f(x) | x ∈ A}

The first notation (x, f(x)) symbolizes the ordered pairs forming the function f , denoting a
correspondence between each element x in set A and a unique element f(x) in set B. The
second notation x 7→ f(x) accentuates the dynamic nature of the function as a set of directional
correspondences, where x in A is mapped to f(x) in B. This notation underscores the essence
of functions as mechanisms that establish a rule for assigning exactly one corresponding element
in B to each element x in A, resonating with categorical concepts by highlighting the individual
correspondences.

Additionally, when we discuss the combination of two sets A1 and A2, we use the term disjoint
union, denoted by A1

∐

A2. The disjoint union of A1 and A2 refers to a set that contains all the
elements of A1 and A2 without any overlap; if an element is in both A1 and A2, it will appear
in the union set marked to distinguish which set it originated from. This concept is vital in
understanding how we can combine different sets while preserving the identity and properties
of each element within those sets.

3.1 Identity Set Categories

Let category C∗ be defined within the framework of Set∗ as consisting of all singleton sets
as objects. Specifically, each object is a set containing exactly one element. Define C0 as a
category that contains a single object, the singleton set {∗}, making it a full subcategory of C∗.

Proposition 1. In C∗, any two objects are isomorphic to each other. C0 serves as a skeleton of
C∗, and is equivalent to C∗, suggesting the existence of a fully faithful and essentially surjective
functor between C0 and C∗.

Proof. Since every object in C∗ is a singleton set, there exists precisely one morphism between
any two objects. This morphism establishes an isomorphism by sending the unique element
from one object to another, which illustrates that all objects in C∗ are inherently isomorphic
to each other.

A skeleton of a category is a subcategory that contains one representative of each isomorphism
class of objects in the original category. Since C0 consists of a single object and fully represents
the isomorphism class of singleton sets within C∗, it serves as a skeleton of C∗. This implies

4

that every object in C∗ is isomorphic to the single object in C0, capturing the essential structure
of C∗ without redundancy.

The equivalence of categories goes beyond the mere existence of isomorphisms between objects.
It suggests that there is a fully faithful (preserves morphisms exactly) and essentially surjective
(every object in the target category is isomorphic to the image of an object in the source category)
functor between the two categories. Thus, C0 is equivalent to C∗ because there exists such a
functor that connects every object in C∗ to the single object in C0, and vice versa, in a way
that preserves the categorical structures. This functorial relationship upholds the equivalence,
indicating that, structurally, the categories are "the same" from a categorical perspective.

Therefore, the intrinsic simplicity and symmetry within C∗ lead us to conclude that the rela-
tionship between C0 and C∗ is straightforward, given the concepts of isomorphisms, skeletons,
and category equivalences.

If a category C contains initial and terminal objects, along with all products, coproducts, and
exponentials (also known as function objects or map objects) for any two objects, then C is a
bi-Cartesian closed category, denoted as a BICCC. A topos is a special kind of category that
possesses all finite limits, a subobject classifier, and all exponentials.

The category C∗, consisting solely of objects isomorphic to the singleton set {∗}, exhibits
the structure of a bi-Cartesian closed category. This is because it possesses initial and terminal
objects, finite products and coproducts, as well as exponentials, all of which are trivially realized
due to the singular nature of its objects, each being isomorphic to {∗}.

Furthermore, C∗ can be considered a topos. It satisfies the criteria for being a topos by having
all finite limits, a subobject classifier (which, in this case, is also isomorphic to {∗}), and by
being Cartesian closed, a consequence of its bi-Cartesian closed structure and the homogeneity
of its objects.

For any functor f : C0 → Set, the image f(C0), which comprises a single set with a single
arrow—the identity arrow, can form a category that is both bicartesian closed and a topos. In
such a category, the single set and its identity arrow fulfill the roles of all required categorical
constructs due to the abstract nature of category theory.

For any E ∈ Set, we define the category E = idset(E), called an identity set category, which
contains only one object E and a single arrow 1E , the identity morphism on E. Within this
category, E serves simultaneously as the initial object, terminal object, product, coproduct, and
exponentiation of itself, showcasing the flexibility of categorical constructs in abstract settings.

The diagrams below visually represent these concepts, showing E as fulfilling multiple categor-
ical roles:

E

E E × E E

1E 1E
1E

1E 1E

In the category E, consisting of a single object E and its identity morphism 1E , the coproduct
of E with itself, denoted E

∐

E, simplifies to E. This reflects the abstract nature of category
theory, where the specifics of coproducts, products, and other categorical constructs depend on
the category’s internal structure. Here, the diagram represents E as its own coproduct, with
the identity morphism 1E serving both as the inclusion morphisms into the coproduct and as
the universal morphism from the coproduct.

5

E E
∐

E E

E

1E

1E

EE

E × E E

1E

1E

1E

ΩE E

E

true

charE
1E

In this simplified setting, the only subobject of E is E itself, reinforcing the abstract notion
that E can act as its own subobject classifier, a key feature of a topos.

Proposition 2. Each id-set category, characterized by a single object and its identity morphism,
is both bicartesian closed and a topos.

Proof. Given the abstract definitions of bicartesian closed categories and topoi, an id-set cat-
egory E satisfies all necessary criteria through its single object E and identity morphism 1E .
E acts as its own product, coproduct, exponential object, and subobject classifier, meeting the
definitions of a bicartesian closed category and a topos in a context where categorical constructs
are defined abstractly.

3.2 Products of Categories

In below text, we regard U as a operator which can map any categories product C1×C2×· · ·×Cn,
where Ci is a sub category of Set, to a functor

UC1×C2×···×Cn : C1 ×C2 × · · · ×Cn → Set

such that UC1×C2×···×Cn sends 〈A1, A2, · · · , An〉 to A1
∐

A2
∐

· · ·
∐

An where A1 is a set ob-
tained by forgetting structure on A1 and sends arrow 〈f1, f2, · · · , fn〉 to f1

∐

f2
∐

· · ·
∐

fn. When
clear from context, we use U to denote UC1×C2×···×Cn .

The following lemma can be easily verified.

Lemma 1. Let C1, C2, . . . , Cn be categories.

1. If each Ci is bi-Cartesian closed, then their product category C1 × C2 × · · · × Cn is also
bi-Cartesian closed.

2. If each Ci is a topos, then their product category C1 ×C2 × · · · ×Cn is also a topos.

In the study of category theory, understanding the structural components of categories and
their interactions is pivotal. The table below provides a comparative overview of the structural
components for individual categories Ci and the product category C1×C2×· · ·×Cn. This com-
parison illuminates the manner in which properties and structures are preserved or transformed
under the formation of product categories.

6

Table 1: Structure Components of Ci and C1×C2×· · ·×Cn

Category Ci C1 ×C2 × · · · ×Cn

Initial object si 〈s1, s2, · · · , sn〉
Terminal object ti 〈t1, t2, · · · , tn〉
Product Ai ×Bi 〈A1 ×B1, A2 ×B2, · · · , An ×Bn〉
Coproduct Ai

∐

Bi 〈A1
∐

B1, A2
∐

B2, · · · , An

∐

Bn〉

Exponents ABi

i

〈

AB1
1 , AB2

2 , ..., ABn
n

〉

Limit LimFi, 〈LimF1, LimF2, ..., LimFn〉
Limiting cone vj 〈v1, v2, ..., vn〉
Truth object {0, 1} 〈{0, 1}, {0, 1}, ..., {0, 1}〉

This exposition delves into two fundamental operations within the realm of category the-
ory: products and coproducts. Given two sequences of objects from respective categories,
〈A1, A2, . . . , An〉 and 〈B1, B2, . . . , Bn〉, the operations are defined as follows:

For the product operation, we have

〈A1, A2, . . . , An〉 × 〈B1, B2, . . . , Bn〉 = 〈A1 ×B1, A2 ×B2, . . . , An ×Bn〉 .

This equation demonstrates the element-wise application of the product operation on the corre-
sponding objects of two sequences, yielding a new sequence where each element is the product
of the respective elements from the original sequences.

Similarly, for the coproduct operation, we observe

〈A1, A2, . . . , An〉
∐

〈B1, B2, . . . , Bn〉 =
〈

A1

∐

B1, A2

∐

B2, . . . , An

∐

Bn

〉

.

This reveals that, analogous to the product operation, the coproduct operation applied element-
wise to two sequences of objects results in a new sequence. Each element of this sequence is the
coproduct of the corresponding elements in the original sequences.

Both equations underscore the abstract yet consistent manner in which category theory treats
operations on objects, irrespective of whether the operation is a product or a coproduct. This
uniform treatment facilitates a deeper understanding of the structures and relationships within
and across categories.

The category Set is bi-Cartesian closed and is a topos and its construct components are as in
table 2. Set and identity set category E = idset(E) with E ∈ ISets can be used to construct
a product category Set×E with projections

Set
P
← Set×E

Q
→ E.

Corollary 1. Set×E is bi-Cartesian closed and a topos.

In Set × E, the initial object, terminal object, product, coproduct, map object of two objects
〈A, E〉 , 〈B, E〉 ∈ Set × E, the limit LimF of functor F : J → Set × E for a finite category J ,
and its limiting cone v : LimF → F and truth object are as in table 2.

7

Table 2: Structure Components of E, Set, and Set×E

Category E Set Set×E

Initial object E ∅ 〈∅, E〉
Terminal object E {0} 〈{0}, E〉
Product E = E × E A×B 〈A×B, E〉
Coproduct E = E

∐

E A
∐

B 〈A
∐

B, E〉

Exponents E = EE AB
〈

AB , E}
〉

Limit E = LimF, LimF 〈LimP ◦ F, E〉
Limiting cone vj = 1E vj 〈P (vj) , 1E〉
Truth object E {0, 1} 〈{0, 1}, E〉

Proposition 3. The functor U :Set×E→ Set is injective on objects and arrows.

Proof. This can be easily verified by the definition of U .

