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596, Cerro Barón, Valparáıso, Chile.
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Abstract. Spinors are used in physics quite extensively. The goal

of this study is also the spinor structure lying in the basis of the

quaternion algebra. In this paper, first, we have introduced spinors

mathematically. Then, we have defined Tribonacci spinors using the

generalized Tribonacci quaternions. Later, we have established the

structure of algebra for these spinors. Finally, we have proved some

important formulas such as Binet and Cassini-like formulas which

are given for some series of numbers in mathematics for Tribonacci

spinors.
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1. Introduction

1.1. Spinors and quaternions. First, let us introduce the spinors men-

tioned by Cartan in [2]. Consider that a = (a1, a2, a3) ∈ C3 is the

isotropic vector and C
3 is the three-dimensional complex vector space.

So, we obtain a21 + a22 + a23 = 0. The set of isotropic vectors in the vec-

tor space C
3 forms a two-dimensional surface in the space C

2. If this

two-dimensional surface is parameterized by µ1 and µ2 coordinates, then

a1 = µ2
1 − µ2

2, a2 = i(µ2
1 + µ2

2), a3 = −2µ1µ2

is obtained. It is seen from the solution of this equation that

µ1 = ±

√
a1 − ia2

2
, µ2 = ±

√
−a1 − ia2

2
.

It is seen that in the complex vector space C
3, each isotropic vector

corresponds to two vectors, (µ1, µ2) and (−µ1,−µ2) in the space C
2.
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Conversely, both vectors so given in space C
2 correspond to the same

isotropic vector a. Cartan stated that the two-dimensional complex vec-

tors

(1.1) µ = (µ1, µ2) ∼=

[
µ1

µ2

]

described in this way are called as spinor (see [2]). The set of spinors is

denoted by Sp. In addition, Cartan emphasized that spinors are not only

two-dimensional complex vectors, but also represent three-dimensional

complex isotropic vectors (see also, for example, [7]).

Let us consider that the complex conjugate of spinor µ is µ. So, Cartan

in [2] wrote that the conjugate of spinor µ is

(1.2) µ̃ = iCµ = i

[
0 1

−1 0

][
µ1

µ2

]
=

[
iµ2

−iµ1

]
,

where C =

[
0 1

−1 0

]
. Moreover, Torres Del Castillo and Sánchez Bar-

rales [9] wrote that the mate of spinor µ is

(1.3) µ̂ = −Cµ = −

[
0 1

−1 0

][
µ1

µ2

]
=

[
−µ2

µ1

]
.

Furthermore, a real quaternion is defined with

q = q0 +

3∑

l=1

qlel, q0e0 = q0,

where ql ∈ R (l = 0, 1, 2, 3) and the quaternion basis {el : l = 0, 1, 2, 3}

is given such that e21 = e22 = e23 = −e0, e1e2 = e3 = −e2e1, e2e3 = e1 =

−e3e2 and e3e1 = e2 = −e1e3.

Let Sq = q0 and Vq =
∑3

l=1 qlel be scalar and vectorial parts of the

quaternion q. So, we can write the quaternion q as q = Sq + Vq. The

set of these quaternions is H. Let p = Sp + Vp, q = Sq + Vq ∈ H be two

real quaternions. So, the quaternion product of these quaternions

p× q = SpSq − 〈Vp, Vq〉+ SpVq + SqVp + Vp ∧ Vq,

where 〈, 〉 is usual inner product and ∧ is cross product in real vector

space R
3. It is clear that the product of two real quaternions is non-

commutative.In addition, if we consider that q∗ is the conjugate of the
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quaternion q, q∗ is equal to q∗ = Sq − Vq, the norm of a quaternion q is

Nr(q) =
∑3

l=0 q
2
l . If Nr(q) = 1, then q is called a unit quaternion.

Now, we give one relationship between spinors and quaternions ex-

pressed by Vivarelli (see [10]). This correspondence between any quater-

nion q = q0 +
∑3

l=1 qlel and a spinor µ =

[
µ1

µ2

]
is

(1.4)

σ : H −→ Sp

q 7−→ σ

(
q0 +

3∑

l=1

qlel

)
=

[
q3 + iq0

q1 + iq2

]
.

