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Abstract

In this work, we focus on the following question: what are the cryptographic implications
of having access to an oracle that provides a single Haar random quantum state? We show,
perhaps surprisingly, that such an oracle is sufficient to construct quantum pseudorandomness.

Pseudorandom states (PRS) are a family of states for which it is hard to distinguish between
polynomially many copies of either a state sampled uniformly from the family or a Haar random
state. A weaker notion, called single-copy pseudorandom states (1PRS), satisfies this property
with respect to a single copy. Our main result is that 1PRS (as well as bit-commitments) exist
relative to an oracle that provides a single Haar random state. We build on this result to show
the existence of an oracle relative to which 1PRS exist, but PRS do not. This provides one of
the first black-box separations between different forms of quantum pseudorandomness.
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1 Introduction
It is well known that computational assumptions are necessary for almost all modern classical
and quantum cryptographic tasks. The minimal assumption that is useful for classical cryptog-
raphy is the existence of one-way functions (OWF). This assumption is known to be equivalent
to the existence of many other cryptographic applications, such as pseudorandom number gener-
ators, pseudorandom functions, digital signatures, symmetric-key encryption, and commitments
(see, e.g., [Gol01, Gol04]).

The quantum setting presents a drastically different picture: a variety of quantum primitives
are known that are sufficient to build cryptography, but are potentially weaker than one-way func-
tions. Recently, Tomoyuki Morimae coined the term MicroCrypt, as an addition to Impagliazzo’s
five worlds [Imp95], to refer to such quantum primitives (and their cryptographic applications)1.
One of the tenants of MicroCrypt are pseudorandom states (PRS), first introduced by Ji, Liu, and
Song [JLS18]. This is a family of efficiently generatable quantum states {|ϕk⟩}k∈{0,1}n such that it
is computationally hard to distinguish between polynomially many copies of (a) |ϕk⟩ sampled uni-
formly from the family, and (b) a uniformly (Haar) random quantum state. Ji, Liu, and Song also
provided a black-box construction of PRS from a OWF. Subsequent to [JLS18], many other tenants
of MicroCrypt have been introduced, such as pseudorandom function-like states (PRFS) [AGQY22],
efficiently samplable statistically far-but-computationally-indistinguishable pairs of (mixed) quan-
tum states (EFI pairs) [Yan22, BCQ23], one-way state generators [MY22b], and pseudorandom
states with proof of destruction [BBSS23].

Many cryptographic applications are known based on MicroCrypt assumptions. By now, vari-
ants of all of the main MiniCrypt2 primitives have been shown to be in MicroCrypt, including
symmetric-key encryption, commitments (recently, also commitments to quantum states [GJMZ23]),
PRGs, PRFs, garbled circuits, message authentication codes, and digital signatures. Perhaps
more surprisingly, MicroCrypt also contains some tasks in Cryptomania, namely, secure multi-
party computation [MY22b, BCKM21, GLSV21] and public-key encryption with quantum public
keys [BGHD+23]. The key factor contributing to the surprise is Impagliazzo and Rudich’s sepa-
ration between one-way functions (MiniCrypt) and public-key encryption3 and oblivious transfer
(Cryptomania) [IR89]. The new constructions circumvent classical impossibilities because they
involve quantum states, e.g. commitments and multiparty computation rely on quantum commu-
nication, and encryption schemes have quantum ciphertexts.

The evidence that these quantum primitives are weaker than MiniCrypt comes from Kretschmer’s
quantum oracle separation of PRS and OWFs [Kre21]. The separating oracle consists of a family
{Un}n∈N, where Un is a list of exponentially many Haar random n-qubit unitaries {Uk}k∈{0,1}n .
Relative to this oracle, there is a simple construction of a PRS: for k ∈ {0, 1}n, let |ϕk⟩ := Uk |0n⟩.
Note that, if we just consider the action of the unitaries Uk on the standard basis states, i.e. the set
of states Uk |x⟩ for x ∈ {0, 1}n, then, for each n, Kretschmer’s oracle can be viewed as providing
22n “essentially Haar random” states4. In another work, Bouland, Fefferman and Vazirani [BFV19]
show5 a PRS construction relative to a family {Un}n∈N, where Un = (U,U−1) for a Haar random

1As far as we know, Morimae introduced the term in a talk https://www.youtube.com/live/PKfYJlKD3z8?
feature=share&t=1048, though he did not provide a precise definition, so our definition might be slightly differ-
ent than his original intention.

2Minicrypt primitives are those that are equivalent to one-way functions. The term was introduced by Impagliazzo
[Imp95].

3Note that this classical separation does not apply for public key encryption with quantum public keys.
4The states are Haar random subject to the constraint that they should be pairwise orthogonal (for each fixed k).
5Modulo a technical gap in their proof [BFV19, p. 19]: "We expect the same result would apply . . . but we do not

prove this fact."
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n-qubit U . By considering the action of U on the standard basis states, this oracle can be viewed
as providing 2n essentially Haar random states. This raises a natural question. What can be done
with much fewer Haar random states? We look at the most extreme case and ask:

What are the cryptographic implications of having oracle access to a single Haar random state?6

We define the common Haar random state (CHRS) model, where all the parties (including the
adversary) have access to an arbitrary polynomial number of copies of a single Haar random state.
Is quantum pseudorandomness possible in this model? In the classical setting, having access to a
fixed (random) string, which can be used both by the algorithm and the adversary, is not enough
to construct pseudorandomness (e.g., pseudorandom generators). In the quantum setting, one may
naturally expect that, similarly, a single Haar random state is not enough to construct quantum
pseudorandomness.

The PRS variant that is most relevant for this work is single-copy pseudorandom states (1PRS),
introduced by Morimae and Yamakawa [MY22a]. They differ from (multi-copy) pseudorandom
states (PRS) in two important ways (see Definition 3.2 for a formal definition):

1. The adversary needs to distinguish between a single copy of the pseudorandom state and a
single copy of a Haar random state.

2. The construction has to be “stretching”: the number of output qubits has to be greater than
the key size (for this to be a non-trivial object).

1.1 Our results

Our first result is that, perhaps surprisingly, single-copy pseudorandom states exist in this model:

Theorem 1.1 (Informal). 1PRS exist in the CHRS model.

The 1PRS is statistically secure as long as the number of copies of the Haar random state that
the adversary receives is polynomial. This result is shown in Section 4. One of the main technical
ingredients that we introduce to prove Theorem 1.1 is a certain “stretching” result for quantum
pseudorandomness in the CHRS model (Theorem 2.2 in the technical overview, and Theorem 4.6
in the main text), which may find application elsewhere.

As a result, we show that the statistical 1PRS above can be used to achieve a surprisingly strong
form of bit-commitment:

Theorem 1.2 (Informal). In the CHRS model, a non-interactive quantum bit-commitment exists
that is statistically hiding and binding.

The hiding property holds against a computationally unbounded adversary that receives any
polynomial number of copies of the Haar random state. In contrast, the binding property holds
against a computationally unbounded adversary with an unbounded number of copies. Such sta-
tistical binding and hiding cannot exist in the standard model [LC97, May97]. The theorem above
is proven in Appendix A, in a similar way as shown previously by [MNY23]. Thanks to Theo-
rem 14 in [Qia23], the commitment scheme that we obtain in the CHRS model can be compiled
into an ϵ-simulation secure one, using an adaption of the compiler from [BCKM21]. This version of
commitment is sufficient to build secure multiparty computation via the construction in [BCKM21].

6Or, more precisely, one n-qubit Haar random state for each value of n (which is accessed by providing the input
1n).
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Even though plenty of relations involving MicroCrypt primitives are known, the only black-box
separations involving MicroCrypt are the following: Kretschmer [Kre21] separated post-quantum
OWF from PRS, via a quantum oracle. Ananth, Qian and Yuen [AQY22] observed that this
separation also separates OWF from PRFS. Kretschmer et al. [KQST23] separated OWF from
1PRS via a classical oracle. However, when we zoom in on MicroCrypt, almost nothing is known
about whether different MicroCrypt primitives are equivalent to each other, or whether there is a
hierarchy. The only known non-trivial7 separation is between short output and long output PRS
(with the former being potentially stronger). This separation is an immediate consequence of the
works of Barhoush et al. [BBO+24] (which gives a construction of quantum digital signatures from
PRS with short output) and Coladangelo and Mutreja [CM24] (which shows an oracle separation
between quantum digital signatures and PRS with long output), and was also shown in a concurrent
work of Bouaziz–Ermann and Muguruza [BEM24].

In this work, building on our Theorem 1.1, we show a second black-box separation within
MicroCrypt:

Theorem 1.3 (Informal). There is a quantum oracle relative to which 1PRS exist, but PRS (with
output length at least logn+ 10, where n is the seed length) do not.8

The separation is essentially tight in terms of output length, since PRS with very short output
(c · log(n) for c≪ 1) exist unconditionally [BS20]. We show this result in Section 5. Of course, this
indicates that relative to the same oracle, primitives which imply a black-box construction of PRS,
such as OWF (as shown in [JLS18]) and PRFS, also cannot exist.

Related work. In this work, we introduce the common Haar random state (CHRS) model, in
which both the generation algorithm and the adversary have access to polynomially many copies
of a Haar random state over n qubits. There are two related models. The first, which our work
is a particular case of, was called the quantum auxiliary input model (where the quantum state
is sometimes referred to as the quantum advice) by [MNY23], in which the parties are provided
with polynomially many copies of a quantum state, which need not be efficiently generatable9.
Chailloux, Kerenidis, and Rosgen [CKR16] showed that quantum commitments with quantum
auxiliary input exist under a computational assumption. They provide two schemes, where either
the hiding or binding properties are computational. Morimae, Nehoran, and Yamakawa [MNY23]
and Qian [Qia23] recently proved, unconditionally, the existence of a computationally hiding and
statistically binding commitment in the quantum auxiliary input model. This improves on the
result of [CKR16], in the sense that the computational assumption is removed.

The second related model is the common reference quantum state (CRQS) model, in which
the quantum state needs to be efficiently generatable. Note that, in the classical setting, the
common reference string represents a model with a trusted setup. In this model, [MNY23], show

7[BS20] (see also [ALY23, p.3]) show that PRS with very short output (c · log(n) for c ≪ 1, where n is the length
of the key) exist unconditionally. Hence, they are trivially black-box separated from all of the other MicroCrypt
primitives which require computational assumptions.

8This quantum oracle consists of an isometry that provides a fixed Haar random state, along with a QPSPACE
machine. While the latter is a unitary oracle, the former is not. In Section 5.3, we formally discuss various notions
of black-box oracle separations and their implications in terms of the impossibility of black-box constructions. In
particular, Theorem 1.3 implies that there cannot be a fully black-box construction of a PRS from a 1PRS that uses
the 1PRS as an isometry (see Section 5.3 for more details).

9We prefer not to use the term “quantum auxiliary input” since in most other works we are aware of (see [DGK+10]
and references therein), a quantum auxiliary input typically represents a setting in which the adversary may have
information that may depend on the honest parties’ inputs, and in particular, the secret key. In contrast, in our
setting and that of [MNY23], the “auxiliary” state is fixed, independently of any honest parties’ input.
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a statistically hiding and binding commitment with similar properties to ours. The difference is
in the order of quantifiers of the hiding property: in our work, the scheme is hiding against an
adversary that is allowed to have any polynomial number of copies of the quantum (Haar-random)
state; in their construction (see [MNY23, Theorem 1.4]), they first pick a polynomial t(n) and
show a construction which is hiding against adversaries which receive t(n) copies of the CRQS10.
Of course, the main disadvantage of our work is that a Haar random state cannot be efficiently
generated, whereas the state they use is efficiently generatable. However, note that if one is satisfied
with security against some fixed polynomial t(n) of copies, the Haar random state can be replaced
efficiently by a quantum t(n)-design.

We emphasize the features that differentiate our work:

(i) Our common random state is structure-less: it is a Haar random state.

(ii) We show how to achieve quantum pseudorandomness in this model. The related works con-
struct commitments directly, but their constructions do not have any implications with regard
to quantum pseudorandomness. We find it quite surprising that a Haar random state alone
can yield quantum pseudorandomness. It is also thanks to this connection that we are able
to separate different flavors of quantum pseudorandomness, namely 1PRS and PRS.

Recently, many results regarding MicroCrypt have been discovered—at this point, too many to
cover in detail. A diagram showing the different MicroCrypt primitives, their relations, applications,
and separations are depicted in Fig. 3 on Page 38.

Open problems. This work opens up several directions for further research.

• Our separation result (Theorem 1.3) holds relative to a quantum oracle. Can it be shown
relative to a classical oracle? We note that Krethschmer et al. [KQST23] show a classical
oracle relative to which 1PRS and commitments exist, but one-way functions do not.

• As pointed out earlier, since our separating oracle is technically an isometry, Theorem 1.3
implies that there does not exist a fully black-box construction of a PRS from a 1PRS that
uses the 1PRS as an isometry (see Section 5.3 for more details). An open question is to
rule out the most general kind of black-box construction, which can make use of a unitary
implementation of the 1PRS (as well as its inverse).

• There are examples of primitives that we know can be constructed from PRS, but are
not known to be implied by 1PRS. The main examples are one-time digital signatures
with quantum public keys [MY22a], private quantum coins [JLS18], and quantum pseudo-
encryption [AQY22]. Currently, we do not have a separation between those applications11

and 1PRS. Understanding whether any of these applications are separated from 1PRS would
be interesting.

• Lastly, in the plain model, “flavor conversion” [Yan22, HMY23] allows switching between the
computational and statistical hiding and binding properties. In our work, the commitment
is statistically hiding against adversaries with polynomially many copies of the Haar random

10Even though this was not formally claimed in [MNY23], we believe that the construction mentioned in the
previous paragraph, with (inefficiently generatable) auxiliary quantum inputs, satisfies the same statistical security
guarantees as ours.

11or even ones which are based on stronger MicroCrypt assumptions, such as the existence of long input PRFS,
which can be used to construct message authentication codes with quantum tags [AQY22], quantum symmetric key
encryption [AQY22], and public key encryption with quantum ciphers and quantum public keys [BGHD+23].
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state. It is statistically binding against adversaries with an arbitrary number of copies of the
Haar random state. Is there a flavor conversion theorem—this time, regarding the number of
copies of the state that the adversary holds—that holds in our setting?
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2 Technical Overview
This section is organized as follows. In Section 2.1, we describe the construction of a 1PRS in
the CHRS model, and we give a high-level overview of the proof of security. We view this as the
main technical contribution of our work. In Section 2.2, we explain how to construct statistically
binding commitments from the constructed 1PRS (this follows the approach of [MNY23]). Finally,
in Section 2.3, we describe an oracle separation between 1PRS and PRS. We consider the CHRS
model augmented with quantum oracle access to a QPSPACE machine, and we describe a generic
attack on any PRS construction in this model. Since 1PRS still exist in this model, this yields an
oracle separation between the two.

2.1 Construction of 1PRS in the CHRS model

1PRS definition. Recall that, informally, a 1PRS is a QPT algorithm that takes as input a seed
k ∈ {0, 1}n (where n is a security parameter) and outputs a state of some length m > n. We denote
by |ϕk⟩ the output state on seed k. Then, security requires that a single copy of the 1PRS state be
computationally indistinguishable from a single maximally mixed state of the same dimension, i.e.

Ek |ϕk⟩ ⟨ϕk| ≈c
1

2m

(where ≈c denotes computational indistinguishability).
Note that this requirement is only non-trivial when m > n (otherwise, one can simply output

the seed itself). Equivalently, one can think of the problem of constructing a 1PRS as the problem
of finding a family {Uk}k∈{0,1}n of efficiently computable unitaries such that

Ek Uk |0⟩ ⟨0|U †k ≈c
1

2m .

This problem becomes trivial if the family {Uk} is large enough. In particular, if m = n, a classical
one-time pad, i.e. taking Uk = Xk already suffices. One way to achieve the above with m > n is,
of course, to use a classical PRG, but this is of course already equivalent to assuming OWFs.
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Working in the CHRS model. We will instead describe how to construct a 1PRS in the
CHRS model, i.e. when polynomially many copies of a single Haar random state are available to
the construction and to the adversary. Our construction uses a single copy of the state |ψ⟩, but
security holds even when r = poly(n) copies of |ψ⟩ are available to the adversary.