Corollary 2. Set× E is isomorphic to U (Set×E). U (Set×E) is bi-Cartesian closed and
is a topos.

3.3 Isomorphism between Categories

Given categories S1 and S2, and a isomorphism I :S1 → S2. Then one is bi-Cartesian closed or
a topos iff another is. The isomorphism preserve the structure components of the two catogories.

Example 1. Let FMonSet be a category whose objects are free monoids on objects in Set,
and arrows in FMonSet are monoid homomorphisms extended from functions (arrows) between
their generator sets in Set. Let H :Set → FMonSet be a functor which sends each A in
Set to free monoid H(A) = 〈A∗, ·, ε〉 generated on A and sends each function f : A → B
to monoid homomorphism H(f) = f∗ extended from f . The underlying set of H(A) are A∗.
H is an isomorphism between Set and FMonSet. FMonSet is bi-Cartesian closed and is a
topos. In FMonSet, the construct components of bi-Cartesian closed category and topos are as
in table 3 where F : J → FMonSet is a functor for a finite category J, and its limiting cone
is v : LimF → F . Let F : FMonSet → Set be the forgetful functor which sends each monoid
H(A) to its underling set A∗. Then F is an injective on objects and arrows, and FMonSet is
isomorphic to F (FMonSet). It follows that F (FMonSet) is bi-Cartesian closed and is a topos.
Notice that F map all structure components in H (Set) to those in F (FMonSet).

Given a subcategory Sc of Set and a isomorphism I :Set→ Sc. Then Sc is bi-Cartesian closed
and is a topos. Taking the given isomorphism I, then I (U (Set×E)) is a subcategory of Sc,
hence a subcategory of Set.

Lemma 2. Given a subcategory Sc of Set and a isomophism I :Set→ Sc. For any subcategory

S
′

of Set, there is a isomophism from S
′

to I
(

S
′

)

.

Proof. Clear.

Corollary 3. Given a subcategory Sc of Set and a isomophism I :Set→ Sc. I (U (Set×E))
is bi-Cartesian closed and a topos.

Table 3 provides a comparison of the structure components between the category Sc and the
functorial image I (U(Set×E)), highlighting the transformations applied by the functors I
and U to the product category Set×E.

8

Table 3: Structure Components of Sc and I (U(Set×E))

Category Sc I (U (Set×E))

Initial object I(∅) I(∅
∐

E)
Terminal object I ({0}) I ({0}

∐

E)
Product I(A×B) I ((A×B)

∐

E)
Coproduct I(A

∐

B) I ((A
∐

B)
∐

E)

Exponents I
(

AB
)

I
(

AB
∐

E
)

Limit I
(

LimI−1 ◦ F
)

I
(

Lim
(

P ◦ U−1 ◦ I−1 ◦ F
)

∐

E
)

Limiting cone I
(

I−1(v)
)

I
(

P ◦ U−1 ◦ I−1 (vi)
∐

1E
)

Truth object I ({0, 1}) I ({0, 1}
∐

E)

While in I (U (Set×E)), the construct of bi-Cartesian closed category and topos are as in table
3 where F : J→ I (U (Set×E)) is a functor for a finite category J , and its limiting cone is
v : LimF → F .

3.4 Subsets Extension of Subcategories of Set

Let Sc be a subcategory of Set, then SXSc, the subsets extension of Sc, is a category such
that:

• Its objects are all sets in Sc and all subsets of them. If a set A is a subset of two objects
in Sc, then there are two objects which copy A are added to SXSc, and the two objects
copying A represent subsets of different objects in Sc.

• There is a function Or : Sc→ SXSc such that If S ∈ Sc, then Or(S) = S; If S is added
to SXSc because S is a subset of a set A ∈ Sc, then Or(S) = A. Each object S ∈ SXSc

is given a label Or(S) ∈ Sc, and S is also denoted as SOr(S). Note that a set S in Set

may correspond to many objects in SXSc which is labeled by different sets of which S is
a subset. Especially for each set A ∈ Sc there is a set ∅A ∈ SXSc.

• Its arrows are all arrows in Sc, the inclusion maps in(S1, S2) where S1 ⊂ S2 and Or (S1) =

Or (S2), and arrows on(f, S) : SOr(S) → f
(

SOr(S)

)

, representing function f restricted on

domain SOr(S) and codomain f
(

SOr(S)

)

, for each f : Or(S)→ A in Sc.

• For any two objects S1, S2 ∈ SXSc, S1 is regarded as a subobject of S2, if only if Or (S1)
is a subobject of Or (S2) and with i : Or (S1) → Or (S2) the inclusion arrow in Sc we
have that i (S1) is a subset of S2. In other words, the diagram

Or(S1) Or(S2) S2

S1 i(S1) S2

i

in(S2,Or(S2))

in(S1,Or(S1))

on(i,S1)

in(i(S1),Or(S2))

in(i(S1),S2)

commute.

Evidently, there is an inclusion functor ISc : Sc→ SXSc.

Proposition 4. For any arrow t : S1 → S2 in SXSc, there is a unique arrow tOr : Or (S1) →
Or (S2) in Sc such that t = in (t(S1), S2) ◦ on(tOr, S1).

Proof. This is simple.

9

We use Or(t) to denote tOr then Or can be regarded as a functor from Sc to SXSc. Note that
for any arrow f : Or (S1) → Or (S2) in Sc, there is a arrow on(f, S1) in SXSc, but there may
be not an arrow t : S1 → S2 such that Or(t) = f . For the convenience, we always adopt the
notation

on(f, S1, S2) = in (f(S1), S2) ◦ on(f, S1)

when in (f(S1), S2) exists.

Theorem 1. If Sc is bi-Cartesian closed, then SXSc is bi-Cartesian closed. If Sc has all finite
limits, then SXSc has all finite limits.

Proof. See following paragraphs.

Let S1, S2 ∈ SXSc, and J be a finite category and F : J → SXSc is a functor. Suppose the
structure components in Sc for Or (S1) , Or (S2) ∈ Sc and functor Or ◦F are as in table 4, then
structure components of SXSc are also summarized as in table 4 and explained as follows.

Initial object. There may not an arrow from initial object oi in S to an object, which is not
Sc originally, in SXSc. And for A, B ∈ Sc, if there is not an arrow from A to B, then there is
not an arrow from ∅A to ∅B. However, there is an arrow from ∅oi

to any an object of SXS.
Hence ∅oi

is the initial object of SXSc.

Terminal object. Terminal object in SXSc is the terminal object ot in Sc.

Limits and Products. Let diagram

Or (S1)
p
← Or (S1)×Or (S2)

q
→ Or (S2)

be a production diagram in Sc, and for a finite category J and F : J → SXSc, the map

v : LimOr ◦ F → Or ◦ F

is a limiting cone in Sc. Because

F (j) ⊂ Or (F (j)) = Or ◦ F (j)

for any Or ◦ F (j), we have

⋂

j∈J

v−1
j (F (j)) ⊂

⋂

j∈J

v−1
j (Or ◦ F (j)) ⊂ LimOr ◦ F

Let τ : S → F be a cone over F , then Or(τ) : Or(S)→ Or ◦F is a cone over Or ◦F , and there
is a unique arrow t : Or(S)→ LimOr ◦ F make the diagram

Or(S) lim Or ◦ F

Or ◦ F (i) Or ◦ F (k) ... Or ◦ F (l)

t

Or(τi)
Or(τk) Or(τl)

vi
vk

vl

Or(F (u))

10

commute. Because

Or (τj) (S) ⊂ (F (j))

we have

S ⊂ Or (τj)
−1 (F (j)) .

And because

vj
(

t
(

Or (τj)
−1 (F (j))

))

= Or (τj)
(

Or (τj)
−1 (F (j))

)

we have

S ⊂j∈J Or (τj)
−1 (F (j))

and

t
(

Or (τj)
−1 (F (j))

)

⊂ v−1
j

(

vj
(

t
(

Or (τj)
−1 (F (j))

)))

= v−1
j (F (j))

Therefore, we have

Proposition 5. Notation being as just used, we have

t(S) ⊂ t(j∈JOr (τj)
−1 (F (j))) ⊂j∈J v−1

j (F (j)) .

Proof. This is simple.

Let

inF = in(t(S),j∈J v−1
j (F (j))),

and

inj = in(vj(j∈Jv−1
j (F (j))), F (j))

be the inclusion maps in SXSc, then diagram

S j∈Jv−1
j (F (j))

F (i) F (k) ... F (l)

inF ◦on(t,S)

τi
τk τl

ini◦on(vi,−)
ink◦on(vk ,−)

ink◦on(vl,−)

F (u)

11

commute. Hence

LimF ∼=j∈J v−1
j (F (j)))

Coproducts. Let

Or (S1)
inc1→ Or (S1)

∐

Or (S2)
inc2← Or (S2)

be a coproduct diagram in Sc. Let

insi = in(inc−1
i (Si) , inc−1

1 (S1) ∪ inc−1
2 (S2))

for i = 1, 2. Then

S1
ins1◦on(inc1,S1)

→ inc−1
1 (S1) ∪ inc−1

2 (S2)
ins2◦on(inc2,S2)

← S2

is a coproduct diagram in SXSc.

Exponents. For any S1, S2 ∈ SXSc, there is an arrow evl in diagram

Or (S1)Or(S2) ×Or (S2)
evl
→ Or (S1)

is an evaluation map in Sc. And let pm and qm in diagram

Or (S1)Or(S2) pm
← Or (S1)Or(S2) ×Or (S2)

qm
→ Or (S2)

be production projections in Sc.

Lemma 3. The set

preSet (S1, S2) =
{

S
∣

∣

∣p−1
m (S) ∩ q−1

m (S2) ⊂ evl−1 (S1)
}

has a supremum element.

Let preExp (S1, S2) be a subset of Or (S1)Or(S2) such that preExp (S1, S2) is the supremum
element in preSet (S1, S2).

Proposition 6. Notation being as just used, we have preExp (S1, S2) is the exponent object
(S1)S2 .

