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Many management decisions involve accumulated random realizations for which the expected value and

variance are assumed to be known. We revisit the tail behavior of such quantities when individual realizations

are independent, and we develop new sharper bounds on the tail probability and expected linear loss. The

underlying distribution is semi-parametric in the sense that it remains unrestricted other than the assumed

mean and variance. Our bounds complement well-established results in the literature, including those based

on aggregation, which often fail to take full account of independence and use less elegant proofs. New insights

include a proof that in the non-identical case, the distributions attaining the bounds have the equal range

property, and that the impact of each random variable on the expected value of the sum can be isolated using

an extension of the Korkine identity. We show that the new bounds open up abundant practical applications,

including improved pricing of product bundles, more precise option pricing, more efficient insurance design,

and better inventory management. For example, we establish a new solution to the optimal bundling problem,

yielding a 17% uplift in per-bundle profits, and a new solution to the inventory problem, yielding a 5.6%

cost reduction for a model with 20 retailers.

Key words : Concentration inequality, sum of independent random variables, bound for tail probability,

bound for expected linear loss, optimal bundle pricing, inventory management, option pricing

1. Introduction

The exploration of the bounds on tail probability and expected loss pertaining to the sum of

random variables has a long and distinguished history in statistical theory and in management

applications. In relation to a single random variable with given first moments, Chebyshev’s and

Markov’s inequalities are the most widely known results pertaining to tail probability (see, e.g.,

Mallows 1956), whereas Scarf’s inequality is a well-known bound on linear expected loss (Scarf

1958). These inequalities found numerous practical applications in such areas as bundle pricing

(Bhargava 2013, Chen et al. 2022), inventory management (Scarf 2002), option pricing (Lo 1987,

Bertsimas and Popescu 2002, Henrion et al. 2023), insurance planning and loan contract design.

Extensions of these results beyond the single-variable analysis can be obtained by aggregation,

that is, by applying the single-variable bounds to the sum of variables. However, it is well known
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that bounds based on aggregation are not sharp under independence, that is, they do not exploit

all the information captured by the independence property. For example, the tail probability based

on aggregation converges at the rate of N−1, where N is the number of iid random variables in the

sum; in contrast, the tail probability for many distributions is known to converge exponentially

with respect to N (see, e.g., Bernshtein 1946, Part 3, Chapter 2).

In this context, Chernoff’s (1952) use of the moment generating function for sums of independent

random variables inspired numerous subsequent results known as Hoeffding, Azuma, and McDi-

armid inequalities, among others (see, e.g., Hoeffding 1963, Azuma 1967, McDiarmid 1989). Key

to the derivation of these inequalities is that if random variables (X1,X2) are independent, then

it must hold that E
[
et(X1+X2)

]
= E [etX1 ]E [etX2 ], where expectation is with respect to the joint

distribution of (X1,X2). These inequalities have significantly facilitated further development and

application of bounds on tail probabilities (see, e.g., Freedman 1975, Pinelis 1994, de la Peña 1999,

de la Peña et al. 2004, Marinelli 2024).

We follow a similar approach and use moment generating functions to develop a one-sided

Chebyshev bound and a number of related important results. The results concern tail probabilities

for distributions with unknown moments beyond the mean and variance and, therefore, we can-

not make use of the classical Berry-Esseen inequality or similar results that involve higher-order

moment assumptions and provide error bounds for approximating to the standard normal distri-

bution (see, e.g., Billingsley (1995), Section 27; de la Peña et al. (2009), Chapter 5). We start by

showing that the iid distribution attaining the new bound is a two-point distribution. Then, we

establish that even with heterogenous mean and variance, the extreme distribution attaining the

improved bound displays the property of equal range. We discuss how the new bound relates to the

existing ones and how it yields a more accurate estimate than the bounds based on aggregation.

We work out important practical implications of the new results. For example, the equal range

property immediately implies that a mixed bundling strategy does not strictly outperform a pure

bundling strategy in terms of the worst-case analysis.

When analyzing the bound on the absolute value of the sum we lose the product form charac-

terizing tail probabilities, due to the piece-wise nature of the absolute value function. Therefore,

a direct application of Chernoff-type analysis is impossible. Nonetheless, we are able to achieve

important improvements of the aggregation-based bound. This is done using two new results which

may be of use in other areas of statistics.

First, we show how to apply Korkine’s identity (see, e.g., Mitrinović et al. 1993, pp. 242-243) in

a multivariate environment in order to isolate the impact of each random variable on the absolute

value of the sum. In the single-variable model, Korkine’s identity pertains to the covariance between
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the random variableX and the indicator variable I{X>0}. By maximizing the covariance and keeping

the mean of the indicator unchanged, we can derive the extreme distribution. It turns out that the

same insights can be generalized to the multi-variable situation, where the extreme distribution is

a two-point distribution for each random variable so that the sum follows a binomial distribution,

enabling us to compute the bound on expected linear loss.

Second, we work out how to obtain the solution of a non-standard optimization problem arising

in this setting. The difficulty here is that the objective function based on the endogenous binomial

distribution is piece-wise with respect to the chosen tail probability. To overcome this hurdle,

we first derive the relationship between the tail probability of each iid distribution and the tail

probability of the sum. Subsequently, we use log-convexity to show that the optimal tail probability

of each iid distribution is one of the two extreme points. This allows us to disregard the piece-wise

nature of the objective function.

Along the way, we provide bounds for quantiles, which incorporate a well known result for

the median, and we show that the equal range condition continues to hold for the distributions

attaining the bound for the expected absolute value of the sum under independent but non-identical

distributions.

We focus on applications in pricing, in the context of bundling and options, and on applications

in inventory management. we work out the details of three special cases where the use of the

new bounds results in sizeable improvement of profit margins. An important observation in these

practical examples is that our derivation of the bounds involves endogenous Bernoulli distributions.

In this setting, the equal range property displayed by the extreme distribution becomes crucial. It

ensures that the lattices in the support of the multivariate distributions are in fact squares with the

same size despite possibly unequal means and variances. This significantly simplifies the derivation

for the sum of multiple non-identical binomial random variables and has implications for such areas

as bundle pricing.

The remainder of this paper is organized as follows. Section 2 recaps the benchmark results

with a single random variable. Section 3 presents a bound on the tail probability associated with

the sum of independent random variables. Section 4 develops a bound on the expected absolute

value for the same setting. Section 5 solves practical problems in relation to bundle pricing, inven-

tory management, and option pricing based on the newly developed bounds. Section 6 concludes.

Appendix presents the technical proofs used to derive the results of Section 4.
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2. Benchmark Results

We define ξ =X1+X2+ . . .+XN as the sum of N iid random variables (where N ≥ 1) and let q be

a finite constant. The random variable Xn, n= 1, . . . ,N , and the constant q have many different

important interpretations as summarized in the following table.

Table 1 Application Examples

Application Xn q
Bundle pricing Valuation for good n Bundle price

Inventory management Demand of retailer n Inventory level
Option pricing Price change on day n Strike price
Loan contract Income from source n Loan amount

Insurance policy Damage on asset n Maximum benefit

We assume that the underlying distribution of Xn remains unknown but E (Xn) ≡ µ and

V ar (Xn)≡ σ2 > 0 are known and finite. Lo (1987) refers to this setting as semi-parametric. We

are interested in the lower bound on the tail probability Pr (ξ > q) and in bounds on expected

losses E (ξ− q)
+

and E (ξ− q)
−
, where (·)+ = max(0, ·) and (·)− = min(·,0). Since (ξ− q)

+
=

ξ−q
2

+ 1
2
|ξ− q|, it is sometimes more convenient to use the upper bound of E (|ξ− q|), instead of

E (ξ− q)
+
, to solve practical problems.

2.1. Single Variable

We first recap the known results with N = 1 (where we can write ξ =X) as benchmarks.