We restrict ourselves to considering constructions of the following form: the 1PRS family {|ϕk⟩}
is such that |ϕk⟩ = Uk |ψ⟩. Let m be the number of qubits of |ψ⟩. Thus, the problem reduces to
finding a family {Uk}k∈{0,1}n , for m > n, such that12

E|ψ⟩←µ2m Ek∈{0,1}n(Uk |ψ⟩ ⟨ψ|U †k)⊗ (|ψ⟩ ⟨ψ|)⊗r ≈c E|ψ⟩←µ2m

1

2m ⊗ (|ψ⟩ ⟨ψ|)⊗r . (1)

In fact, we will describe a construction that achieves statistical (rather than just computational)
indistinguishability, assuming r is polynomial in n. As anticipated, the crux of the problem is to
achieve the above with m > n.

Construction of 1PRS in the CHRS model. For the reader’s convenience (to help remember
what the parameters refer to), going forward we have

• k: 1PRS seed.

• n = |k|.

• m: number of qubits of the output 1PRS state (this is also the number of qubits of the Haar
random state |ψ⟩).

Our construction of a 1PRS in the CHRS model is simple (although it is unclear a priori why it would
work). We take the family of m-qubit unitaries {Uk} to be a Quantum One-Time Pad (QOTP)
on slightly less than half of the qubits, say 0.45m. A bit more precisely, k is a string of length
n ∈ [0.9m,m), which we can parse as k = (a, b), where a, b ∈ {0, 1}n/2. Then, Uk = (XaZb) ⊗ I,
i.e. Uk applies XaZb to the first n/2 qubits of the m-qubit state it acts on. We now explain the
intuition behind the construction.

First key idea: a quantum one-time pad on exactly half of the qubits. Notice, just for
the sake of argument, that if we allowed ourselves to have n = 2m (even though this violates the
“length extending” requirement of m > n by a large margin), then there would be a trivial choice
of Uk that works: simply pick {Uk} to be a QOTP on all of the qubits. Then, the 1PRS security
property of Equation (1) would be satisfied. Unfortunately, the full QOTP is very far from our
goal: to comply with the length-extending requirement, a QOTP must be applied to strictly less
than half of the qubits.

Let us simplify our life slightly for the moment: if we allow a QOTP on exactly half of the
qubits, i.e. n = m (which still does not satisfy the requirement of m > n), is Equation (1) satisfied?
It turns out that the answer is yes (although the reason may be unclear at first). We provide an
informal explanation.

The starting point is a recent result by Harrow [Har24]. This says that the state obtained
by applying a Haar random unitary to one-half of a maximally entangled state is statistically
indistinguishable from Haar random. Crucially, this guarantee also holds for multiple copies (in

12Technically, as pointed out in an earlier footnote, parties in the CHRS model (including the adversary) have
access to copies of one m-qubit Haar random state for each m. However, it is clear that this is immaterial to the
proof, since, for a given output length m, we are restricting our attention to constructions (i.e. choices of Uk) that
only act on the m-qubit Haar state, and ignore the others.

8



the appropriate parameter regime). A bit more precisely, Harrow proves the following. For d ∈ N,
let |Φd⟩ = 1√

d

∑d−1
i=0 |ii⟩, and for a unitary U acting on the left register, let |ϕU ⟩ = (U ⊗ I) |Φd⟩. For

a pure state |ψ⟩, we denote by ψ its density matrix.

Lemma 2.1 (Harrow [Har24], informal). Let r, d ∈ N. Then,∥∥∥∥∥ E
|ψ⟩←µd2

[ψ⊗r]− E
U←SU(d)

[ϕ⊗rU ]
∥∥∥∥∥ ≤ r2

d

In the case of a single copy (r = 1), the following is some intuition as to why the result holds.
Consider a Haar random state and any partition of its qubits into two registers A and B. Then,
with very high probability, a Haar random state has Schmidt coefficients close to uniform. This
is somewhat intuitive (although it requires some work to prove). This implies that the following
mixed state is close to a Haar random state:

EU,U ′←SU(d)(U ⊗ U ′)Φd(U ⊗ U ′)† ,

(the latter is a maximally entangled state to which independent Haar random unitary changes of
basis are applied to each side). However, notice that

EU,U ′←SU(d)(U ⊗ U ′)Φd(U ⊗ U ′)† = EU,U ′←SU(d)(U · U ′T ⊗ I)Φd(U · U ′T ⊗ I)†

= EU←SU(d)(U ⊗ I)Φd(U ⊗ I)† = EU←SU(d)ϕU ,

where the first equality follows from the “Ricochet” property of the maximally entangled state, and
the second by the unitary invariance of the Haar measure. Thus,

E
|ψ⟩←µd2

[ψ] ≈ E
U←SU(d)

[ϕU ] .

The general result for r > 1 copies is much more involved, and we refer the reader to [Har24].
So, how does Harrow’s result help the analysis? The r-copy result says that

E
|ψ⟩←µd2

[ψ⊗r] ≈ E
U←SU(d)

[ϕ⊗rU ] .

Letm = n be even, and take d = 2m/2, so that |ψ⟩ is anm-qubit state, and |Φd⟩ = 1√
2m/2

∑2m/2−1
i=0 |ii⟩,

i.e. a maximally entangled state on m qubits. Let Pm/2 denote the Pauli group on m/2 qubits.
Applying a QOTP to the first m/2 qubits (i.e. exactly half ) of the first out of the r copies, we get:

E
P←Pm/2

E
|ψ⟩←µd2

[
(P ⊗ I)ψ(P † ⊗ I)⊗ ψ⊗(r−1)

]
≈ E

P←Pm/2
E

U←SU(d)

[
(PU ⊗ I)Φd(U †P ⊗ I)† ⊗ ϕ⊗(r−1)

U

]
(2)

= E
P←Pm/2

E
U←SU(d)

1
2m/2

∑
i,j

PU |i⟩ ⟨j|U †P † ⊗ |i⟩ ⟨j| ⊗ ϕ⊗r−1
U

= E
P←Pm/2

E
U←SU(d)

1
2m/2

∑
i,j

PU |i⟩ ⟨j|U †P † ⊗ |i⟩ ⟨j| ⊗ ϕ⊗r−1
U

= 1

2m ⊗ E
U←SU(d)

ϕ⊗r−1
U , (3)

where the last line follows by the Pauli Twirl (Lemma 4.4). Recall that the “closeness” in the
approximation of Equation (2) is r2

2m/2 (from Lemma 2.1). We emphasize the crucial step in the

9



last equality: thanks to the maximal entanglement between the two halves of the first register, the
QOTP on the first half actually causes both halves to become maximally mixed.

It follows that, given r = poly(m) copies of an m-qubit Haar random state, applying a QOTP
on the first m/2 qubits of the first copy is enough to make the first copy maximally mixed, even
given the other r − 1 copies. This gets us closer to our goal, but we are not there yet: we are still
using an m-bit seed to obtain an m-qubit state.

Second key idea: quantum one-time pad on slightly less than half of the qubits. If a
QOTP on slightly less than half of the qubits were sufficient, this would solve our problem. We
show that this is indeed the case!

The key technical ingredient in our proof can be viewed as a sort of “stretching” result, which
may be useful elsewhere. Consider an m-qubit common Haar random state. Very informally, the
“stretching” result says the following: if there is a way to obtain “m − 1 qubits of single-copy
pseudorandomness” from n bits of classical randomness (where n should be thought of as being
linear in m), then one can also obtain “m qubits of single-copy pseudorandomness” from n bits of
classical randomness, with a slight loss in statistical distance (i.e. it is possible to get one extra qubit
of pseudorandomness!). The loss is small enough that the stretching can be applied repeatedly to
get up to m qubits of pseudorandomness from c·n bits of classical randomness, for some 0.9 < c < 1,
while keeping the statistical loss exponentially small in m.

Crucially, this stretching result also applies to our base result of Equation (3) (where n = m).
More precisely, we have the following.

Theorem 2.2 (Informal). Let r, n,m ∈ N. Let {Uk}k∈{0,1}n be a set of (m − 1)-qubit unitaries.
Then, ∥∥∥∥∥Ek E

|ψ⟩
(1⊗ Uk)ψ(1⊗ U †k)⊗ ψ⊗r−1 − 1

2m ⊗ E
|ψ⟩
ψ⊗r−1

∥∥∥∥∥
≤ 5

∥∥∥∥∥Ek E
|ψ′⟩

Ukψ
′U †k ⊗ ψ

′⊗r−1 − 1

2m−1 ⊗ E
|ψ′⟩

ψ′⊗r−1
∥∥∥∥∥+O

(
r
√
m

2m/2

)
.

where |ψ⟩ is a Haar random m-qubit state, and |ψ′⟩ is a Haar random (m− 1)-qubit state.

In words, this says that if {Uk}k∈{0,1}n generates a (single-copy) (m − 1)-qubit pseudorandom
state when applied to an (m − 1)-qubit Haar random state, then applying Uk to the last m − 1
qubits of an m-qubit Haar random state (and ignoring the first qubit) also suffices to achieve the
same, up to a small statistical loss.

Applying Theorem 2.2 r times, gives:

Corollary 2.3 (Informal). Let ℓ < m. Let {Uk}k∈{0,1}n be a set of (m− ℓ)-qubit unitaries. Then,∥∥∥∥∥Ek E
|ψ⟩

(1⊗ Uk)ψ(1⊗ U †k)⊗ ψ⊗r−1 − 1

2m ⊗ E
|ψ⟩
ψ⊗r−1

∥∥∥∥∥
≤ 5ℓ

∥∥∥∥∥Ek E
|ψ′⟩

Ukψ
′U †k ⊗ ψ

′⊗r−1 − 1

2m−ℓ ⊗ E
|ψ′⟩

ψ′⊗r−1
∥∥∥∥∥+O

(
r
√
m 5ℓ

2(m−ℓ)/2

)
.

where |ψ⟩ is a Haar random m-qubit state, and |ψ′⟩ is a Haar random (m− ℓ)-qubit state.

At first, the reader might be slightly worried about the exponential blow-up of the RHS in
terms of ℓ. However, this is counteracted by the trace distance term, which, for the base case,
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is exponentially small in the number of qubits. Thus, there is actually a regime of ℓ linear in m
for which the upper bound is exponentially small in m. In more detail, we apply Corollary 2.3
to our base result of Equation (3) (replacing m with m − ℓ there). Let Lm−ℓ be the statistical
closeness (in trace distance) between the two sides of Equation (3). Then we have the following:
applying a QOTP to m−ℓ

2 qubits of an m-qubit Haar random state suffices to yield a (single-copy)
pseudorandom state, with a statistical loss of Lm−ℓ · 5ℓ + O

(
r
√
m5ℓ

2(m−ℓ)/2

)
. Recall from earlier that

Lm−ℓ = O
(

r2

2(m−ℓ)/2

)
, and so the total statistical loss is O

(
r2

2(m−ℓ)/2 · 5ℓ
)

+O
(
r
√
m5ℓ

2(m−ℓ)/2

)
.

Notice crucially that, when ℓ is too large, the factor of 5ℓ dominates Lm−ℓ! However, when
ℓ = 0.1m, the loss is O

(
(r2+r

√
m)50.1m

20.45m

)
, which is still exponentially small in m. Thus, interestingly,

our construction works as long as the QOTP is applied on 0.45m qubits (a constant fraction less
than half), but it does not seem to work for much smaller constant fractions13.

The high-level intuition for the result is that a typical Haar random state on m qubits is “close”
to being maximally entangled across the (1,m − 1) bipartition (i.e. the bipartition that considers
the first qubit as the “left” register, and the remaining m− 1 qubits as the “right” register). More
concretely, the mixed state obtained by sampling a Haar random m-qubit state is close (in trace
distance) to the state obtained by sampling two Haar random (m− 1)-qubit states |ψ1⟩ and |ψ2⟩,
and outputting |ψ′⟩ = 1√

2 |0⟩ |ψ1⟩+ 1√
2 |1⟩ |ψ2⟩, i.e.

E
ψ

[ψ] ≈ E
ψ0,ψ1

[ψ′] .

Note that in the state |ψ′⟩ the two coefficients are exactly 1√
2 (while, for a Haar random m-qubit

state, each coefficient would instead come from a distribution which concentrates at 1√
2). This

observation also holds for r > 1 copies of ψ and ψ′, respectively, at the cost of a factor of r loss in
trace distance.

How does this help? The crucial point is that if {Uk} is a family of “twirling” unitaries, i.e.
a family of unitaries such that the channel Ek Uk(·)U †k maps the “right” register to the maximally
mixed state (when also taking into account the averaging over ψ′), then, similarly as in the calcu-
lation of Eq. (3), the “left” register also becomes maximally mixed (due to the fact that the two
registers were originally maximally entangled). We refer the reader to Section 4.3 for more details.

Remark 2.4. The reader may wonder whether constructing a 1PRS can be achieved more easily or
with better parameters by leveraging, for example, the following result from Dickinson and Nayak
[DN06]. This says that n+ 2 log 1

ϵ + 4 bits of key length are sufficient to encrypt an n-qubit state so
that it is ϵ-close (in trace distance) to the maximally mixed state (rather than 2n bits for n qubits
using the standard QOTP). While the result seems potentially very useful, it does not seem to help:
crucially, when we invoke the Pauli twirl property in Equation (3), we rely on the fact that it makes
the cross terms vanish perfectly. If cross terms vanished only approximately, the double sum over
i, j would cause the error to blow up (given the tradeoff between key length and precision).

2.2 Commitments from a single Haar random state

As mentioned below Theorem 1.3, we show that the 1PRS implies a non-interactive quantum bit-
commitment. The reader may notice that this implication was already shown by Morimae and
Yamakawa [MY22a] (see also [Yan22]). However, crucially, their black-box construction requires
access to the inverse of the 1PRS generation procedure: this is used by the receiver in the reveal
phase.

13We are unsure whether this regime is tight or not. Settling this is an interesting open question.
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Note that the common Haar random state model can be viewed as having oracle access to
an isometry (because the “inverse” is not available – see Section 4.1 for more details). Since
our 1PRS construction is relative to a non-unitary oracle, such a black-box construction does not
compile (because invoking the inverse of the 1PRS generation procedure would require invoking the
inverse of the isometry oracle, which is not well defined). We formally define and discuss various
notions of black-box reductions in the quantum setting in Section 5.3. To conclude, we cannot use
Morimae and Yamakawa’s approach since we use a quantum oracle to generate the 1PRS and do not
have access to the inverse oracle. We emphasize that this limitation also applies to Kretschmer’s
construction [Kre21], in which the inverse transformation is not provided. Therefore, Morimae and
Yamakawa’s construction cannot be instantiated based on Kretchmer’s construction as well. To get
around this problem, we use the template by Morimae, Nehoran, and Yamakawa [MNY23], which
showed a similar result, though their motivation was slightly different.

We first recall Morimae and Yamakawa’s scheme [MY22a]. To commit to the bit b ∈ {0, 1}, the
sender generates

|ψb⟩ := 1√
22m+n

∑
x,z∈{0,1}m

∑
k∈{0,1}n

|x, z, k⟩ ⊗ P bx,z |ϕk⟩ ,

where {|ϕk⟩}k is the 1PRS family, with key-size n and outputs size m, and Px,z := ⊗m
j=1X

xj

j Z
zj

j .
To commit, only the right register is sent to the receiver. (The hiding property can be seen easily:
note that if b = 1, the state is maximally mixed by the properties of the quantum one-time pad,
and if b = 0, the state is a random 1PRS state; these two cases are indistinguishable, by the 1PRS
property.) To reveal, the committer sends the rest of the state and the bit b. The receiver applies
V †b , where Vb |0 . . . 0⟩ = |ψb⟩, measures all the qubits, and accepts if and only if the outcome is
0 . . . 0. As mentioned, the problem is that Applying V †b requires the inverse transformation of the
one generating the 1PRS state and cannot be done in a black-box manner.

To get around this problem, Ref. [MNY23] follows a different approach. Instead of applying the
inverse, a copy of the state |ψb⟩ is generated, and then the swap test is performed to check that
they are indeed the same state. The main problem with this approach is that the binding property
is compromised since even orthogonal states pass the swap test with probability 1

2 . To reduce the
binding error, this procedure is repeated in parallel polynomially many times: many copies of the
state are produced during the commitment phase, and many copies are generated by the receiver
during the reveal phase, and the receiver accepts if and only if all of the copies pass the swap test.
They show that this approach works for their commitment scheme. We follow their proof template,
which works analogously for our scheme. The full details are given in Appendix A.