(see [10, Eq. (23)]). So, we obtain a spinor formulation of the kinematics

of rotation, which extends the quaternion formulation. Moreover, this

function σ is clearly linear and injective. Then, we can write σ(p + q) =

σ(p) + σ(q), σ(kq) = kσ(q), k ∈ R and ker(σ) = {0}. If we take that

the conjugate of the quaternion q is q∗ = q0 −
∑3

l=1 qlel, the spinor

corresponding to conjugate quaternion can be written as

σ(q∗) = σ

(
q0 −

3∑

l=1

qlel

)
=

[
−q3 + iq0

−q1 − iq2

]
.

Vivarelli [10, Eq. (25)] associated to the product of two quaternions p×q,

which is equal to a spinor matrix product as follows:

(1.5) p× q −→ −iP̆Q,

where

P̆ =

[
p3 + ip0 p1 − ip2

p1 + ip2 −p3 + ip0

]
, Q =

[
q3 + iq0

q1 + iq2

]
.

There are four known ways of approaching the theory of spinors in the

Euclidean three-space: by Cartan’s isotropic vectors, by Clifford algebra

as exemplified by Pauli matrices, by spinor ring algebra, by stereographic

projection (see [2, 7, 8]).

1.2. Generalized Tribonacci quaternions. The definitions of gener-

alized Tribonacci quaternions were first given by Cerda-Morales [4]. So,

generalized Tribonacci can be written as

Qv,n = Vn +
3∑

l=1

Vn+lel, Vne0 = Vn
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where Vn = Vn(V0, V1, V2; r, s, t) is the n-th generalized Tribonacci num-

ber defined by

(1.6) Vn = rVn−1 + sVn−2 + tVn−3, n ≥ 3,

and V0, V1, V2 are arbitrary integers and r, s and t are real numbers.

Generalized Tribonacci quaternions are the third-order linear recurrence

sequence and for n ≥ 0 one can write

(1.7) Qv,n+3 = rQv,n+2 + sQv,n+1 + tQv,n.

Let Qv,n be n-th generalized Tribonacci quaternion. Then, the Binet

formula for this quaternion is

(1.8)

Qv,n =
Pααn

(α− ω1)(α − ω2)
−

Qω1ω
n
1

(α− ω1)(ω1 − ω2)
+

Rω2ω
n
2

(α− ω2)(ω1 − ω2)
,

where P = V2 − (ω1 + ω2)V1 + ω1ω2V0, Q = V2 − (α + ω2)V1 + αω2V0,

R = V2 − (α+ ω1)V1 + αω1V0, α = e0 +
∑3

l=1 α
lel, ω1 = e0 +

∑3
l=1 ω

l
1el,

ω2 = e0+
∑3

l=1 ω
l
2el and α, ω1 and ω2 are the roots of the cubic equation

x3 − rx2 − sx− t = 0 (see [4]).

In addition, for the generalized Tribonacci quaternion Qv,n, the gen-

erating function is

gQv,n
(x) =

Qv,0 + (Qv,1 − rQv,0)x+ (Qv,2 − rQv,1 − sQv,0)x
2

1− rx− sx2 − tx3
.

Furthermore, the summation formula for generalized Tribonacci quater-

nions is as follows:
n∑

l=0

Qv,l =
1

δ
(Qv,n+2 + (1− r)Qv,n+1 + tQv,n + ω) ,

where δ = r+ s+ t− 1, ω = λ+e1(λ− δV0)+ e2(λ− δ(V0+V1))+ e3(λ−

δ(V0+V1+V2)) and λ = (r+s−1)V0+(r−1)V1−V2. Moreover, Cerda-

Morales gave the generalized Tribonacci quaternion matrix as follows:

(1.9) Qv =




Qv,4 Kv,2 tQv,3

Qv,3 Kv,1 tQv,2

Qv,2 Kv,0 tQv,1


 ,

where Kv,n = sQv,n+1 + tQv,n. With the help of this matrix, the author

obtained the next formula for generalized Tribonacci quaternions

Qv,n+2 = Qv,2Un+2 + (sQv,1 + tQv,0)Un+1 + tQv,1Un, n ≥ 0
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where Un = Vn(0, 0, 1; r, s, t).