Lemma 1 (Single-Variable Bounds) It holds that (a) Pr(X − q > 0)≥ 1− σ2

(µ−q)2+σ2 if µ> q; and

(b) E |X − q| ≤
√
(µ− q)

2
+σ2.

Proof. (a) Let I{X>0} be an indicator function satisfying I = 1 if X > 0 and I = 0 otherwise.

When µ> q, it must hold that 0<µ− q≤E
(
(X − q) · I{X>q}

)
. By the Cauchy inequality, we have

E (XY )≤
√

E (X2)
√
E (Y 2) for any two random variables X and Y , and the equality holds if X

and Y are linearly dependent or comonotone (i.e., X = λY , almost surely, where λ is a constant).

Thus we can write

0<µ− q≤E
(
(X − q) · I{X>q}

)
≤
√
E
(
(X − q)

2
)
E
(
I2{X>q}

)
=

√(
(µ− q)

2
+σ2

)
Pr(X > q),

from which we find that Pr(X > q)≥ (µ−q)2

(µ−q)2+σ2 = 1− σ2

(µ−q)2+σ2 . Similarly, when µ< q, we find that

0< q−µ≤E
(
(q−X) · I{q>X}

)
≤
√(

(µ− q)
2
+σ2

)
Pr(q >X),
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yielding Pr(q >X)≥ (µ−q)2

(µ−q)2+σ2 .

(b) We observe that E |X − q|= E
√
(X − q)

2 ≤
√

E (X − q)
2
=
√
(µ− q)

2
+σ2, where we apply

Jensen’s inequality.

In Section 4.1, we develop a tighter bound than part (b) of Lemma 1. Two of the following three

remarks relate to the extreme distribution implied by Lemma 1, that is, to the distribution for

which the equality sign holds.

Remark 1 In part (a), the comonotonicity condition (X − q) = λI{X>q}, a.s., yields that (i) X = q

when I{X>q} = 0 and (ii) X − q = λ when I{X>q} = 1, where λ = (µ−q)2+σ2

µ−q
. Thus, the extreme

distribution attaining the bound of Lemma 1(a) is a two-point distribution satisfying: Pr(X = q) =

σ2

(µ−q)2+σ2 and Pr
(
X = µ+ σ2

µ−q

)
= (µ−q)2

(µ−q)2+σ2 .

Remark 2 For part (b), equality holds when |X − q|= λ=
√

(µ− q)
2
+σ2, a.s. The extreme dis-

tribution attaining the bound of Lemma 1(b) is therefore also a two-point distribution satisfying:

Pr

(
X = q±

√
(µ− q)

2
+σ2

)
= 1

2
∓ µ−q

2
√

(µ−q)2+σ2
.

Remark 3 While Lemma 1(a) pertains to the one-sided Chebyshev inequality (also referred

to as Cantelli’s inequality), Lemma 1(b) pertains to Scarf ’s inequality as E (X − q)
+

=

1
2
E (X − q+ |X − q|)≤ µ−q+

√
(µ−q)2+σ2

2
.

2.2. Simple Aggregate Results

With N ≥ 2, a technical shortcut is to regard ξ as a single random variable with mean E (ξ) =Nµ

and variance V ar (ξ) =Nσ2. Consequently, we can apply Lemma 1 to obtain the following bounds.

Lemma 2 (Aggregate Bounds) It holds that (a) Pr(ξ > q) ≥ 1− σ2

N(µ− q
N )

2
+σ2

if Nµ > q, and (b)

E |ξ− q| ≤
√
N 2
(
µ− q

N

)2
+Nσ2.

A few observations are noteworthy. First, the term σ2

N(µ− q
N )2+σ2 converges to zero at the speed of

1
N
. Second, the extreme distributions attaining the bounds in Lemma 2 violate the independence

constraints even though V ar (ξ) =Nσ2 is consistent with independence. Specifically, to make the

proposed bounds sharp, the joint distribution underlying ξ must be such that ξ has only two

possible outcomes as shown in Remarks 1 and 2. However, with N ≥ 2, even if each iid Xn has

only two realized values, the sum ξ must have (N +1) different realized values. Thus, we can never

design a joint distribution for iid random variables that would make the bounds in Lemma 2 sharp.

This underscores the challenge caused by independence.
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2.3. Duality Method and Independence Constraints

A prevalent approach to developing moment-based concentration bounds in the Management

Science/Operations Research community is to use the primal-dual method (e.g., Smith 1995,

Van Parys et al. 2021). This method is very effective in a a single-variable setting. For example,

if the ex-post payoff Z (X,q) is continuous in X for any given q, then infF (x)

∫∞
−∞Z (X,q)dF (x) =

infλ(X)

∑
X λ (X)Z (X,q), implying that it is sufficient to consider only discrete distributions (see

Lemma 6.4 of Hettich and Kortanek (1993) for details). The dual problem with the mean-variance

constraints is known to be

D= infλ(X)

∑
X λ (X)Z (X,q) s.t.

∑
X λ (X)Xt =mt, t= 0,1,2.

where m0 = 1, m1 = µ, m2 = µ2 + σ2, and λ(X) is a general finite sequence (i.e., each λ(X) is

nonnegative but only a finite number of them can be strictly positive). With a finite standard

deviation σ, we let yt be the shadow price of the moment constraint in the dual problem associated

with mt. The primal problem is known to be

P = supyt

∑
ytmt s.t.

∑
t ytX

t ≤Z (X,q), for any X ∈R,

which is a semi-infinite programming problem with a finite number of decision variables (yt) but an

infinite number of constraints (because the dual problem has a finite number of moment constraints

but the state variableX has an infinite number of possible values). When the ex-post payoff Z (X,q)

is not only continuous but also finite, then P =D (see Lemma 6.5 in Hettich and Kortanek (1993)

for details). The primal model P is more tractable than the dual model D, making the primal-dual

method suitable for a single-variable analysis.

When we extend the analysis, for example, to a two-variable setting, we need to first formulate

the dual problem before converting into the primal problem. We can use either the joint proba-

bility mass λ (X1,X2) or the marginal probability mass λ1 (X1) and λ2 (X2) to formulate the dual

problem. Specifically, when using the joint probability mass, we face the following dual model:

D= infλ(X1,X2)

∑
X1

∑
X2
λ (X1,X2)Z (X1,X2, q)

s.t.
∑

X1

∑
X2
λ (X1,X2) = 1, [Total probability]∑

X1

∑
X2
λ (X1,X2)X

t
1 =m1t, t= 1,2, [Moments of X1]∑

X1

∑
X2
λ (X1,X2)X

t
2 =m2t, t= 1,2, [Moments of X2]

λ (X1,X2)λ (X2,X1) = λ (X1,X1)λ (X2,X2) , any (X1,X2) , [Independence]

where the independence constraints are nonlinear with respect to the joint probability mass

λ (X1,X2). Let yX1,X2
be the shadow price of the independence constraints associated with the

pair (X1,X2). If we formulate the primal problem for this dual, the variable yX1,X2
will appear

6



in it, implying an infinite number of decision variables. Thus, the corresponding primal model is

no longer a semi-infinite programming problem as both the number of decision variables and the

number of constraints grows to infinity.

In contrast, when using the marginal probability mass, we face the following dual problem:

D= inf
λ1(X1),λ2(X2)

∑
X1

∑
X2

λ1 (X1)λ2 (X2)Z (X1,X2, q)

s.t.
∑
X1

λ (X1)X
t
1 =m1t, t= 0,1,2,∑

X2

λ (X2)X
t
2 =m2t, t= 0,1,2,

Although the number of shadow prices in the new dual model comes down to six, the objective

function is now nonlinear with respect to the marginal probability mass λ1 (X1) or λ2 (X2), making

the corresponding primal model much less tractable than before.

In summary, the independence constraints hinder the application of the popular primal-dual

method, prompting us to consider other approaches to developing the bounds on tail probability

and linear loss.

3. Tail Probability

3.1. Equal Mean and Variance

We can now present the first new result as follows.