Proof. For any S1, S2, We easily know preExp (S1, S2) exist. For any S3 ∈ SXSc, if there is

an arrow g : S3 × S2 → S1 then there is an arrow f : Or (S3) → Or (S1)Or(S2) such that the
diagram

Or(S3) Or(S3)×Or(S2) Or(S1)

Or(S1)Or(S2) Or(S1)Or(S2) ×Or(S2) Or(S1)

f∗ f∗×1Or(S2)

p3

Or(g)

pm

evl

12

commute in Sc, where arrows p3 and pm are projection maps and Or(g), f∗ uniquely determines
each other. Because

S3 × S2 ⊂ Or(g)−1 (S1)

we have

f∗ × 1Or(S2) (S3 × S2) ⊂ evl−1 (S1) .

We have

f∗ ◦ p3 (S3 × S2) ⊂ Or (S1)Or(S2)

and

f∗ × 1Or(S2) (S3 × S2) ⊂ (f∗ ◦ p3 (S3 × S2))× S2.

Therefore

p−1
m (f∗ ◦ p3 (S3 × S2)) ∩ q−1

m (S2) ⊂ evl−1 (S1)

Hence

f∗ ◦ p3 (S3 × S2) = f∗ (S3) ⊂ preExp (S1, S2) .

Similarly, if there is f : S3 → preExp (S1, S2), then there is an arrow

g∗ : Or (S3)×Or (S2)→ Or (S1)

such that the diagram

Or(S3) Or(S3)×Or(S2) Or(S1)

Or(S1)Or(S2) Or(S1)Or(S2) ×Or(S2) Or(S1)

Or(f) Or(f)×1Or(S2)

p3

g∗

pm

evl

commute in Sc, where g∗, Or(f) uniquely determines each other. Because

Or(f) ◦ p3 (S3 × S2) = Or(f) (S3) ⊂ preExp (S1, S2)

hence

Or(f)× 1Or(S2) (S3 × S2)

⊂ preExp (S1, S2)× S2

13

⊂ p−1
m (preExp (S1, S2)) ∩ q−1

m (S2)

⊂ evl−1 (S1)

Therefore

g∗ (S3 × S2) ⊂ S1

and on (g∗, S3 × S2, S1) is the unique arrow determined by f . By now the proposition is proved.

Proposition 7. For any S1, S2 ∈ SXSc, we have

preExp (S1, S2) = Or (S1)Or(S2) − pm
(

q−1
m (S2)− evl−1 (S1)

)

.

Proof. Because

p−1
m

(

Or (S1)Or(S2) − pm
(

q−1
m (S2)− evl−1 (S1)

))

∩ q−1
m (S2) ⊂ evl−1 (S1) ,

then

Or (S1)Or(S2) − pm
(

q−1
m (S2)− evl−1 (S1)

)

⊂ preExp (S1, S2) .

Because

Or (S1)Or(S2) − preExp (S1, S2) ⊂ pm
(

q−1
m (S2)− evl−1 (S1)

)

then

p−1
m

(

Or (S1)Or(S2) − preExp (S1, S2)
)

⊂ p−1
m

(

pm
(

q−1
m (S2)− evl−1 (S1)

))

then

Or (S1)Or(S2) ×Or (S2)− p−1
m

(

pm
(

q−1
m (S2)− evl−1 (S1)

))

⊂ Or (S1)Or(S2) ×Or (S2)− p−1
m

(

Or (S1)Or(S2) − preExp (S1, S2)
)

Therefore

pm
(

Or (S1)Or(S2) ×Or (S2)− p−1
m

(

pm
(

q−1
m (S2)− evl−1 (S1)

)))

⊂ pm
(

Or (S1)Or(S2) ×Or (S2)− p−1
m

(

Or (S1)Or(S2) − preExp (S1, S2)
))

14

then

Or (S1)Or(S2) − pm
(

q−1
m (S2)− evl−1 (S1)

)

⊂ preExp (S1, S2)

Hence the proposition is proved.

Table 4 contrasts the structure components of the categories Sc and SXSc, highlighting their
differences and similarities in terms of initial and terminal objects, products, coproducts, expo-
nents, limits, and limiting cones.

Table 4: Structure Components of Sc and SXSc

Category Sc SXSc

Initial object oi ∅oi

Terminal object ot ot
Product Or (S1)×Or (S2) S1 × S2

∼= p−1 (S1)∩ q−1 (S2)
Coproduct Or (S1)

∐

Or (S2) S1
∐

S2
∼=

inc−1
1 (S1) ∪ inc−1

2 (S2)

Exponents Or (S1)Or(S2) Or (S1)Or(S2) −
pm

(

q−1
m (S2)− evl−1 (S1)

)

Limit LimOr ◦ F LimF ∼=j∈J v−1
j (F (j))

Limiting cone v : LimOr ◦ F → Or ◦ F LimF to F (j): inj ◦ vj ◦
in (LimF, LimOr ◦ F)

Truth object Ω Ω?

If we do not know more properties about Sc, there seems no category structures in SXSc which
can classify subobjects in it.

4 Elementary Token Space and Token Topoi

Let
H :Set→ FMonSet

be a functor which sends each A in Set to free monoid H(A) = A∗ generated on A and sends
each function f : A → B to monoid homomorphism H(f) = f∗ extended from f . Let F :
FMonSet → Set be the forgetful functor which sends each monoid H(A) to its underling set
|A∗|.

Definition 1 (Tokenoid). Unary operator map elements in F (A∗) to tuples. For example

(x1 · x2 · · · · · xn) = (x1, x2, · · · , xn)

The set of Tokens (F (A∗)), which is also denoted as A&, is called a Tokenoid generated on A.
Category

PatASet = (F (FMonSet))

15

is called pre-Token category. We will view as a functor form F (FMonSet) to PatASet, which
map F (A∗) to (F (A∗)) and F (f∗) to (F (f∗)).

Let M = ◦F ◦ H be a functor which sends each A in Set to Tokenoid M(A) generated on A
and sends each function f : A→ B to Tokenoid homomorphism M(f) extended from f .

Corollary 4. M is an isomorphism between Set and PatASet. And PatASet is bi-Cartesian
closed and is a topos. And

M (U (Set×E))

is bi-Cartesian closed and a topos.

While in M (U (Set×E)), the construct of bi-Cartesian closed category and topos are as in
table 2 where

F : J→M (U (Set×E))

is a functor for a finite category J , and its limiting cone is v : LimF → F .

Category
T SE = SXM(G(U(Set×E)))

with E an identity set category is also called an elementary Token space, each object ΥOr(Υ) in
T SE with

Or(Υ)=M (G (U (〈B, E〉)))

where B ∈ Set is also represented as

〈B, E, Υ〉 .

Notice that Υ⊂M (U (〈B, E〉)) ∈ Set, each element r in Υ can be regard as a tuple
(x1, x2, · · · , xn) in (B

∐

E)&. A object T = 〈B, E, Υ〉 in T SE is called a Token class, or p-class,
in which B, E and Υ, which are denoted as base(T), structure(T) and heap(T) respectively,
are called the base, core and Token heap; tuples in Υ are called Tokens. Each arrow

a : 〈B1, E, Υ1〉 → 〈B2, E, Υ2〉

in T SE is called a Token map, or p-map, and also represented as 〈f, 1E , p〉 where 〈f, 1E〉 is an
arrow in Set×E and

p = in(M (U (〈f, 1E〉)) (〈B1, E, Υ1〉) ,U (〈B2, E〉))◦

on (M (U (〈f, 1E〉)) ,U (〈B1, E〉)))

Notice that
M (U (〈f, 1E〉))

is homomorphism between free Tokenoid

M (U (〈B1, E〉))

and
M (U (〈B2, E〉))

, and f
∐

1E is an arrow in U (Set×E). Therefore, for any (x1, x2, · · · , xn) ∈ Υ, there is

16

p ((x1, x2, · · · , xn)) =
(

f
∐

1E (x1) , f
∐

1E (x2) , · · · , f
∐

1E (xn)
)

Because p is uniquely determined by f in 〈f, 1E , p〉, when clear from context we use f to 〈f, 1E , p〉
and p. The set hom (T1, T2) denotes the set of all Tokens maps between T1 and T2.

The arrows in
T SE = SXM(U(Set×E))

are either the Token algebra homomorphisms or the partial maps of them. Notice that the
inclusion maps are the partial maps of identity Token algebra homomorphisms.

Table 5 delineates the structure components of SXM(U(Set×E)), focusing on the transformation
and representation in both the tokens heap and base constructs.

Table 5: Structure Components of SXM(U(Set×E))

Tokens Heap Base

Initial object ∅ ∅

Terminal object ({0}
∐

E)& {0}

Product
(

(p
∐

1E)&
)−1

(Υ1) ∩
(

(q
∐

1E)&
)−1

(Υ2)

A×B

Coproduct
(

(inc1
∐

1E)&
)−1

(Υ1) ∪
(

(inc2
∐

1E)&
)−1

(Υ2)

A
∐

B

Exponents
(

AB
∐

E
)&
−

(pm)&
(

(qm)&
)−1

(Υ2)−
(

evl&
)−1

(Υ1)

AB

Limit lim
j∈J

v−1
j (F (j)) Lim

(

PU−1M−1(Or ◦ F)
)

Limiting cone inj ◦ vj ◦
in (LimF, LimOr ◦ F)

-

Truth object ({0, 1}
∐

E)& {0, 1}

The structure components of T SE = SXM(U(Set×E)) are summarized in table 5 explained as
follows.

Initial object. Because
M (U (Set×E))

is isomorphic to U (Set×E), the structure components of

M (U (Set×E))

are obtained simply by mapping them from U (Set×E). As shown in table 3, initial object of
U (Set×E) is (∅

∐

E), then initial object of

M (U (Set×E))

is (∅
∐

E)&. Considering the relation between Sc and SXSc, the initial object of

T SE = SXM(U(Set×E))

17

is the p-class 〈∅, E,∅〉 denoted as IniTSE
.