2. Main Theorems and Proofs

In this section, we consider that there is a spinor corresponding to ev-

ery real quaternion and we match each generalized Tribonacci quaternion

with one spinor which has two complex components. Then, we introduce

generalized Tribonacci spinors. Similarly, we express the particular case

of third-order Jacobsthal spinors. Then, using the recent work of Erişar

and Güngör in [6], we give some theorems and formulas for generalized

Tribonacci and Tribonacci spinors.

Let the quaternion Qv,n = Vn +
∑3

l=1 Vn+lel be n-th generalized Tri-

bonacci quaternion where Vn is n-th generalized Tribonacci number. Let

the set of generalized Tribonacci quaternions be Tr,s,t.

Now, we consider the correspondence between spinors and quaternions

in Eq. (1.4) and we write the following transformation:

(2.10)

σ : Tr,s,t −→ Sp

q 7−→ σ

(
Vn +

3∑

l=1

Vn+lel

)
=

[
Vn+3 + iVn

Vn+1 + iVn+2

]
≡ Av,n,

where {el : l = 1, 2, 3} coincide with basis vectors given for real quater-

nions. This transformation is linear and injective but it is not surjective.

So, with the help of this transformation, we obtain a new sequence from

generalized Tribonacci quaternions. We say that this new sequence is a

generalized Tribonacci spinor sequence. Note that

(2.11) Av,n+3 = rAv,n+2 + sAv,n+1 + tAv,n, n ≥ 0,

can be written. Then, the generalized Tribonacci spinor sequence is the

linear recurrence sequence. Now, we give some algebraic definitions for

generalized Tribonacci spinors.

Definition 2.1 (Conjugates). Let the conjugate of the generalized Tri-

bonacci quaternion Qv,n be Q∗
v,n = Vn −

∑3
l=1 Vn+lel. So, from the

correspondence in Eq. (2.11), the generalized Tribonacci spinor A∗
v,n

corresponding to conjugate of generalized Tribonacci quaternion is writ-

ten by

σ

(
Vn −

3∑

l=1

Vn+lel

)
=

[
−Vn+3 + iVn

−Vn+1 − iVn+2

]
≡ A∗

v,n.
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On the other hand, we can write that the ordinary complex conjugate

of generalized Tribonacci spinor Av,n is

Av,n =

[
Vn+3 + iVn

Vn+1 + iVn+2

]
−→ Av,n =

[
Vn+3 − iVn

Vn+1 − iVn+2

]
.

According to the spinor conjugate given in Eq. (1.2) by Cartan, gen-

eralized Tribonacci spinor conjugate Ãv,n = iCAv,n is as follows:

Av,n =

[
Vn+3 + iVn

Vn+1 + iVn+2

]
−→ Ãv,n =

[
Vn+2 + iVn+1

−Vn − iVn+3

]
.

In addition to that, Torres Del Castillo and Sánchez Barrales obtained

the mate of spinor in Eq. (1.3). According to this, the mate of generalized

Tribonacci spinor is Âv,n = −CAv,n and

Av,n =

[
Vn+3 + iVn

Vn+1 + iVn+2

]
−→ Âv,n =

[
−Vn+1 + iVn+2

Vn+3 − iVn

]
.

The following corollary gives the relationship between the conjugates

for generalized Tribonacci spinors.

Corollary 2.2. Let the n-th generalized Tribonacci spinor be Av,n. The

correspondences between conjugates of generalized Tribonacci spinors hold

(2.12) CÂv,n =

[
0 1

−1 0

][
−Vn+1 + iVn+2

Vn+3 − iVn

]
= Av,n,

(2.13) iÃv,n = i

[
Vn+2 + iVn+1

−Vn − iVn+3

]
= Âv,n,

(2.14) iCÃv,n =

[
0 i

−i 0

][
Vn+2 + iVn+1

−Vn − iVn+3

]
= Av,n.

Definition 2.3 (Norm). The norm of a generalized Tribonacci quater-

nion Nr(Qv,n) = Qv,nQ
∗
v,n is equal to the norm of associated generalized

Tribonacci spinor

Nr(Qv,n) =
[
Vn+3 − iVn Vn+1 − iVn+2

] [ Vn+3 + iVn

Vn+1 + iVn+2

]
.

