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Abstract. In this paper, we investigate the existence of the asymptotically almost automorphic solution

of the following type of abstract nonlinear integro-dynamic equation

y∆(s) = Ay(s) + F






s, y(s),

s
∫

t0

H(s, τ, y(τ))∆τ






, s ∈ T

k,

y(0) = y0

in the Banach space of continuous function on a time scale T. We apply the Krasnoselskii fixed point

theorem to show the existence of an almost automorphic solution of the above dynamic equation.

Key Words: Nonlinear Equation, Abstract Dynamic Equation, Integro-Dynamic equation, Fixed Point

Theory, Time scales.

AMS Subject Classification No: 26A24; 26A33; 26E70; 34B15; 34N05; 39A10.

1. Introduction

In 1988, German Mathematician Stefan Hilger introduced the concept of time scale in Mathematics

through his Ph.D. thesis. After that, Hilger published two interesting articles on this topic [18, 19].

Time scale unifies the discrete and continuous calculi, to study them simultaneously rather than sepa-

rately. For details on time scale calculus, see the monographs [6, 7]. In recent times researchers have

been quite actively working on dynamic equations to merge results from both differential and difference

equations. Dynamic equations are associated with several real-world phenomena involving discrete as

well as continuous variables, for example, we refer to Population Dynamics [21, 38], Optimization Theory

[37], Economics [2], production-inventory modelling [3], etc.

Periodic functions has a wide range of applications in real word problem, for example in field of

astronomy, physics, biology, in the use of signal processing, control system, electrical engeneering etc.

But to be more precise we actually come accross phenomena that involves disturbed form of periodic

functions. to generalise this kind of issue, we make use of functions which do not have a exact periodic

nature but having several periodic nature. We call them almost periodic. Again we generalise them to

almost automorphic(AA) functions and then asymptically almost automorphic(AAA) functions, etc.

In 2011, Y. Li and C. Wang, [26] introduced the concept of almost periodic functions on time scales.

Then they applied the results to a class of high-order Hopfield neural networks with variable delays. On

the other hand, in 2012 , Hamza and Oraby [16], studied the stability of abstract dynamic equation

x∆(t) = Ax(t), where A is the infinitesimal generator of a C0−semigroup T = {T (s) : s ∈ T ⊂ L(Y)} .
In 2013, Lizama and Mesquita, [25] introduced the concept of almost automorphic functions on time

scale and presented the first basic results concerning such functions. They also studied the existence and

uniqueness of solutions of the following dynamic equation

x∆(t) = A(t)x(t) + f(t, x(t)), t ∈ T,
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over Euclidian space Rn. Assuming the equation x∆(t) = A(t)x(t) admitting exponential Dichotomy and

f : T×X → X satisfying global Lipschitz condition on its second variable, they proved the existence and

uniqueness of the almost automorphic solution to the above dynamic equation.

In 2014, Guérékata et al. [14] presented almost automorphic functions of order n. They also studied

the existence and uniqueness, global stability of the solution of first order dynamic equation with finite

time varying delay.

Using their results of [14, 16, 25, 26], in 2015, Milcé and Mado proved the existence and uniqueness of

almost automorphic mild solution of the following dynamic equation

u∆(t) = A(t)u(t) + f



t, u(t),

t
∫

0

φ(s, u(s))∆s



 , t ∈ T
k,

on Euclidian space, Rn. A : T → Rn is a matrix-valued function. φ, f both satisfy some Lipschitz

conditions. After that in 2015, Guérékata et al. studied semilinear dynamic equationx∆(t) = Ax(t) +

f(t, x(t)) in Banach space, where A is the infinitesimal generator of a C0−semigroup of bounded linear

operators. They established an almost automorphic mild solution to the equation. In 2018, Hamza and

Oraby [17] studied the stability of nonlinear dynamic equation

x∆(t) = A(t)x(t) + f(t, x(t)), t ∈ [τ,∞)T.

Several other aspects are also studied.

The notion of asymptotically almost automorphic functions also abbreviated as AAA functions, are

typically those type of functions which behaves like almost automorphic functions after a certain initial

transient phase. This type of functions behaves differently at the initial phase and gradually settles down

with the behaviour of an equivalent almost automorphic function. These type of functions are useful for

studying long-term behaviour of a dynamical system,specially used while dealing with a non-autonomous

system or systems which are influenced bt some external influences. In 2018, Guerekata et al. [10]

studied the existence of asymptotically almost automorphic mild solutions for nonautonomous semilinear

evolution equations. In 2019, Lizama and Mesquita, [28] introduced the concept of asymptotically almost

automorphic functions of order n on time scale. They established fundamental properties of such functions

and investigated the unique solution of IVP associated to the semilinear equation,

x∆(t) = A(t)x(t) + f(t, x(t)), t ∈ [t0,∞)T

x(t0) = x0

Following the above results, in 2016, Milce [29] studied the existence of asymptotically almost automorphic

solutions for the following integro-dynamic equation

x∆(t) = Ax(t) +

t
∫

0

B(t− s)x(s)∆s + f(t, x(t))

with nonlocal initial condition x(0) = x0 + ψ(x). A is matrix, B is matrix-valued function, f, ψ are

rd-continuous functions satisfying some kind Lipschitz condition.

In 2022, Bohner et al. [9], gave some qualitative results for nonlinear integro-dynamic equations via

integral inequalities. They considered the equation

x∆(t) + p(t)xσ(t) = F



t, x(t),

t
∫

t0

H(t, s, x(x))∆s



 , t ∈ T
k, a ≤ t ≤ b

x(t0) = x0 ∈ R
n

and existence, stability, boundedness, and dependence of the solution on initial data are discussed.
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In 2023, Cosme et al. [13], discussed the existence and stability of the bounded solution of the following

abstract dynamic equation

z∆(t) = Az(t) + f(t, z(t)), t ∈ [t0,∞)T,

z(t0) = z0

both mild and classical solutions are discussed.

Motivated by the above we study the following abstract integro-dynamic equation

y∆(s) = Ay(s) + F



s, y(s),

s
∫

t0

H(s, τ, y(τ))∆τ



 , s ∈ T

y(0) = y0

where A is the infinitesimal generator of a C0−semigroup of bounded linear operators, T = {T (s) : s ∈
T} ⊂ L(Y).
Here, T is a time scale and s0, S ∈ T.

T
k =

{

T \ (ρ (supT ) , supT) if supT <∞
T, otherwise,

where T = [s0, S]T = [s0, S] ∪ T = {s ∈ T : s0 ≤ s ≤ S} .
Throughout the article, (Y, ‖ · ‖Y ) is a Banach space, MY denotes the collection of all nonempty and

bounded subsets of Y

2. Preliminaries

Let us mention some existing results related to time scale calculus, some fixed point theorems, C0-

semigroup and their properties, almost automorphic functions and asymptotically almost automorphic

functions and their properties collectively, exponential stability of functions in time scale etc.

Definition 2.1. [6, Definition 1.58] A function f : T −→ Y is called a rd-continuous, if it is continuous

at every right dense point of T, and also ensures the existence of its limits at all left dense points in T.

We denote by Crd (T,Y) , the collection of all rd-continuous functions f : T −→ Y.

We also denote by BCrd(T,Y), the collection of all rd-continuous and bounded functions f : T −→ Y.