Terminal object. Similarly, we have that terminal object is the p-class

T erTSE
=

〈

{0}, E,
(

{0}
∐

E
)&

〉

products. Let Υ1 ⊂ (A
∐

E)& and Υ2 ⊂ (B
∐

E)& for some A, B ∈ Set, arrows p : A×B → A
and q : A×B → B be projection maps; arrows p and q in diagram

A
p
→ A×B

q
← B

be inclusion maps. Then the product of p-classes 〈A, E, Υ1〉 and 〈B, E, Υ2〉 is the p-class

〈

A×B, E,

(

(

p
∐

1E
)&

)−1

(Υ1) ∩

(

(

q
∐

1E
)&

)−1

(Υ1)

〉

.

Coproducts. Let arrows inc1 and inc2 in diagram

A
inc1→ A

∐

B
inc2← B

be inclusion maps. then the coproduct of p-classes 〈A, E, Υ1〉 and 〈B, E, Υ2〉 is the p-class

〈

A
∐

B, E,

(

(

inc1

∐

1E
)&

)−1

(Υ1) ∪

(

(

inc2

∐

1E
)&

)−1

(Υ1)

〉

.

Limits. Let P and Q in diagram

Set
P
← Set×E

Q
→ E.

be product projections of category Set × E. Given a finite category J and F : J →
SXM(G(U(Set×E))), we have

LimOr ◦ F =
((

Lim
(

PU−1M−1(Or ◦ F)
))

∐

E
)&

.

Let

v : LimOr ◦ F → Or ◦ F

be the limiting cone in
M (G (U (Set×E)))

and

vj : LimOr ◦ F → Or ◦ F (j).

The limit in
SXM(G(U(Set×E)))

18

is

LimF ∼=
〈

Lim
(

PU−1M−1(Or ◦ F)
)

, E,j∈J v−1
j (F (j))

〉

.

Exponents. Let arrow evl in diagram

(

AB
∐

E
)&
× (B

∐

E)& evl
→ (A

∐

E)&

(2)

be the evaluation map, then it is constructed from the evaluation map evlSet

AB ×B
evlSet→ A,

and the evaluation map evlE = 1E

EE × E
evlE→ E.

as

evl=M (U ((evlSet, 1E))) =
(

evlSet

∐

1E
)&

where

((

AB, E
)

× (B, E)
)

(evlSet,evlE)
→ (A, E)

(

(

AB
∐

E
)&
× (B

∐

E)

)& (evlSet

∐

evlE)
&

→ (A
∐

E)&

and arrows pm and qm are the projection maps in

(

AB
∐

E
)& pm
←

(

AB
∐

E
)&
× (B

∐

E)& qm
→ (B

∐

E)&.

(3)

Then exponent of p-classes 〈A, E, Υ1〉 and 〈B, E, Υ2〉 is

〈A, E, Υ1〉
〈A,E,Υ2〉 =

〈

AB , E, Υ
〉

where

Υ =
(

AB
∐

E
)&
− (pm)&

(

(

(qm)&
)−1

(Υ2)−
(

(evl)&
)−1

(Υ1)

)

.

Truth. For any two Token class T1 = 〈B1, E, Υ1〉 and T2 = 〈B2, E, Υ2〉, if B1 ⊂ B2 and
B1 ⊂ B2, then we call T1 is a subobject, or a subclass, of T2, and write as T1 ⋐ T2.The truth
object is

19

T ruthTSE
=

〈

{0, 1}, E,
(

{0, 1}
∐

E
)&

〉

,

though we can not specify a subobject by a single pullback square, Instead, we use two pullback
squares.

Definition 2. Functor ⊚ : T SE → T SE which sends T = 〈B, E, Υ〉 to ⊚(T) = 〈Υ, E,∅〉 and
sends arrows f = 〈f, 1E , p〉 : T1 → T2 to

〈p, 1E ,∅〉 : ⊚ (T1)→ ⊚ (T2)

is called the abstracting functor. Functor ⊛ : T SE → T SE defined as

⊛ (〈B, E, Υ〉) =

〈

B, E,
(

B
∐

{E}
)&

〉

and

⊛ (〈f, 1E , p〉) =

〈

f, 1E ,
(

f
∐

1E
)&

〉

is called stuffing functor.

Theorem 2. For any two Token class T1 = 〈B1, E, Υ1〉 and T2 = 〈B2, E, Υ2〉 and p-map
〈f, E, p〉 : T1 → T2. If a pullback square

⊛T1 T erTSE

⊛T2 T ruthTSE

⊛f t

ψ

together with a pullback square

⊛(⊚T1) T erTSE

⊛(⊚T2) T ruthTSE

⊛(⊚f) t

ϕ

exist, then T1 is a subclass of T2.

Proof. This is simple.

Because there are category structures to specify subobjects in an element Token space, we also
call an element Token space a Token topos.

4.1 Token Space

Let

U =A∈Set A

We assume that U ⊂ Set. The elementary Token space

T S = SXM(U(−)) (Set×U)

20

is also called Token space. Each object 〈B, U, Υ〉 in T S is also represented as

〈B, E, Υ〉

for any E such that Υ⊂M (U 〈B, E〉). Thus 〈B, E, Υ〉 is viewed isomorphic to
〈B, U, (I

∐

1B) (Υ)〉, where I : E → U send each x in E to x in U , in T S. If there is a
p-map from 〈B1, E1, Υ1〉 to 〈B2, E2, Υ2〉 in T S, then there must be B1 ⊂ B2 and Υ1 ⊂ Υ2; not
necessarily E1 ⊂ E2.

Remark 1. Is A∈SetA a set? We can not know all sets in Set. Evidently, the union of all
sets computed from existing sets is a set. We use U to denote such a set. Neverthless we know
only part of U at any time.

In a category, two object a and b are isomorphic if there is an invertible arrow, i.e. an isomor-
phism, from a to b. For any p-classes T1, T2, T3, there are isomorphisms:

T1 ⊗ T2
∼= T2 ⊗ T1

T1 ⊕ T2
∼= T2 ⊕ T1

(T1 ⊗ T2)⊗ T3
∼= T1 ⊗ (T2 ⊗ T3)

(T1 ⊕ T2)⊕ T3
∼= T1 ⊕ (T2 ⊕ T3) .

5 Representing Categories of Structured Objects in Token

Space

How structures and structure preserving map are defined in mathematics? The general way is:

• There are some sets, say, A, B, C . . ., which are under consideration.

• In each set of them, there are some special element elements. Structure persevering map
needs to map these elements correspondingly. For example, in Set& the only special
elements of a set A is the base points &A, and the structure preserving from A to B
should map &A to &B. In algebras, the special elements are called nullary operations.

• In each set of them, There are some relations or operations on it. Operations can be
regarded as relations which connect elements that operators applied on and the resulting
elements. For example, + is a relation which connects x, y to z if x + y = z. Structure
preserving map should preserve these relations such that the same connections between
elements exist when they are mapped to another set.

• There are some properties which each set and its special elements in it, relations and
operations on it should satisfy. However, such properties are always irrelevant to

the structure preserving map. For example, a semigroup Sg = 〈Sg, ·〉 with · a binary
operator, and satisfies identity

x · (y · z) = (x · y) · z

(4)

21

But the definition of homomorphism between semigroups is not related to this identity
which states the associativities of operator ·.

Definition 3. A structure on a set A is a binary 〈Θ, Γ〉 with Θ the set of symbols representing
the special elements in A, Γ the set of symbols, each of which has a fixed arty, representing
relations or operators on A. A structure preserving map from A to B under Θ and Γ is a map
f : A→ B such that f map elements in Θ to itself and any tuple r = (x1, x2, · · · , xn), if r ∈ R
for some R ∈ Γ, then (f (x1) , f (x2) , · · · , f (xn)) ∈ R. A category C of structured objects under
Θ and Γ is a category of sets with structure 〈Θ, Γ〉 and structure preserving maps between them.

Given a category C of structured objects under Θ and Γ, we can define some functors from
C to T S such that they can be mapped to a isomorphic subcategory of T S whereby we can
discuss the categorical structure of C in T S. Given a category C of structured objects under
(Θ, Γ), we define a functor RepC : C→ T S as follows:

1.
RepC(A) = 〈A, Θ ∪ Γ, Υ〉

where

Υ = A ∪ {(θ, x) |θA = x, θ ∈ Θ }∪

{(γ, x1, x2, · · · , xn) |(x1, x2, · · · , xn) ∈ γA, n∈ N,γ ∈ Γ }

2. if f : A → B is a structure preserving map from 〈A, Θ, Γ〉 to 〈B, Θ, Γ〉 under Θ and Γ,
then RepC(f) is the p-map

〈

f, 1Θ∪Γ, on

(

M

(

(

f
∐

1Θ∪Γ

)&
)

, ΥRepC(A), ΥRepC(B)

)〉

from RepC(A) to RepC(B).

Now we investigate how mathematics objects in many categories can be regarded as struc-
tured objects.

Category Set of sets. Each object A in Set has structure 〈∅,∅〉, then

RepSet(A) = 〈A,∅,∅〉

for each arrow (a function) f : A→ B in Set, and

RepSet(f) = 〈f,∅,∅〉 .

is a structure preserving map.

Category Set& of pointed sets. Each object A with a base point & in Set& has structure
〈{&},∅〉, then

RepSet&
(A) = 〈A, {&}, {(&, &A)}〉

and each arrow f : A → B (a function mapping base point to base point) in Set& can be
represented as

22

RepSet&
(f) = 〈f, {& 7→ &}, {(&, &A) 7→ (&, &B)}〉 .

Category Ords of ordered sets. Each object P = 〈P,6〉 in category of ordered set Ords

has structure 〈∅, {6}〉, then

RepOrds (P) = 〈P, {6}, {(6, x, y) |x 6 y }〉

and each arrow f : P1 → P2 (a homomorphisms between two ordered sets) in Ords can be
represented as

RepOrds(f) = 〈f, {6 7→6}, {(6, x, y) 7→ (6, f(x), f(y)) |x 6 y }〉 .