In addition, if we use Corollary 2.12, then we give the norm of gener-

alized tribonacci spinor

Nr(Qv,n) = A
t

v,nAv,n = −Ât
v,nC

tAv,n = −iÃt
v,nC

tAv,n.
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Now, we give the Binet formula for generalized Tribonacci spinors

solving generalized Tribonacci spinor recurrence relation in Eq. (2.11).

Theorem 2.4. For n ≥ 0, the Binet formula for the n-th generalized

Tribonacci spinor Av,n is that

(2.15)

Av,n =
Pαn

(α− ω1)(α− ω2)

[
α3 + i

α+ iα2

]
−

Qωn
1

(α− ω1)(ω1 − ω2)

[
ω3
1 + i

ω1 + iω2
1

]

+
Rωn

2

(α− ω2)(ω1 − ω2)

[
ω3
2 + i

ω2 + iω2
2

]
,

where P, Q and R as in Eq. (1.8).

Proof. We consider the generalized Tribonacci spinor sequence {Av,n}n≥0.

The characteristic equation of recurrence relation of generalized spinors

is also x3 − rx2 − sx− t = 0. Moreover, the roots of this equation are α,

ω1 and ω2 as in Eq. (1.8). We assume the initial values

Av,0 =

[
V3 + iV0

V1 + iV2

]
, Av,1 =

[
V4 + iV1

V2 + iV3

]
, Av,2 =

[
V5 + iV2

V3 + iV4

]

for the equation Av,n = a1α
n + a2ω

n
1 + a3ω

n
2 . So, for generalized Tri-

bonacci spinor Av,0, (n = 0) we have Av,0 = a1+a2+a3 =

[
V3 + iV0

V1 + iV2

]
,

for generalized Tribonacci spinor Av,1, (n = 1) also we obtain Av,1 =

a1α + a2ω1 + a3ω2 =

[
V4 + iV1

V2 + iV3

]
and finally for n = 2, we have

Av,2 = a1α
2 + a2ω

2
1 + a3ω

2
2 =

[
V5 + iV2

V3 + iV4

]
. If we make necessary ad-

justments we find that the spinors

a1 =
P

(α− ω1)(α − ω2)

[
α3 + i

α+ iα2

]
,

a2 = −
Q

(α− ω1)(ω1 − ω2)

[
ω3
1 + i

ω1 + iω2
1

]

and

a3 =
R

(α− ω2)(ω1 − ω2)

[
ω3
2 + i

ω2 + iω2
2

]
.
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So, we obtain that Binet’s formula for Av,n is obtained as follows:

Av,n = a1α
n + a2ω

n
1 + a3ω

n
2

=
Pαn

(α− ω1)(α− ω2)

[
α3 + i

α+ iα2

]
−

Qωn
1

(α− ω1)(ω1 − ω2)

[
ω3
1 + i

ω1 + iω2
1

]

+
Rωn

2

(α− ω2)(ω1 − ω2)

[
ω3
2 + i

ω2 + iω2
2

]
.

The result is obtained. �

Corollary 2.5. For n ≥ 0, the Binet formula for the n-th Tribonacci

spinor Tn is that

(2.16)

Tn =
αn+1

(α− ω1)(α− ω2)

[
α3 + i

α+ iα2

]
−

ωn+1
1

(α− ω1)(ω1 − ω2)

[
ω3
1 + i

ω1 + iω2
1

]

+
ωn+1
2

(α− ω2)(ω1 − ω2)

[
ω3
2 + i

ω2 + iω2
2

]
,

where Tn = Av,n and Vn = Vn(0, 1, 1; 1, 1, 1) is the n-th classic Tribonacci

number.

Now, we obtain the generating functions for generalized Tribonacci

spinors.