Definition 2.2. A function f : T × Y × Y is said to be an rd-continuous function on T × Y × Y if

f(s, ·, ·) is continuous on Y×Y for every s ∈ S and f(·, x, y) is rd-continuous on T for every (x, y) ∈ Y×Y.

Moreover, if the continuity of f(s, ·, ·) is uniform for every s ∈ T, then the function f is called uniformly

rd-continuous.

Definition 2.3. [6, Definition 2.25] A function p : T −→ R is called a regressive function if ∀ s ∈ Tk,

the quantity 1+µ(s)p(s) is always a nonzero quantity, where µ : T −→ R is the graininess function on T,

defined as µ(s) = σ(s)− s. We denote by R (T,R) , the collection of all regressive functions p : T −→ R.

Definition 2.4. If p ∈ R, then the generalised exponential function is defined as

ep(s, t) = exp





s
∫

t

ξµ(τ)(p(τ))∆τ



 , for t, s ∈ T

where the cylinder transformation ξh : Ch → Zh, given by

ξh(z) =
1

h
log(1 + zh),
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where log is the principal logarithm function. For h = 0, ξo is supposed to be the identical transfor-

mation.

For more properties of the generalised exponential function relating to regressive function, refer to [6, 25]

etc.

Definition 2.5. A mapping between two normed linear spaces is considered compact if bounded sets

are mapped into relatively compact sets.

Theorem 2.1. [39, Lemma 4] (Arzelà-Ascoli Theorem) A subset of C(T,R) which is both equicontinuous

and bounded is relatively compact.

Theorem 2.2. A subset of the space of continuous functions on a compact metric space is relatively

compact if and only if it is bounded and equicontinuous.

Definition 2.6. An operator T : X→ Y is said to be completely continuous if it is continuous and sends

a bounded set to a relatively compact set. i.e., T continuous as well as compact.

Theorem 2.3. [30, Theorem 11.2](Krasniselksĭı fixed point theorem) Let Y be a Banach space and B ⊂ Y

be a nonempty, closed and convex subset of Y. Let F1, F2 : B → Y be such that

(i) F1 is continuous and F1(B) is relatively compact (F1 is completely continuous)

(ii) F2 is a contraction.

(iii) F1(y1) + F2(y2) ∈ B, ∀ y1, y2 ∈ B.
Then ∃ ȳ such that T1(ȳ) + T2(ȳ) = ȳ.

Theorem 2.4. [25, 27] If α > 0, then e⊖α(t, s) ≤ 1, t, s ∈ T, t > s.

Lemma 2.1. Let α > 0, then for any fixed s ∈ T and s = −∞, one has the following: lim
t→+∞

e⊖α(t, s) = 0.

Lemma 2.2. [35] Let y, f ∈ Crd(T,R
+) with f a nondecreasing function and g, h ∈ R+(SR) with

g ≥ 0, h ≥ 0. If

y(s) ≤ f(s) +
s
∫

a

h(s)



y(t) +

t
∫

a

g(τ)y(τ)∆τ



∆s for s ∈ T
k

then the following two conditions hold:

a. y(s) ≤ f(s)
[

1 +
s
∫

a

h(s)eh+g(s, a)∆s

]

for s ∈ Tk

b. y(s) ≤ f(s)eh+g(s, a) for s ∈ Tk.

In particular if f(t) = 0, then y(t) = 0 for s ∈ Tk

Now we recall some results concerning semigroups of linear operators on time scales.

Definition 2.7. [16] A time scale T satisfying a− b ∈ T, for any a, b ∈ T with a > b is called a semigroup

time scale, usually denoted by T ⊆ R≥0.

Definition 2.8. [16] Let Y be a Banach space and T is a time scale containing 0. We say that T : T+
0 →

L(Y) is strongly continuous if ‖T (s)y − y‖ → 0 as s→ 0+ for each y ∈ Y.

Definition 2.9. [16] Let T be a semigroup time scale containing zero and L(Y) be the space of all

bounded linear operators from Y into itself. A family T =
{

T (t) : t ∈ T
}

⊂ L(Y), T : T → L(Y) is a

C0−semigroup if it satisfies the following conditions:

(1) T (s+ t) = T (s)T (t), for all s, t ∈ T(the semigroup property).

(2) T0 = T (0) = I, where I is the identity operator on Y.
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(3) lim
s→0+

T (s)y = y, i.e., T (·)y : T→ Y is continuous at 0 for each y ∈ Y.

In addition if lim
t→0
‖T (t)− I‖ = 0, the T is called uniformly continuous semigroup. Also if we have one

more condition ∗ ‖T (s)‖S ≤ 1, along with the conditions as in Definition 2.9, then we call T to be the

contraction semigroup of class (C0).

A linear operator A is called the generator of a C0−semigroup T if

Ay = lim
s→0+

T (µ(t))y − T (s)y
µ(t)− s , y ∈ D(A),

where the domain of A, D(A) is the set of all y ∈ Y which the above limit exists uniformly in t.

The semigroup T is said to be exponentially stable if there exists K ≥ 1 and α > 0 such that

‖T (t− t0)‖ ≤ Ke⊖α(t, t0), for all t, t0 ∈ T, t > t0.

For more details on semigroups on time scale refer to [16].

Definition 2.10. [22] Let A be a generator of a C0−semigroup T = {T (s) : s ∈ T}. A function y : T→ Y

is said to be mild solution of the equation

y∆(t) = Ay(t) + f(s)

if it is rd-continuous and satisfied the integral equation

y(t) = T (s− s0)y0 +
s
∫

s0

T (s− σ(t))f(t)∆t.

Following the similar definition above, we have the following definition.

Definition 2.11. Let A be the infinitesimal generator of a C0-semigroup
{

T (s) : s ∈ T
+
0

}

. Also assume

that F and H are functions in Crd (T× Y× Y,Y) and Crd(T×T×Y,Y), respectively. Then a function,

y ∈ BCrd(S,Y) is a mild solution of (3.1)-(3.2) if y satisfies the delta integral equation

y(s) = T (s− s0)y0 +
s
∫

s0

T (s− σ(t))F



t, y(t),

t
∫

s0

H(t, τ, y(τ))∆τ



∆t. (2.1)

Now we recall some properties of almost automorphic functions on time scales.

Definition 2.12. [25, Definition 3.1] A time scale T is called invariant under translations if

Π = {τ ∈ R : s± τ ∈ T, ∀s ∈ T} 6= 0.

Remark 2.1. One can easily verify the fact that a symmetric time scale which has semigroup property

and contains zero is also invariant under translation.

Lemma 2.3. [14] Let T be invariant under translation time scale. Then

i) Π ⊂ T⇐⇒ 0 ∈ T.

ii) Π ∩ T←→ 0 /∈ T.

In the following, we present preliminary results concerning almost automorphicity and asymptotically

almost automorphicity of functions in the time scale perspective. The concept of almost automorphicity

is a more general concept of almost periodic function. For more details on such functions refer to

[25]. Asymptotically almost automorphic functions are again some generalization of almost automorphic

functions, details of which can be found in [28].
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Definition 2.13. [14, Definition 29] Let Y be a Banach space and T be a time scale that is invariant

under translation. Then an rd-continuous function f : T → Y is called almost automorphic on T if for

every sequence (sn) on Π, there exists a subsequence (τn) ⊂ (sn) such that

f(s) = lim
n→∞

f(s+ τn)

is well defined for each s ∈ T, and

lim
n→∞f(s−τn)

= f(s)

for each s ∈ T.