Category Gph of graphs. Each object G = 〈V, Edg〉 in category of graph Gph has structure
〈∅, {Edg}〉, then

RepGph (G) = 〈V, {Edg}, {(Edg, x, y) |(x, y) ∈ Edg }〉

and each arrow f : G1 → G2 (a homomorphisms between two graphs) in Gph can be repre-
sented as

RepGph(f) = 〈f, {Edg 7→ Edg}, {(Edg, x, y) 7→ (Edg, f(x), f(y)) |(x, y) ∈ Edg }〉 .

Category Rng of rings. Each object R = 〈R, +, ·,−, 0〉 in category of ring Rng has structure
〈{0}, {+, ·,−}〉, then

RepRng (R) = 〈R, E, Υ〉

where

E = {+, ·,−, 0}

and

Υ = {(+, x, y, z) |x + y = z }∪

{(·, x, y, z) |x · y = z }∪

{(−, x, y) |−x = y }∪

{(0, 0R)}

and each arrow f : R1 → R2 (a homomorphisms between two rings) in Rng can be represented
as

23

RepRng(f) = 〈f, 1E , p〉

where

p = {(+, x, y, z) 7→ (+, f(x), f(y), f(z)) |x + y = z }∪

{(·, x, y, z) 7→ (·, f(x), f(y), f(z)) |x · y = z }∪

{(−, x, y) 7→ (−, f(x), f(y)) |−x = y }∪

{(0, 0R1) 7→ (0, 0R2)}

Category Vct of vector spaces. Each object V = 〈V, 0, +,R〉 in category of vector space
Vct has structure 〈{0}, {+} ∪ R〉, then

RepVct (V) = 〈V, E, Υ〉

where

E = {0, +} ∪ R

and

Υ = {(+, x, y, z) |x + y = z }∪

{(a, x, y) |ax = y, a∈ R }∪

{(0, 0V)}

and each arrow f : V1 → V2 (a linear transformation between two vector spaces) in Vct can
be represented as

RepVct(f) = 〈f, 1E, p〉

where

p = {(+, x, y, z) 7→ (+, f(x), f(y), f(z)) |x + y = z }∪

{(a, x, y) 7→ (a, f(x), f(y)) |ax = y }∪

{(0, 0V1) 7→ (0, 0V2)}

24

Because R in V is regarded as a ring R = 〈R,+R, ·R,−R, 0R〉, a vector space V can be viewed
as set V ∪R with structure 〈{0, 0R}, {+, +R, ·R,−R} ∪ {V ,R}〉, and

Rep
′

Vct (V) =
〈

V ∪R,E
′

, Υ
′
〉

where

E
′

= {0V , 0R, +V , +R, ·R,−R, V ,R}

and

Υ
′

= {(+, x, y, z) |x + y = z, x, y, z ∈ V }∪

{(a, x, y) |ax = y, x, y ∈ V, a∈ R }∪

{(+R, a, b, c) |a + b = c, a, b, c∈ R }∪

{(·R, a, b, c) |a · b = c, a, b, c∈ R }∪

{(−R, a, b) |−a = b, a, b∈ R }∪

{(0, 0V) , (0R, 0R)}∪

{(V, x) |x ∈ V }∪

{(R,a) |a∈ R }

Each linear transformation f : V1 → V2 can be represented as usual.

Opposite category Topop of topological spaces. All the objects just mentioned can be
easily represented as structured objects. However, for the structure on a topological space,
there need a spacial treatment. Because the continues map is defined as that the original image
of an open set is still an open set, we can hardly define the continues map derectly as structued
preserving map. Instead, the reverse of a continues map can be regard as a structure preserving
map directly. Each object X in opposite category of topological space Topop can be viewed as
an object {e} ∪X∪P (X) of structure 〈{ε}, {γP , γO}〉, where e /∈ X∪P (X),

γP = {(S, x) |S ∈ P (X) , x ∈ S or x = e }

and

γO = {S |S is an open set on X } .

25

If f : X→ Y is a continuous map, f−1 does not defined on Y but P (Y). Given a continuous
map f : X→ Y, we define

f op : {e} ∪Y∪P (Y)→ {e} ∪X∪P (X)

as

f op(y) =

{

f−1(y), y∈ P (Y)
e, y /∈ P (Y)

.

Proposition 8. Given two continuous map f, g : X→ Y, if f 6= g then f op 6= gop.

Proof. This is simple.

Proposition 9. Given a continuous map f : X→ Y, f op is a structure ipreserving map from
{e} ∪Y∪P (Y) to {e} ∪X∪P (X).

Proof. This is simple.

Definition 4. Powering ∇: Let γ, ε, e /∈ B ∪ E, P(B) be the power set of B, then

∇ (〈B, E, Υ〉) = 〈{e} ∪B∪P(B), E ∪ {ε, γ} , ΥT 〉

where

ΥT = {(γ, S, x) |S∈ P(B), x ∈ Sorx = e }∪

{

(x1, x2, · · · , xn)
∣

∣

∣

(

x
′

1, x
′

2, · · · , x
′

n

)

∈ Υ, x
′

i ∈ xiorx
′

i = xi
}

and

∇ (〈f, 1E , p〉) =
〈

f ∪ {e 7→ e}∪P(f), 1E ∪ {ε 7→ ε, γ 7→ γ} , p
′
〉

where

p
′

= p ∪ on
(

M
(

(f ∪ {e 7→ e}∪P(f))&
)

, Υ∇T1 , Υ∇T2

)

.

forgetting ∅ defined as

∅T = 〈base(T), E,∅〉 ,

and

∅ (〈f, 1E, p〉) = 〈f, 1E ,∅〉 ;

26

Given two p-classes T1 = 〈B1, E, Υ1〉, T2 = 〈B2, E, Υ2〉 and p-map f : T1 → T2, Reversing
⇋ (f) is a p-map from ∇∅T2 to ∇∅T1 such that

⇋ (f)(y) =

{

f−1(y), y∈ P (B2)
e, y /∈ P (B2)

.

Therefore, each topological space X can be represented as a p-class

RepTopop (X) = 〈B, E, Υ ∪ {(γO, S) |S isanopensetonX }〉

with 〈B, E, Υ〉 = ∇〈X,∅,∅〉. The structure preserving map f : X→ Y is just is the p-map

⇋ (f): RepTopop (Y)→RepTopop (X) .

6 Token Categories

By discussion in above two sections, there are two operators on products of subcategories of Set:
operator U and SXM(G(U(−))) – they can form new bi-cartsian closed categories from bi-cartsian
closed categories, form categories having all finite limits from categories having all finite limits.
Algebra APC is a {×,U ,SXM(G(U(−)))}-type algebra generated on

{Set} ∪ idset(ISets).

Each element in APC is a category. Below are some examples (where A, B, C are some identity
set categories):

A, Set, A, Set×B,U (Set×A×B×C) ,

SXM(G(U(A))), SXM(G(U(Set×A))),U
(

SXM(G(U(Set×A)))

)

,

U
(

Set×C× SXM(G(U(−)))

(

Set×B× SXM(G(U(Set×A)))

))

For any categories PC in APC, category

Ptn&
PC= U (PC)

and
PtnPC = SXM(G(U(PC)))

are called a Token category. Simply, any Token categories are elements in APC.

Theorem 3. Every Token category is a subcategory of Set, is bicartisain closed and has all
finite limits.

Proof. This is simple.

27

7 Interior Structure Mapping and Tree Token Classes

7.1 Generation of Tree Tokens

A tree Token on set B is a tuple whose elements may be also tree Tokens or elements in B.
For example, (x1, (x2, (x3, x4)) , x5) with x1, · · · , x5 ∈ B is a tree Token. This definition is more
general than tree formal language [1], because the tree language is defined on ranked symbols
of which each has a rank or arity like predicates in logic. Symbols in a tree Token have no rank.
For the simplicity of process the tree Token formation and matching, we define tree Tokens in
an algebraic way instead of an inductive way.

Definition 5 (Pre-treepoid). To represent interior stucture, we introduce unary operator & in
addition to monoid structure. However the definition is arduous. The pre-treepoid G(B) freely
generated on B is an algebra 〈M, ·, &, ε〉 with · associative binary operator and unary operator
and ε nulary operator. Without , a 〈·, ε〉-type algebra is just a monoid. Each r in G(B) is called
a tree Token. The length of element r ∈ G(B), denoted as |r|, and depth of r, denoted as ‖r‖,
and tree-arity of r, denoted as ary(r), are defined inductively as:

1. |ε| = 0, ‖ε‖ = 0 and ary(ε) = 0;

2. if x ∈ B, then |x| = 1, ‖x‖ = 1 and ary(x) = 1;

3. |&(r)| = max (|r|, 1), ‖&(r)‖ = ‖r‖+ 1 and ary (&(r)) = 1;

4. |r1 · r2| = |r1|+ |r2|, ‖r1 · r2‖ = max (‖r1‖ , ‖r2‖) and ary (r1 · r2) = ary (r1) + ary (r2).

For any function f0 : B1→ G(B2) their is a unique homomorphism f : G(B1)→ G(B2) such that
f is extended from f0, and f0 and f uniquely determine each other.

If f : A→ B be a homomorphism, then ary(r) may not equal to ary (f(r)) for some r ∈ A.

Proposition 10. For any r∈ G(B), there is a r
′

∈ G(B) such that r = r
′

, iff ary(r) = 1 and
‖r‖ ≥ 2.

Proof. Clear.

Definition 6 (Treepoid). Given a set B, the set

T (B) = B⋔ = {r |ary(r) ≤ 1, r∈ G(B) }

is called a free tree Algebra on B. Any element in T (B) is called a treepoid. Given tree Token

r , the arity of r, denoted as tary(r), is defined as that if r =
(

r
′

)

for some r
′

∈ T (B), then

tary(r) = ary
(

r
′

)

; if r ∈ B then tary(r) = 0. In this case, we denote r
′

= &−1(r). Given a

set B and an function f0 : B1 → T (B2), ther is a unique homomorphism g : G(B1) → G(B2)
extended from f0, then we say the set

f = {r 7→ g(r) |r∈ T (B1) }

a tree morphism between T (B1)→ T (B2) extending f0, and denoted f as tmorph (f0).