Remark 2.5. Bostanci et al. [BQSY23] recently proved a general parallel repetition theorem. They
apply their parallel repetition result to a particular form of commitments, called canonical com-
mitments, a notion introduced by [Yan22]. Canonical commitments use the inverse transformation
of the commit phase in the reveal phase and, therefore is, not black-box, similarly to the result by
Morimae and Yamakawa [MY22a] mentioned above.

2.3 Oracle separation between PRS and 1PRS
We now describe an oracle relative to which 1PRS exist, but PRS do not. We consider the CHRS
model augmented with quantum oracle access to a QPSPACE machine14. Going forward, we refer

14As mentioned previously, the CHRS oracle, which provides copies of the Haar random state, can be thought of
as implementing an isometry. This is spelled out in Section 4.1. On the other hand, the QPSPACE machine takes
as input a state |α⟩, and the description of a unitary circuit C computable in “polynomial space”, and returns C |ψ⟩.
For a precise definition, we refer the reader to the start of Section 5.

12



to the former as the “CHRS oracle” and to the latter as the “QPSPACE oracle”. We refer the
reader to the start of Section 5 for a precise definition of the QPSPACE oracle.

The existence of 1PRS in this model follows immediately from the fact that our construction in
the CHRS model achieves statistical, rather than computational, security when the adversary has
polynomially many copies of the common Haar random state. Thus, the QPSPACE oracle (which
is independent of the sampled Haar random state), does not help the adversary.

On the other hand, we show that a PRS does not exist in this model. We describe an explicit
attack on any PRS construction.

Breaking PRS security via the “Quantum OR Lemma”. Notice that, in this model, since
the CHRS oracle is input-less, we can assume, without loss of generality, that any algorithm that
uses the CHRS oracle makes all of its calls to it at the start, i.e. the algorithm first obtains all
of the copies of |ψ⟩ that it needs, and then proceeds without making any additional call to the
CHRS oracle. Thus, any PRS construction takes the following form15. Let |ψ⟩ be the common
Haar random state. Then, the family of pseudorandom states is {|ϕk⟩}k∈{0,1}n , with

|ϕk⟩ = Genk
(
|ψ⟩⊗r ⊗ |0t⟩

)
,

for some r and t polynomial in n, and Genk a unitary that is efficiently computable given access to
the QPSPACE oracle.

The problem of breaking the PRS is then the following: given polynomially many copies of |ϕ̃⟩,
where either (i) |ϕ̃⟩ = |ϕk⟩ for some k, or (ii) |ϕ̃⟩ is Haar random (independent of |ψ⟩), decide which
is the case. Notice that this problem can be recast as follows, for some appropriate projections
{Λk}k∈{0,1}n , and some constants a, b with b− a > 0.

Given |ϕ̃⟩ as above, and r copies of |ψ⟩, determine whether

(i) There exists k ∈ {0, 1}n such that Tr
[
Λk
(
|ϕ̃⟩ ⟨ϕ̃| ⊗ (|ψ⟩ ⟨ψ|)⊗r ⊗ (|0⟩ ⟨0|)⊗t

)]
> b, or

(ii) For all k ∈ {0, 1}n, Tr
[
Λk
(
|ϕ̃⟩ ⟨ϕ̃| ⊗ (|ψ⟩ ⟨ψ|)⊗r ⊗ (|0⟩ ⟨0|)⊗t

)]
< a.

What are the projections Λk? For clarity, let’s denote the registers in |ϕ̃⟩ ⟨ϕ̃|⊗(|ψ⟩ ⟨ψ|)⊗r⊗(|0⟩ ⟨0|)⊗t
as |ϕ̃⟩ ⟨ϕ̃|A⊗ (|ψ⟩ ⟨ψ|)⊗rB ⊗ (|0⟩ ⟨0|)⊗tC . Then, in words, Λk applies Genk to registers BC, followed by a
“swap test” between A and BC (projecting onto the “accept” outcome of the swap test). Formally,

Λk = (IA ⊗ Genk,BC) Π2
sym (IA ⊗ Genk,BC) ,

where Π2
sym is the projection onto the symmetric subspace over A and BC.

Importantly, the latter problem takes a form that is almost amenable to the “quantum OR
lemma” [HLM17]. The version of the “quantum OR lemma” that is relevant here informally says
that there is an algorithm that requires only a single copy of |ϕ̃⟩ |ψ⟩⊗r |0⟩⊗t such that:

• in case (i), outputs 0 with probability at least b2/7.

• in case (ii), outputs 0 with probability at most 4 · 2n · a.
15Again, technically, the construction could make use of states |ψm⟩ for different values of m (at most polynomially

different values). This does not affect the argument very much, and, for simplicity, in this technical overview, we
consider constructions that use only copies of |ψm⟩ for a single m.
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Moreover, the algorithm uses a number of auxiliary qubits that is logarithmic in the number of
projections. Since the number of projections is 2n, the number of auxiliary qubits is only polynomial
in n, and thus the algorithm can be implemented by invoking the QPSPACE oracle16.

Unfortunately, in the setting described above, a, b are constant: in particular, a is approximately
1
2 , while b = 1. Thus, the guarantee above is not useful because of the factor of 2n! There is a
natural way to get around this, which is to use “parallel repetition”: the projections Λk should act
on poly(n) copies of the state considered above, and perform poly(n) swap tests. As a result of the
amplification, we then have a = 2− poly(n), which is sufficient to give an exponentially small upper
bound in case (ii), and to distinguish between cases (i) and (ii), thus breaking security of the PRS.
Crucially, this attack can be carried out because the security game of a PRS allows the adversary
access to polynomially many copies of |ϕ̃⟩. The same attack does not work in the case of a 1PRS!

Remark 2.6. One might wonder whether a different attack based on shadow tomography would
work here (along the lines of the attack described by Kretschmer in [Kre21, Subsection 1.3]). The
issue is that here Tr[Λ2

k] is exponentially large, and so the estimation of the quantity Tr[Λkϕ̃] given
by shadow tomography has too large of a variance. Thus, shadow tomography does not seem to be
sample-efficient in this setting.

3 Preliminaries
Notation. We will use the letter n to denote the security parameter. We denote by µd the Haar
measure in d dimensional Hilbert space. The notation |ψ⟩ ← µd denotes sampling a state according
to µd. For any finite set K, we write k ← K to mean that k is sampled uniformly at random from
K. We use the notation A(·) to refer to an algorithm (classical or quantum) that makes queries to an
oracle. For an operator H, we use the notation ∥H∥ to denote its trace norm. For a pure state |ψ⟩,
we denote by ψ the density matrix |ψ⟩ ⟨ψ|. We will use Πsym to refer to the projector corresponding
to a swap test. The definition of swap test can be found, for example, in [BCWDW01].

Definition 3.1 (Pseudorandom States (PRS), adapted from [JLS18]). A pseudorandom states
family is a QPT algorithm Gen that, on input k ∈ {0, 1}n, outputs a pure state |ϕk⟩ consisting
of m = m(n) qubits. For security, we require the following pseudorandomness property: for any
polynomial t = t(n) and any QPT adversary A, there exists a negligible function negl such that for
all n, ∣∣∣∣∣ Pr

k←{0,1}n

[
A(|ϕk⟩⊗t) = 1

]
− Pr
|ϕ⟩←µ2m

[
A(|ϕ⟩⊗t) = 1

]∣∣∣∣∣ = negl(n), (4)

where µ2m is the Haar measure on m(n) qubit states. We say that the construction is statisti-
cally secure if Eq. (4) holds for computationally unbounded adversaries. We emphasize that these
unbounded adversaries receive only polynomially many copies of the Haar random state. For con-
structions relative to an oracle O, both the generation algorithm G and the adversary A get oracle
access to O.

16For the algorithm to be implementable by a QPSPACE machine, we additionally need that each measurement
{Λk, I − Λk} be also implementable by a QPSPACE machine, which is the case in this setting since Gen(k) and the
“swap test” are efficient. The attentive reader will notice that there is one subtlety about the latter, namely that
Gen(k) is itself allowed to make queries to the QPSPACE oracle! However, this is not an issue, since the resulting
computation can still be simulated using a QPSPACE oracle. We again refer the reader to the start of Section 5 for
a definition of the QPSPACE oracle.
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Definition 3.2 (Single-copy Pseudorandom States (1PRS), adapted from [MY22a]). Single-copy
pseudorandom states (1PRS) with computational and statistical security are defined as Defini-
tion 3.1, with two modifications:

1. (single-copy security) Eq. (4) holds only for t = 1.

2. (stretch) For every n, m(n) > n.

Several aspects are worth mentioning regarding this definition:

• Any pseudorandom generator (PRG) is also a 1PRS.

• A PRG is never a (multi-time) PRS: a distinguisher can measure in the standard basis multiple
copies. For the PRG, the outputs from the different copies will always be the same with
probability 1, but not so for a Haar-random state.

• Without the stretch requirement, the family |ψk⟩ = |k⟩ would have been a 1PRS: the se-
curity requirement is that 1

|K|
∑
k∈K |ψk⟩ ⟨ψk| is computationally indistinguishable from the

maximally mixed state, which holds for this simple construction.

• It has been shown in [GJMZ23, Theorem C.2 only in the arXiv version] that PRS implies
1PRS via a black-box construction. This is non-trivial since m may be shorter than n in a
PRS.

We also need some technical lemmas throughout the proof.

Lemma 3.3 (Lévy’s lemma, e.g., adapted from [Wat18, Theorem 7.37]). Let η > 0, δ > 0, and
m ∈ N. Let f : C2m → R be an η-Lipschitz function. Then,

Pr
|ψ⟩←µ2m

[∣∣f(|ψ⟩)− E
|ψ⟩←µ2m

f(|ψ⟩)
∣∣ ≥ δ] ≤ 4 exp

(
−C12mδ2

η2

)
,

where C1 can be taken to be 2
9π3 .

4 Construction of 1PRS in the CHRS model
In this section, we prove one of the main technical contributions of the paper: 1PRS exist uncon-
ditionally in the CHRS model.

Theorem 4.1. Statistically secure 1PRS exist in the CHRS model17.

This section is organized as follows. In Section 4.1, we formally define the CHRS model, as well
as the notions of PRS and 1PRS in this model. In Section 4.2, we show that a one-time pad acting
on exactly half of the qubits of a Haar random state is sufficient to “scramble” it, so that it is
statistically indistinguishable from a maximally mixed state (even given polynomially many copies
of the same Haar random state). The main tool in the proof is a theorem from Harrow [Har24],
about applying Haar random unitaries to one half of a maximally entangled state. In Section 4.3,
we show a key technical step: the “scrambling” property persists even if the quantum one-time pad
is applied to slightly less than half of the qubits of the Haar random state, which can be interpreted
as saying that the quantum pseudorandomness can be “amplified” slightly. This is enough to yield
a 1PRS.

17See Definition 4.2 in Section 4.1.
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4.1 The CHRS model

The Common Haar Random State (CHRS) model can be viewed as a quantum state generalization
of the Common Reference String (CRS) model introduced by [CF01]. In the CHRS model, we
assume a trusted third party, who prepares a family of states S = {|ψm⟩}m∈N, where |ψm⟩ is
sampled according to the Haar measure on m qubits µ2m . All parties in a protocol (including the
adversary) have access to polynomially many (in the security parameter n) copies of states from S.
Formally, parties have access to the family of isometries {Vm}m∈N, where Vm : C→ C2m 18 is such
that

Vm : |0⟩ 7→ |ψm⟩ .

Equivalently, for any state |α⟩ of any dimension, one query to Vm performs the map:

|α⟩ 7→ |α⟩ |ψm⟩ .

We clarify that, in this model, parties cannot query the different isometries “in superposition”.
Rather, they can query each Vm individually (provided they have enough space to store the m-
qubit output state |ψm⟩). The model is meant to capture the scenario where parties can request
copies of |ψm⟩, for any m of their choice, from the trusted third party, as long as they have enough
space to store the requested state.

Pseudorandom states in the CHRS model We formally define the notion of (single-copy)
pseudorandom states in the CHRS model. The definition is as in the “plain model” (Definitions 3.1
and 3.2), except that both the generation algorithm and the adversary may use polynomially many
copies of the CHRS states.

Definition 4.2 (PRS in the CHRS model). Let S = {|ψm⟩}m∈N denote the CHRS family of states.
A pseudorandom state (PRS) family in the CHRS model is a QPT algorithm Gen satisfying the
following. There exist polynomials m, r : N→ N such that

• Gen: takes as input a security parameter 1n, a string k ∈ {0, 1}n, and states |ψ1⟩⊗r(n),
. . . , |ψr(n)⟩⊗r(n) ∈ S, and outputs a pure state |ϕk⟩ consisting of m = m(n) qubits19.

Moreover, the following computational (resp. statistical) pseudorandomness property should be sat-
isfied: for any polynomials t, r′ : N → N, and any QPT (resp. unbounded quantum) adversary A,
there exists a negligible function negl such that, for all n,∣∣∣∣∣ Pr

k←{0,1}n,S

[
A(|ϕk⟩⊗t(n) , |ψ1⟩⊗r

′(n) , . . . , |ψr′(n)⟩⊗r
′(n)) = 1

]
−

Pr
|ψ⟩←µ2m ,S

[
A(|ϕ⟩⊗t(n) , |ψ1⟩⊗r

′(n) , . . . , |ψr′(n)⟩⊗r
′(n)) = 1

]∣∣∣∣∣ = negl(n) ,

where we clarify that the probabilities are also over sampling the states in S. The definition of
1PRS in the CHRS model is analogous, except that t = 1, and it must be that m(n) > n for all n.

For clarity, we state the statistical pseudorandomness property of a 1PRS explicitly. We focus
on the case where Gen, for security parameter 1n, only takes as input a single Haar random state
|ψm(n)⟩, since this is the setting of our construction. In this case, the statistical pseudorandomness

18Notice that the domain is one-dimensional.
19Clearly, taking Gen of this form is without loss of generality.
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property simplifies to the following20: for any r = poly(n), there exists a negligible function negl
such that, for all n,∥∥∥∥∥ E

k←{0,1}n
E

|ψm⟩←µ2m
UkψmU

†
k ⊗ ψ

⊗r−1
m − E

|ψm⟩←µ2m

1
2m1⊗ ψ

⊗r−1
m

∥∥∥∥∥ = negl(n) . (5)

4.2 Quantum one-time pad on exactly half of the qubits of a Haar random
state

In this section, we show that a quantum one-time pad (QOTP) acting on exactly half of the qubits
of a Haar random state is sufficient to “scramble” it, so that it is statistically indistinguishable from
a maximally mixed state (even given polynomially many copies of the same Haar random state).
The main tool in the proof is the following theorem from Harrow [Har24].

Let |ϕU ⟩ := (U ⊗ I) |Φd⟩, where |Φd⟩ = 1√
d

∑d−1
i=0 |ii⟩ denotes the maximally entangled state in

Cd ⊗ Cd and U ∈ SU(d) is a d-dimensional unitary.

Lemma 4.3 (adapted from [Har24, Theorem 3]). Assume r2 ≤ d, then∥∥∥∥∥ E
|ψ⟩←µd2

[ψ⊗r]− E
U←SU(d)

[ϕ⊗rU ]
∥∥∥∥∥ ≤ r2

d
,

where the norm on the LHS is the trace norm.

We now describe a “toy construction” of a 1PRS in the CHRS model, which consists of applying a
QOTP to exactly the first half of the qubits of the Haar random state. Crucially, this construction
does not satisfy the length stretching requirement of a 1PRS (which is handled in Section 4.3).
Nonetheless, we prove that the construction in Fig. 1 satisfies the statistical pseudorandomness
property of a 1PRS (from Eq. (5)). Recall that to describe the construction we just need to specify,
for each value n of the security parameter, a family {Uk}k∈{0,1}n of m-qubit unitaries, where, in
the case of this “toy” example, m = n. Then, for a seed k, and a common Haar random m-qubit
state |ψ⟩, the corresponding 1PRS state is |ϕk⟩ = Uk |ψ⟩.