The space of all almost automorphic functions f : T→ Y is denoted by AA(T,Y).

It is also a well-known result proved in, that if T is a symmetric time scale which is also invariant

under translation, then the graininess function µ : T→ R+ is almost automorphic.

Remark 2.2. The space AA(T,Y) equiped with the norm sup
s∈T

‖f(s)‖ is a Banach space.

Definition 2.14 (Definition 3.20, [25]). Let Y be a (real or complex) Banach space and T be a symmetric

time scale which is invariant under translation. Then an rd-continuous function f : T× Y→ Y is called

almost automorphic in s ∈ T uniformly for x ∈ K, where K is any compact subset of Y, if for every

sequence (sn) on Π, there exists a subsequence (τn) ⊂ (sn) such that:

f(s, y) = lim
n→∞

f(s+ τn, y) (2.2)

is well defined for each s ∈ T, y ∈ Y and

lim
n→∞

f(s− τn, y) = f(s, y) (2.3)

for each s ∈ T and y ∈ Y.

We denote by AA(T × Y,Y), the space of all almost automorphic functions f : T × Y → Y on time

scale T.

Following the similar definitions above, we define almost automorphic functions on a single parameter on

functions of the type, f(·, ·, ·).

Definition 2.15. An rd-continuous function f : T×Y ×Y is said to be an almost automorphic function

on s ∈ T uniformly for all (x, y) ∈ Y × Y, if for every sequence (sn) on Π, there exists a subsequence

(τn) ⊂ (sn) such that

lim
n→∞

f(s+ τn, x, y) = f̃(s, x, y) (2.4)

is well defined for each s ∈ T, x, y ∈ Y and

lim
n→∞

f̃(s− τn, x, y) = f(s, x, y) (2.5)

for each s ∈ T and x, y ∈ Y.

We denote by AA(T×Y×Y,Y), the space of all almost automorphic functions f : T×Y×Y→ Y on

time scale T.

Definition 2.16. [25] An rd-continuous function f : T+ × Y × Y → Y is said to be asymptotically

almost automorphic if it can be uniquely decomposed as f = g + φ, where g ∈ AA(T+ × Y× Y,Y) and
φ ∈ Crd(T

+ × Y× Y,Y) such that lim
s→∞

‖φ(s, x, y)‖ = 0, for all (x, y) ∈ Y× Y.
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The set of all functions, f : T+×Y×Y→ Y which are asymptotically almost automorphic is denoted

by AAA(T+ × Y× Y,Y).

Note: We denote it by Crd0
(T+ ×Y×Y,Y) being the set of all functions, f ∈ Crd(T

+ ×Y× Y,Y) such
that lim

s→∞
‖φ(s, x, y)‖ = 0, for all (x, y) ∈ Y× Y.

Remark 2.3. If f = g + φ is asymptotically almost automorphic such that g is principal term and φ is

corrective term, then

‖f‖ = sup
t∈T

‖g(t)‖Y + sup
t∈T+

‖φ(t)‖Y

defines a norm such that (AAA(T+ × Y), ‖ · ‖) is a Banach space.

3. Main Results

In Our first approach, we investigate the existence and uniqueness of the mild solution of the following

abstract integro-dynamic IVP

y∆(s) = Ay(s) + F



s, y(s),

s
∫

t0

H(s, τ, y(τ))∆τ



 , (3.1)

y(s0) = y0. (3.2)

where s ∈ Tk.

Lemma 3.1. Let A be the infinitesimal generator of the C0-semigroup
{

T (s) : s ∈ T
+
0

}

. Also assume

that F and H are functions in Crd (T× Y× Y,Y) and Crd(T×T×Y,Y), respectively. Then y is a mild

solution of (3.1)-(3.2) iff y satisfies the ∆−integral equation

y(s) = T (s− s0)y0 +
s
∫

s0

T (s− σ(t))F



t, y(t),

t
∫

s0

H(t, τ, y(τ))∆τ



∆t. (3.3)

Proof. For proof of the lemma we refer [9, Lemma 3.1]. �

In the remainder of this paper, we will consider T as a symmetric time scale with the semigroup

property and contains zero. We say that A generates an exponentially stable C0−semigroup, i,e. there

exist M ≥ 1 and α > 0 such that

‖T (s− s0)‖ ≤Me⊖α(s, s0), for all s, s0 ∈ T, s ≥ s0. (3.4)

Theorem 3.1. Consider the following hypothesis

(H1) Let F : T× Y × Y → Y rd-continuous function such that

‖F(s, x1, y1)−F(s, x2, y2)‖ ≤ LF(s) (‖x1 − x2‖+ ‖y1 − y2‖)

for all t ∈ T and xi, yi ∈ Y, LF ∈ R+(T,R+).

(H2) H : T× T× Y → Y is an rd-continuous function on its first and second variable and continuous

on its third variable with

‖H(t, s, y1)−H(t, s, y2)‖ ≤ LH(s)‖y1 − y2‖ ∀ t, s ∈ T, yi ∈ Y where LH ∈ R+(T,R+).

(H3) A is the generator of an exponentially stable C0-semigroup,
{

T (s) : s ∈ T
+
0

}

.

(H4) M(S − s0)L∗
F(1 + L∗

H(S − s0)) < 1.

Then (3.1)-(3.2) has a unique mild solution whenever MF = sup
{

‖F(s, 0,Ψ)‖Y; s ∈ T, Ψ ∈ Y
}

<∞.
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Proof. Define a ball, Bk ⊂ Crd(T×Y) as Bk = {y ∈ Crd(T× Y) : ‖y‖Y ≤ k} , where k = 2M(‖y0‖+MF).

Let us also define a function W : Bk → Crd(T× Y) defined as

W(y)(s) := T (s− s0)y0 +
s
∫

s0

T (s− σ(t))F



t, y(t),

t
∫

s0

H(t, τ, y(τ))∆τ



∆t. (3.5)

In order to apply the Krasnoselski fixed point theorem given by Theorem 2.3, we express W as

W(y)(s) =W1(y)(s) +W2(y)(s),

where

W1(y)(s) := T (s− s0)y0 +
s
∫

s0

T (s− σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t. (3.6)

and

W2(y)(s) : =
s
∫

s0

T (s− σ(t))
[

F
(

t, y(t),
t
∫

s0

H(t, τ, y(τ))∆τ
)

− F
(

t, 0,
t
∫

s0

H(t, τ, 0)∆τ
)]

∆t.. (3.7)

It is obvious to see that W1 is continuous, We show that W1 is completely continuous and W2 is a

contraction.

Step 1: W1 : Bk → Crd(J× Y) is completely continuous. For y ∈ Bk, we have

‖W1(y)‖Y =

∥

∥

∥

∥

∥

T (s− s0)y0 +
s
∫

s0

T (s− σ(t))F



t, 0,

t
∫

0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

≤ ‖T (s− s0)‖Y ‖y0‖Y +

s
∫

s0

∥

∥

∥

∥

∥

T (s− σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ





∥

∥

∥

∥

∥

Y

∆t

≤ Me⊖α(s, s0)‖y0‖Y +MMF

S
∫

s0

e⊖α(s, σ(t))∆t (using equation (3.4))

≤ M(‖y0‖Y +MF(S − s0)) (using Theorem 2.4).