By the definition, it follows that:

1. let f : B⋔1 → B⋔2 be a tree morphism, then tary(r) = tary (f(r)) holds for all r ∈ B⋔1 ; if
r 6= ε, then f(r) 6= ε;

2. ε ∈ B⋔ and (ε) ∈ B⋔;

3. B ⊂ B⋔.

28

We may call the tree monoid the algebra of nested parentheses. We can represent tree Tokens
as tuples, similar to representing Tokens in free monoids as tuples:

• Given Token r with

&−1(r) = x1 · x2 · · · · · xn

with tary (xi) = 1 for i = 1, 2, · · · , n, i.e. the arity of r is n, and r is not in another Token,
then we write &(r) as

(x1, x2, · · · , xn) .

Note in a Token class T , a Token (x1, x2, · · · , xn) really refers to x1 ·x2 · · · · ·xn. However,
a tree Token (x1, x2, · · · , xn) just refers to & (x1 · x2 · · · · · xn). In following sections, we
only use x1 · x2 · · · · · xn to denote Token of arity n.

• And if, for example,

x2 = (y1, y2, · · · , ym)

then r will be represented as

(x1, (y1, y2, · · · , ym) , · · · , xn)

• For any Token r /∈ B we do not use (r) to denote &(r). Note we will use (ε) to represents
&(ε).

Using inductive definition, the tree Token can be directly defined as tuple on tuples. This seems
more intuitive. However, the inductive defintion of tree monoid indeed use infinite n-tuple
elements formation operators (, , · · · ,) for each n ≥ 1. The algebraic definition of tree monoids
can let us use very few operators, i.e., three operators, to form tree structures.

Note for any tree morphism f : T (B1)→ T (B2) and any x ∈ B1, f can not send x to a Token
x1 · x2 · · · · · xn with n > 1, but can send x to (x1, x2, · · · , xn) or ((x1, x2, · · · , xn)), etc, because
the arities of these Tokens are all equal to 1.

Definition 7. The connection operator ⋊⋉ is used on any two Tokens r1, r2∈ T (B) as

r1 ⋊⋉ r2 =
(

&−1 (r1) ·&−1 (r2)
)

.

We also use connection operator ⋊⋉ on Token sets. Binary ⋊⋉ is associative. The operator ⋊⋉ is
also used as unary operator, called flattening, on Tokens, and is defined as

⋊⋉ (r) =⋊⋉ ((x1, x2, · · · , xn))

= (⋊⋉ (x1)) ⋊⋉ (⋊⋉ (x2)) ⋊⋉ · · · ⋊⋉ (⋊⋉ (xn))

with the addition of that ‖x‖ = 2 implies

⋊⋉ (x) = x

29

and ‖x‖ = 1, i.e. x ∈ B, implies

⋊⋉ (x) = (x)

Proposition 11. For any Token r∈ T (B), we have

‖⋊⋉ (r)‖ = 2

.

Proof. Clear.

Let Υ, Υ1 and Υ2 be sets of tree Tokens, then

Υ1 ⋊⋉ Υ2 = {r1 ⋊⋉ r2 |r1 ∈ Υ1, r2 ∈ Υ2, m, n∈ N } .

and

⋊⋉ Υ = {⋊⋉ r |r ∈ Υ, n∈ N } .

Flattening ⋊⋉ can condense a Token:

⋊⋉ (x1, (ε), x3, · · · , xn) = (x1, x3, · · · , xn)

The length of (x1, (ε), x3, · · · , xn) is n, but that of ⋊⋉ (x1, (ε), x3, · · · , xn) is n − 1. Therefore,
unary ⋊⋉ can not act as a functor. There is a tree monoid homomorphism f : A→ B does not
imply that there exists a homomorphism g :⋊⋉ (A)→⋊⋉ (B).

Proposition 12. Relation Eq⋊⋉ defined as that Eq⋊⋉(x, y) if and only if ⋊⋉ x =⋊⋉ y is a equivalent
relation. We use x/ ⋊⋉ to denote the equivalent class x/Eq⋊⋉, then

x/ ⋊⋉=⋊⋉
−1 (⋊⋉ (x)) .

Proof. This is simple.

Definition 8. Let Token r∈ T (B1) and S ⊂ A just contain all elements appear in r, and
f : T (B1)→ T (B2) be a tree morphism, then the set

g = {x 7→ f(x) |x ∈ S }

is called a tree correspondence between r and f(r).

Theorem 4 (uniqueness of tree correspondence). From a Token r1 to r2, there is at most one
tree correspondence, denoted as corr (r1, r2) if exists, between r1 and r2.

Proof. Clear.

30

Definition 9 (universal Token). We use 1 : n to denote the Token

(1, 2, 3, · · · , n)

and

1 : 0 = ε

1 : 1 = (1)

Each Token in

⋊⋉
−1 {1 : n |n∈ N } .

is called a universal Token.

Theorem 5 (universal Token of a tree Token). For any Token r, there is a unique universal
Token u such that a tree correspondence between u and r exists and

|u| = |r|.

We denote such u as universal(r).

Proof. Clear.

Corollary 5. For any Token r, if |r| = n, then |⋊⋉ (r)| = n and

universal (⋊⋉ (r)) = 1 : n.

Definition 10 (Scattering). Let r∈ T (B) and a tree correspondence g from a universal Token
u of length m ≥ 1 to r exist. Then the scattering of r by g is

≪g (r) = {g(i) |i ∈ {1, 2, · · · , m} } .

The flat scattering of r is defined as

≪ (r) =≪corr(1:‖r‖,⋊⋉(r)) (⋊⋉ (r))

Let S be the set of universal Tokens of which there is a nontrivial tree correspondence from each
to r, the star scattering of r is defined as

≪∗ (r) =u∈S≪corr(u,r) (r).

Proposition 13. It follows that (1) ≪ (r) ⊂≪∗ (r); (2) r ∈≪∗ (r); (3) For any r
′

∈≪∗ (r),

we have
∥

∥

∥r
′

∥

∥

∥ ≤ ‖r‖;

Proof. Clear.

31

7.2 Tokens Maps between Tree Token Classes

To represent interior structure mapping, we need the structure is represented directly. Otherwise,
we need parse interior structure from strings. (x1, (x2, (x3, x4)) , x5). Note we will use T (A)
itself to denote the underlying set of T (A) in following.

Definition 11 (Tree Token Class). A tree Token class, or a t-class, is a ternary T = 〈B, E, Υ〉
where Υ∈ T (B

∐

E), and B, E and Υ, which are denoted as base(T), core(T) and heap(T)
respectively, are called the base, core and Token heap of T ; tuples in Υ are called tree Tokens.
A t-class T1 is a subclass of T2, denoted as T1 ⋐ T2, iff base (T1) ⊂ base (T2) and heap (T1) ⊂
heap (T2).

Definition 12 (Tree Tokens Map). Given two t-classes T1 〈B1, E1, Υ1〉 and T2 = 〈B2, E2, Υ2〉
of same structure E, a tree Tokens map, or t-map, from T1 to T2 extending function

f0 : B1→ T
(

B2

∐

E
)

− E

is a ternary f = 〈f0, 1E , p〉 such that

p(r) = tmorph(f)(r)

where tmorph(f) is to denote tmorph (f0
∐

1E), for all r ∈ heap (T1). And we use
tmap

T2
T1

(f0), or

tmap
T2
T1

(

tmorph
(

f0

∐

1E
))

to denotes f . If
〈

B
′

1, E, Υ
′

1

〉

⋐ 〈B1, E, Υ1〉, then there is a t-map f
′

extends

{x 7→ f0(x)
∣

∣

∣x ∈ B
′

1 }

and we call f
′

is a submap of f . If t-map f is extended from f0, we also called f is a submap
of tmorph(f), and any submap of f is also a sub map of tmorph(f).

Note tmorph (f0
∐

1E), i.e., tmorph(f), is a proper homomorphism. Note for the simplicity,
given a t-class 〈B, E, Υ〉, we always assume that

B ∩E = ∅

and

B
∐

E = B ∪ E.

However, unlike the definition in Token space, a tree Tokens map f from 〈B1, E, Υ1〉 to
〈B2, E, Υ2〉 can map x ∈ B1 to f(x) 6= B2.

Definition 13 (Metavocabulary). There is a set terms called the set of meta-vocabulary, it
contains all operators we will used to operate on t-classes. For example, ·, &,⊛ ∈ terms.

32

Definition 14 (Tree Token Space). Let

U =A∈Set A

We assume that U ⊂ Set. All tree Token classes with core U and Tokens maps among them
constitute a category tree Token space T T S. When we say any t-class 〈B, E, Υ〉 ∈ T T S, then
〈B, E, Υ〉 is viewed isomorphic to 〈B, U, (I

∐

1B) (Υ)〉, where I : E → U send each x in E
to x in U . The set homTTS (T1, T2), or T T S (T1, T2), denotes the set of all tree Tokens maps
between T1 and T2.

In following sections we assume all t-classes are in T T S, thus for given B and Υ, t-classes
〈B, E, Υ〉 and 〈B, U, Υ〉 are viewed as the same t-class. Therefore the t-map

f : 〈B1, E1, Υ1〉 → 〈B2, E2, Υ2〉

extending f0 : B1 → B2 is refered to the t-map

f : 〈B1, U, Υ1〉 → 〈B2, U, Υ2〉

extending f0 : B1 → B2.

The relations between T T S and T S are specified as follows.