Proposition 1 (Tail Probability) When E (Xn) = µ> q
N

and V ar (Xn) = σ2 > 0, it holds that

Pr(ξ =X1 +X2 + . . .+XN > q)≥ 1− σ2N((
µ− q

N

)2
+σ2

)N
. (3.1)

Proof. Because each Xn is independent, we find that

E
(
et(ξ−q)

)
=E

[
et(X1−

q
N )
]
E
[
et(X2−

q
N )
]
. . .E

[
et(XN− q

N )
]
=
[
E
(
et(Xn− q

N )
)]N

.

By Lemma 1(a), Pr
(
Xn ≤ q

N

)
≤ σ2

(µ− q
N )

2
+σ2

, where the equality sign holds for the extreme distribu-

tion Pr
(
Xn =

q
N

)
= σ2

(µ− q
N )

2
+σ2

and Pr

(
Xn = µ+ σ2

(µ− q
N )

)
=

(µ− q
N )

2

(µ− q
N )

2
+σ2

. For exposition simplicity,

let

R= µ+
σ2(

µ− q
N

) − q

N
=

(
µ− q

N

)2
+σ2

µ− q
N

be the range of the extreme distribution (i.e., the maximum minus the minimum realized value).
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We apply Markov’s inequality to this extreme distribution to obtain

Pr (ξ− q > 0) = Pr

([
et(Xn− q

N )
]N

> 1

)
≤
[
E
(
et(Xn− q

N )
)]N

=

[
σ2(

µ− q
N

)2
+σ2

+

(
µ− q

N

)2(
µ− q

N

)2
+σ2

etR

]N
,

if t > 0. Similarly, if t < 0 then we have

Pr (ξ− q > 0) = Pr

([
et(Xn− q

N )
]N

< 1

)
= 1−Pr

([
et(Xn− q

N )
]N

> 1

)
≥ 1−

[
E
(
et(Xn− q

N )
)]N

= 1−

[
σ2(

µ− q
N

)2
+σ2

+

(
µ− q

N

)2(
µ− q

N

)2
+σ2

etR

]N
.

As t→−∞, the second term in the bracket converges to zero, yielding inequality (3.1).

With independent distributions, the bound on tail probability is a rescaling of the single-variable

result (i.e., an analogy to Cramér’s Theorem). When allocating the total “budget” of q= q1+ q2+

· · ·+ qN , we simply let qn =
q
N

when random variables are iid. We observe that when rescaling the

single-variable result, we apply division to the additive relationship (such as the total budget) and

multiplication to the probability of multi-fold convolution.

3.2. Extensions

As a natural extension, with non-equal mean and variance across different random variables in the

sum, we need to optimize the budget allocation.

Proposition 2 (Equal Range) When the mean and variance of each Xn are non-identical, the

extreme distribution for each independent Xn must have equal range.

Proof. Because the event ξ > q is equivalent to the event
∑N

n=1 (Xn − qn)> 0, similar to the proof

of Proposition 1, we find that if t < 0, then

Pr (ξ− q > 0) = Pr

(
N∏

n=1

et(Xn−qn) < 1

)
= 1−Pr

(
N∏

n=1

et(Xn−qn) > 1

)

≥ 1−E

[
N∏

n=1

et(Xn−qn)

]
= 1−

N∏
n=1

[
σ2
n

(µn − qn)
2
+σ2

n

+
(µn − qn)

2

(µn − qn)
2
+σ2

n

etRn

]
,

where

Rn = µn +
σ2
n

(µn − qn)
− qn =

(µn − qn)
2
+σ2

n

µn − qn

8



represents the range of the extreme distribution associated with Xn. As t→−∞, we obtain the

result that

Pr (ξ− q > 0)≥ 1− max
q1,q2,...,qn

{
N∏

n=1

[
σ2
n

(µn − qn)
2
+σ2

n

]}
,

where q= q1 + q2 + · · ·+ qN .

By focusing on

B = max
q1,q2,...,qN

{
N∏

n=1

(
σ2
n

(µn − qn)2 +σ2
n

)}
,

subject to the budget constraint q= q1 + q2 + · · ·+ qN , we find that the Lagrangian equals

L=
N∏

n=1

(
σ2
n

(µn − qn)2 +σ2
n

)
− γ (q1 + q2 + · · ·+ qN − q) .

The first-order conditions require that

∂L
∂qn

=
2(µn − qn)σ

2
n

((µn − qn)2 +σ2
n)

2

∏
i ̸=n

(
σ2
i

(µi − qi)2 +σ2
i

)
− γ

=
2(µn − qn)

(µn − qn)2 +σ2
n

N∏
i=1

(
σ2
i

(µi − qi)2 +σ2
i

)
− γ = 0,

where γ is the Lagrangian multiplier associated with the budget constraint. We find that for any

n ̸=m,

2

Rn

N∏
i=1

(
σ2
i

(µi − qi)2 +σ2
i

)
= γ =

2

Rm

N∏
i=1

(
σ2
i

(µi − qi)2 +σ2
i

)
,

indicating that Rn =Rm for any n ̸=m.

We refer to the result in Proposition 2 as the equal range property. In the two-dimensional model,

Proposition 2 implies that the extreme joint distribution graphically forms a square, which has

important implications in models of bundling using mixed strategies (see Section 5.1 for details).

Due to symmetry, we can also obtain the tail probability of the other direction as follows. If

µ< q
N
, then

Pr(ξ < q)≥ 1−

(
σ2(

µ− q
N

)2
+σ2

)N

. (3.2)

Let γ ∈ (0,1) and qN (γ) = F−1
N (γ), where FN is the N -fold convolution of F . We refer to qN (γ)

as the 100× γ-th percentile of the N -fold convolution of F . Using inequalities (3.1) and (3.2), we

immediately obtain the range of the percentile as follows.

Corollary 1 (Percentile) It holds that

Nµ−Nσ

√
1− γ

1
N

γ
1
N

≤ qN (γ)≤Nµ+Nσ

√
1− (1− γ)

1
N

(1− γ)
1
N

. (3.3)
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Proof. According to inequality (3.1) and the definition of qN (γ), we find that 1− σ2N(
(µ− q

N )
2
+σ2

)N ≥

1− γ. By taking the root less than Nµ, we obtain that Nµ−Nσ

√
1−γ

1
N

γ
1
N

≤ qN (γ). Similarly, we

obtain the bound in the different direction using the condition 1− σ2N(
(µ− q

N )
2
+σ2

)N ≤ γ and taking

the root larger than Nµ.

When γ = 0.5 and N = 1, inequality (3.3) yields the well-known result that the median is between

µ− σ and µ+ σ. When extending to N ≥ 2, the median of the sum of N iid random variables

satisfies

Nµ−Nσ

√√√√1− (0.5)
1
N

(0.5)
1
N

≤ qN (0.5)≤Nµ+Nσ

√√√√1− (0.5)
1
N

(0.5)
1
N

.

When N approaches infinity, the correction factor

√
1−(0.5)

1
N

(0.5)
1
N

approaches zero, suggesting that the

sample average of the median, which equals 1
N
qN
(
1
2

)
, approaches the mean µ. Without indepen-

dence, the aggregation bounds predict that the median is between Nµ−
√
Nσ and Nµ+

√
Nσ,

where the correction factor equals 1√
N

and is larger than

√
1−(0.5)

1
N

(0.5)
1
N

.

4. Expected Loss

We recenter each random variable by using µ= µ′− q
N

as the shifted mean so that we focus on the

bound for E (ξ)
+
. Due to recentering, a positive (negative) realized value of X implies a realized

value larger (smaller) than q
N
.