Let n ∈ N be even (otherwise redefine n to be n−1). Let Uk = XaZb⊗1n/2,
where a, b ∈ {0, 1}n/2 are the first and second halves of k respectively.

Figure 1: A construction that satisfies the statistical pseudorandomness property of a 1PRS in the
CHRS model, but not the length-stretching requirement.

We will use the following “Pauli twirl” lemma.

Lemma 4.4 (Pauli twirl). Let m ∈ N. Let ρ be an arbitrary linear operator on the space of m
qubits. Let Pm be the set of Pauli operators on m qubits, Then, we have

E
P←Pm

PρP † = Tr[ρ]
2m 1 . (6)

Proof. By linearity, it is enough to show that

E
P←Pm

P |i⟩ ⟨j|P † = δij
2m1,

20While the construction itself may only use the state |ψm(n)⟩, the (unbounded) adversary may still access other
states from S. However, it is clear that these additional states do not affect the trace distance in Eq. (5) at all.
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where δij is the Kronecker delta function. Denote by Pm(ρ) the left hand side of Eq. (6). The map
Pm(·) is a CPTP map, preserving the identity, i.e., Pm(1) = 1.

Notice that the actions of Pauli operators form a group, so for any P ∈ Pm, Pm(ρ) = Pm(PρP ).
Also, Pm(·) is a linear channel. So if i ̸= j, we can find ℓ ∈ [m] such that |i⟩ and |j⟩ lie in different
eigenspaces of Zℓ, where Zℓ denotes “identity everywhere, except Z is applied to the ℓ-th qubit”.
In other words, Zℓ |i⟩ ⟨j|Zℓ = − |i⟩ ⟨j|. Then we have

Pm(|i⟩ ⟨j|) = P(Zℓ |i⟩ ⟨j|Zℓ) = −Pm(|i⟩ ⟨j|) = 0 .

If i = j, then notice that ∑2m−1
k=0 Xk |i⟩ ⟨i|Xk = 1, where Xk ranges over all different products

of X operators. So according to group invariance and linearity of Pm(·), we have

Pm(|i⟩ ⟨i|) = 1
2m

∑
k

Pm(Xk |i⟩ ⟨i|Xk) = 1
2mPm(1) = 1

2m .

We now show that the construction in Fig. 1 satisfies the statistical pseudorandomness property
(from Eq. (5)).

Theorem 4.5. Let m, r ∈ N such that m is even, and r ≤ 2 m
2 . Then, the family of unitaries

{Uk}k∈{0,1}m from Fig. 1 satisfies∥∥∥∥∥ E
k←{0,1}m

E
|ψ⟩←µ2m

UkψU
†
k ⊗ ψ

⊗r−1 − E
|ψ⟩←µ2m

1
2m1⊗ ψ

⊗r−1
∥∥∥∥∥ ≤ 2r2

2m/2

Proof. Recall that Uk = XaZb ⊗ 1m/2, where a, b ∈ {0, 1}m/2 are the first and second halves of k.
Then, we have∥∥∥∥Ek Eψ(Uk ⊗ 1⊗r−1)ψ⊗r(U †k ⊗ 1

⊗r−1)− E
ψ

1

2m ⊗ ψ
⊗r−1

∥∥∥∥ ≤∥∥∥∥Ek (Uk ⊗ 1⊗r−1)E
ψ
ψ⊗r(U †k ⊗ 1

⊗r−1)− E
k
(Uk ⊗ 1⊗r−1)E

U
ϕ⊗rU (U †k ⊗ 1

⊗r−1)
∥∥∥∥+∥∥∥∥Ek (Uk ⊗ 1⊗r−1)E

U
ϕ⊗rU (U †k ⊗ 1

⊗r−1)− E
U

1

2m ⊗ ϕ
r−1
U

∥∥∥∥+
∥∥∥∥EU 1

2m ⊗ ϕ
r−1
U − E

ψ

1

2m ⊗ ψ
⊗r−1

∥∥∥∥
≤ 2r2

2m/2 +
∥∥∥∥Ek (Uk ⊗ 1⊗r−1)E

U
ϕ⊗rU (U †k ⊗ 1

⊗r−1)− E
U

1

2m ⊗ ϕ
r−1
U

∥∥∥∥ ,
(7)

where the first inequality follows from the triangle inequality, and the second inequality follows
from Lemma 4.3. Notice that

E
k
(Uk ⊗ 1⊗r−1)E

U
ϕ⊗rU (U †k ⊗ 1

⊗r−1) = E
P←Pm/2

E
U

(PU ⊗ 1)Φ2m/2(U †P † ⊗ 1)⊗ ϕ⊗r−1
U

= 1
2m/2 E

U

∑
i,j

PU |i⟩ ⟨j|U †P † ⊗ |i⟩ ⟨j| ⊗ ϕ⊗r−1
U


= 1

2m/2 E
U

[∑
i

1
2m/21⊗ |i⟩ ⟨i| ⊗ ϕ

⊗r−1
U

]

= 1

2m ⊗ E
U

[
ϕ⊗r−1
U

]
,
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where, in the third equality, we use Lemma 4.4. So, the second term in the last line of Eq. (7)
vanishes. Therefore, we have∥∥∥∥Ek Eψ UkψU †k ⊗ ψr−1 − E

ψ

1

2m ⊗ ψ
⊗r−1

∥∥∥∥ ≤ 2r2

2m/2 ,

as desired.

4.3 “Stretching” the quantum pseudorandomness

In this section, we show that the “1PRS” from Theorem 4.5 is still secure even if we the the QOTP
is applied only to 0.45m qubits, and thus the key length is shrunk slightly to n = 0.9m bits.

More precisely, we show that the following construction (Fig. 2) is a statistical 1PRS in the
CHRS model, i.e. it satisfies Eq. (5). Again, recall that to describe the construction we just need
to specify, for each value n of the security parameter, a family {Uk}k∈{0,1}n of m-qubit unitaries,
where m is the output length. Then, for a seed k, and a common Haar random m-qubit state |ψ⟩,
the corresponding 1PRS state is |ϕk⟩ = Uk |ψ⟩.

Let n,m ∈ N, where 0.9m ≤ n < m, and n is even (otherwise, redefine n
to be the n−1). Define Uk = XaZb⊗1⊗(m−n/2), where a, b ∈ {0, 1}n/2 are
the first and second halves of k respectively.

Figure 2: Construction of a 1PRS in the CHRS model

In the rest of this section, we show that the construction of Fig. 2 is indeed a 1PRS. The
key ingredient of our proof is a “stretching” result for quantum pseudorandomness in the CHRS
model. Informally, this says the following: if there is a way to obtain “m qubits of single-copy
pseudorandomness” from n bits of classical randomness (where n should be thought of as being
linear in m), then one can also obtain “m qubits of pseudorandomness” from n− 1 bits of classical
randomness, with a slight loss in statistical distance (i.e. it is possible to save one classical bit of
randomness). We emphasize that this “stretching” result applies specifically to the CHRS model,
and, as is, does not apply to the plain model. We will eventually apply this result recursively starting
from the construction of Fig. 1 (QOTP on exactly half of the qubits), which by Theorem 4.5 yields
“m qubits of pseudorandomness” from m bits of classical randomness. The stretching result is the
following.

Theorem 4.6. Let m,n, r ∈ N with r < m. If {Uk}k∈{0,1}n is a set of unitaries acting on m − 1
qubits states, then we have∥∥∥∥∥ E

k←{0,1}n
E

|ψ⟩←µ2m
(1⊗ Uk)ψ(1⊗ U †k)⊗ ψ⊗r−1 − E

|ψ⟩←µ2m

1

2m ⊗ ψ
⊗r−1

∥∥∥∥∥
≤ 5

∥∥∥∥∥ E
k←{0,1}n

E
|ψ′⟩←µ2m−1

Ukψ
′U †k ⊗ ψ

′⊗r−1 − E
|ψ′⟩

1

2m−1 ⊗ ψ
′⊗r−1

∥∥∥∥∥+ 800r
√
m

2m/2 , (8)

Since it is easy to miss, we emphasize that, in the above theorem, |ψ⟩ is a Haar random m-qubit
state, while |ψ′⟩ is a Haar random (m− 1)-qubit state.

To prove Theorem 4.6, we will need two lemmas. The first says that a typical Haar random
state on m qubits is “close” to being maximally entangled across the (1,m− 1) bipartition (i.e. the
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bipartition that considers the first qubit as the “left” register, and the remaining m−1 qubits as the
“right” register). More concretely, the mixed state obtained by sampling a Haar random m-qubit
state is close (in trace distance) to the state obtained by sampling two Haar random (m− 1)-qubit
states |ψ1⟩ and |ψ2⟩, and outputting |ψ′⟩ = 1√

2 |0⟩ |ψ1⟩ + 1√
2 |1⟩ |ψ2⟩. More precisely, we establish

the following lemma, which considers r copies of the state.
Lemma 4.7. Let m, r ∈ N. We have∥∥∥∥∥ E

|ψ⟩←µ2m
ψ⊗r − E

|ψ1⟩,|ψ2⟩←µ2m−1
ψ′⊗r

∥∥∥∥∥ ≤ 80r
√
m

2m/2 ,

where |ψ′⟩ = 1√
2 |0⟩ |ψ1⟩+ 1√

2 |1⟩ |ψ2⟩.

Proof. First, notice that one can sample a Haar random state by sampling ˜|ψ⟩ = α |0⟩ |ψ1⟩ +√
1− α2 |1⟩ |ψ2⟩, where |ψ1⟩ and |ψ2⟩ are Haar random m − 1 qubit states, and α is sampled

according to the marginal distribution of |(⟨0| ⊗ 1) |ψ⟩ | where |ψ⟩ is sampled from the Haar distri-
bution. Denote the latter distribution by D0. For convenience, in the rest of the section, we use
the notation ⟨01|ψ⟩ = (⟨0| ⊗ 1) |ψ⟩. The fact that |ψ̃⟩ has the same distribution as a Haar random
state follows from the unitary invariance of the Haar measure. More precisely, one can see this as
follows, where for (m− 1)-qubit unitaries U1 and U2 we write CU1,U2 = |0⟩ ⟨0| ⊗ U1 + |1⟩ ⟨1| ⊗ U2:

E
|ψ⟩←µ2m

ψ⊗r = E
U1,U2←SU(2m−1)
|ψ⟩←µ2m

(CU1,U2 ψC
†
U1,U2

)⊗r

= E
U1,U2←SU(2m−1)
|ψ⟩←µ2m ,

α,|ψ1⟩,|ψ2⟩,|ψ̃⟩ : |ψ⟩=α|0⟩|ψ1⟩+
√

1−α2|1⟩|ψ2⟩ ,
|ψ̃⟩=α|0⟩U1|ψ1⟩+

√
1−α2|1⟩U2|ψ2⟩

(CU1,U2 ψ̃ C
†
U1,U2

)⊗r

= E
α←D0,|ψ1⟩,|ψ2⟩←µ2m−1 ,

|ψ⟩=α|0⟩|ψ1⟩+
√

1−α2|1⟩|ψ2⟩

ψ⊗r , (9)

where the first equality is by the unitary invariance of the Haar measure.
Now, define a map F such that, for any state |ψ⟩ = α |0⟩ |ψ1⟩ + β |1⟩ |ψ2⟩, with α, β ∈ R+,

F (|ψ⟩) = 1√
2 |0⟩ |ψ1⟩+ 1√

2 |1⟩ |ψ2⟩. Then, F (|ψ⟩) is well defined on all pure states, and, by Eq. (9),
the distribution of F (|ψ⟩) for a Haar random |ψ⟩ is identical to the distribution of |ψ′⟩ = 1√

2 |0⟩ |ψ1⟩+
1√
2 |1⟩ |ψ2⟩ for Haar random |ψ1⟩ and |ψ2⟩. It follows that∥∥∥∥∥∥∥∥∥ E
|ψ⟩←µ2m

ψ⊗r − E
|ψ1⟩,|ψ2⟩←µ2m−1

|ψ′⟩= 1√
2
|0⟩|ψ1⟩+ 1√

2
|1⟩|ψ2⟩

ψ′⊗r

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥ E
α←D0,|ψ1⟩,|ψ2⟩←µ2m−1 ,

|ψ⟩=α|0⟩|ψ1⟩+
√

1−α2|1⟩|ψ2⟩

ψ⊗r − E
|ψ1⟩,|ψ2⟩←µ2m−1

|ψ′⟩= 1√
2
|0⟩|ψ1⟩+ 1√

2
|1⟩|ψ2⟩

ψ′⊗r

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥ E
α←D0,|ψ1⟩,|ψ2⟩←µ2m−1 ,

|ψ⟩=α|0⟩|ψ1⟩+
√

1−α2|1⟩|ψ2⟩

(
ψ⊗r − F (ψ)⊗r

)∥∥∥∥∥∥∥∥
=
∥∥∥∥∥ E
|ψ⟩←µ2m

(
ψ⊗r − F (ψ)⊗r

)∥∥∥∥∥
≤ E
|ψ⟩←µ2m

∥∥ψ⊗r − F (ψ)⊗r
∥∥

≤ r E
|ψ⟩←µ2m

∥ψ − F (ψ)∥ , (10)
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where the last line holds due to the triangle inequality and properties of the trace distance. So, to
prove the lemma, it is enough to prove that

E
|ψ⟩←µ2m

∥ψ − F (ψ)∥ ≤ 80
√
m

2m/2

Notice that, letting |ψ⟩ = α |0⟩ |ψ1⟩ +
√

1− α2 |1⟩ |ψ2⟩, for α ≥ 0, and denoting β =
√

1− α2, we
have

∥ψ − F (ψ)∥ ≤
∣∣∣∣α2 − 1

2

∣∣∣∣ ∥|ψ1⟩ ⟨ψ1|∥+
∣∣∣∣β2 − 1

2

∣∣∣∣ ∥|ψ2⟩ ⟨ψ2|∥+
∣∣∣∣αβ − 1

2

∣∣∣∣ ∥|ψ1⟩ ⟨ψ2|∥+
∣∣∣∣αβ − 1

2

∣∣∣∣ ∥|ψ2⟩ ⟨ψ1|∥

=
∣∣∣∣α2 − 1

2

∣∣∣∣+ ∣∣∣∣β2 − 1
2

∣∣∣∣+ 2
∣∣∣∣αβ − 1

2

∣∣∣∣
≤ 4

∣∣∣∣α2 − 1
2

∣∣∣∣ (11)

So it is enough of us to bound Eα←D0

∣∣∣α2 − 1
2

∣∣∣. Consider the function f : U(d) → R such that
f(|ψ⟩) = ∥ ⟨01|ψ⟩ ∥2, where recall that we denote ⟨01|ψ⟩ = (⟨0| ⊗ I) |ψ⟩. f is 2-Lipschitz, because
for any two states |ψ1⟩ and |ψ2⟩, we have

|f(|ψ1⟩)− f(|ψ2⟩)| =
∣∣∣∥ ⟨01|ψ1⟩ ∥2 − ∥ ⟨01|ψ2⟩ ∥2

∣∣∣
≤ ∥⟨01|ψ1⟩∥ ·

∣∣∣ ∥⟨01|ψ1⟩∥ − ∥⟨01|ψ2⟩∥
∣∣∣+ ∥⟨01|ψ2⟩∥ ·

∣∣∣ ∥⟨01|ψ1⟩∥ − ∥⟨01|ψ2⟩∥
∣∣∣

≤ 2
∣∣∣ ∥⟨01|ψ1⟩∥ − ∥⟨01|ψ2⟩∥

∣∣∣ ≤ 2 ∥|ψ1⟩ − |ψ2⟩∥ .

Thus, using Lévy’s lemma (Lemma 3.3), we have

Pr
|ψ⟩←µ2m

[
|f(ψ)− E

|ψ⟩←µ2m
f(|ψ⟩)| ≥ δ

]
≤ 4 exp

(
−2mδ2

18π3

)

Let δ = 18
√
m

2m/2 . Then, since E|ψ⟩←µ2m f(|ψ⟩) = 1/2, we have

E
|ψ⟩←µ2m

∣∣∣f(|ψ⟩)− 1/2
∣∣∣ ≤ 1

2 Pr
|ψ⟩←µ2m

(∣∣∣f(|ψ⟩)− E
|ψ⟩←µ2m

f(|ψ⟩)
∣∣∣ ≥ δ)+ δ

= 1
2 · 4 · exp

(
−2mδ2

18π3

)
+ δ

≤ 2 exp(−m/2) + 18
√
m

2m/2

≤ 2
2m/2 + 18

√
m

2m/2

≤ 20
√
m

2m/2 .