Proposition 14. Any two t-classes T r1 = 〈B1, E, Υ1〉 and T r2 = 〈B2, E, Υ2〉 have a coproduct
T r1

∐

T r2 in T T S, which is isomorphism to

〈

B1

∐

B2, E,T
(

inc1

∐

1E
)

(Υ1)∪T
(

inc2

∐

1E
)

(Υ2)
〉

where inc1 : B1 → B1
∐

B2 and inc2 : B2 → B1
∐

B2 are the inclusion map.

Proof. Clear.

Remark 2 (Convention for Using Tree Tokens as t-classes). For a tree Token set Υ, the base
of Υ is the minimum set B such that Υ ⊂ T(B

∐

E). We use base(Υ) to denote such B. Notice
that base is an overloaded term since we have used base(T) to denote the base of a p-class or
tree Token class T . We may use sets of Tokens as t-classes in following sections. A Tokens set
Υ will be used as a t-class

〈base(Υ), E, Υ〉 .

Note

base ({r}) =≪∗ (r) ∩B.

Remark 3 (Proper tree homomorphism applyed on t-classes). A proper tree homomorphism f
from T(B

∐

E) can be applied on any t-class T with base B and structure E as a t-map

〈{x 7→ f(x) |x ∈ B } , 1E , {r 7→ f(r) |r ∈ heap(T) }〉 .

33

8 Exploring Structure Relations of Token Classes

We need some operators to explore the relations between structured objects – tree Token classes
– in T S. All results of following operation are unique up to isomorphism of objects.

For any p-classes T = 〈B, E, Υ〉, T1 = 〈B1, E, Υ1〉, T2 = 〈B2, E, Υ2〉 and any p-map 〈f, 1E, p〉 :
T1 → T2, we define following operations as

Basic Set Theory t-Classes Operations

The basic set theory t-classes operations are:

• merging ⋒ defined as

T ⋒ T
′

=
〈

base(T) ∪ base
(

T
′
)

, E, heap(T) ∪ heap
(

T
′
)〉

;

• meeting ⋓ defined as

T ⋓ T
′

=
〈

base(T) ∩ base
(

T
′
)

, E, heap(T) ∩ heap
(

T
′
)〉

;

• forgetting ∅ defined as

∅T = 〈base(T), E,∅〉 ,

and

∅ (〈f, 1E , p〉) = 〈f, 1E,∅〉 ;

• stuffing ⊛ defined as

⊛ (〈B, E, Υ〉) =
〈

B, E,T
(

B
∐

{E}
)〉

;

• deleting ⊖ defined as

T2 ⊖ T1 = 〈base (T2) , E, heap (T2)− heap (T1)〉 .

Functor operations and related p-maps:

• Introducing unknown ⊙: Let ε, e /∈ B ∪ E,

⊙ (〈B, E, Υ〉) = 〈B ∪ {e} , E ∪ {ε} , Υ ∪ {(ε, e)}〉

and

⊙ (〈f, 1E , p〉) = 〈f ∪ {e 7→ e} , E ∪ {ε 7→ ε} , Υ ∪ {(ε, e)}〉 .

We say that e is a unknown element introduced in eT .

34

• Powering ∇: Let γ, ε, e /∈ B ∪ E, P(B) be the power set of B, then

∇ (〈B, E, Υ〉) = 〈{e} ∪B∪P(B), E ∪ {ε, γ} , ΥT 〉

where

ΥT = {(γ, S, x) |S∈ P(B), x ∈ Sorx = e }∪

{

(x1, x2, · · · , xn)
∣

∣

∣

(

x
′

1, x
′

2, · · · , x
′

n

)

∈ Υ, x
′

i ∈ xiorx
′

i = xi
}

and

∇ (〈f, 1E , p〉) =
〈

f ∪ {e 7→ e}∪P(f), 1E ∪ {ε 7→ ε, γ 7→ γ} , p
′
〉

where

p
′

= p ∪ on (M ((f ∪ {e 7→ e}∪P(f))∗) , Υ∇T1 , Υ∇T2) .

• Obscuring : obscuring T = 〈B, E, Υ〉 is a p-class

 (T) =
〈

B
∐

E,∅, Υ
〉

and

 (〈f, 1E, p〉) =
〈

f
∐

1E ,∅, p
〉

Binary operations and related p-maps:

• Matchup ⊗: (product)

〈B1, E, Υ1〉 ⊗ 〈B2, E, Υ2〉 = 〈B1 ×B2, E, Υ〉

where for any
(〈x1, y1〉 , 〈x2, y2〉 , · · · , 〈xn, yn〉)

with 〈xi, yi〉 nominally denote xi for xi = yi ∈ E,

(〈x1, y1〉 , 〈x2, y2〉 , · · · , 〈xn, yn〉) ∈ Υ

iff (x1, x2, · · · , xn) ∈ Υ1 and (y1, y2, · · · , yn) ∈ Υ2.

Example 2. Given a ordered set P = 〈P,>〉, we can use a class TP = 〈P, {>} , Υ〉 to represent
P, where B = P , and

Υ = {(>, x, y) |x >; x, y ∈ P } .

35

Given two ordered sets P = 〈P,>〉 and P
′

=
〈

P
′

,>
〉

, the product of TP ⊗ T
P

′ is naturally the

correspondent class of product P×P
′

=
〈

P × P
′

,>
〉

, where
(

P × P
′

)

is the Cartesian product

of P and P
′

, and
(〈x1, x2〉 , 〈y1, y2〉) ∈ rTP⊗T

P
′

iff x1 > y1 and x2 > y2.

• Blending ⊕: (extending product)

〈B1, E, Υ1〉 ⊕ 〈B2, E, Υ2〉 = 〈B1 ×B2, E, Υ〉

where for any
(〈x1, y1〉 , 〈x2, y2〉 , · · · , 〈xn, yn〉)

with 〈xi, yi〉 nominally denote xi for xi = yi ∈ E,

(〈x1, y1〉 , 〈x2, y2〉 , · · · , 〈xn, yn〉) ∈ Υ

iff (x1, x2, · · · , xn) ∈ Υ1 or (y1, y2, · · · , yn) ∈ Υ2.

• Union ⊎: (coproduct or Y-union) given two p-classes T1 = 〈B1, E, Υ1〉 and
T2 = 〈B2, E, Υ2〉, and for some ε /∈ B1 ∪B2 ∪ E, let

B = B1 × {ε} ∪ {ε} ×B2

be just isomorphic to copruduct B1
∐

B2 in Set, and the inclusion maps in U (Set×E)
are as in diagram

U (〈B1, E〉)
inc1→ U

(〈

B1

∐

B2, E
〉)

inc2← U (〈B2, E〉) .

The union
〈B1, E, Υ1〉 ⊎ 〈B2, E, Υ2〉 =

〈

B1

∐

B2, E, Υ
〉

where (x1, x2, · · · , xn) ∈ Υ iff (1) xi = inc1 (yi) and (y1, y2, · · · , yn) ∈ Υ1, or (2) xi =
inc2 (yi) and (y1, y2, · · · , yn) ∈ Υ2.

• Deleting ⊖: if T1 = 〈B1, E, Υ1〉 is a subclass of T2 = 〈B2, E, Υ2〉

T2 ⊖ T1 = 〈B2, E, Υ2 −Υ1〉 .

• Refering ⊳: (exponent object) given two p-classes T1 = 〈B1, E, Υ1〉 and T2 = 〈B2, E, Υ2〉,

T1 ⊳ T2 =
〈

(B1)B2 , E, Υ
〉

for any ζ1, ζ2, · · · , ζm ∈ (B1)B2 ∪ E, if for any

〈ι1, ι2, · · · , ιm〉 ∈ Υ2

such that for any j, ζj ∈ E or ιj ∈ E implies ιj = ζj, there is

〈ζ1 (ι1) , ζ2 (ι2) , · · · , ζm (ιm)〉 ∈ Υ1

36

(1)

where ζj (ιj) nominally denotes ζj for ιj = ζj ∈ E, then 〈ζ1, ζ2, · · · , ζm〉 ∈ Υ; otherwise,
〈ζ1, ζ2, · · · , ζm〉 /∈ Υ.

Operations with functions and p-maps:

• Lifting ⇑: given a set S ⊂ B,

⇑ (〈B, E, Υ〉 , S) =
〈

B − S, E
∐

S,
{(

incS→E
∐

S(x) 7→ x
)

|x ∈ S
}

Υ
〉

.

• Absolute lifting ⇈: given a set S ⊂ B,

⇈ (〈B, E, Υ〉 , S) =
〈

B, E
∐

S, Υ ∪
{(

incS→E
∐

S(x), x
)

|x ∈ S
}〉

.

• Release ⇓: given a set E
′

⊂ E,

⇓
(

〈B, E, Υ〉 , E
′
)

=
〈

B
∐

E
′

, E − E
′

, Υ
〉

.

• Renaming structure ⊘: given an injective function α : E1 → E2, ⊘ (〈B, E1, Υ〉 , α) =
〈B, E2, (1B

∐

α) (Υ)〉.

• Reversing ⇋: given two p-classes T1 = 〈B1, E, Υ1〉, T2 = 〈B2, E, Υ2〉 and p-map f :
T1 → T2, ⇋ (f) is a p-map from ∇∅T2 to ∇∅T1 such that

⇋ (f)(y) =

{

f−1(y), y∈ P (B2)
e, y /∈ P (B2)

.

• Generalizing ⋊: let T
′

=
〈

B
′

, E, Υ
′

〉

be a subclass of T = 〈B, E, Υ〉, and f : T → ∇T

be a p-map, if x ∈ B implies x ∈ f(x) or x = f(x), then

⋊

(

f, T
′
)

= f
(

T
′
)

else

⋊

(

f, T
′
)

= f
(

∅T
′
)

.

Example 3. We consider the n-dimensional real-valued vector space V =X1×X2× ...×Xn. For
each Xi, i = 1, 2, · · · , n, we consider the ordered set P0

i = 〈Xi,≥〉 and its dual P1
i = 〈Xi,≤〉.