4.1. Single-Dimensional Model

Korkine’s identity (Mitrinović et al. 1993, Ch. 9, pp. 242-243) pertains to covariance as follows:

E [(X −E(X)) (Y −E(Y ))] =
1

2
E [(X −X ′) (Y −Y ′)] ,

where (X,Y ) are iid copies of (X ′, Y ′). In the special case with N = 1, we find that

E (X)
+
=E (X)E

(
I{X>0}

)
+

1

2
EX,X′

[
(X −X ′)

(
I{X>0} − I{X′>0}

)]
= µ (1−β)+

1

2
T,

in which X and X ′ are iid and β ≡ Pr(X ≤ 0) is a known probability based on a given feasible

distribution. With µ (1−β) being fixed, we wish to maximize the term 1
2
T , which equals the

covariance between variable X and indicator I{X>0}. The integrand A1 in T equals

A1 ≡ (X −X ′)
(
I{X>0} − I{X′>0}

)
= |X −X ′|

(
I{max{X,X′}>0} − I{min{X,X′}>0}

)
,

where the subscript 1 indicates a one-dimensional model.
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We observe that the indicator is weakly increasing in X. When |X −X ′| increases, the coefficient(
I{max{X,X′}>0} − I{min{X,X′}>0}

)
weakly increases. The integrand A1 must be zero if both X and X ′

have the same sign. Therefore, the extreme distribution maximizing the summation T must be a

two-point distribution with one positive realized value and one negative realized value. According to

the mean-variance conditions and probability constraint β =Pr(X ≤ 0), we find that the extreme

distribution is unique and satisfies:Pr
(
X = µ−σ

√
1−β
β

def
= L

)
= β,

Pr
(
X = µ+σ

√
β

1−β

def
= H

)
= 1−β.

(4.1)

The range of the two-point distribution in equation (4.1) equals H −L= σ
√
β (1−β).

Lemma 3 It holds that

E (X)
+ ≤ µ (1−β)+σ

√
β (1−β). (4.2)

Importantly, the bound in Lemma 3 is tighter than Scarf’s bound because of the probability

constraint β =Pr(X ≤ 0). If we optimize the bound in inequality (4.2) by choosing β, we recover

Scarf’s bound because the first order condition yields that β∗ = 1
2
± µ−q

2
√

(µ−q)2+σ2
(since µ= µ′− q is

the shifted mean). The advantage of using Lemma 3 is that via the input variable β, we can now

consider what is known as the service level requirement, which is often linked to the tail probability

(see, e.g., Axaster 2000, p. 79), whereas the standard Scarf model does not allow us to do that.

de la Peña et al. (2004) proved Lemma 3 using Holder’s inequality whereas we use the unique

extreme distribution to directly compute the bound. This difference in the proof becomes crucial

when developing the bound for the multi-dimensional model.

Remark 4 It holds that E (X)
− ≥ µβ − σ

√
β (1−β). Consequently, E (X|X > 0) ≤ H and

E (X|X ≤ 0)≥L, where H and L are shown in equation (4.1).

We refer to E (X|X ≤ 0) and E (X|X > 0) as the left and right conditional means of the iid

random variable X, respectively. The bounds on the conditional means will play an important role

in the subsequent analysis.

We now highlight a crucial difference between the one-dimensional and multi-dimensional models.

Let β =Pr(Xn ≤ 0) be the first input and γ =Pr(ξ ≤ 0) be the second input. A notable relationship

is that

1−βN ≥ 1− γ ≥ (1−β)
N
. (4.3)

The first inequality indicates that the event that all Xn are non-positive must imply the event that

the sum is non-positive, but the opposite is not true. The second inequality indicates that the event

11



that all Xn are positive must imply the event that the sum is positive, but the opposite is not true.

Inequalities (4.3) hold for any iid distributions. In the one-dimensional model, γ = β must hold due

to only one dimension; whereas in the multi-dimensional model, the one-to-one mapping between

γ and β does not exist. Only when one of these constraints becomes binding, do we re-establish

the one-to-one mapping.

4.2. Two-Point Distributions

Several known inequalities in the literature show that the extreme distributions come from the

family of two-point distributions. For instance, Bentkus (2004) proved that Pr(ξ ≥ q)≤ cPr(s1 +

s2 + ...+ sN ≥ q), where ξ is a sum of N independent bounded random variables, c is a constant

and each s is iid Bernoulli, while Mattner (2003) developed bounds based on mean and absolute

deviations using Binomial distributions. Motivated by the literature, we first compute a candidate

bound based on two-point distributions. In Section 4.3, we prove that the candidate bound is

indeed the globally optimal bound among all feasible distributions subject to the mean-variance

condition.

4.2.1. Piece-wise Objective Function As any two-point distribution can be fully char-

acterized by equation (4.1), where β = Pr(Xn ≤ 0) is the decision variable, the sum ξ follows a

Binomial distribution satisfying the following probability mass function:

Pr (ξ = (N − t)L+ tH)

= Pr

(
ξ = (N − t)

(
µ−σ

√
1−β

β

)
+ t

(
µ+σ

√
β

1−β

))
=

N !

t!(N − t)!
βN−t (1−β)

t
, (4.4)

where t∈ {0,1, ...,N} is the number of times Xn =H. This distribution is endogenous in the sense

that it is generated using the mean-variance constraint and the probability constraint satisfied by

the extreme marginal distributions.

In order to derive the optimal bound for the expected loss based the endogenous distribution of

ξ, we define a sequence of thresholds {δk} satisfying

0 =Nµ+σ

(
− (N − k)

√
1− δk
δk

+ k

√
δk

1− δk

)
, (4.5)

where k= 1,2, ...,N − 1. In essence, δk’s are the values of β for which ξ = 0 given t. By default, we

let δ0 = 1 and δN = 0 so that if β ∈ [δk, δk−1], then ξ > 0 for t≥ k and ξ ≤ 0 for t≤ k− 1.
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Lemma 4 (Piece-wise Objective Function) Under the endogenous Binomial distribution in equa-

tion (4.4), the expected loss equals

Z (β)≡Nσ
√
β (1−β)

(N − 1)! (1−β)
k−1

βN−k

(k− 1)!(N − k)!
+Nµ

N∑
t=k

N !βN−t (1−β)
t

t!(N − t)!
, (4.6)

for any β ∈ [δk, δk−1].

This lemma provides interesting insights into the shape of the expected loss. The second-order

conditions reveal that each piece of Z(β) is concave, resulting in multiple local optima with respect

to β. We illustrate the piece-wise objective function Z (β) in Figure 1 for two constellations of

(µ,σ) at N = 5. An upper bound on the expected loss can be obtained by optimizing this piece-wise

objective function.

Figure 1 Piece-wise Objective Function
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(a) Z(β) under µ= 0, σ= 1,N = 5
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(b) Z(β) under µ=−0.1, σ= 1,N = 5

4.2.2. Zero Mean The case with zero mean (i.e., µ= µ′− q
N
= 0) provides invaluable insights

into the local optima. As a special case of equation (4.5), we find that (i) the thresholds satisfy

δk =
N−k
N

, i.e., are decreasing in k, and (ii) the second term on the right-hand side of equation (4.6)

equals zero. Therefore, in order to obtain the bound, we only need to maximize the first term on

the right-hand side of equation (4.6), which can be written as follows:

T (β)≡ T (k,β)≡Nσ
√
β (1−β)

(N − 1)! (1−β)
k−1

βN−k

(k− 1)! (N − k)!
,

where β ∈
[
N−k
N
, N−k+1

N

]
. Each piece T (k,β) is continuous and strictly concave with respect to

β. It is easy to see that the local optimal solution is β∗
k = 2N−2k+1

2N
, which is the mid-point of
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the corresponding interval
[
N−k
N
, N−k+1

N

]
. Substituting the local optimal solution into T (k,β), we

obtain the local optimal objective values:

T ∗ (k)≡ T (k,β∗
k) =Nσ

(N − 1)!
(
2k−1
2N

)k−1 (
1− 2k−1

2N

)N−k

(k− 1)! (N − k)!