Hence we see that W1 is bounded in Bk.
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Next, we test equicontinuity of W1(Bk). Let s1, s2 ∈ T and y ∈ Bk. Then

‖W1(y)(s2)−W1(y)(s1)‖Y =

∥

∥

∥

∥

∥

T (s2 − s0)y0 +
s2
∫

s0

T (s2 − σ(t))F



t, 0,

t
∫

0

H(t, τ, 0)∆τ



∆t

− T (s1 − s0)y0 +
s1
∫

s0

T (s1 − σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

≤ ‖T (s2 − s0)− T (s1 − s0)y0‖Y

+

∥

∥

∥

∥

∥

s2
∫

s0

T (s2 − σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

s1
∫

s0

T (s1 − σ(t))F



t, 0,

t
∫

0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

≤ ‖T (s2 − s0)− T (s1 − s0)y0‖Y

+

∥

∥

∥

∥

∥

T (s2 − s0)
s1
∫

s0

T (s0 − σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

T (s2 − s0)
s2
∫

s1

T (s0 − σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

+

∥

∥

∥

∥

∥

T (s1 − s0)
s1
∫

0

T (s0 − σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

⇒ ‖W1(y)(s2)−W1(y)(s1)‖Y ≤
∥

∥T (s2 − s0)− T (s1 − s0)
∥

∥

Y



‖y0‖Y +

∥

∥

∥

∥

∥

s1
∫

s0

T (s0 − σ(t))

F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y





+

∥

∥

∥

∥

∥

s2
∫

s1

T (s2 − σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

Y

≤
∥

∥T (s2 − s0)− T (s1 − s0)
∥

∥

Y



‖y0‖T +MMF

s1
∫

s0

e⊖α(0, σ(t))





+ MF

s2
∫

s1

e⊖α(s2, σ(t))∆t

≤
∥

∥T (s2 − s0)− T (s1 − s0)
∥

∥

Y



‖y0‖T +MMF

s1
∫

s0

eα(σ(t), 0)





+ MF(s2 − s1) (By using Theorem 2.4).

We will have a similar inequality when we take t1 > t2. Since T represents a C0−semigroup, T is

continuous, and hence the first part of the above inequality tends to zero as s2 tends to s1. Thus it is

obvious that the right-hand side of the above inequality tends to zero as s2 tends to s1, thus confirming

the equicontinuity of W1(Bk) by compact mapping theorem.
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Since W1(Bk) is both equicontinuous and bounded, by Arzela Ascoli Theorem, W1 is compact. Since

every compact operator is also completely continuous and subsequently it is completely continuous.

Step 2: We show that W2 : Bk → Crd(T× Y) is a contraction. Let x, y ∈ Bk, then we have

‖W [y](s)−W [x](s)‖Y ≤
s
∫

s0

‖T (s− σ(t))‖Y

∥

∥

∥

∥

∥

∥

F



t, y(t),

t
∫

s0

H(t, τ, y(τ))∆τ





F



t, x,

t
∫

s0

H(t, τ, x(τ))∆τ



 ‖Y∆t.

≤ M

s
∫

s0

e⊖α(s, σ(t))LF(t)



‖y(t)− x(t)‖ +
t
∫

s0

LH(τ)‖y(τ) − x(τ)‖Y∆τ



∆t

≤ M

s
∫

s0

e⊖α(s, σ(t))LF (t) (1 + L∗
H(t− 0)) ‖y(t)− x(t)‖Y∆t

≤ ML∗
F (1 + L∗

H(S − s0)) ‖y − x‖Y
s
∫

s0

e⊖α(s, σ(t))∆t

≤ ML∗
F(1 + L∗

H(S − s0))‖y − x‖Y < ‖y − x‖Y.

By the conditions (H4), we see that W2 is a contraction.

Step 3: For x, y ∈ Bk, W1(x)(s) +W1(y)(s) ∈ Bk, ∀ s ∈ Tr. We have

∥

∥W1[y](s) +W2[x](s)
∥

∥

Y
=

∥

∥

∥

∥

∥

T (s− s0)y0 +
s
∫

s0

T (s− σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

+

s
∫

s0

T (s− σ(t))



F



t, y(t),

t
∫

s0

H(t, τ, y(τ)



∆τ





− F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ





]

∆t

∥

∥

∥

∥

∥

Y

≤ ‖T (s− s0)y0‖+
∥

∥

∥

∥

∥

s
∫

s0

T (s− σ(t))F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ



∆t

∥

∥

∥

∥

∥

+

s
∫

s0

‖T (s− σ(t))‖
∥

∥

∥

∥

∥

F



t, y(t),

t
∫

s0

H(t, τ, y(τ)



∆τ

− F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ





∥

∥

∥

∥

∥

∆tY

≤ M‖y0‖+MMF + (S − s0)(L∗
F (1 + L∗

H(S − s0))‖x‖
= M(‖y0‖+MF) +M(S − s0)(L∗

F (1 + L∗
H(S − s0))k

≤ k.
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Step 4: If possible let us suppose that y1, y2 are two distinct solutions of the IVP, then for any s ∈ T,

using (H1)-(H3), we get

‖y(s)− x(s)‖Y ≤
s
∫

s0

‖T (s− σ(t))‖Y

∥

∥

∥

∥

∥

∥

F



t, y(t),

t
∫

s0

H(t, τ, y(τ))∆τ





F



t, x,

t
∫

s0

H(t, τ, x(τ))∆τ



 ‖Y∆t.

≤ M

s
∫

s0

e⊖α(s, σ(t))LF(t)



‖y(t)− x(t)‖ +
t
∫

s0

LH(τ)‖y(τ) − x(τ)‖Y∆τ



∆t

≤
s
∫

s0

M
(1 + µ̃α)

α
LF(t)



‖y(t)− x(t)‖ +
t
∫

s0

LH(τ)‖y(τ) − x(τ)‖Y∆τ



∆t.

Using the 2.2, from the above inequality we get ‖y(s) − x(s)‖Y ≤ 0, which gives y = x. Hence the

theorem. �

Inspired by the definition of bi-almost automorphic function in R as in [36], we define the following:

Definition 3.1. (Bi-almost automorphic function) A function H(s, t) : T × T → Y which is rd-

continuous with respect to both its variables, is called bi-almost automorphic if for every sequence (sn)

on Π, there exists a subsequence (τn) ⊂ (sn) such that

H̃(s, t) = lim
n→∞

H(s+ τn, t+ τn) (3.8)

is well defined for each s, t ∈ T and

lim
n→∞

H̃(s− τn, t− τn) = H(s, t) (3.9)

for each s, t ∈ T.

By bAA(T× T,Y), we denote the set of all those bi-almost automorphic functions.

Remark 3.1. The notion of bi-almost automorphicity is the generalization of the function H(s, t) having

the same period with respect to both of its variables. i.e., H(s+T, t+T ) = H(s, t) ∀s, t ∈ T for some T ∈
R− {0}.