There are 2n order relations on X1 ×X2 × ...×Xn:

Mj = P
j1
1 ×P

j2
2 × · · · ×Pjn

n = 〈X1 ×X2 × ...×Xn,>j〉 ,

where ji is either 0 or 1, and j = 0, 1, 2, · · · , 2n−1. Therefore, there are 2n Token classes
products

TMj
=

(

⊘

(

T
P

j1
1

, f1

))

⊗

(

⊘

(

T
P

j2
2

, f2

))

⊗ · · · ⊗
(

⊘
(

T
P

jn
n

, fn
))

where fi :
{

≥ji
}

→ {>j} is the function f
(

≥j1
)

=>j with ≥0 is ≥ and ≥1 is ≤.

37

Example 4. We consider the structures on data set. Let D is a collection data instances of
which each refere to a n-dimension real-valued vector in X1×X2× ...×Xn. Each instance in D
is a tuple (k, v), where v = (x1, x2, · · · , xn) and k ∈ {1, 2, · · · , l} is the id of the instance, and l
is the size of D. Let

TI = 〈N,∅,∅〉

then TI ⊕ TMj
represents a weak ordered set. Now each instance in D is also an object in

TI ⊕ TMj
. Then Dj = 〈D, {>j} , Υ〉 is a subclass of TI ⊕ TMj

, where

Υ = rTI⊕TMj
∩ D2

Giving j-th covariant Graph Gj = 〈D,Ej〉, which represents the diagram of weak order Dj, let

Hj =
〈

D, { >j}, ΥHj

〉

is a class such that

(>j, (k1, v1) , (k2, v2)) ∈ ΥHj

iff (v1, v2) ∈ Ej . Then Hj is a subclass of Dj . We also use GCj to denote % (Hj, f) where
f : {>j} → {<j} is the function f (>j) =<j. We call GCj a covariant p-class of D.

Example 5. Let 〈D,f , C〉 be the training data, C is the set of labels, and f : D → C is a function
which assigns each vector in D a label in C. Then

TC = 〈C, {<} , ΥC〉

is a Token class of discrete (weak) ordered set, where

rC = {(<, C, C)|C∈ C}

Given a test instance d = 〈l + 1, v〉, let GC
′

j, j = 0, 1, 2, · · · , 2n − 1, are the all 2n covariant
p-classes on D ∪ {d}, we can extends f to

pi: D ∪ {d} → TC ,

i = 1, 2, · · · , |C|, and each pi gives a label pi (d) for d. Let

GC = ⊘
(

GC
′

0, g1

)

⊎ ⊘
(

GC
′

1, g2

)

⊎ · · · ⊎ ⊘
(

GC
′

2n−1, g2n−1

)

where gj : {<j} → {<} is the function f (<j) =<. Note the union ⊎ is defined as:

〈B1, E, Υ1〉 ⊎ 〈B2, E, Υ2〉 =
〈

B1

∐

B2, E, Υ
〉

where (x1, x2, · · · , xn) ∈ Υ iff (x1, x2, · · · , xn) ∈ Υ1 or (x1, x2, · · · , xn) ∈ Υ2, in addition that
〈xi, yi〉 nominally denote xi if xi = yi ∈ E.

9 Reification of Tree Token Classes

Reification is an operation which can represent tree Token classes as p-classes and build one to
one correspondence between t-maps and p-maps.

Definition 15. The tree functor Ξ : T S → T T S is defined as

Ξ (〈B, E, Υ〉) = 〈B, E, Υ〉 .

38

Suppose `, ε ∈ terms.

Definition 16. For a tree Token r ∈ 〈B, E, Υ〉,

∂(r) = {. {ε · r} , r ∈ B
∐

E
{

ε · r, &−1(r)
}

, tary(r) 6= 0

is called a self nesting of r; a reification of tree Token r is a p-class

`(r) = 〈≪∗ (r), E, Υ〉

where

Υ =
{

ε · p ·&−1(p) |p ∈ (≪∗ (r)−B)
}

∪∂(r).

From this definition, it follows:

Lemma 4. Taking any set E as core, if there is a t-map g : {r1} → {r2}, then for any
x ∈≪∗ (r1), we have tmorph(g)(x) ∈≪∗ (r2).

Clear.

Lemma 5. Taking any set E as core, there is at most one p-map between ` (r1) and ` (r2).

Clear.

Proposition 15. Taking any set E as core, there is a t-map between {r1} and {r2} iff there is
a p-map between ` (r1) and ` (r2).

Proof. Suppose there is a t-map g : {r1} → {r2}. Let

f = tmorph(g).

Note f (r1) = g0 (r1) = r2, hence it folows f (r1) ∈ ` (r2). For If

r1 = (x1, x2, · · · , xn)

and

base (r1) = {x1, x2, · · · , xn}

then

` (r1) = 〈{x1, x2, · · · , xn}, E, {r1}〉

and

f (r1) = f ((x1, x2, · · · , xn))

39

= (f (x1) , f (x2) , · · · , f (xn))

= (g0 (x1) , g0 (x2) , · · · , g0 (xn))

= g0 (r1) .

It follows that there is just a t-map from ` (r1) to ` (r2) extending

{x 7→ f(x) |x ∈ {x1, x2, · · · , xn} } .

If
(

r
′

, x1, x2, · · · , xn
)

∈ ` (r1)

and x1, x2, · · · , xn ∈ base (r1), then

f
(

r
′
)

= f ((x1, x2, · · · , xn))

= (f (x1) , f (x2) , · · · , f (xn))

= (g0 (x1) , g0 (x2) , · · · , g0 (xn))

= (g (x1) , g (x2) , · · · , g (xn))

= g
(

r
′
)

.

Note g
(

r
′

)

∈≪∗ (r2). Hence g
(

r
′

)

∈ base (` (T2)), also f
(

r
′

)

∈ base (` (T2)). Hence

(

ε, f
(

r
′
)

, f (x1) , f (x2) , · · · , f (xn)
)

∈ ` (r1)

It follows, inductively on depth of r, that

f(r) ∈ base (` (T2))

and ∂ (f(r)) ∈ ` (T2) hold for any r ∈ (` (r1)− {r1}). Therefore, there is a p-map from ` (r1)
to ` (r2) extending

{x 7→ f(x) |x ∈ base (` (T1)) } .

Conversely, if there is a p-map
f : ` (r1)→

` (r2), because only r1 and r2 do not contain ε, it easily seen that

f (r1) = r2.

40

Therefore, there is a t-map g : r1 → r2 extends

{x 7→ f(x) |x ∈ base (r1) } .

The Proposition is proved.

Definition 17 (Reification). A reification of T = 〈B, E, Υ〉 is

`(T) =

〈

r∈Υ
base (`(r)) , E ∪ {`} ,

r∈Υ
heap (`(r))

〉

and for t-map 〈f0, 1E , p〉 : T1 → T2,

` (〈f0, 1E , p〉) =
〈

f
′

0, 1E , p
〉

.

where

f
′

0 =
{

x 7→ tmorph
(

f0

∐

1E
)

(x) |x ∈ base (` (T1))
}

and

p =
{

r 7→ tmorph
(

f0

∐

1E
)

(r) |r ∈ heap (` (T1))
}

.

Note that if ` (〈B, E, Υ〉) is not defined. For the simplicity, we use ` (〈B, E, Υ〉) and `(f) to
denote ` (〈B, E, Υ〉 ,`) and `(f,`) if ` /∈ B

∐

E.

Proposition 16. For any r = (x1, x2, · · · , x2) ∈ T and any Tokens map f : T → T
′

, we have

f(r) = `(f)(r).

Proof. Because r ∈ `(T), then `(f)(r) ∈ heap
(

`

(

T
′

))

. This is simple.

Proposition 17. Given any two tree Token classes T1 and T2, then

T PC (T1, T2) ∼= T PC (` (T1) ,` (T2)) ∼= T S (` (T1) ,` (T2)) .

Proof. Clear.

10 Conclusion

Throughout this paper, we have elucidated that the Token Space constitutes a bi-Cartesian
closed category, possessing all finite limits and encompassing categorical structures adept at
classifying subobjects. This foundation not only bolsters the interpretability and theoretical
comprehension of deep learning models but also furnishes a robust framework for exploring
novel computational constructs within AI research.

Despite these advancements, there remain several avenues of investigation yet to be explored.
For example:

41

• Any category of structured objects hardly can use a single pullback square as subclass
classifier.

• Let CCartisain and CTopos are two supper operators on subcategories of Token categories
such that for any subcategory P of a Token category PC, CCartisain (P) and CTopos (P)
are minimum bicartisain closed subcategory and topos subcategories, of which P is a
subcategory, of PC. Naturally, a problem arise. Given a concrete category C, How does
RepC (C) relate to

CCartisain (RepC (C))

and CTopos (RepC (C))?

This inquiry into the structural and operational dynamics of Token Space not only paves the way
for deeper theoretical insights but also opens the door to more sophisticated and interpretable
machine learning models. The journey of integrating category theory with computational mod-
els is far from complete, and the questions we have outlined offer fertile ground for further
exploration. As we continue to unravel the complexities of Token Space, we anticipate uncov-
ering novel strategies for model construction, analysis, and optimization, further advancing the
frontier of AI research.

References

[1] F. William Lawvere and Stephen H. Schanuel, Conceptual Mathematics: A First Introduc-
tion to Categories, Cambridge University Press, 1997.

[2] Steve Awodey, Category Theory, Oxford University Press, 2006.

42

	Introduction
	How is the Token Space Constructed?
	Construction Operators and Initial Categories
	Identity Set Categories
	Products of Categories
	Isomorphism between Categories
	Subsets Extension of Subcategories of Set

	Elementary Token Space and Token Topoi
	Token Space

	Representing Categories of Structured Objects in Token Space
	Token Categories
	Interior Structure Mapping and Tree Token Classes
	Generation of Tree Tokens
	Tokens Maps between Tree Token Classes

	Exploring Structure Relations of Token Classes
	Reification of Tree Token Classes
	Conclusion