Theorem 2.6. For n ≥ 0, the generating function for the n-th general-

ized Tribonacci spinor Av,n is

(2.17)

gAv,n
(x) =

1

ρ(x)

[
ρ1V3 + ρ2V4 + x2V5 + i(ρ1V0 + ρ2V1 + x2V2)

ρ1V1 + ρ2V2 + x2V3 + i(ρ1V2 + ρ2V3 + x2V4)

]
,

where ρ(x) = 1 − rx − sx2 − tx3, ρ1 = ρ1(x) = 1 − rx − sx2 and ρ2 =

ρ2(x) = x− rx2. Furthermore, Vn as in Eq. (1.6).

Proof. If the generating function gAv,n
(x) =

∑
n≥0Av,nx

n is considered,

then using the equations rxgAv,n
(x), sx2gAv,n

(x) and tx3gAv,n
(x), we
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obtain that

(1− rx−sx2 − tx3)gAv,n
(x)

= Av,0 + (Av,1 − rAv,0)x+ (Av,2 − rAv,1 − tAv,0)x
2

=

[
V3 + iV0

V1 + iV2

]
+

[
V4 − rV3 + i(V1 − rV0)

V2 − rV1 + i(V3 − rV2)

]
x

+

[
V5 − rV4 − sV3 + i(V2 − rV1 − sV0)

V3 − rV2 − sV1 + i(V4 − rV3 − sV2)

]
x2.

If we regulate the last equation, we have

(1−rx− sx2 − tx3)gAv,n
(x)

=

[
ρ1V3 + ρ2V4 + x2V5 + i(ρ1V0 + ρ2V1 + x2V2)

ρ1V1 + ρ2V2 + x2V3 + i(ρ1V2 + ρ2V3 + x2V4)

]
,

where ρ1 = ρ1(x) = 1 − rx − sx2 and ρ2 = ρ2(x) = x − rx2. Then, the

result is obtained. �

Corollary 2.7. For n ≥ 0, the generating function for the n-th Tri-

bonacci spinor Tn is

(2.18) gTn
(x) =

1

1− x− x2 − x3

[
2 + 2x+ x2 + ix

1 + i(1 + x+ x2)

]
.

Now, similar to Qv-matrix given for generalized Tribonacci quater-

nions in Eq. (1.9) we can also give one matrix for generalized Tribonacci

spinors. So, with the aid of this matrix, we can obtain am special formula

for generalized Tribonacci spinors. Thus, we first express the following

theorem.

Theorem 2.8. Generalized Tribonacci spinor matrix, which has the

same behavior as the Qv-matrix given for generalized Tribonacci quater-

nions, is given by

Qv = −




Av,4 K̆v,2 tĂv,3

Av,3 K̆v,1 tĂv,2

Av,2 K̆v,0 tĂv,1


 , K̆v,n = sĂv,n+1 + tĂv,n
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where Ăv,0 =

[
V3 + iV0 V1 − iV2

V1 + iV2 −V3 + iV0

]
, Ăv,1 =

[
V4 + iV1 V2 − iV3

V2 + iV3 −V4 + iV1

]

and Ăv,2 =

[
V5 + iV2 V3 − iV4

V3 + iV4 −V5 + iV2

]
.

Proof. Let n-th generalized Tribonacci spinor Av,n correspond to n-th

generalized Tribonacci quaternion Qv,n. Let us consider the Qv-matrix

in Eq. (1.9); then the product of two quaternions can be written by

spinor matrix in Eq. (1.5). For example we have the following equa-

tions Qv,1Kv,3Qv,4 = −Ăv,1K̆v,1Av,4 (Qv,1Kv,1Qv,4 is preferred over the

multiplication Qv,4Kv,1Qv,1), where K̆v,1 = sĂv,2 + tĂv,1. Moreover, for

Qv-matrix we obtain that

1

t
det(Qv) = Qv,1

∣∣∣∣∣
Qv,4 Kv,2

Qv,3 Kv,1

∣∣∣∣∣−Qv,2

∣∣∣∣∣
Qv,4 Kv,2

Qv,2 Kv,0

∣∣∣∣∣+Qv,3

∣∣∣∣∣
Qv,3 Kv,1

Qv,2 Kv,0

∣∣∣∣∣

= Qv,1Kv,1Qv,4 +Qv,2Kv,2Qv,2 +Qv,3Kv,0Qv,3

−Qv,1Kv,2Qv,3 −Qv,2Kv,0Qv,4 −Qv,3Kv,1Qv,2

= −Ăv,1K̆v,1Av,4 − Ăv,2K̆v,2Av,2 − Ăv,3K̆v,0Av,3

+ Ăv,1K̆v,2Av,3 + Ăv,2K̆v,0Av,4 + Ăv,3K̆v,1Av,2.