Definition 3.2. A function H(s, t, y) : T × T × Y → Y which is rd-continuous in its first and second

variable, is called bi-almost automorphic if for every sequence (sn) on Π, there exists a subsequence

(τn) ⊂ (sn) such that

H̃(s, t, y) = lim
n→∞

H(s+ τn, t+ τn, y) (3.10)

is well defined for each s, t ∈ T uniformly in Y and

lim
n→∞

H̃(s− τn, t− τn, y) = H(s, t, y) (3.11)

for each s, t ∈ T uniformly in Y.

By bAA(T× T× Y,Y), we denote the set of all those bi-almost automorphic functions.

Definition 3.3 (bi-asymptotically almost automorphic function). A function f : T×T→ Y, which

is rd-continuous with respect to both of its variables, is said to be bi-asymptotically almost automorphic

if the function f(s, t) has a unique decomposition, f(s, t) = g(s, t) + h(s, t) with g ∈ bAA(T × T,Y) and

h ∈ Crd0
(T+ × T+), i.e., h is rd-continuus with respect to both the variables and lim

(s,t)→(∞,∞)
h(s, t) = 0.
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In the following we establish results concerning the existence and uniqueness of the bounded, asymp-

totically almost automorphic solution to the given IVP; (3.1)-(3.2). Let y ∈ BCrd(T,Y) and consider the

following hypothesis

(H
′

1) Let F(s, x, y) = G(s, x, y) + I(s, x, y) ∈ AAA(S+ × Y × Y, Y ) be a function satisfying,

‖F(s, x1, y1)−F(s, x2, y2)‖ ≤ LF(s) (‖x1 − x2‖+ ‖y1 − y2‖)

for all s ∈ T and xi, yi ∈ Y, LF ∈ AA(T,R+).

(H
′

2) H(s, τ, y(τ)) = J (s, τ, y(τ)) +K(s, τ, y(τ)) ∈ bAAA(T+ × T+ × Y,Y) be such that

lim
s→∞

s
∫

−∞
K(s, τ, y(τ))∆τ = 0 and

‖H(t, s, y1)−H(t, s, y2)‖ ≤ LH(s)‖y1 − y2‖ ∀ t, s ∈ T, yi ∈ Y,

where LH ∈ AA(T,R+) such that L1
H(t) =

s
∫

−∞
LH(t)∆t <∞, for any s ∈ T.

(H
′

3) A is the generator of an exponentially stable C0-semigroup,
{

T (s) : s ∈ T
+
0

}

.

(H
′

4) There exists r > 0 such that αr
M
− r(1 + µ̃α)

(

L∗
F + L1

H
∗)
> (1 + µ̃α)MF , where

MF = sup
{

‖F(s, 0, z)‖Y; s ∈ T+, z ∈ Y
}

,where, L∗
F = sup

t∈T+

LF(t), L
1
H

∗
= sup

t∈T+

LH1(s).

We prove the existence and uniqueness of the solution of the IVP (3.1)-(3.2). Let us first establish some

results required for the main result.

Lemma 3.2. Let A be the infinitesimal generator of the C0-semigroup T =
{

T (s) : s ∈ T
+
0

}

. Also as-

sume that F and H are functions in Crd (T× Y× Y,Y) and Crd(T × T × Y,Y), respectively. Then

y ∈ BCrd(S,Y) is a mild solution of (3.1)-(3.2) if and only if y satisfies the following improper ∆−integral

y(s) =

s
∫

−∞

T (s− σ(t)F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t. (3.12)

Proof. If y is mild solution of (3.1)-(3.2) then by Definition 2.11 we have

y(s) = T (s− so)y0 +
s
∫

s0

T (s− σ(t))F



t, y(t),

t
∫

s0

H(t, τ, y(τ))∆τ



∆t. (3.13)

Since T is exponentially stable, so we get

‖T (s− s0)y0‖ =Me⊖α(s, s0)‖y0‖. (3.14)

Again, since y0 = y(s0) and y ∈ BCrd(T,Y), there exists m > 0 such that ‖y‖Y ≤ m and hence from

(3.14), we get

‖T (s− s0)y0‖ =Mme⊖α(s, s0), s ≥ 0. (3.15)

Taking lim s0 → −∞, we can see from (3.14) that

lim
s0→−∞

‖T (s− s0)y0‖ = 0. (3.16)

Now taking lim s0 → −∞ in equation (3.13), we obtain

y(s) =

s
∫

−∞

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t. (3.17)

Now we check for convergence of

s
∫

−∞

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t. (3.18)
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Let us consider the following

F1 = F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ





F2 = F



t, y(t),

t
∫

s0

H(t, τ, y(τ))∆τ





− F



t, 0,

t
∫

s0

H(t, τ, 0)∆τ





such that F = F1 + F2.

Now

∥

∥

∥

∥

∥

s
∫

−∞

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

∥

∥

∥

∥

∥

=

s
∫

−∞

‖T (s− σ(t))(F1 + F2)‖∆t

≤ M

s
∫

−∞

e⊖α(s, σ(t))‖F1 + F2‖∆t

≤ M







s
∫

−∞

e⊖α(s, σ(t))‖F1‖∆t+
s
∫

−∞

e⊖α(s, σ(t))‖F2‖∆t







≤ M







MF

s
∫

−∞

1 + µ(t)α

α
(−(⊖α)e⊖(s, σ(t)))∆t







. (3.19)

We have

s
∫

−∞

e⊖α(s, σ(t))‖F1‖∆t =

s
∫

−∞

1 + µ(t)α

α
(−(⊖α)e⊖(s, σ(t))) ‖F1‖∆t

≤ MF (1 + µ̃α)

α

s
∫

−∞

(−(⊖α)e⊖(s, σ(t))) ∆t

≤ MF (1 + µ̃α)

α
(e⊖(s, s)− e⊖(s,−∞))∆t

=
MF (1 + µ̃α)

α
. (3.20)
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Also
s
∫

−∞

e⊖α(s, σ(t))‖F2‖∆t =

s
∫

−∞

e⊖(s, σ(t))

∥

∥

∥

∥

∥

F



t, y(t),

t
∫

0

H(t, τ, y(τ))∆τ





− F



t, 0,

t
∫

0

H(t, τ, 0)∆τ





∥

∥

∥

∥

∥

∆t

≤
s
∫

−∞

e⊖(s, σ(t))



LF



‖y(t)‖+
s
∫

−∞

LH(τ)‖y(τ)‖









≤ mLF

(

1 + L
′

H

)

s
∫

−∞

e⊖(s, σ(t))

= mLF

(

1 + L
′

H

) (1 + µ̃α)

α
. (3.21)

Using results given by equation (3.20) and equation (3.21), from (3.19), we get
∥

∥

∥

∥

∥

s
∫

−∞

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

∥

∥

∥

∥

∥

≤ M
(1 + µ̃α)

α
(MF +mLF(1 + L

′

H)

which shows that

∥

∥

∥

∥

∥

s
∫

−∞
T (s− σ(t))F

(

t, y(t),
t
∫

−∞
H(t, τ, y(τ))∆τ

)

∆t

∥

∥

∥

∥

∥

is convergent.

Now

y0 = y(s0) =

∥

∥

∥

∥

∥

s0
∫

−∞

T (s0 − σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

and

y(s) =

s
∫

−∞

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

=

0
∫

−∞

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

+

s
∫

0

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

= T (s− s0)
s0
∫

−∞

T (s0 − σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

+

s
∫

s0

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

= T (s− s0)y(s0) +
s
∫

0

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t.