√(
2k− 1

2N

)(
2N − 2k+1

2N

)
. (4.7)

Lemma 5 (Local Optima) If µ = 0 then the local optimal objective values display the following

properties: (i) Symmetric property that T ∗ (k) = T ∗ (N − k) holds for any k = 1,2, ...,N ; (ii) Log-

convexity with respect to k such that maxk {T ∗ (k)}= T ∗ (1) = T ∗ (N), where

T ∗ (1) = T ∗ (N) =Nσ

(
1− 1

2N

)N−1
√

1

2N

(
1− 1

2N

)
. (4.8)

As a direct consequence of Lemma 5, we find that with zero mean, it holds that T (β) ≤

Nσ
(
1− 1

2N

)N−1
√

1
2N

(
1− 1

2N

)
, and there exist two extreme distributions attaining this bound, one

with β = 1
2N

and the other with β = 2N−1
2N

. We illustrate the sequence of T ∗(k) in Figure 2 using

N = 5 and σ= 1. The solid curve depicts the piece-wise objective function while the dashed curve

connects all the local peaks as a log-convex curve.

Figure 2 Log-Convexity
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4.2.3. Optimal Bound Equation (4.6) yields two noteworthy cases: (i) when β ∈ [δ1,1], we

find that

Z (β) = Z1 (β)≡Nµ

(
N∑
t=1

(
N
t

)
βN−t (1−β)

t

)
+T (1, β)

= Nµ
(
1−βN

)
+Nσ

√
β (1−β)βN−1.
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since k= 1, and (ii) when β ∈ [0, δN−1], we find that

Z (β) = ZN (β)≡Nµ

(
N∑

t=N

(
N
t

)
βN−t (1−β)

t

)
+T (N,β)

= Nµ (1−β)
N
+Nσ

√
β (1−β) (1−β)

N−1
,

since k=N . When optimizing the piece-wise objective function Z (β), the optimal solution either

falls in the rightmost interval [δ1,1] or the leftmost interval [0, δN−1] but never falls in between

the two intervals. Thus, we either optimize Z1(β) or ZN(β) to determine the optimal bound. We

summarize the results as follows.

Proposition 3 (Expected Loss) If µ< 0 then it holds that

Z∗ (β) =Nµ+Nβ̂
N

1

(
−µ+σ

√
1− β̂1

β̂1

)
,

where

β̂1 =
(2N − 1)σ2 +Nµ2 −µ

√
(2N − 1)σ2 +N 2µ2

2N (σ2 +µ2)
; (4.9)

and if µ> 0 then it holds that

Z∗ (β) =N
(
1− β̂2

)N
(
µ+σ

√
β̂2

1− β̂2

)
,

where

β̂2 =
σ2 +Nµ2 −µ

√
(2N − 1)σ2 +N 2µ2

2N (σ2 +µ2)
. (4.10)

Proposition 3 is valid due to the log-convexity of T ∗ (k): when maximizing a log-convex objective

function, the optimal solution must be an extreme point. Interestingly, inequalities (4.3) imply two

extreme points, corresponding to the intervals [δ1,1] and [0, δN−1]. Thus, based on the sign of µ

(i.e., whether Nµ′ > q or Nµ′ < q), we choose either (4.9) or (4.10) to determine the candidate

bound on the expected loss.

It is easy to extend this result to non-identical means and variances across n. Under the two-point

distributions, we solve

Z =max
βn

{
N∑

n=1

µn +
(
ΠN

n=1βn

)
·

N∑
n=1

(
−µn +σn

√
1−βn

βn

)}
(4.11)

to obtain the desired bound. As a result, we find that the extreme distributions continue to display

the equal range property as σn

(√
β∗
n

1−β∗
n
+
√

1−β∗
n

β∗
n

)
=R∗ holds for the optimal sequence β∗

n.
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4.3. Extreme Distribution

A distinguishing feature of our derivation is that both the tail indicator function I{X>0} and linear

loss max(0, ξ) have two linear pieces, making two-point distributions the extreme distributions. We

can extend Korkine’s identity to a multi-dimensional environment. Let ξ(i) =X1 + ...+XN −Xi =

ξ −Xi be the sum excluding the i-th random variable and let X ′
i be an independent copy of Xi,

both satisfying the mean-variance conditions. Also denote ξ′ = ξ(i)+X
′
i, meaning that we keep the

other (N − 1) random variables intact but randomize the i-th random variable one at a time. We

observe that

(ξ− ξ′)
(
I{ξ>0} − I{ξ′>0}

)
= (Xi −X ′

i)
(
I{Xi+ξ(i)>0} − I{X′

i+ξ(i)>0}

)
.

We define the component summation Ti as follows:

Ti =E(Xi,X
′
i,ξ(i))

[
(Xi −X ′

i)
(
I{Xi+ξ(i)>0} − I{X′

i+ξ(i)>0}

)]
. (4.12)

Due to symmetry caused by equal mean and variance, we obtain an intuitive and important rela-

tionship as follows.

Lemma 6 (Total and Component Summations) The total summation T contains N identical com-

ponent summations, i.e., T =NTi.

Lemma 6 implies that

E (ξ)
+
=E (ξ)E

(
I{ξ>0}

)
+

1

2
T =NµPr(ξ > 0)+

1

2
NTi.

We define the integrand of the component summation as

AN = |Xi −X ′
i|
(
I{max(Xi,X

′
i)+ξ(i)>0} − I{min(Xi,X

′
i)+ξ(i)>0}

)
,

where the subscript N indicates the N -dimensional model. We now find that

E (ξ)
+
=NµPr(ξ > 0)+

N

2

∑
Xi

∑
X′

i

∑
ξ(i)

AN Pr(Xi)Pr (X
′
i)Pr

(
ξ(i)
)
. (4.13)

An important advantage of equation (4.13) is that we can derive the Z(β) function with fewer

steps (see the second proof of Lemma 4 in Appendix A). Equation (4.13) also has other future

applications as it isolates the impact of each individual random variable and bridges between the

sum and variance (or absolute deviation) of the random variables.

Theorem 1 (Extreme Distribution) When determining the upper bound on E (ξ)
+
, it suffices to

consider only the two-point distributions satisfying equation (4.1).
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To understand the intuition of Theorem 1, we can assume Xi > 0>X ′
i without loss of generality

such that the integrand AN increases along with the absolute value |Xi −X ′
i|. The indicator function

I{Xi+ξ(i)>0} weakly increases with respect to Xi and ξ(i). We find that AN must be increasing

when X ′
i decreases. Specifically, we find that (i) when ξ(i) ≤−Xi, AN = 0 as both indicators are

zero; (ii) when −Xi < ξ(i) ≤−X ′
i, A= (Xi −X ′

i) as the first indicator equals one but the second

indicator equals zero; and (iii) when −X ′
i < ξ(i), A= 0 as both indicators are one. Thus, to increase

the integrand, we increase Xi but decrease X ′
i as much as possible. By doing so, we also widen

the interval (−Xi,−X ′
i], over which AN is strictly positive, making the expected value E (AN)

even larger. Therefore, the extreme distributions maximizing E (ξ)
+
must come from the family of

two-point distributions. The candidate solutions in Proposition 3 are indeed globally optimal.

4.4. Contrasting with Aggregate Bounds

It is useful to contrast the bounds in Lemma 2 with those in Propositions 1 and 3. Figure 3(a)

evaluates the bounds σ2

N(µ− q
N )

2
+σ2

and σ2N(
(µ− q

N )
2
+σ2

)N using the parameters: µ = σ = 1 and q =

0.9. Graphically, the former is higher than the latter; and the gap between them can be visibly

wide. Conceptually, the former relaxes the independent constraints, providing an overestimate

(underestimate) for the left (right) tail. To highlight the speed of convergence, we also depict

the curves (in light grey) based on the normal distribution. Figure 3(a) confirms that relative to

normal prior, the bound produced by Proposition 1 on the tail probability is fairly accurate when

N increases (while that produced by Lemma 2 is much less accurate).