Combining this with Eq. (10) and (11) gives the desired conclusion.

We can also generate the state |ψ′⟩ by |ψ1⟩ and a random unitary U ∈ U(2m−1), in fact, we can
always write |ψ′⟩ as

|ψ′⟩ = 1√
2

(|0⟩ |ψ1⟩+ |1⟩ |ψ2⟩) = CU |+⟩ |ψ1⟩
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where U ∈ U(2m−1) is the proper unitary(probability with phase) rotating |ψ1⟩ to |ψ2⟩, and CU =
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ U is the corresponding controlled U gate. Define |ψCU ⟩ = CU |+⟩ |ψ1⟩. So,
with this observation, we have

E
|ψ1⟩←µ2m−1 ,|ψ2⟩←µ2m−1

ψ′⊗r = E
|ψ1⟩←µ2m−1 ,U←U(2m−1)

ψ⊗rCU

as they are essentially the same distribution.
We also need the following technical lemma.

Lemma 4.8. For a Hermitian matrix A, if the inequality ∥⟨a|1A |a⟩1∥ < ϵ holds for all |a⟩ ∈
{|0⟩ , |1⟩ , |+⟩ , |+i⟩}, then ∥A∥ < 10ϵ.

Proof. Let A = |0⟩ ⟨0|1⊗A00+|0⟩ ⟨1|1⊗A01+|1⟩ ⟨0|1⊗A10+|1⟩ ⟨1|1⊗A11, for some A00, A01, A10, A11,
then the hypothesis of the lemma is equivalent to

∥A00∥ ≤ ϵ
∥A11∥ ≤ ϵ
1
2 ∥A00 +A01 +A10 +A11∥ ≤ ϵ
1
2 ∥A00 − iA01 + iA10 +A11∥ ≤ ϵ .

(12)

From Eq. (12), we can deduce that

∥A01∥ =
∥∥∥∥1

2(A00 +A01 +A10 +A11) + i

2(A00 − iA01 + iA10 +A11)− 1 + i

2 A00 −
1 + i

2 A11

∥∥∥∥
≤ ϵ+ ϵ+

√
2

2 ϵ+
√

2
2 ϵ

≤ (2 +
√

2)ϵ

Similarly we have ∥A10∥ ≤
(
2 +
√

2
)
ϵ, so

∥A∥ ≤ ∥A00∥+ ∥A01∥+ ∥A10∥+ ∥A11∥ ≤ (6 + 2
√

2)ϵ < 10ϵ .

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6. According to Lemma 4.8, it suffices to show that, for all |a⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |+i⟩},∥∥∥∥Ek Eψ ⟨a|1 (1⊗ Uk)ψ(1⊗ U †k) |a⟩1 ⊗ ψ⊗r−1 − E
ψ
⟨a|1

1

2m |a⟩1 ⊗ ψ
⊗r−1

∥∥∥∥ ≤
1
2

∥∥∥∥Ek E
ψ1
Ukψ1U

†
k ⊗ ψ

⊗r−1
1 − E

ψ1

1

2m−1 ⊗ ψ
⊗r−1
1

∥∥∥∥+ 80r
√
m

2m/2 .

By the unitary invariance of the Haar measure, the LHS is identical for all |a⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |+i⟩}.
Thus, it suffices to show that∥∥∥∥Ek Eψ ⟨0|1 (1⊗ Uk)ψ(1⊗ U †k) |0⟩1 ⊗ ψ⊗r−1 − E

ψ
⟨0|1

1

2m |0⟩1 ⊗ ψ
⊗r−1

∥∥∥∥ ≤
1
2

∥∥∥∥Ek E
ψ1
Ukψ1U

†
k ⊗ ψ

⊗r−1
1 − E

ψ1

1

2m−1 ⊗ ψ
⊗r−1
1

∥∥∥∥+ 80r
√
m

2m/2 .
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To keep the notation simple in the next calculations, we write E|ψ1⟩,|ψ2⟩ as short for E|ψ1⟩,|ψ2⟩←µ2m−1 ,
and we denote |ψ′⟩ = 1√

2 |0⟩ |ψ1⟩+ 1√
2 |1⟩ |ψ2⟩. We have∥∥∥∥Ek Eψ ⟨0|1 (1⊗ Uk)ψ(1⊗ U †k) |0⟩1 ⊗ ψ
⊗r−1 − E

ψ
⟨0|1

1

2m |0⟩1 ⊗ ψ
⊗r−1

∥∥∥∥ ≤∥∥∥∥∥Ek Eψ ⟨0|1 (1⊗ Uk)ψ(1⊗ U †k) |0⟩1 ⊗ ψ
⊗r−1 − E

k
E

|ψ1⟩,|ψ2⟩
⟨0|1 (1⊗ Uk)ψ′(1⊗ U †k) |0⟩1 ⊗ ψ

′⊗r−1
∥∥∥∥∥

+
∥∥∥∥∥Ek E
|ψ1⟩,|ψ2⟩

⟨0|1 (1⊗ Uk)ψ′(1⊗ U †k) |0⟩1 ⊗ ψ
′⊗r−1 − E

|ψ1⟩,|ψ2⟩
⟨0|1

1

2m |0⟩1 ⊗ ψ
⊗r−1
CU

∥∥∥∥∥ ≤
80r
√
m

2m/2 +
∥∥∥∥∥Ek E
|ψ1⟩,|ψ2⟩

⟨0|1 (1⊗ Uk)ψ′(1⊗ U †k) |0⟩1 ⊗ ψ′⊗r−1 − E
|ψ1⟩,|ψ2⟩

⟨0|1
1

2m |0⟩1 ⊗ ψ
′⊗r−1

∥∥∥∥∥
where the first inequality is by a triangle inequality, and the second uses Lemma 4.7 combined with
the fact that the trace norm is decreasing under taking projections. Thus, it suffices for us to show
that ∥∥∥∥∥Ek E

|ψ1⟩,|ψ2⟩
⟨0|1 (1⊗ Uk)ψ′(1⊗ U †k) |0⟩1 ⊗ ψ

′⊗r−1 − E
|ψ1⟩,|ψ2⟩

⟨0|1
1

2m |0⟩1 ⊗ ψ
′⊗r−1

∥∥∥∥∥
≤ 1

2

∥∥∥∥Ek E
ψ1
Ukψ1U

†
k ⊗ ψ

⊗r−1
1 − E

ψ1

1

2m−1 ⊗ ψ
⊗r−1
1

∥∥∥∥ , (13)

Now, for U ∈ U(2m−1), define the controlled-U gate CU = |0⟩ ⟨0|⊗1+ |1⟩ ⟨1|⊗U . Then, notice
that the distribution of states |ψ′⟩ = 1√

2(|0⟩ |ψ1⟩+ |1⟩ |ψ2⟩), where |ψ1⟩ , |ψ2⟩ ← µ2m−1 , is identical
to the distribution of states |ψ′⟩ = CU |+⟩ |ψ1⟩ = 1√

2(|0⟩ |ψ1⟩+ |1⟩U |ψ1⟩), where |ψ1⟩ ← µ2m−1 and
U ← SU(2m−1) (this equivalence implicitly uses the unitary invariance of the Haar measure). For
convenience, we denote |ψCU ⟩ = CU |+⟩ |ψ1⟩, and we write Eψ1 and EU as short for E|ψ1⟩←µ2m−1
and EU←SU(2m−1) respectively. Thus, Eq. (13) is equivalent to∥∥∥∥Ek E

ψ1,U
⟨0|1 (1⊗ Uk)ψCU (1⊗ U †k) |0⟩1 ⊗ ψ
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∥∥∥∥ ,
So, we are left with showing that the latter inequality is true, which is equivalent to∥∥∥∥Ek E
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†
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Let us denote |ψ̃1⟩ = |+⟩ |ψ1⟩. Notice that∥∥∥∥Ek E
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This concludes the proof of Theorem 4.6.

We now have all the ingredients to show that the 1PRS construction from Fig. 2 is secure.

Corollary 4.9. Let n,m ∈ N, where 0.9m ≤ n < m, and n is even. Let {Uk}k∈{0,1}n be the family
of m-qubit unitaries from Fig. 2, i.e. Uk = XaZb ⊗ 1⊗(m−n/2), where a, b ∈ {0, 1}n

2 are the first
and second halves of k. Then, for any r < 2 m

2 ,∥∥∥∥∥ E
k←{0,1}n

E
|ψ⟩←µ2m

(1⊗ Uk)ψ(1⊗ U †k)⊗ ψ⊗r−1 − E
|ψ⟩←µ2m

1

2m ⊗ ψ
⊗r−1

∥∥∥∥∥ ≤ (2r2 + 800rm
√
m)50.1m

20.45m .

(14)

Proof. Let ℓ = m − n. Recursively apply Theorem 4.6 ℓ times, using Theorem 4.5 to bound the
RHS of Eq. (8) the first time that Theorem 4.6 is applied.

Corollary 4.10. The construction from Fig. 2 is a 1PRS in the CHRS model (as in Definition 4.2).

Proof. Take n = 0.9m. Then, for any r = poly(m), and for all large enough m, the RHS of Eq. (14)
is less than 0.86m (since 50.1m/20.45m = (0.85987 . . . )m). Note that, in Corollary 4.9, the adversary
only gets access to r copies of a single m-qubit Haar random state |ψ⟩, whereas in the definition
of a 1PRS in the CHRS model (Definition 4.2), the adversary has also access to the other states
from S. However, as pointed out earlier, since our construction only uses the m-qubit state (for
output of length m), and all of the states in S are independently sampled, the security property of
Definition 4.2 is equivalent to that of Eq. (5).

Note that in our definition of 1PRS in the CHRS model (Definition 4.2), the security guarantee
is “on average over S”. However, for the purpose of utilizing this result in the context of an oracle
separation (as we will do in Section 5), it is important that we can find a fixed family of states S
relative to which 1PRS exist. We show that this is the case: with probability 1 over S, the 1PRS
security holds (against all adversaries).

Corollary 4.11. Let S = {|ψm⟩}m∈N denote the CHRS family of states. Then, with probability 1,
S satisfies the following property: for any adversary A with access to polynomially many copies of
states in S, there exists a negligible function negl, such that, for all m,∣∣∣∣P[AS(1m,E

k
UkψmU

†
k)→ 1]− P[AS(1m, 12m )]

∣∣∣∣ = negl(m) ,

where the Uk are as defined in Fig. 2, and the notation AS denotes that A has access to polynomially
many copies of states from S.

Proof. As pointed out earlier, it suffices to consider the case where AS(1m, ·) only gets polynomially
many copies of the single state |ψm⟩ (rather than various states in S). Any adversary can be
described by a Turing machine that on input 1m outputs a distinguishing quantum circuit. Denote
the length of the Turing machine by |A|. Then, by Corollary 4.10, we know that for any adversary
AS with access to poly(m) copies of |ψm⟩,

E
S

(
adv(AS(1m, ·))

)
< 0.86m

24



for large enoughm, where adv(AS(1m, ·)) denotesA’s distinguishing advantage (since 50.1m/20.45m =
(0.85987 . . . )m). Thus, by an averaging argument, for any adversary A,

PS
[
adv(AS(1m, ·)) > 0.95m

]
< 0.95m (15)

for large enough m. For an adversary A, let EA,m be the event that adv(AS(1m, ·)) > 0.95m.
Then, Eq. (15) can be equivalently restated as: PrS EA,m < 0.95m holds for all but finite m.
Thus ∑PrS EA,m is finite. Hence, by the Borel-Cantelli lemma, with probability 1 over randomly
sampling S, the event EA,m happens only for finitely many m, i.e. adv(AS(1m, ·)) < 0.95m holds
for all large enough m.

For an adversary A, denote by FA the event that EA,m holds for infinitely many m. Then we
can restate what we found above as PrS FA = 0. Now, notice that there are only countably many
different adversaries A (because A can be described by a string of finite length). So, by a union
bound, we have

Pr
S

[∃A s.t. FA happens] ≤
∑
A

Pr
S

[FA] = 0 .

All in all, we have established that, with probability 1 over sampling S, it holds that, for all
adversaries A, adv(AS(1m, ·)) < 0.95m holds for all large enough m.

Thus, we have the following.

Corollary 4.12. With probability 1 over sampling a family of Haar random states S = {|ψm⟩}m∈N
where |ψm⟩ ← µ2m, the construction from Fig. 2 is a statistically secure 1PRS (relative to S).

5 Oracle separation of PRS and 1PRS
In this section, we show that there is an oracle relative to which 1PRS exist, but PRS do not. This
implies that there does not exist a (certain variant of a) fully black-box construction of a PRS from
a 1PRS (the precise variant is stated in Corollary 5.8, and a detailed explanation of the terminology
is provided in Section 5.3). We start by describing the separating oracle.

Separating oracle The separating oracle, which we denote as O, consists of two oracles O1 and
O2. The first oracle O1 is identical to the oracle of the CHRS model. This is best thought of as a
distribution over oracles (although we show that it is possible to fix one particular instance from
the distribution). To remind the reader, O1 is obtained by sampling a sequence of Haar random
states {|ψm⟩}∞m=1, where |ψm⟩ is on m qubits. Then, given a unary input 1m, O1 outputs the state
|ψm⟩. We emphasize that O1 only takes inputs of the form 1m (and not superpositions of these).
Thus, formally, each call to the oracle can be thought of as applying an isometry (see Section 4.1).
Informally, the second oracle O2 is a quantum oracle that provides the ability to perform any
quantum operations that a QPSPACE machine can apply: it receives as input a state |α⟩ on s
qubits, a concise description of a polynomial space quantum circuit C acting on these s qubits,
and it returns the result of C acting on |α⟩. Formally, O2 acts as follows: the input consists of a
quantum state |α⟩ on some number s of qubits, a classical Turing Machine M , and a number t. The
oracle runs the classical Turing machine M for t steps. The output of the Turing machine should
represent a quantum circuit C that acts on exactly s qubits. Note that since the Turing machine
runs only for t steps, clearly, the quantum circuit has at most t gates. If the quantum circuit that
was printed does not use exactly s qubits, or if the Turing Machine does not terminate after t steps,
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the oracle aborts (and outputs the ⊥ symbol). Otherwise, the oracle applies the circuit C on |α⟩,
and returns the output.

We show the following.

Theorem 5.1. With respect to O = (O1,O2), 1PRS exist, but PRS (with output length at least
logn+ 10, where n is the seed length) do not.

The existence of 1PRS relative to O = (O1,O2) follows immediately from Corollary 4.12: the
construction of the 1PRS is the same as in Fig. 2, and Corollary 4.12 says that the construction is
statistically secure against adversaries with polynomially many queries to O1. Since the QPSPACE
machine is independent of the sampled Haar random state, it can be simulated by a computationally
unbounded adversary. Note that, as argued in Corollary 4.12, the construction is a secure 1PRS
with probability 1 over sampling O1, i.e. over sampling the family of Haar random states.

Thus the crux of this section is dedicated to showing that PRS do not exist relative to the
oracle. We show this by describing a concrete attack on any PRS scheme, relative to O. The attack
breaks any PRS, with probability 1 over sampling O1.

In Section 5.1, we review the “quantum OR lemma”, which is a key ingredient in our attack.
In Section 5.2, we describe our attack, and in Section 5.3, we provide a detailed discussion of the
relation between black-box constructions and oracle separations in the quantum setting.

5.1 Quantum OR lemma

Informally, the “quantum OR lemma” says that there exists a quantum algorithm that takes as
input a family of projectors, as well as a single copy of a quantum state ρ, and decides whether
either:

• ρ has a significant overlap with one of the projectors, or

• ρ has small overlap with all of the projectors.

The space complexity of this quantum algorithm is especially important for us.