By the above discussion, we can confirm that y given by (3.12) is in fact a mild solution to the initial

value problem given by (3.1)-(3.2). �

Proposition 3.2. If f ∈ AA(T,Y), then the range set Rf = {f(s) : s ∈ T} is relatively compact.

Proposition 3.3. If f ∈ AAA(T+,Y), then the range set Rf = {f(s) : s ∈ T+} is relatively compact.
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Proposition 3.4. Let F ∈ AA(T × Y× Y,Y) be such

‖F (s, x1, y1)− F (s, x2, y2)‖ ≤ LF (s)(‖x1 − x2‖+ ‖y1 − y2‖

uniformly for s ∈ T and xi, yi ∈ Y, i = 1, 2, where, LF ∈ AA(T,R+). Then for any x, y ∈ AA(T,Y), the
function Ψ : T→ Y, given by Ψ(s) = F (·, x, y) is almost automorphic.

Proof. Let (τ
′

n)n∈N be a sequence in Π. since x, y and F are almost automorphic functions, we can get a

subsequence (τn)n∈N of (τ
′

n)n∈N such that

(1) lim
n→∞

x(s+ τn) = x̃(s) exists for each s ∈ T.

(2) lim
n→∞

x̃(s− τn) = x(s) exists for each s ∈ T.

(3) lim
n→∞

y(s+ τn) = ỹ(s) exists for each s ∈ T.

(4) lim
n→∞

ỹ(s− τn) = y(s) exists for each s ∈ T.

(5) lim
n→∞

F (s+ τn, x, y) = F̃ (s, x, y) exists for each s ∈ T.

(6) lim
n→∞

F̃ (s− τn, x, y) = F (s, x, y) exists for each s ∈ T.

Also since LF ∈ AA(T,R+), we have

* lim
n→∞

LF (s+ τn) = L̃F (s) exists for each s ∈ T

** lim
n→∞

L̃F (s− τn) = LF (s) exists for each s ∈ T.

Let Ψ̃(s) = F̃ (·, x̃(s), ỹ(s)). We have

‖Ψ(s+ τn)− Ψ̃(s)‖ = ‖F (s+ τn, x(s+ τn), y(s+ τn))− F̃ (·, x̃(s), ỹ(s))‖
≤ ‖F (s+ τn, x(s+ τn), y(s+ τn))− F (s+ τn, x̃(s), ỹ(s))‖

+ ‖F (s+ τn, x̃(s), ỹ(s)) − F̃ (·, x̃(s), ỹ(s))‖. (3.22)

According to the given assumptions, we have

‖F (s+ τn, x(s+ τn), y(s+ τn))− F (s+ τn, x̃(s), ỹ(s))‖

≤ LF (s+ τn)(‖x(s+ τn)− x̃(s)‖+ ‖y(s+ τn)− x̃(s)‖).

So by (1), (3) and (∗), we get

lim
n→∞

‖F (s+ τn, x(s+ τn), y(s+ τn))− F̃ (s+ τn, x̃(s), ỹ(s))‖ = 0. (3.23)

Also by (5), we have

lim
n→∞

‖F (s+ τn, x̃(s), ỹ(s))− F̃ (·, x̃(s), ỹ(s))‖ = 0. (3.24)

So by using equations (3.23) and (3.24), we get from equation (3.22)

lim
n→∞

Ψ(s+ τn) = Ψ̃(s) for each s ∈ T.

Using a similar argument as above we can also prove that

lim
n→∞

Ψ̃(s− τn) = Ψ(s) for each s ∈ T.

This proves that Ψ ∈ AA(T,Y). �

Proposition 3.5. If F ∈ AAA(T+ × Y × Y,Y) and satisfies (H
′

2), then for x, y ∈ AAA(T+,Y), the

function Γ : T+ → Y, given by Γ(s) = F(s, x(s), y(s)) is also asymptotically almost automorphic.
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Proof. By (H
′

2) F ∈ AAA(T+ × Y× Y,Y), and

F(s, x(s), y(s)) = G(s, x(s), y(s) + I(s, x(s), y(s)),

where G ∈ AA(T × Y × Y,Y) and I ∈ Crd0
(T × Y × Y,Y). Again for x, y ∈ AAA(T+,Y), we have

x(s) = u(s) + w(s) and y(s) = v(s) + z(s), where u, v ∈ AA(T,Y) and w, z ∈ Crd0
(T,Y).

Now,

F(s, x(s), y(s)) = F(s, u(s), v(s)) + [F(s, x(s), y(s)) −F(s, u(s), v(s))].

Let F
′

(s) = F(s, x(s), y(s)) −F(s, u(s), v(s)), F ′′

(s) = F(s, u(s), v(s)).
Clearly by Proposition 3.4, for u, v ∈ AA(T,Y) F′′ ∈ AA(T,Y).

Again, for w(s) ∈ Crd0
(T+,Y), we have lim

s→∞
‖x(s)− u(s)‖ = lim

s→∞
‖w(s)‖ = 0.

Similarly we get lim
s→∞

‖y(s)− v(s)‖ = lim
s→∞

‖z(s)‖ = 0.

Now using (H
′

2), we get

‖F ′

(s)‖ = ‖F(s, x(s), y(s)) −F(s, u(s), v(s))‖ ≤ LF(s)(‖x(s) − u(s)‖+ ‖y(s)− v(s)‖)

⇒ lim
s→∞

‖F ′

(s)‖ = lim
s→∞

LF (s)(‖x(s)− u(s)‖+ ‖y(s)− v(s)‖)

= lim
s→∞

(LF (s))( lim
s→∞

‖x(s)− u(s)‖+ lim
s→∞

‖y(s)− v(s)‖)

= 0 (as LF ∈ AA(T,R+) ⊂ BCrd(T,R
+)).

Hence F
′ ∈ AA(T,Y). So from the above discussion, we can confirm that Γ ∈ AAA(T+,Y). �

Proposition 3.6. If J ∈ bAA(T×T×Y,Y) be a function as mentioned in (H
′

2) then for any y ∈ AA(T,Y)
the function

Φ(s) :=

s
∫

−∞

J (s, τ, y(τ))∆τ

is almost automorphic.

Proof. Let (τn)n∈N be a sequence in Π. Since y ∈ AA(T,Y) and J ∈ bAA(T × T × Y,Y), we have a

subsequence (sn) ⊂ (τn)n∈N such that

1) lim
n→∞

y(s+ τn) = ỹ(s) exists for each s ∈ T.

2) lim
n→∞

ỹ(s− τn) = y(s) exists for each s ∈ T.

3) lim
n→∞

J (s+ τn, t+ τn, y) = J̃ (s, t, y) exists for each s, t ∈ T.

4) lim
n→∞

J̃ (s− τn, t− τn, y) = J (s, t, y) exists for each s, t ∈ T.
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Let Φ̃(s) =
s
∫

−∞
J̃ (s, τ, ỹ(τ))∆τ.