Using the parameters µ′ = 0= µ− q
N

and σ= 1, we find that E|ξ|= 2E(ξ)+. Figure 3(b) contains

plots of the aggregation bound E|ξ| =
√
N 2
(
µ− q

N

)2
+Nσ2 and 2Z∗

N . Graphically, the former

bound is higher than the latter as the former relaxes the independence constraints. In addition to

visualization, we also obtain several notable converging results. When each Xn follows iid standard

normal distributions, we obtain that

E(ξ)+ =
1√
2π

√
N ≈ 0.399

√
N = 0.5E|ξ|,

where 1√
2π

is the standard normal density evaluated at point x = 0. In contrast, equation (4.8)

yields that

lim
N→∞

√
N

(
1− 1

2N

)N−1
√

1

2N

(
1− 1

2N

)
=

1√
2e

≈ 0.429,

indicating that the improved upper bound on expected loss equals Z∗ = 0.429
√
N , which is about

7.5% higher than the exact value under standard normal prior. The aggregation bound on expected

loss yields Z̄ = 0.5
√
N , which is significantly higher than 0.429

√
N .
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Figure 3 Contrasting with Benchmark
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5. Applications

5.1. Bundle Pricing

Consider the bundle pricing problems.

5.1.1. Equal Mean and Variance The firm selling N goods in a bundle chooses a posted

price q and the customer’s valuation for good n offered in the bundle is Xn, with a constant mean

µ and variance σ2 over n. To ensure that the firm’s ex-post payoff is lower semicontinuous, we

assume that only when X > q, the customer buys the good; otherwise, the customer walks away.

With lower semicontinuity, the bound in Proposition 1 is attained rather than approached. With

identical mean and variance, the firm solves the following model:

Z =max
q

q− qσ2N((
µ− q

N

)2
+σ2

)N

 .

Corollary 2 (Pure Bundle Price) Let t∗N be the root of the polynomial equation:

1− 2Nt2 −
(
t2 +1

)N
+ t2 +2Nt

µ

σ
− t2

(
t2 +1

)N
= 0. (5.1)

Then, the firm’s optimal bundle price is q∗N =N (µ− t∗Nσ).

Proof. In order to define the extreme distribution, we introduce the safety factor t as follows:Pr
(
X̃n = µ− tσ

)
= 1

1+t2
≡ β,

Pr
(
X̃n = µ+ 1

t
σ
)
= t2

1+t2
= 1−β,
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for each good. Then, for N ≥ 1, the bundle price is q=N (µ− tσ), yielding the expected profit for

the bundle:

ZB ≡N(µ−σt)

(
1− 1

(t2 +1)
N

)
. (5.2)

When using a component pricing strategy, each product yields the expected profit Zn = (µ −

σt)
(
1− 1

t2+1

)
. Now, it must hold that

ZB =N(µ−σt)

(
1− 1

(t2 +1)
N

)
≥N(µ−σt)

(
1− 1

t2 +1

)
=NZn,

implying that pure bundling is always better than component pricing. To determine the optimal

bundle price under independence, we take the first derivative of equation (5.2) with respect to t as

follows:
∂ZB

∂t
=

Nσ

(t2 +1)
n −Nσ+2N 2t

µ

(t2 +1)
N+1

− 2N 2t2
σ

(t2 +1)
N+1

= 0,

which is equivalent to

Nσ
(
1− 2Nt2 −

(
t2 +1

)N
+ t2 +2Nt

µ

σ
− t2

(
t2 +1

)N)
= 0.

We thus confirm (5.1).

In contrast, if we apply the bound based on aggregation from Lemma 2, we solve

Z̃ =max
q

{
q− qσ2

N
(
µ− q

N

)2
+σ2

}
.

This yields the bundle price q̃N =Nµ− t#
√
Nσ, where t#N solves a cubic equation t3+3t= 2Nµ√

Nσ
=

2
√
Nµ
σ

.

Table 2 Bundle Pricing Solutions

N q̃N Z̃B q∗N ZB
q∗N−q̃N

q∗
N

ZB−Z̃B
ZB

1 1.346 0.769 1.346 0.769 0.0% 0.0%
2 3.000 2.000 3.000 2.250 0.0% 11.1%
3 4.767 3.401 4.824 3.991 1.2% 14.8%
4 6.602 4.903 6.749 5.861 2.2% 16.3%
5 8.484 6.476 8.741 7.811 2.9% 17.1%
10 18.311 14.966 19.234 18.144 4.8% 17.5%
20 38.979 33.468 41.337 40.010 5.7% 16.4%

Let Z̃B denote the profit bound when bundle pricing is done using aggregation. We contrast the

two solutions for the bundle price (q̃N , q
∗
N) and the two respective optimal objective values

(
Z̃B,ZB

)
in Table 2. We use the parameter values µ = 2.5 and σ = 1. As N increases, the gap between
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q̃N and q∗N widens and q̃N is consistently lower than q∗N . The gap in profits is also remarkable,

and reaches 17.5% of optimal profit level ZB, or, equivalently, 21.2% of the profit level obtained

using the aggregation solution. This underscores the fact that a full account of independence has

a nontrivial impact on the quality of the bundle pricing solution.

5.1.2. Unequal Means and Variances When mean and variance of customer valuations

are non-identical across different products, we apply Proposition 2 to define

R=
(µn − qn)

2
+σ2

n

µn − qn
, for all n,

as the universal range of all the valuations. Using the same notation as above, we can write the

firm’s objective function as follows

Z =max
R,qn

{(
N∑

n=1

qn

)[
1−

N∏
n=1

(
σ2
n

(µn − qn)
2
+σ2

n

)]}
. (5.3)

The constraint on the range R ensures that the internal budget allocation of qn maximizes the

product of
∏N

n=1

(
σ2
n

(µn−qn)
2+σ2

n

)
. Additionally, the definition of R implies that qn = − 1

2
R + µn ±

1
2

√
R2 − 4σ2

n such that R ≥ 2σn must hold. If both roots of qn are positive, we take the smaller

root; if there is a negative root, we take the positive root. Due to this inconvenience of having two

possible roots, it is not recommendable to replace all qn with one variable R when solving (5.3).

Instead, it is advisable to choose R endogenous and impose the constraints that the range of each

random variable must equal R.

5.1.3. Mixed Bundle Pricing In situations where the underlying distribution is known,

mixed bundling strategies are known to (weakly) outperform pure bundling strategies. Mixed

bundling occurs when product n is offered at the same time both separately at price qn and in a

complete bundle at bundle price qb, which may or may not be equal to the bundle price qB under

pure bundling. It usually holds that qb ≤
∑N

n=1 qn in a mixed bundling strategy. However, it turns

out that in terms of the worst distribution, mixed bundling strategy is as effective as pure bundling

strategy.

Corollary 3 (Mixed Bundle) When the firm’s objective is to maximize the worst-case expected

profit, the mixed bundling strategy is as effective as the pure bundling strategy.

Proof. As the extreme distribution displays the equal range property, we can easily verify that

the event Xn > qn but Xn+ ξ(n) = ξ ≤ qb occurs with zero probability (i.e., the customer finds that

buying only product n gives her a higher utility than buying the bundle). Therefore, the firm’s
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worst-case expected profit under mixed bundling with bundle price qb is identical to that under

pure bundling with bundle price qB. We conclude that mixed bundling strategies do not improve

the firm’s worst-case expected profit when valuations for each good are independent.

Due to Corollary 3, we either apply Proposition 2 or Equation (5.3) to determine the pure

bundling price, depending on whether or not the mean and variance are identical across n. These

results stand in contrast to those obtained by Eckalbar (2010) and Bhargava (2013) who advocate

mixed bundling under uniform distributions. Under the uniform distribution and zero production

costs with two products (N = 2), both Eckalbar and Bhargava show that (i) the optimal mixed

bundling is to charge qn = 2
3
for product n and qb =

4−
√
2

3
for both products; and (ii) the pure

bundling strategy is to charge qB =
√

2
3
for the bundle (and the price for individual product is set

at qn = 1 so that no customer buys only product n).