Finally, we can choose

Qv = −




Av,4 K̆v,2 tĂv,3

Av,3 K̆v,1 tĂv,2

Av,2 K̆v,0 tĂv,1


 ,

where Ăv,0 =

[
V3 + iV0 V1 − iV2

V1 + iV2 −V3 + iV0

]
, Ăv,1 =

[
V4 + iV1 V2 − iV3

V2 + iV3 −V4 + iV1

]

and Ăv,2 =

[
V5 + iV2 V3 − iV4

V3 + iV4 −V5 + iV2

]
. �

Corollary 2.9. Tribonacci spinor matrix, which has the same behavior

as the Tv-matrix given for Tribonacci quaternions, is given by

T = −




T4 T̆3 + T̆2 T̆3

T3 T̆2 + T̆1 T̆2

T2 T̆1 + T̆0 T̆1


 ,
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where

T̆0 =

[
2 1− i

1 + i −2

]
, T̆1 =

[
4 + i 1− 2i

1 + 2i −4 + i

]
, T̆2 =

[
7 + i 2− 4i

2 + 4i −7 + i

]
.

Now, we give the determinant formula for Tribonacci spinors as a

result of Theorem 2.8 and [4, Theorem 3.1]:

Qv




r s t

1 0 0

0 1 0




n

=




Qv,n+4 Kv,n+2 tQv,n+3

Qv,n+3 Kv,n+1 tQv,n+2

Qv,n+2 Kv,n tQv,n+1


 ,

where Kv,n = sQv,n+1 + tQv,n and r = s = t = 1. So, the following

corollary can be given without proof.

Corollary 2.10. For n ≥ 0, we have determinant formula for Tribonacci

spinors
{

T̆n+1L̆n+1Tn+4 + T̆n+2L̆n+2Tn+2 + T̆n+3L̆nTn+3

−T̆n+1L̆n+2Tn+3 − T̆n+2L̆nT4 − T̆n+3L̆n+1Tn+2

}
= 4

[
−1 + i

1− i

]
,

where L̆n = T̆n+1 + T̆n.

Now, the following corollary can be given without proof. The proof is

obtained by mathematical induction.

Theorem 2.11. For every integer n ≥ 0. The summation formula for

generalized Tribonacci spinors is as follows:

δ

n∑

l=0

Av,l = Av,n+2 + (1− r)Av,n+1 + tAv,n

+

[
(r + s)V3 + (r − 1)V4 − V5 + i((r + s)V0 + (r − 1)V1 − V2)

(r + s)V1 + (r − 1)V2 − V3 + i((r + s)V2 + (r − 1)V3 − V4)

]
,

where δ = r+ s+ t−1 and Vn is the n-th generalized Tribonacci number.

Corollary 2.12. For every integer n ≥ 0. The summation formula for

Tribonacci spinors is as follows:

n∑

l=0

Tl =
1

2

{
Tn+2 +Tn +

[
−3− i

−2i

]}
.
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3. Conclusion

In this study, we introduced the Tribonacci spinor and generalized

Tribonacci spinor by using the relationships between spinors and quater-

nions.Today, Tribonacci numbers are the most common generalization of

Fibonacci numbers, whose applications in science are infinite. For exam-

ple, in sunflower, human body, corn pyramids, Pascal triangle, represen-

tation groups. On the other hand, quaternions are defined as obtained

by enlarging the set of complex numbers. Quaternions have applications

in physics, mathematics, engineering and robotics. Also, by means of

spinors, a shorter and simpler representation of quaternions can be ob-

tained. By combining this information, we have obtained a new series

called generalized Tribonacci spinors {Av,n}n∈N. And we think that this

study, in which we have obtained a new series, will be a basic study es-

pecially for mathematicians working on geometry and algebra. In a later

work, we obtain curious properties of this type of numbers.
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