Then

‖Φ(s+ sn)− Φ̃(s)‖ =

∥

∥

∥

∥

∥

∥

s+sn
∫

−∞

J (s+ sn, τ, y(τ))∆τ −
s
∫

−∞

J̃ (s, τ, ỹ(τ))∆τ

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

s
∫

−∞

J (s+ sn, τ + sn, y(τ + sn))∆τ −
s
∫

−∞

J̃ (s, τ, ỹ(τ))∆τ

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

s
∫

−∞

J (s+ sn, τ + sn, y(τ + sn))∆τ −
s
∫

−∞

J (s+ sn, τ + sn, ỹ(τ))∆τ

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

s
∫

−∞

J (s+ sn, τ + sn, ỹ(τ))∆τ −
s
∫

−∞

J̃ (s, τ, ỹ(τ))∆τ

∥

∥

∥

∥

∥

∥

≤
s
∫

−∞

‖J (s+ sn, τ + sn, y(τ + sn))− J (s+ sn, τ + sn, ỹ(τ))‖∆τ

+

s
∫

−∞

∥

∥

∥J(s+ sn, τ + sn, ỹ(τ)) − J̃ (s, τ, ỹ(τ))
∥

∥

∥∆τ

≤
s
∫

−∞

J (s+ sn) ‖y(s+ sn)− ỹ(s)‖∆τ

+

s
∫

−∞

∥

∥

∥J (s+ sn, τ + sn, ỹ(τ)) − J̃ (s, τ, ỹ(τ))
∥

∥

∥∆τ.

Now taking n −→ ∞, taking into account the fact that LJ ∈ AA(T,Y) as given by (H2); together with

1) and 3) we see from the above inequality that,

lim
n→∞

Φ(s+ sn) = Φ̃(s) ∀s ∈ T.

Similarly by using H2 together with 2) and 4) we can show that

lim
n→∞

Φ̃(s− sn) = Φ(s) ∀s ∈ T.

Thus we establish Φ ∈ AA(T,Y). �

Proposition 3.7. Let H ∈ bAAA(T+ × T+ × Y,Y) satisfying (H
′

2). Then for any y ∈ AAA(T+,Y) the

function

Φ(s) :=

s
∫

−∞

H(s, τ, y(τ))∆τ,

is asymptotically almost automorphic.

Proof. Since y ∈ AAA(T,Y). Let us suppose that y(τ) = z(τ) + w(τ), where z ∈ AA(T,Y) and w ∈
Crd0

(T+,Y). Again for H ∈ bAAA(T × T× Y,Y), we have

H(s, τ, y(τ)) = J (s, τ, y(τ)) +K(s, τ, y(τ)) (3.25)

for some(unique) J ∈ bAA(T× T× Y,Y) and K ∈ Crd0
(T+ × T+ × Y,Y). Now, we have

H(s, τ, y(τ)) = H(s, τ, z(τ)) + [H(s, τ, y(τ))−H(s, τ, z(τ))]. (3.26)



18

It is evident by using similar arguments as in Proposition 3.4 that Φ1(s, τ) := H(s, τ, z(τ)) ∈ bAA(T×
T,Y) for z being almost automorphic. Also by using the condition (H

′

2) and the fact that w(s) =

x(s)− z(s), we can also confirm that

lim
(s,τ)→(∞,∞)

‖H(s, τ, y(τ))−H(s, τ, z(τ))‖ = lim
τ→∞

|LH(τ)|‖y(τ) − z(τ)‖

= lim
τ→∞

|LH(τ)|‖w(τ)‖ = 0.

Thus we have from above discussion, Φ2(s, τ) := H(s, τ y(τ)) ∈ bAAA(T+ × T+,Y). Now since Φ2 ∈
bAAA(T+ × T+,Y), we have unique decomposition of Φ2.

Let Φ2(s, τ) = g(s, τ) + h(s, τ), where g ∈ bAA(T× T,Y) and h ∈ Crd0
(T+ × T+,Y).

Φ(s) :=

s
∫

−∞

H(s, τ, y(τ))∆τ =

s
∫

−∞

J (s, τ, y(τ))∆τ +
s
∫

−∞

K(s, τ, y(τ))∆τ. (3.27)

Since every asymptotically almost automorphic function is also almost automorphic. By Proposition 3.6,

we have

Φ3(s) :=

s
∫

−∞

J (s, τ, y(τ))∆τ ∈ AA(T,Y). (3.28)

Also by the given condition as in (H
′

2), we have

lim
s→∞

s
∫

−∞

K(s, τ, y(τ))∆τ = 0. (3.29)

By the help (3.28) and (3.29), we can conclude from (3.27) that Φ ∈ AAA(T+,Y). �

Proposition 3.8. Under the hypothesis (H
′

1)− (H
′

3), the function F3 defined as

Ψ(s); =

s
∫

−∞

T (s− σ(t))F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t

is also aysmptotically almost automorphic.

Since F ∈ AAA(T+ × Y,Y,Y), we can easily show that the function Ψ ∈ AAA(T,Y).
For reference of proof we refer Proposition 3.6 in [29] and Lemma 3.3 and Lemma 3.4 of [10].

Now we establish our main result of this section.

Theorem 3.9. Under the given hypothesis (H
′

1) − (H
′

4) the integral-dynamic equation given by (3.1)-

(3.2) admits a unique solution which is also asymptotically almost automorphic, provided 0 < MF =

sup
{

‖F(s, 0, z)‖Y; s ∈ T, z ∈ Y
}

<∞.

Let Υ : AAA(T+,Y)→ AAA(T+,Y), given by

Υ(y)(s) =

s
∫

−∞

T (s− σ(t)F



t, y(t),

t
∫

−∞

H(t, τ, y(τ))∆τ



∆t, ∀y ∈ AAA((Y,X)).

We show that Υ, defined as above has a unique fixed point. For the same, we follow the following steps:

Step:1 Υ is well defined. Let y ∈ AAA(T+,Y). Then using the hypothesis (H
′

2), by Proposition 3.7,

the function Φ(s) :=
s
∫

−∞
H(s, τ, y(τ))∆τ ∈ AAA(T+,Y). And hence by Proposition 3.5, the function

Γ(s) := F
(

s, y(s),
s
∫

−∞
H(s, τ, y(τ))∆τ

)

∈ AAA(T+,Y). Then by using Proposition 3.8, the function
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Ψ(s) :=
s
∫

−∞
T (s− σ(t))F

(

t, y(t),
t
∫

−∞
H(t, τ, y(τ))∆τ

)

∆t ∈ AAA(T+,Y). Hence Υ(y)(s) ∈ AAA(T+,Y).

This concludes the first step.