Lemma 5.2 (Quantum OR lemma, adapted from [HLM17, Corollary 3.1]). Let Λ1, . . . ,ΛN be
projectors, and fix real positive numbers ϵ ≤ 1

2 , and δ. Let ρ be a state such that either there exists
i ∈ [N ] such that Tr[Λiρ] ≥ 1− ϵ (case 1) or, for all i ∈ [N ], Tr[Λiρ] ≤ δ (case 2).

Then, there is a quantum circuit, COR, which we refer to as the “OR tester”, such that measuring
the first qubit in case 1 yields:

Pr (COR(ρ)→ 1) ≥ (1− ϵ)2

7
and in case 2:

Pr (COR(ρ)→ 1) ≤ 4Nδ.

The circuit uses controlled-Λi gates Ctrl-Λi = |1⟩ ⟨1| ⊗ Λi − |0⟩ ⟨0| ⊗ (1 − Λi), and an additional
O(logN) qubits.

Remark 5.3. We observe that even when the number of measurements, N , is exponential in the
number of qubits of ρ, denoted n, the circuit COR which is constructed in Ref. [HLM17] can be
implemented by a QPSPACE machine21 as long as each Λi can be implemented by a QPSPACE
machine.

21i.e., the family of circuits COR, indexed by n, is a uniform family of quantum circuits using poly(n) qubits of
space.
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5.2 An attack on any PRS relative to the separating oracle

We describe an attack, based on the quantum OR lemma, that breaks any PRS relative to the
oracle O described at the beginning of the section. Before describing our attack, we first introduce
some technical tools. First, we need the following concentration bound.

Lemma 5.4. Let N ∈ N, and |ψ0⟩ a N -dimensional state. Then,

Pr
|ψ⟩←µN

[
|⟨ψ|ψ0⟩|2 ≥

1
2

]
< 8 exp

(−N
600

)
Proof. Let S(N) be the unit N -dimensional sphere, i.e. the set of all N -dimensional pure states.
Define functions f1, f2 : S(N)→ R such that f1(|ψ⟩) = Re ⟨ψ0|ψ⟩, and f2(|ψ⟩) = Im ⟨ψ0|ψ⟩.

f1 and f2 are 1-Lipschitz functions. In fact, for any N -dimensional states |ψ1⟩ and |ψ2⟩

|f1(|ψ1⟩)− f1(|ψ2⟩)| = |Re (⟨0| (|ψ1⟩ − |ψ2⟩))| ≤ |⟨0| (|ψ1⟩ − |ψ2⟩)| ≤ ∥|ψ1⟩ − |ψ2⟩∥ .

Similarly for f2. Now, notice that, for any |ψ⟩, we have f1(|ψ⟩) = −f1(− |ψ⟩), and f2(|ψ⟩) =
−f2(− |ψ⟩). This implies that E|ψ⟩ f1(|ψ⟩) = E|ψ⟩ f2(|ψ⟩) = 0. Hence, we can invoke Levy’s lemma
(Lemma 3.3) to deduce that

Pr
|ψ⟩

[
|f1(|ψ⟩)| ≥ 1

2

]
≤ 4 exp

(
− N

18π3

)
< 4 exp

(
− N

600

)
.

A similar concentration bound holds for f2. Note that |⟨ψ|ψ0⟩|2 = f1(|ψ⟩)2 + f2(|ψ⟩)2, and hence,
by a union bound,

Pr
|ψ⟩

[
|⟨ψ|ψ0⟩|2 ≥

1
2

]
= Pr
|ψ⟩

[
f2

1 + f2
2 ≥

1
2

]
≤ Pr
|ψ⟩

[|f1(|ψ⟩)| ≥ 1/2] + Pr
|ψ⟩

[|f2(|ψ⟩)| ≥ 1/2]

< 8 exp
(−N

600

)
.

Now, we are ready to describe our attack, and complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Consider a PRS relative to O. This consists of a generation procedure GenO
that takes as input a seed k, and outputs a state |ϕk⟩. We denote by n the length of k, and by m
the number of qubits of |ϕk⟩. Recall that GenO = (O1,O2), where O1 is an oracle that provides
states from a family of Haar random states {|ψm⟩}, and O2 is the QPSPACE machine oracle (see
the start of Section 5 for a precise definition).

Similarly as in Definition 4.2, without loss of generality, we can take the generation procedure to
be of the following form: there is a polynomial s = s(n) and a family {GenO2

k }k∈{0,1}n of efficiently
generatable poly(n)-size unitary circuits that include calls to O2 (but not O1) such that

|ϕk⟩ = GenO2
k (|ψ1⟩⊗s ⊗ |ψ2⟩⊗s . . .⊗ |ψs⟩⊗s) .

In other words, the PRS generation procedure first obtains polynomially many copies of states from
the family {|ψm⟩}, and then, on input k, applies an efficiently generatable unitary that makes calls
to O2 as a black-box. Note that Genk may discard some of the qubits, and those would be traced
out and not be considered as part of the output state |ϕk⟩, and therefore the entire transformation
is not necessarily unitary.
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We denote by Uk the unitary implemented by GenO2
k before tracing out some of the registers.22

Recall that the number of qubits in |ϕk⟩ is denoted by m, and we name the output register as A,
and the register containing the qubits which are traced out by GenO2

k is denoted by B. We let C be
another m-qubits register. Consider the family of projectors

Πk =
((

(U †k)AB ⊗ 1C
)
(Πsym

AC ⊗ 1B)
(
(Uk)AB ⊗ 1C

))⊗10n
, (16)

where Πsym
AC is the projection onto the symmetric subspace across the two registers A and C.

The attack is the following: the adversary queriesO1 to generate (|ψ1⟩⊗s⊗|ψ2⟩⊗s . . .⊗|ψs⟩⊗s)⊗10n

and stores each copy in the AB register, and receives 10n copies of |ϕ⟩, where |ϕ⟩ is either a pseudo-
random state or a Haar random state, which is stored in the C register. We denote this combined
state as ρ. It then uses the O2 oracle (the QPSPACE machine) to run the “OR tester” from the
quantum OR lemma (Lemma 5.2), where, using the notation from Lemma 5.2, with ρ as defined
above, and Λk = Πk as defined in Eq. (16). Recall that the “OR tester” can indeed be implemented
by a QPSPACE machine, as discussed in Remark 5.3.

We now argue that the “OR tester” successfully distinguishes between pseudorandom and ran-
dom |ϕ⟩.

• Suppose |ϕ⟩ = |ϕk⟩ for some k. It is clear that the state(
(|ψ1⟩⊗s ⊗ |ψ2⟩⊗s ⊗ . . .⊗ |ψs⟩⊗s)AB ⊗ |ϕk⟩C

)⊗10n

lies in the range of Πk =
((

(U †k)AB ⊗ 1C
)
(Πsym

AC ⊗ 1B)
(
(Uk)AB ⊗ 1C

))⊗10n
. Thus, we are in

“case 1” of Lemma 5.2 with ϵ = 0. Hence, the probability that the “OR tester” outputs 1 is
at least 1/7.

• Suppose |ϕ⟩ is Haar random. Then, by Lemma 5.4, we have that, with probability at least
1− 8 exp(− 2m

600),
|⟨ϕ|ϕk⟩| ≤

1√
2
.

Notice that the probability that |ϕ⟩ ⊗ |ϕk⟩ passes the “swap test” (i.e. it is found to lie in
the symmetric subspace across the two registers when the measurement {Πsym, I −Πsym} is
performed) is exactly 1

2 + 1
2 |⟨ϕ|ϕk⟩|

2 (cf. [BCWDW01]). Since Πk corresponds to a projection
onto 10n such swap tests all accepting, we have that, with probability at least 1−8 exp(− 2m

600)
over the sampling of |ϕ⟩,

Tr[Πkρ] ≤
(3

4

)10n
.

Now, by a union bound over k ∈ {0, 1}n, we have that, except with probability at most
8 · 2n · exp(− 2m

600) over the sampling of |ϕ⟩, the inequality Tr[Πkϕ
′] ≤

(
3
4

)10n
holds for all k,

and we are in “case 2” of Lemma 5.2 with δ =
(

3
4

)10n
. Hence, in this case, the “OR tester”

outputs 1 with probability at most 4 · 2n ·
(

3
4

)10n
. All in all, by a final union bound, the

“OR tester” outputs 1 with probability at most 8 · 2n · exp(− 2m

600) + 4 · 2n ·
(

3
4

)10n
, which is

22Note that the pseudorandom state must be a pure state; therefore, we can assume without loss of generality that
the O2 QPSPACE machine does nor perform any measurements.
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exponentially small in n when m > logn + log 600 (note that here the base of exp is e, and
the base of log is 2). Notice that our attack breaks the PRS regardless of what family of the
reference states {|ψm⟩}∞m=1 is. Thus, the attack works not only with “probability 1” over such
families, but, in fact, for all possible families {|ψm⟩}∞m=1.

Remark 5.5. The proof of Theorem 5.1 also shows that the 1PRS family generated in Fig. 2 is
not statistically secure when we allow multiple-copy access to the generated state, i.e. the family in
Fig. 2 is a 1PRS against query-bounded adversaries but not a PRS against such adversaries.

Remark 5.6. The QPSPACE machine is quite a powerful oracle, and one might wonder whether a
different attack based on shadow tomography would work here (along the lines of the attack described
by Kretschmer in [Kre21, Subsection 1.3]). This would only require a PP oracle to carry out
the classical post-processing. As pointed out earlier though, the issue is that here the projectors
Πk =

((
1A ⊗ (Uk)†A′B′

)
(Πsym

AA′ ⊗ 1B′)
(
1A ⊗ (Uk)A′B′

))⊗10n
have large 2-norm: Tr Π2

k is exponential
in n, and so the estimation of the quantity Tr[Λkϕ̃] given by shadow tomography has too large of a
variance. Thus, shadow tomography does not seem to be sample-efficient in our setting.

Remark 5.7. Our attack against PRS is not relativizing: if a PRS family is constructed relative to
an oracle O, then our attack based on the OR lemma needs exponentially many queries to O, thus
it cannot be simulated by a BQP adversary with access to a QPSPACE machine. Therefore, it does
not violate the oracle construction of PRS by Kretschmer [Kre21], nor a conjecture by Kretschmer
et al. [KQST23, Sections 7.1–7.2 ] about the existence of PRS relative to a classical oracle.

A detailed discussion of the relation between black-box constructions and oracle separations in
the quantum setting is postponed to Section 5.3. Combining Theorem 5.1 with Theorem 5.17 from
Section 5.3 (and using the terminology introduced there), we immediately have:

Corollary 5.8. There is no fully black-box construction of a PRS from isometry access to a 1PRS
(as in Definition 5.12).

5.3 Clarifying the relationship between quantum oracle separations and black-
box constructions

In this section, we clarify what we mean by a “black-box construction” of primitiveQ from primitive
P when the primitives involve quantum algorithms (and possibly quantum state outputs). We also
clarify the relationship between a quantum oracle separation of P and Q and the (im)possibility
of a black-box construction of one from the other. To the best of our knowledge, while black-box
separations in the quantum setting have been the topic of several recent works, a somewhat formal
treatment of the terminology and basic framework is missing. This section is a slightly extended
version of a section that appears almost verbatim in the concurrent work [CM24].

In the quantum setting, it is not immediately obvious what the correct notion of “black-box
access” is. There are a few reasonable notions of what it means for a construction to have “black-
box access” to another primitive. We focus on three variants: unitary access, isometry access, and
access to both the unitary and its inverse.

The summary is that, similarly to the classical setting, a quantum oracle separation of primitives
P and Q (i.e. a quantum oracle relative to which P exists but Q does not) implies the impossibility
of a black-box construction of Q from P, but with one caveat: the type of oracle separation
corresponds directly to the type of black-box construction that is being ruled out. For example, if
one wishes to rule out black-box constructions of Q that are allowed to make use of the inverse of
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unitary implementations of P, then the oracle separation needs to be “closed under giving access
to the inverse of the oracle”, i.e. the separation needs to hold relative to an oracle and its inverse.
We start by introducing some terminology.

Terminology. A quantum channel is a CPTP (completely-positive-trace-preserving) map. The
set of quantum channels captures all admissible “physical” processes in quantum information, and
it can be thought of as the quantum analogue of the set of functions f : {0, 1}∗ → {0, 1}∗.

For the purpose of this section, a quantum channel is specified by a family of unitaries {Un}n∈N
(where Un acts on an input register of size n, and a work register of some size s(n)). The quantum
channel maps an input (mixed) state ρ on n qubits to the (mixed) state obtained as follows:
apply Un(·)U †n to ρ ⊗ (|0⟩ ⟨0|)⊗s(n); measure a subset of the qubits; output a subset of the qubits
(measured or unmeasured). We say that the family {Un}n∈N is a unitary implementation of the
quantum channel. We say that the quantum channel is QPT if it possesses a unitary implementation
{Un}n∈N that is additionally a uniform family of efficiently computable unitaries. In other words,
the quantum channel is implemented by a QPT algorithm.

One can also consider the family of isometries {Vn}n∈N where Vn takes as input n qubits, and
acts like Un, but with the work register fixed to |0⟩s(n), i.e. Vn : |ψ⟩ 7→ Un(|ψ⟩ |0⟩⊗s(n)). We refer
to {Vn}n∈N as the isometry implementation of the quantum channel.

We will also consider QPT algorithms with access to some oracle O. In this case, the unitary
(resp. isometry) implementation {Un}n∈N should be efficiently computable given access to O.

Before diving into formal definitions, a bit informally, a primitive P can be thought of as a set of
conditions on tuples of algorithms (G1, . . . , Gk). For example, for a digital signature scheme, a valid
tuple of algorithms is a tuple (Gen,Sign,Verify) that satisfies “correctness” (honestly generated
signatures are accepted by the verification procedure with overwhelming probability) and “security”
(formalized via an unforgeability game). Equivalently, one can think of the tuple of algorithms
(G1, . . . , Gk) as a single algorithm G (with an additional control input).

A thorough treatment of black-box constructions and reductions in the classical setting can be
found in [RTV04]. Our definitions are a quantum analog of those found there. They follow the
style of [RTV04] whenever possible and depart from it whenever necessary.

Definition 5.9. A primitive P is a pair P = (FP ,RP)23 where FP is a set of quantum channels,
and RP is a relation over pairs (G,A) of quantum channels, where G ∈ FP .

A quantum channel G is an implementation of P if G ∈ FP . If G is additionally a QPT channel,
then we say that G is an efficient implementation of P (in this case, we refer to G interchangeably
as a QPT channel or a QPT algorithm).

A quantum channel A (usually referred to as the “adversary”) P-breaks G ∈ FP if (G,A) ∈ RP .
We say that G is a secure implementation of P if G is an implementation of P such that no QPT
channel P-breaks it. The primitive P exists if there exists an efficient and secure implementation
of P.

Let U be a unitary (resp. isometry) implementation of G ∈ P. Then, we say that U is a unitary
(resp. isometry) implementation of P. For ease of exposition, we also say that quantum channel
A P-breaks U to mean that A P-breaks G.

Since we will discuss oracle separations, we give corresponding definitions relative to an oracle.
Going forward, for ease of exposition, we often identify a quantum channel with the algorithm that
implements it.

23Here FP should be thought of as capturing the “correctness” property of the primitive, while RP captures
“security”.
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Definition 5.10 (Implementations relative to an oracle). Let O be a unitary (resp. isometry)
oracle. An implementation of primitive P relative to O is an oracle algorithm G(·) such that
GO ∈ FP24. We say the implementation is efficient if G(·) is a QPT oracle algorithm.

Let U be a unitary (resp. isometry) implementation of GO. Then, we say that U is a unitary
(resp. isometry) implementation of P relative to O.

Definition 5.11. We say that a primitive P exists relative to an oracle O if:

(i) There exists an efficient implementation G(·) of P relative to O, i.e. GO ∈ P (as in Defini-
tion 5.10).

(ii) The security of GO holds against all QPT adversaries that have access to O. More precisely,
for all QPT A(·), (GO, AO) /∈ RP .

There are various notions of black-box constructions and reductions (see, for example, [RTV04]).
Here, we focus on (the quantum analog of) the notion of a fully black-box construction. We identify
and define three analogs based on the type of black-box access available to the construction and
the security reduction.

Definition 5.12. A QPT algorithm G(·) is a fully black-box construction of Q from isometry
access to P if the following two conditions hold:

1. (black-box construction with isometry access) For every isometry implementation V of P,
GV is an implementation of Q.