These distribution-specific strategies break down under the corresponding extreme distributions

with the same mean and variance. For example, if we use µ= 0.5 and σ =
√

1
12

as inputs in our

semi-parametric analysis, we find that under either mixed or pure bundling strategy where the

bundle price is the same, i.e., qB = qb, the firm’s most unfavorable distribution remains the same,

making the mixed and pure bundling strategies equally profitable. The intuition is that the joint

distribution forms a square, as suggested by Proposition 2, so that the event that a customer buys

only product n does not occur. The optimal pricing strategies of Eckalbar (2010) and Bhargava

(2013) can be shown to be suboptimal under extreme distributions. Specifically, when qb =
4−

√
2

3
,

the firm’s expected profit under the extreme distribution equals 0.086; and when qB =
√

2
3
, the

firm’s expected profit under the extreme distribution equals 0.137. In contrast, when using the

robust bundling strategy, the bundle price is q∗ = 0.527 and the firm’s expected profit is 0.338.

Additionally, when q∗ = 0.527 is used under the uniform distribution of valuations, the firm’s

expected profit equals 0.454. We can conclude that the distribution-specific prices are too high

while the robust bundle price provides a much better guarantee. As an additional benefit, our

method can easily scale to an arbitrary number of products.

5.2. Inventory Management

Suppose that a firm that owns a central warehouse chooses an inventory level q prior to receiving the

realized demand Xn from retailer n. Each retailer is treated equally with the same understocking

and overstocking costs b and h, respectively. Thus, the choice of q is equivalent to choosing a

forecast for ξ subject to a generalized linear scoring rule. The ex-post loss function can be written

as follows:

Z (q, ξ) = b (ξ− q)
+
+h (q− ξ)

+
=
h+ b

2
|ξ− q|+ b−h

2
(ξ− q) .
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According to Proposition 3, the firm solves the following problem:

Z =min
q

{
(b+h)

2
max

β

[
Nµ− q+2βN (q−Nµ)+ 2NβNσ

√
1−β

β

]
+

(b−h)

2
(Nµ− q)

}
,

which represents a zero-sum game between the firm and adverse nature. The firm chooses q to

minimize the cost T (β, q) but adverse nature chooses β to maximize the cost.

Corollary 4 (Inventory Risk-Pooling) Let β∗ =
(

b
b+h

) 1
N
. If b

b+h
≥ 1

2
, then the firm’s most unfa-

vorable distribution is the following two-point distribution:Pr
(
X̃ = µ−σ

√
1−β∗

β∗

)
= β∗,

Pr
(
X̃ = µ+σ

√
β∗

1−β∗

)
= 1−β∗,

(5.4)

and the firm’s optimal inventory level equals:

q∗ =Nµ+σ

(
2β∗ − 1

2
√

(1−β∗)β∗
− (N − 1)

√
1−β∗

β∗

)
, (5.5)

and the firm’s optimal objective value equals:

Z∗ = bσN

√
1−β∗

β∗ . (5.6)

Proof. As b
b+h

≥ 0.5, the firm orders more inventory than the aggregate mean, giving rise to the

case of Nµ< q. Using the identity that (ξ− q)
+
= ξ−q

2
+ 1

2
|ξ− q| and Proposition 3, we find that

the payoff function equals

Z (β, q) =
(b+h)

2

[
Nµ− q+2βN (q−Nµ)+ 2NβNσ

√
1−β

β

]
+

(b−h)

2
(Nµ− q) .

We solve the first-order conditions to determine the saddle point:

∂Z

∂q
= (h+ b)βN − b= 0

∂Z

∂β
= (h+ b)

[
NβN−1 (q−Nµ)+

NσβN−1 (1− 2β)

2
√
(1−β)β

+(N − 1)NβN−2σ
√
(1−β)β

]
= 0

The first condition ∂Z
∂q

= 0 immediately yields Equation (5.4). With some algebra, we find that the

second condition ∂Z
∂β

= 0, along with Equation (5.4), yields that

(q−Nµ) 2
√

(1−β)β+σ (1− 2β)+ 2(N − 1)σ (1−β) = 0.
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After rearranging the terms, we confirm Equation (5.5). Because ∂2Z
∂q2

= 0, it is easy to verify the

second-order conditions to confirm that the pair (β∗, q∗) constitutes a saddle point. Finally, substi-

tuting β∗ and q∗ in Z(β, q), we find that the value of the zero-sum game equals Z∗ = bσN
√

1−β∗

β∗ .

To connect this result to the forecasting literature in econometrics, we note that the linear loss

constitutes a strictly proper scoring rule for forecasting quantiles (see, e.g., Gneiting and Raftery

2007, Theorem 6). By maximizing the expected score, a forecaster makes an honest forecast, which

is why proper scoring rules are widely used for measuring out-of-sample forecast performance in

many applications, e.g., the check loss function in financial econometrics. Similarly, the optimal

inventory level q∗ shown in Equation (5.5) can be viewed as the robust optimal forecast using an

asymmetric piece-wise linear scoring rule.

If we apply the non-sharp bound from Lemma 2, then we solve

Z̃ =min
q

{
(b+h)

2

√
N 2

(
µ− q

N

)2

+Nσ2 +
(b−h)

2
(Nµ− q)

}
,

and find q̃ =Nµ+
√
Nσ
2

(√
b
h
−
√

h
b

)
and Z̃ = σ

√
Nbh. In Table 3, we contrast the two solutions

(q̃, q∗) and the optimal costs
(
Z̃,Z∗

)
using the parameter values µ= 2.5, σ= 1, b= 4, and h= 1. It

can be seen from the table that as N increases, the gap between q̃ and q∗ remains moderate, with q̃

consistently exceeding q∗. When compared in terms of expected costs, the gap is more visible and

reaches 5.6% of the optimal cost level. This underscores the non-trivial effect that the independence

constraint has on the quality of solutions.

Table 3 Inventory Solutions

N q̃ Z̃ q∗ Z∗ q̃−q∗

q∗
Z̃−Z∗

Z∗

1 3.250 2.000 3.250 2.000 0.0% 0.0%
2 6.061 2.828 5.940 2.748 2.0% 2.9%
3 8.799 3.464 8.605 3.335 2.3% 3.9%
4 11.500 4.000 11.249 3.832 2.2% 4.4%
5 14.177 4.472 13.879 4.273 2.1% 4.7%
10 27.372 6.325 26.901 6.009 1.7% 5.3%
20 53.354 8.944 52.655 8.474 1.3% 5.6%

5.3. Option Pricing

Suppose that the price change of a trading asset in day n from the starting value of zero is Xn.

Thus, after N trading days, the price of the asset becomes ξ =X1 +X2 + . . .+XN . For simplicity,

we assume that the asset brings no dividends and consider an European call option on this asset
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with strike price q and maturity in N days. The expected pay-off of the option is E (ξ− q)
+
and

risk-neutral price is e−rNE (ξ− q)
+
, where r is the risk-free rate. For q > µ2+σ2

2µ
, a well-known bound

due to Lo (1987) can be written as follows

E (ξ− q)
+ ≤ 1

2
(µ− q+

√
(q−µ)2 +σ2).

It is easy to see that this bound coincides with the benchmark established in Lemma 2 of Section

2.2.

In practice of options pricing, it is common to use simulations from a specified parametric distri-

bution. However, this can be very restrictive as an incorrect prior distribution can cause significant

losses, as illustrated by the bundle pricing example. The improved bounds in Propositions 1 and 3

are essential in this setting since traders need a robust estimate of the probability of reaching the

strike price ξ > q and a robust estimate of E |ξ− q|. While Cox et al. (1979) introduced the binomial

option pricing model, Proposition 3 complements it by deriving an upper bound on E(ξ − q)+.