Step:2 By (H
′

4), there exists r > 0 such that

αr

M
− r(1 + µ̃α)

(

L∗
F + L1

H
∗
)

> (1 + µ̃α)MF . (3.30)

Let us consider the set, Br = {y ∈ AAA(T+,Y) : ‖y(s)‖ ≤ r} ⊂ AAA(T+,Y). For y ∈ Br, let us assume

that z(t) =
t
∫

−∞
H(t, τ, y(τ))∆τ and z0(t) =

t
∫

−∞
H(t, τ, 0)∆τ such that

‖z(t)− z0(t)‖ = ‖
t
∫

−∞

H(t, τ, y(τ))∆τ −
t
∫

−∞

H(t, τ, 0)∆τ‖

≤
t
∫

−∞

‖H(t, τ, y(τ))−H(t, τ, 0)‖∆τ

≤
t
∫

−∞

LH(τ)‖y(τ)‖∆τ. (3.31)

Then we have,

‖Υ(y)(t)‖ =

∥

∥

∥

∥

∥

∥

s
∫

−∞

T (s− σ(t))F (t, y(t), z(t)))∆t

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

s
∫

−∞

T (s− σ(t)) [F(t, y(t), z(t)−F(t, 0, z0(t)]∆t+
s
∫

−∞

T (s− σ(t))F(t, 0, z0(t)∆t

∥

∥

∥

∥

∥

∥

=

s
∫

−∞

‖T (s− σ(t)) [F(t, y(t), z(t)−F(t, 0, z0(t)]‖∆t+
s
∫

−∞

‖T (s− σ(t))F(t, 0, z0(t)‖∆t

≤
s
∫

−∞

Meα(s− σ(t))
{

LF(t)(‖y(t)‖ + L1
H(t)‖y‖)

}

∆t+MMF

s
∫

−∞

eα(s− σ(t))

≤ M(L∗
F + L1

H
∗
)r

(

1 + µ̃α

α

)

+MMF

(

1 + µ̃α

α

)

= M

(

1 + µ̃α

α

)

(

(L∗
F + L1

H
∗
)r +MF

)

< r, (3.32)

which proves that Υ := Br → Br.
Also from (3.30), we have

αr

M
− r(1 + µ̃α)

(

L∗
F + L1

H
∗
)

> 0

⇒ γ = M(L∗
F + L1

H
∗
)

(

1 + µ̃α

α

)

< 1 (3.33)
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Step:3 Now for y1, y2 ∈ Br, let z1(t) =
t
∫

−∞
H(t, τ, y1(τ))∆τ and z2(t) =

t
∫

−∞
H(t, τ, y2(τ))∆τ. Then we

get

‖z2(t)− z1(t)| = ‖
t
∫

−∞

H(t, τ, y2(τ))∆τ −
t
∫

−∞

H(t, τ, y1(τ))∆τ‖

≤
t
∫

−∞

‖H(t, τ, y2(τ)) −H(t, τ, y1(τ))‖∆τ

≤
t
∫

−∞

LH(τ)‖y2(τ) − y1(τ)‖∆τ. (3.34)

Now

‖Υ(y2)(t) −Υ(y1)(t)‖ =

∥

∥

∥

∥

∥

∥

s
∫

−∞

T (s− σ(t))F (t, y2(t), z2(t))∆t

−
s
∫

−∞

T (s− σ(t))F (t, y1(t), z1(t))∆t

∥

∥

∥

∥

∥

∥

≤
s
∫

−∞

‖T (s− σ(t))‖‖F (t, y2(t), z2(t))−F (t, y1(t), z1(t)) ‖∆t

≤
s
∫

−∞

Meα(s− σ(t)) {LF(t)(‖y2(t)− y1(t)‖+ ‖z2(t)− z1(t)‖)}∆t

≤
s
∫

−∞

Meα(s− σ(t))







LF (t)(‖y2(t)− y1(t)‖+
t
∫

−∞

LH(τ)‖y2(τ) − y1(τ)‖∆τ)







∆t

≤
s
∫

−∞

Meα(s− σ(t))
{

LF(t)(‖y2(t)− y1(t)‖ + L1
H(t)‖y2 − y1‖)

}

∆t

≤ M(L∗
F + L1

H
∗
)‖y2 − y1‖

t
∫

−∞

eα(s− σ(t))

≤ M(L∗
F + L1

H
∗
)

(

1 + µ̃α

α

)

‖y2 − y1‖

≤ γ‖y2 − y1‖ (using equation (3.33))

Thus we have established that the function Υ is a contraction and thus by the Banach Contraction

Principle, there exists a unique y ∈ AAA(T+,Y) for which Υy = y.

Example 3.1. Consider the time scale,

Pa,b =

∞
⋃

k=0

[k(a+ b), k(a+ b) + a].

This time scale is invariant under translation and contains 0. This time scale is one of the most useful

time scale which is used to model population dynamics of certain species with certain life span, whose

measurements are given in terms of a and b.
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Let us now consider the dynamic equation

y∆(s) = Ay(s) + F



s, y(s),

s
∫

s0

H (s, τ, y(τ))∆τ



 (3.35)

y(s0) = y0, (3.36)

on the time scale Pa,b, where A is some generator of a exponentially stable C0−semigroup, {T (s) : s ∈ T}
such that ‖T (s− s0)‖ ≤Me⊖α(s− s0).
We take s0 = 0 and S = 2m+ 1, for some m ∈ N.

Let us take,

F(s, x, y) = α1 sin
(

1
2+cos s+cos

√
2s

)

[sinx+y]+α2e⊖α(s, s0), where α > 0, α1 ∈
(

0, 1
2M(2m+1)(1+2(2m+1))

)

, α2

are some constant and H(s, t, y) = sin s cos t+ sin y + cos y.

At the first instance we note that F , given above is an asymptotically almost automorphic function, where

G, [10] given by G(s, x, y) = sin
(

1
2+cos s+cos

√
2s

)

[sinx + y] ∈ AA(T × Y× Y,Y). Also lim
s→∞

e⊖α(s, s0) =

0 (by Lemma 2.1).

We can also verify that F satisfies Lipschitz condition given by (H
′

1), as

∥

∥F(s, x1, y1)−F(s, x2, y2)
∥

∥

2

2
=

π
∫

0

α2
1

∣

∣

∣

∣

∣

sin

(

1

2 + cos t+ cos
√
2t

)

[sinx1 + y1] + e⊖(t, s0)

− sin

(

1

2 + cos t+ cos
√
2t

)

[sinx2 + y2] + e⊖(t, s0)

∣

∣

∣

∣

∣

2

∆t

⇒
∥

∥F(s, x1, y1)−F(s, x2, y2)
∥

∥

2

2
≤ α2

1

∣

∣

∣

∣

∣

sin

(

1

2 + cos t+ cos
√
2t

)

∣

∣

∣

∣

∣

2

|[sinx1 + y1]− [sinx2 + y2]|2

≤ α2
1‖x1 − x2‖22 + ‖y1 − y − 2‖22, for some 1 ≥ c ∈ R.

i.e.,
∥

∥F(s, x1, y1)−F(s, x2, y2)
∥

∥

2
≤ α1‖x1 − x2‖2 + ‖y1 − y − 2‖2

From the above equation we can verify that, F satisfies the Lipschitz condition given by H1 as well as

(H
′

1). Furthermore, H ∈ bAA(T× T× Y,Y)⇒ H ∈ bAAA(T × T× Y,Y).

Also

‖H(s, t, y1)−H(s, t, y2)‖2 = ‖ sin s cos t+ sin y1 + cos y1 − sin s cos t+ sin y2 + cos y2‖2
≤ ‖ sin y1 − sin y2‖2 + ‖ cos y1 − cos y2‖2
≤ 2‖y1 − y2‖2. (3.37)

ThereforeH2 as well as (H
′

2) is also satisfied. AlsoH3 which is also same as (H
′

3) is evident by assumptions

on A.

Now M(S − s))L∗
F (1 + LH(S − s0)) = M(2m + 1)α1(1 + 2(2m+ 1)) < 1, which verifies the hypothesis

H4. Hence, theorem 3.1 ensures us a unique solution to the given equation.
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