2. (black-box security reduction with isometry access) There is a QPT algorithm S(·) such that,
for every isometry implementation V of P, every adversary A that Q-breaks GV , and every
isometry implementation Ã of A, it holds that SÃ P-breaks V .

Definition 5.13. A QPT algorithm G(·) is a fully black-box construction of Q from unitary
access to P if the following two conditions hold:

1. (black-box construction with unitary access) For every unitary implementation U of P, GU
is an implementation of Q.

2. (black-box security reduction with unitary access) There is a QPT algorithm S(·) such that,
for every unitary implementation U of P, every adversary A that Q-breaks GU , and every
unitary implementation Ã of A, it holds that SÃ P-breaks U .

Definition 5.14. A QPT algorithm G(·) is a fully black-box construction of Q from P with access
to the inverse if the following two conditions hold:

1. (black-box construction with access to the inverse) For every unitary implementation U of
P, GU,U−1 is an implementation of Q.

2. (black-box security reduction with access to the inverse) There is a QPT algorithm S(·) such
that, for every unitary implementation U of P, every adversary A that Q-breaks GU,U−1, and
every unitary implementation Ã of A, it holds that SÃ,Ã−1 P-breaks U25.

24We clarify that here GO is only allowed to query the unitary O, not its inverse. However, as will be the case
later in the section, O itself could be of the form O = (W,W−1) for some unitary W .

25One could define even more variants of "fully black-box constructions" by separating the type of access that G
has to the implementation of P from the type of access that S has to A (currently they are consistent in each of
Definitions 5.13, 5.12, and 5.14). Here, we choose to limit ourselves to the these three definitions.
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These three notions of black-box constructions are related to each other in the following (un-
surprising) way.

Theorem 5.15. If there is a fully black-box construction G(·) of primitive Q from isometry access
to primitive P (as in Definition 5.12), then there is a fully black-box construction G̃(·) of Q from
unitary access to P (as in Definition 5.13).

Proof. G̃ is defined in a natural way: for a unitary implementation U of P, G̃U runs GV , where V
is the isometry induced by U . The latter can of course be simulated with queries to U , by setting
the work register to |0⟩. An S̃(·) satisfying item 2 of Definition 5.13 can be defined analogously
from an S· satisfying item 2 of Definition 5.12.

We also have the following.

Theorem 5.16. A fully black-box construction G(·) of primitive Q from isometry access to primitive
P (as in Definition 5.13) is also a fully black-box construction of Q from P with access to the inverse
(as in Definition 5.14).

Proof. This is immediate since Definition 5.14 gives G(·) and S(·) access to strictly “more”, namely
the inverses.

We thus point out that our separation result (Theorem 5.1) rules out only the strongest notion
of fully black-box construction of PRS from 1PRS (as in Definition 5.12), and thus is the “weakest”
separating result that one could hope to obtain.

As an example to help motivate these different definitions, the original construction of com-
mitments from PRS by Morimae and Yamakawa [MY22a] is fully black-box, but with access to
the inverse (i.e. the weakest notion of fully black-box construction). This distinction is impor-
tant, for example, when working in the CHRS model, or in the quantum auxiliary-input model
considered in [MNY23] and [Qia23]: a construction of a PRS in this model does not immediately
yield a commitment scheme via the black-box construction of [MY22a], because the inverse of the
PRS generation procedure is not necessarily available in this model (since the generation procedure
may use auxiliary states, and thus the “inverse” is not well-defined). On the other hand, the slight
variation on the [MY22a] construction, proposed in [MNY23], is fully black-box with unitary access
(but without needing the inverse, as in Definition 5.13).

We now clarify the relationship between a quantum oracle separation of primitives P and Q
and the (im)possibility of a black-box construction of one from the other.

The following is a quantum analog of a result by Impagliazzo and Rudich [IR89] (formalized in
[RTV04] using the above terminology).

Theorem 5.17. Suppose there exists a fully black-box construction of primitive Q from unitary
(resp. isometry) access to primitive P. Then, for every unitary (resp. isometry) O, if P exists
relative to O, then Q also exists relative to O.

This implies that a unitary (resp. isometry) oracle separation (i.e. the existence of an oracle
relative to which P exists but Q does not) suffices to rule out a fully black-box construction of Q
from unitary (resp. isometry) access to P.

Proof of Theorem 5.17. We write the proof for the case of unitary access to P. The proof for the
case of isometry access is analogous (replacing unitaries with isometries). Suppose there exists a
fully black-box construction of Q from P. Then, by definition, there exist QPT G(·) and S(·) such
that:
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1. (black-box construction) For every unitary implementation U of P, GU is an implementation
of Q.

2. (black-box security reduction) For every implementation U of P, every adversary A that Q-
breaks GU , and every unitary implementation Ã of A, it holds that SÃ P-breaks U .

Let O be a quantum oracle relative to which P exists. Since, by Definition 5.11, P has an efficient
implementation relative to O, there exists a uniform family of unitaries U that is efficiently com-
putable with access to O, such that U is a unitary implementation of P. Moreover, U (or rather
the quantum channel that U implements) is a secure implementation of P relative to O.

We show that the following QPT oracle algorithm G̃(·) is an efficient implementation of Q
relative to O, i.e. G̃O ∈ Q. G̃O runs as follows: implement GU by running G, and simulate each
call to U by making queries to O. Note that G̃(·) is QPT because U is a uniform family of efficiently
computable unitaries given access to O. Since G̃O is equivalent to GU , and GU ∈ Q (by property
1 above), then G̃O ∈ Q.

We are left with showing that G̃O is a secure implementation relative to O, i.e. that there is
no QPT adversary A(·) such that AO Q-breaks G̃O. Suppose for a contradiction that there was a
QPT adversary A(·) such that AO Q-breaks G̃O (which is equivalent to GU ). Then, by property
2, SAO P-breaks U . Note that adversary SA

O can be implemented efficiently with oracle access
to O, because both S(·) and A(·) are QPT. Thus, this contradicts the security of U relative to O
(formally, of the quantum channel that U implements).

Similarly, we state a version of Theorem 5.17 for fully black-box constructions with access to
the inverse.

Theorem 5.18. Suppose there exists a fully black-box construction of primitive Q from primitive
P with access to the inverse. Then, for every unitary O, if P exists relative to (O,O−1), then Q
also exists relative to the oracle (O,O−1).

Proof. The proof is analogous to the proof of Theorem 5.17. The only difference is that now G(·)

additionally makes queries to the inverse of the unitary implementation U of P. Since U−1 can
be implemented efficiently given access to (O,O−1), we can now define an efficient implementation
G̃(·) of P relative to (O,O−1). Proving that G̃O,O−1 is a secure implementation of P relative to
(O,O−1) also proceeds analogously.
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A Commitments in the CHRS model
This section describes an unconditional bit commitment protocol in the CHRS model, and follows
very closely the approach of [MNY23] to compile a 1PRS into a commitment.

We adopt the definition of bit commitment with common reference state from [MNY23] with the
slight modification that the reference state must be Haar random. We point out another subtlety
about this definition in Remark A.2 below.

Definition A.1 (Bit commitment in the CHRS model). A non-interactive bit commitment scheme
in the CHRS model is given by a tuple of QPT algorithms: C (the sender) and R (the receiver). Let
{|ψn⟩}n∈N denote the family of common Haar random states. The scheme consists of the following
two phases.

• Commit phase: The sender C takes polynomially many copies of |ψn⟩ and a bit b ∈ {0, 1}
as the input, generates a quantum state on registers C and R, and sends register C to the
receiver R.

• Reveal phase: C sends b and register R to R. R takes polynomially many copies of |ψn⟩ and
(b,C,R) as input, and outputs either b or ⊥.

Remark A.2. Note that in the above definition (which follows the style of [MNY23]), for a given
security parameter n, parties only have access to copies of the Haar random state |ψn⟩. In contrast,
in the definition of CHRS model that we gave in Section 4.1, the entire family {|ψn⟩}n∈N is available
to all parties (who can request polynomially many copies, in the security parameter n). This
distinction is important when proving an oracle separation, like our Theorem 5.1, because there we
want to argue about the existence of a primitive relative to a fixed oracle (rather than an oracle that
changes for each value of the security parameter). However, this distinction is not as important
in this section, given that our 1PRS construction, and the resulting commitment scheme, does in
fact use only the single state |ψn⟩ when the security parameter is n. So, we elect to use the simpler
Definition A.1 in this section for simplicity.

Next, we define the notions of hiding and sum-binding for a bit commitment in the CHRS
model, analogously to [CKR16] and [MNY23]. We consider statistical hiding with bounded access
to the common Haar random state, and statistical sum-binding against adversaries that have even
unbounded access to the state.

Definition A.3 (Polynomial-copy statistical hiding). A quantum commitment scheme (C,R) in the
CHRS model is said to be polynomial-copy statistically hiding if for any computationally unbounded

37

https://doi.org/10.1007/978-3-031-22972-5_22
https://eprint.iacr.org/2020/1488.pdf


Figure 3: Diagram of the known relations and applications in MicroCrypt, as of January 2024.
Regular arrows indicate implications, and dotted arrows indicate black-box separations. An in-
teractive version of this diagram is available at https://sattath.github.io/qcrypto-graph/,
with additional features, such as “mouseover a node” reveals additional details, and “mouseover an
edge” shows a clickable source for that relation. The website is updated periodically, therefore, the
online version may differ from the one above as new results are published.
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uniform algorithm A and for any polynomial t = t(n), there exists a negligible function negl such
that, for all n,∣∣∣ Pr

|ψn⟩←µn

[
1← A

(
1n, |ψn⟩⊗t ,TrR[σC,R]

)
: σC,R ← Ccom(|ψn⟩⊗r , 0)

]
− Pr
|ψn⟩←µn

[
1← A

(
1n, |ψn⟩⊗t ,TrR[σC,R]

)
: σC,R ← Ccom(|ψn⟩⊗r , 1)

] ∣∣∣ ≤ negl(n)

where Ccom is the “commit phase” of the sender algorithm C, and r = r(n) is the number of copies
of the common Haar random state used by Ccom.

Definition A.4 (Statistical sum-binding). A commitment scheme (C,R) in the CHRS model satis-
fies statistical sum-binding if the following holds. Let C∗0 and C∗1 be any computationally unbounded
malicious committers that take an unbounded number of copies of |ψn⟩ as input, and behave iden-
tically in the “commit phase”. Let pb be the probability that R accepts the revealed bit b in an
interaction with C∗b . Then, there exists a negligible function negl such that, for all n,

p0 + p1 ≤ 1 + negl(n).

Following the approach in [MNY23], we will show that our commitment scheme satisfies a
stronger binding condition, called “extractor-based binding”, first introduced in [AQY22].

Definition A.5 (Statistical extractor-based binding). A commitment scheme in the CHRS model
(C,R) satisfies statistical extractor-based binding if there is a computationally unbounded algorithm
E = {En}n∈N, called the extractor, such that for any unbounded time malicious committer C∗, the
experiments RealC∗

n and IdealC∗,E
n are statistically indistinguishable, i.e. an unbounded-time distin-

guisher cannot distinguish the two with non-negligible advantage, where the experiments RealC∗
n and

IdealC∗,E
n are defined as follows. Let {|ψn⟩}n∈N denote the family of common Haar random states.

• RealC∗
n : The malicious committer C∗ takes polynomially many copies of |ψn⟩ as input, and

interacts with the honest receiver R in the commit and reveal phases. Let b ∈ {0, 1,⊥} be the
output of R and τC∗ be the final state of C∗. The experiment outputs the pair (τC∗ , b).

• IdealC∗,E
n : C∗ takes |ψn⟩ as input and runs its commit phase to generate a commitment σC

where C∗ may keep a state that is entangled with σC. En takes the register C as input, outputs
an extracted bit b∗ ∈ {0, 1}, and sends a post-execution state on C (which might be different
from the original one) to R as a commitment. Then C∗ and R run the reveal phase. Let b be
the output of R and τC∗ be the final state of C∗. If b /∈ {⊥, b∗}, then the experiment outputs
a symbol fail and otherwise outputs a tuple (τC∗ , b).

Morimae, Nehoran, and Yamakawa show the following result:

Lemma A.6 ([MNY23, Lemma 7.6]). Statistical extractor-based binding implies statistical sum-
binding.

Our commitment protocol in the CHRS model takes essentially the same form as that in
[MNY23]. Let {|ϕk⟩}k be an 1PRS in the CHRS model. Let R and C be registers of the same
size as |ϕk⟩. Then, to commit to 0, the sender prepares∑

k

(|k⟩ |0⟩)R |ϕk⟩C .
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To commit to 1, the sender prepares ∑
x

|x⟩R |x⟩C ,

i.e. the maximally entangled state across R and C.
Substituting our 1PRS from Fig. 2, we get the following construction, where the base commit-

ment is repeated in parallel, and the reveal phase is carried out by using SWAP tests.

Commitment phase: the sender takes as input a bit b ∈ {0, 1}. Let

|Ψ0⟩R,C =
∑

a,b∈{0,1}0.45n

|ab∥00.1n⟩RX
aZb |ψn⟩C ,

and let
|Ψ1⟩R,C =

∑
x∈{0,1}n

|x⟩R |x⟩C .

The sender prepares |Ψb⟩⊗nC1...Cn,R1...Rn
, and sends registers C1 . . .Cn to the

receiver.
Reveal phase: The sender sends b and registers R1 . . .Rn to the receiver.
The receiver prepares the state |Ψb⟩⊗nC′

1...C′
n,R′

1...R′
n
, and performs a SWAP

test between registers (C1 . . .Cn,R1 . . .Rn) and (C′1 . . .C′n,R′1 . . .R′n), and
accepts if and only if all of the SWAP tests output 1.

Figure 4: Quantum bit commitment scheme in the CHRS model

Theorem A.7. The protocol in Fig. 4 satisfies polynomial-copy statistical hiding (as in Defini-
tion A.3) and statistical extractor-based binding (as in Definition A.5).

Remark A.8. Notice that, since a commitment scheme in the plain model cannot be both sta-
tistically binding and hiding [LC97, May97], we also cannot, in the CHRS model, simultaneously
achieve statistical binding and t-copy statistical hiding for t exponentially large in n. This is because
when t is exponentially large, an unbounded adversary can learn the common Haar random state
|ψn⟩ entirely via tomography. Hence, in this case, t-copy statistical hiding is equivalent to statistical
hiding in the plain model.

Proof of Theorem A.7. Polynomial-copy statistical hiding. The C registers of |Ψ0⟩ and |Ψ1⟩
are respectively in the state ρ0 = TrR |Ψ0⟩ ⟨Ψ0| = 1

20.9n

∑
a,bX

aZb |ψn⟩ ⟨ψn|XaZb and ρ1 = TrR |Ψ1⟩ ⟨Ψ1| =
1

2n

∑
x |x⟩ ⟨x|. These two states are indistinguishable even to an adversary with a polynomial num-

ber of copies of |ψn⟩. In fact, using Corollary 4.12, we have that for any t = poly(n), there is
negligible function negl, such that for all n,∥∥∥ρ⊗n0 ⊗ ψ⊗t − ρ⊗n1 ⊗ ψ⊗t

∥∥∥ ≤ n ∥∥∥ρ0 ⊗ ψ⊗t − ρ1 ⊗ ψ⊗t
∥∥∥ = negl(n)

Statistical extractor-based binding.
To show that the construction satisfies the statistical extractor-based binding property we need

two technical lemmas.

Lemma A.9 ([HM13, Lemma 2]). Let m ∈ N. Let ρ be a quantum state over m registers
A1, . . . ,Am. Let σ be a quantum state over m registers B1, . . . ,Bm. Consider the following test,
applied to ρ⊗ σ:
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RealC∗
n :

1. C∗ takes polynomially many copies of |ψn⟩ as input and generates a
state |ϕb⟩ over registers (C,R,W) along with a bit b ∈ {0, 1} where W
is the work register of C∗.

2. C∗ sends C to R in the commit phase.

3. C∗ sends (b,R) to R in the reveal phase.

4. R runs the verification in the reveal phase. That is, R takes as input
|ψn⟩⊗nC′ , and (b,C,R) from C∗; it prepares an ancilla register V in the
state |0 . . . 0⟩V, applies the projective measurement (Pb,1 − Pb) on
registers (C′,C,R,V).

5. If R rejects (i.e. R obtains the outcome corresponding to 1 − Pb), b
is replaced by ⊥.

6. The experiment outputs (b,W).

IdealC∗,E :

1. C∗ takes polynomially many copies of |ψn⟩ as input and generates a
state |ϕb⟩ over registers (C,R,W) along with a bit b ∈ {0, 1} where W
is the work register of C∗.

2. C∗ sends C to R in the commit phase.

3. The extractor En prepares the ancilla register E in the state |0 . . . 0⟩E,
applies the projective measurement {Π̃0, Π̃1, Π̃⊥} on registers C and
E, and lets b∗ ∈ {0, 1,⊥} be the outcome. En sends C to R.

4. C∗ sends (b,R) to R.

5. R runs the verification in the reveal phase. That is, R takes as input
|ψn⟩⊗nC′ , and (b,C,R) from C∗; it prepares an ancilla register V in the
state |0 . . . 0⟩V, applies the projective measurement (Pb,1 − Pb) on
registers (C′,C,R,V).

6. If R accepts (i.e. R obtains the outcome corresponding to Pb) and
b ̸= b∗, the experiment outputs the special symbol fail and halts.

7. If R rejects (i.e. R obtains the outcome corresponding to 1 − Pb), b
is replaced by ⊥.

8. The experiment outputs (b,W).

Figure 5: RealC∗
n and IdealC∗,E

n

1. For each i ∈ [m], do the SWAP test between Ai and Bi.
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2. Accept if all SWAP tests are successful

Then the success probability that the above test accepts is 1
2m

∑
S⊆[m] Tr[ρSσS ], where ρS is the state

obtained by tracing out all registers Ai of ρ such that i /∈ S, and σS is the state obtained by tracing
out all registers Bi of σ such that i /∈ S.

Lemma A.10 ([Yan22, Lemma 31]). Let |Ψ0⟩X,Y and |Ψ1⟩X,Y be pure states over registers (X,Y)
such that

F
(
TrY[|Ψ0⟩ ⟨Ψ0|X,Y],TrY[|Ψ1⟩ ⟨Ψ1|X.Y]

)
= ϵ

Then there is a projective measurement {Π0,Π1,Π⊥ := 1−Π0−Π1} over registers X such that for
each b ∈ {0, 1}, ∥∥∥(Πb)X ⊗ 1Y |Ψb⟩X,Y

∥∥∥2
≥ 1−

√
2ϵ

Recall that we defined the reduced state of the honest commitment states |Ψ0⟩CR and |Ψ1⟩CR
on the C registers respectively as ρ0 = TrR |Ψ0⟩ ⟨Ψ0| = 1

20.9n

∑
a,bX

aZb |ψn⟩ ⟨ψn|XaZb and ρ1 =
TrR[|Ψ1⟩ ⟨Ψ1|] = 1

2n

∑
x |x⟩ ⟨x|.

Since the rank of ρ0 does not exceed 20.9n, while ρ1 = 1
2n , it is straightforward to show that

∥ρ0 − ρ1∥ ≥ 1 − 20.9n

2n = 1 − negl(n) (by taking the eigendecomposition of ρ0). Set ϵ = 1 −
∥ρ0 − ρ1∥ = negl(n). According to Lemma A.10, there exists a family of orthogonal projectors
{Π0,Π1,Π⊥ = 1−Π0 −Π1} on C such that for each b ∈ {0, 1}, it holds that

∥(1−Πb)C ⊗ 1R |Ψb⟩∥2 ≤
√

2ϵ . (17)

We define the extractor En as follows:

• Upon receiving the commitment register C = (C1, . . . ,Cn), for each i ∈ [n], apply the projec-
tive measurement {Π0,Π1,Π⊥} on Ci to obtain an outcome bi ∈ {0, 1,⊥}.

• – If |{i ∈ [n] : bi = 0}| > 2n/3, output b∗ = 0.
– If |{i ∈ [n] : bi = 1}| > 2n/3, output b∗ = 1.
– Otherwise, output b∗ =⊥

We can equivalently describe En as some projective measurement
{

Π̃0, Π̃1, Π̃⊥
}

on register C
and an ancilla register E initialized as |0 . . . 0⟩E.

For b ∈ {0, 1}, let (Pb,1 − Pb) be the projective measurement corresponding to the “purified”
verification performed by the receiver R in the reveal phase. That is, (Pb,1 − Pb) is defined so
that R is described as follows: on input |ψn⟩⊗nC′ , where C′ := C′1 . . .C′n, as well as (b,C,R) from
the sender, R initializes an ancilla register V to |0 . . . 0⟩V, and applies the projective measurement
(Pb,1− Pb) to all previous registers. R accepts if the outcome is the former, and rejects if its the
latter.

Let C∗ be a malicious sender. Then, concretely, the experiments RealC∗
n and IdealC∗,E

n are as in
Fig. 5.

In what follows, for simplicity, we omit writing identities on registers were operators act trivially.
Let |ϕb⟩ be defined as in Fig. 5. We define the mixed states ρreal(b) and ρideal(b) to correspond to
the outputs of RealC∗n and IdealC∗,E

n conditioned on the bit sent from C∗ being b. That is, we let26

ρreal(b) := TrC′,C,R,V,E[Pb |ϕ̃b⟩ ⟨ϕ̃b|]⊗ |b⟩ ⟨b|+ TrC′,C,R,V,E[(1− Pb) |ϕ̃b⟩ ⟨ϕ̃b|]⊗ |⊥⟩ ⟨⊥| (18)
26To see that these are the correct definitions one can use the ciclicity of the partial trace.
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and
ρideal(b) := TrC′,C,R,V,E[Nb |ϕ̃b⟩ ⟨ϕ̃b|]⊗ |b⟩ ⟨b|+ TrC′,C,R,V,E[N⊥ |ϕ̃b⟩ ⟨ϕ̃b|]⊗ |⊥⟩ ⟨⊥|

+ TrC′,C,R,V,E[Nfail |ϕ̃b⟩ ⟨ϕ̃b|]⊗ |fail⟩ ⟨fail|
(19)

where
|ϕ̃b⟩ := |ϕb⟩C,R,W ⊗ |ψn⟩

⊗n
C′ ⊗ |0 . . . 0⟩V ⊗ |0 . . . 0⟩E

and
Nb := Π̃bPbΠ̃b, Nfail := (1− Π̃b)Pb(1− Π̃b), N⊥ := 1−Nb −Nfail.

Noting that the distribution of b is identical in both experiments, it suffices to prove

∥ρreal(b)− ρideal(b)∥ = negl(n)

for b ∈ {0, 1}. We show the following lemma.

Lemma A.11. For each b ∈ {0, 1}, it holds that∥∥∥(Pb)C,R,C′,V(1− Π̃b)C,E |ϕ̃b⟩
∥∥∥2

= negl(n) .

Proof. By definition of Pb and |ϕ̃b⟩,
∥∥∥Pb(1− Π̃b) |ϕ̃b⟩

∥∥∥2
is the probability that the bit extracted

from |ϕ̃b⟩ is not b and the residual state passes the verification performed by R with respect to b.
Let ρC,R := TrW,E

[
(1− Π̃b)C,E |ϕb⟩ ⟨ϕb|C,R,W ⊗ |0 . . . 0⟩ ⟨0 . . . 0|E

]
. By Lemma A.9, this probability

is equal to
1
2n

∑
S⊆[n]

Tr[ρSσS ]

where σ := ⊗
i∈[n] |Ψb⟩ ⟨Ψb|. Here ρS and σS are the states obtained by tracing out all CiRi,

respectively C′iR′i, for i /∈ S. Notice that the latter expression for the probability takes into account
the fact that ρ is sub-normalized.

By the definition of Π̃b, we can write

ρ =
∑

T⊆[n],|T |≤2n/3
TrW

[
Π̂(T )
b |ϕb⟩ ⟨ϕb| Π̂

(T )
b

]

where

Π̂(T )
b =

(⊗
i∈T

(Πb)Ci

)
⊗

⊗
i/∈T

(1−Πb)Ci

 .

We have
1
2n

∑
S⊆[n]

Tr [ρSσS ]

= 1
2n

∑
S⊆[n]

∑
T⊆[n]:|T |≤2n/3

Tr
[(

Tr{Ci,Ri}i/∈S ,W Π̂(T )
b |ϕb⟩ ⟨ϕb| Π̂b

(T )
)(⊗

i∈S
|Ψb⟩ ⟨Ψb|Ci,Ri

)]
.
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Now, for any S and T , we have

Tr
[(

Tr{Ci,Ri}i/∈S ,W Π̂(T )
b |ϕb⟩ ⟨ϕb| Π̂b

(T )
)(⊗

i∈S
|Ψb⟩ ⟨Ψb|Ci,Ri

)]

= Tr
[(

(1−Πb)⊗|S\T |{Ci}i∈S\T

(
Tr{Ci,Ri}i/∈S ,W Π̂(T )

b |ϕb⟩ ⟨ϕb| Π̂b
(T )
)

(1−Πb)⊗|S\T |{Ci}i∈S\T

)(⊗
i∈S
|Ψb⟩ ⟨Ψb|Ci,Ri

)]

= Tr
[(

Tr{Ci,Ri}i/∈S ,W Π̂(T )
b |ϕb⟩ ⟨ϕb| Π̂b

(T )
)

(1−Πb)⊗|S\T |{Ci}i∈S\T

(⊗
i∈S
|Ψb⟩ ⟨Ψb|Ci,Ri

)
(1−Πb)⊗|S\T |{Ci}i∈S\T

]

≤
∥∥∥Π̂b |ϕb⟩

∥∥∥2
Tr
[
(1−Πb)⊗|S\T |{Ci}i∈S\T

(⊗
i∈S
|Ψb⟩ ⟨Ψb|Ci,Ri

)
(1−Πb)⊗|S\T |{Ci}i∈S\T

]

≤
∥∥∥Π̂b |ϕb⟩

∥∥∥2
∥(1−Πb) |Ψb⟩∥2|S\T |

≤
∥∥∥Π̂b |ϕb⟩

∥∥∥2
(
√

2ϵ)|S\T | ,

where the final inequality follows from Eq. (17), where ϵ = negl(n).
Thus for any T such that |T | ≤ 2n/3, we have

1
2n

∑
S⊆[n]

Tr
[(

Tr{Ci,Ri}i/∈S ,W Π̂(T )
b |ϕb⟩ ⟨ϕb| Π̂b

(T )
)(⊗

i∈S
|Ψb⟩ ⟨Ψb|Ci,Ri

)]

≤ 1
2n

∑
S⊆[n]

∥∥∥Π̂(T )
b |ϕb⟩

∥∥∥2
(
√

2ϵ)|S\T |

≤
∥∥∥Π̂(T )

b |ϕb⟩
∥∥∥2
· 1

2n

 ∑
S⊆[n]:S⊆T

1 +
∑

S⊆[n]:S ̸⊆T

√
2ϵ


≤ 2−n/3 +

√
2ϵ .

where the final inequality follows directly from | {S ⊆ [n] : S ⊆ T} | = 2|T | ≤ 22n/3.
Therefore, we have

1
2n

∑
S⊆[n]

Tr[ρSσS ] ≤ 2−n/3 +
√

2ϵ ≤ negl(n) .

Recall the definitions of ρreal(b) and ρideal(b) from Equations (18) and (19) respectively. Let τ (b)
real

and τ
(⊥)
real be such that

ρreal(b) = τ
(b)
real ⊗ |b⟩ ⟨b|+ τ

(⊥)
real ⊗ |⊥⟩ ⟨⊥| ,

and let τ (b)
ideal, τ

(⊥)
ideal, τ

(fail)
ideal be such that

ρideal(b) = τ
(b)
ideal ⊗ |b⟩ ⟨b|+ τ

(⊥)
ideal ⊗ |⊥⟩ ⟨⊥|+ τ

(fail)
ideal ⊗ |fail⟩ ⟨fail| .

We can now use Lemma A.11 to show the following fact.

Lemma A.12. For each b ∈ {0, 1}, the following hold:

1. Tr
[
τ

(fail)
ideal

]
= negl(n)
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2.
∥∥∥τ (b)

ideal − τ
(b)
real

∥∥∥ = negl(n)

3.
∥∥∥τ (⊥)

ideal − τ
(⊥)
real

∥∥∥ = negl(n) .

Proof. For the first item, we have

Tr[τ (fail)
ideal ] = Tr[Nfail |ϕ̃b⟩ ⟨ϕ̃b|] = ⟨ϕ̃b|(1− Π̃b)Pb(1− Π̃b)|ϕ̃b⟩ =

∥∥∥Pb(1− Π̃b) |ϕ̃b⟩
∥∥∥2

= negl(n) ,

where the last equality is by Lemma A.11.
For the second item, we have∥∥∥τ (b)

ideal − τ
(b)
real

∥∥∥ ≤ ∥∥∥Pb |ϕ̃b⟩ ⟨ϕ̃b|Pb − PbΠ̃b |ϕ̃b⟩ ⟨ϕ̃b| Π̃bPb
∥∥∥

= 2 max
Q

Tr
[
Q
(
Pb |ϕ̃b⟩ ⟨ϕ̃b|Pb − PbΠ̃b |ϕ̃b⟩ ⟨ϕ̃b| Π̃bPb

)]
−
[
Tr(Pb |ϕ̃b⟩ ⟨ϕ̃b|Pb)− Tr(PbΠ̃b |ϕ̃b⟩ ⟨ϕ̃b| Π̃bPb)

]
= 2 max

Q

( ∥∥∥QPb |ϕ̃b⟩∥∥∥2
−
∥∥∥QPbΠ̃b |ϕ̃b⟩

∥∥∥2 )
−
( ∥∥∥Pb |ϕ̃b⟩∥∥∥2

−
∥∥∥PbΠ̃b |ϕ̃b⟩

∥∥∥2
)

where the maximum is taken over all projectors Q on (W,C′,C,R,V,E), and the first inequality
follows from the fact that trace distance is decreasing under taking a partial trace. For any projector
Q, we have ∣∣∣∣∥∥QPb |ϕ̃b⟩ ∥2 − ∥∥QPbΠ̃b |ϕ̃b⟩

∥∥|2∣∣∣∣
=
∣∣∣∣∥∥∥QPb(Π̃b + (1− Π̃b)) |ϕ̃b⟩

∥∥∥2
−
∥∥∥QPbΠ̃b |ϕ̃b⟩

∥∥∥2
∣∣∣∣

=
∣∣∣⟨ϕ̃b|PbQPb(1− Π̃b)|ϕ̃b⟩+ ⟨ϕ̃b|(1− Π̃b)PbQPbΠ̃b|ϕ̃b⟩

∣∣∣
≤ 2

∥∥∥Pb(1− Π̃b)
∥∥∥ = negl(n) ,

where the last equality is by Lemma A.11.
Finally, for the third item, we have∥∥∥τ (⊥)

real − τ
(⊥)
ideal

∥∥∥ =
∥∥∥TrC′,C,R,V,E

[
(1− Pb) |ϕ̃b⟩ ⟨ϕ̃b|

]
− TrC′,C,R,V,E

[
(1−Nb −Nfail) |ϕ̃b⟩ ⟨ϕ̃b|

]∥∥∥
=
∥∥∥TrC′,C,R,V,E

[
(Nb +Nfail − Pb) |ϕ̃b⟩ ⟨ϕ̃b|

]∥∥∥
≤
∥∥∥TrC′,C,R,V,E

[
(Nb − Pb) |ϕ̃b⟩ ⟨ϕ̃b|

]∥∥∥+ Tr
[
(Nfail |ϕ̃b⟩ ⟨ϕ̃b|

]
= negl(n) ,

where the last line follows from the triangle inequality, as well as the first and second item.

We can now bound the distance between ρreal(b) and ρideal(b) as

∥ρreal(b)− ρideal(b)∥ =
∥∥∥τ (b)

real − τ
(b)
ideal

∥∥∥+
∥∥∥τ (⊥)

real − τ
(⊥)
ideal

∥∥∥+ Tr
[
τ

(fail)
ideal

]
= negl(n)

where the last equality follows from Lemma A.12. This yields the desired statistical binding prop-
erty, and completes the proof of Theorem A.7.
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