Moreover, the introduction of unequal means and variances, i.e., the scenario with price shocks

and price dynamics, can be achieved by using Equation (4.11) to choose the parameters for the

the binomial option pricing model of Cox et al. (1979). The equal range property ensures that the

lattices are squares with the same size despite unequal mean and variance.

As an empirical example, we consider the share price of National Australia Bank Ltd.

(NAB.ASX), which is one of the four largest banks in the country. We use the data from 10 May to

17 November 2023 as the training data to compute the mean and standard deviation. This train-

ing period happens to exclude any dividend payments. The average price change on each trading

day is AUD 0.0194 and standard deviation is AUD 0.2752. As of 10 May, the closing price was

AUD 26.26. WE assume the strike price is at q = 28.8 and we set the discount rate at r = 0 for

convenience. Table 4 reports the prices of an European call option computed for different expiries

using three methods, namely, (i) Aggregation, using the benchmark from Lemma 2, (ii) Improved,

using the bound from Proposition 3, and (iii) Normal Prior, using the normal distribution with

mean 0.0194 and standard deviation 0.2752.

Table 4 Option Prices of NAB Ltd.

Strike Price q= 28.8 N = 10 N = 30 N = 60 N = 100 N = 200
Aggregation 0.078 0.256 0.580 1.108 2.727
Improved 0.077 0.245 0.532 0.971 2.572

Normal Prior 0.001 0.069 0.333 0.823 2.313

A quick observation reveals that the aggregation-based bound proposed by Lo (1987) tends to

overprice the European call option, while the normal assumption results in significant underpricing.
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The improved pricing remains between the two benchmarks for all N . From the computational

perspective, the closed form expression and high accuracy make Proposition 3 an attractive alter-

native to many standard convex algorithms (see Henrion et al. 2023, for updated literature in this

area). In general, Equation (4.9) of Proposition 3 appears more suitable for European call options

as their strike price is often higher than the mean price while Equation (4.10) of Proposition 3 is

more suitable for European put options as their strike price is often lower than the mean price.

6. Conclusion

We develop two sets of results associated with the sum of independent random variables using only

the mean and variance. The results complement earlier Chebyshev-type results such as Bentkus

(2004) and de la Peña et al. (2004) and provide important new insights, proof strategies and tighter

bounds than those obtained by aggregation. We show significant improvements arising from using

the new bounds in such popular applications as bundle pricing, inventory management and option

pricing.
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Appendix: Proofs Related to Section 4

Proof of Lemma 3:

As a direct result of Corollary 1, it must hold that µ− σ
√

1−β
β

≤ 0≤ µ+ σ
√

β
1−β

(otherwise β =

Pr(X ≤ 0) cannot be feasible). Under the extreme distribution in Equation (4.1), the integrand A1

equals zero if X =X ′; otherwise, A1 equals H −L= σ
√

β
1−β

+σ
√

1−β
β

= σ
√
β(1−β), which is the

range of the two-point distribution. We confirm that the summation equals

T =
∑
X

∑
X′

[
(X −X ′)

(
I{X>0} − I{X′>0}

)]
Pr(X)Pr (X ′)

= 2

(
σ

√
β

1−β
+σ

√
1−β

β

)
β (1−β) = 2σ

√
β−β2,

yielding inequality (4.2). ■

Proof of Lemma 4:

We provide two different proofs of Lemma 4. The first proof directly uses the probability mass

function of the endogenous Binomial distribution while the second proof uses Korkine’s identity.

Proof. Using the definition of δk and the probability mass function in (4.4), we find that

E(ξ)+ ≡Z (β) =
N∑
t=k

[
Nµ+σ

(
− (N − t)

√
1−β

β
+ t

√
β

1−β

)]
N ! (1−β)

t
βN−t

t!(N − t)!
.

We define a sequence of {yt} as follows. For t=N , it holds that

yN =N

√
β

1−β
(1−β)

N
=N (1−β)

N−1
√
β (1−β).

For t≤N − 1, it holds that

yt =

(
− (N − t)

√
1−β

β
+ t

√
β

1−β

)
N ! (1−β)

t
βN−t

t!(N − t)!

= − (N − t)

√
1−β

β

N ! (1−β)
t
βN−t

t!(N − t)!
+ t

√
β

1−β

N ! (1−β)
t
βN−t

t!(N − t)!

= −N
√
β (1−β)

(N − 1)! (1−β)
t
βN−t−1

t!(N − t− 1)!
+N

√
β (1−β)

(N − 1)! (1−β)
t−1

βN−t

(t− 1)!(N − t)!
.

Contrasting yt and yt+1 (for t≤N − 1), we find that the negative term of yt equals the positive

term of yt+1. Hence, the summation equals

yk + yk+1 + ...+ yN
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= −N
√
β (1−β)

(N − 1)! (1−β)
k
βN−k−1

k!(N − k− 1)!
+N

√
β (1−β)

(N − 1)! (1−β)
k−1

βN−k

(k− 1)!(N − k)!

−N
√
β (1−β)

(N − 1)! (1−β)
k+1

βN−k−2

(k+1)!(N − k− 2)!
+N

√
β (1−β)

(N − 1)! (1−β)
k
βN−k−1

k!(N − k− 1)!

...−N
√
β (1−β)

(N − 1)! (1−β)
N−1

(N − 1)!
+N

√
β (1−β)

(N − 1)! (1−β)
N−2

β

(N − 2)!1!

+N (1−β)
N−1

√
β (1−β)

= N
√
β (1−β)

(N − 1)! (1−β)
k−1

βN−k

(k− 1)!(N − k)!
,

whereby only the positive term of yt is not cancelled out. Thus, the expected loss equals

Z (β) = σ (yk + yk+1 + ...+ yN)+Nµ
N∑
t=k

N ! (1−β)
t
βN−t

t!(N − t)!

= Nσ
√
β (1−β)

(N − 1)! (1−β)
k−1

βN−k

(k− 1)!(N − k)!
+Nµ

N∑
t=k

N ! (1−β)
t
βN−t

t!(N − t)!
,

which proves Equation (4.6).

Proof. We apply Equation (4.13) to compute the expected loss under the endogenous Binomial

distribution. We observe that if β ∈ [δk, δk−1], (N − t)L+ tH is positive for t≥ k but is negative for

t≤ k− 1. Thus, when ξ(i) = (N − k)L+(k− 1)H, it holds that H + ξ(i) = (N − k)L+ kH > 0 and

L+ ξ(i) = (N − k+1)L+ (k− 1)H ≤ 0. The coefficient equals
(
I{H+ξ(i)>0} − I{L+ξ(i)>0}

)
= 1. This

event occurs with probability (N−1)!(1−β)k−1βN−k

(k−1)!(N−k)!
. For all the other ξ(i) ̸= (N − k)L+(k− 1)H, the

two indicators have the same value, making the coefficient
(
I{H+ξ(i)>0} − I{L+ξ(i)>0}

)
= 0. Hence,

we find that when β ∈ [δk, δk−1], Equation (4.13) equals

Z (β) = Nµ
N∑
t=k

N !βN−t (1−β)
t

t! (N − t)!

+
N

2
2σ

(√
β

1−β
+

√
1−β

β

)
β (1−β)

(N − 1)! (1−β)
k−1

βN−k

(k− 1)! (N − k)!
,

which is identical to Equation (4.6).

Proof of Lemma 5:

We recall that over the interval [δk, δk−1], the piece-wise objective function equals

T (k,β) =Nσ
√
β (1−β)

(N − 1)! (1−β)
k−1

βN−k

(k− 1)! (N − k)!
.

It is more convenient to take logarithm and consider ln(T (k,β)) = ln(Nσ) +
(
k− 1

2

)
ln (1−β) +(

N − k+ 1
2

)
lnβ. The first order condition yields that

∂ lnT (k,β)

∂β
=−(2N − 2k− 2Nβ+1)

2β (β− 1)
= 0,
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indicating that β∗
k = 1

2N
(2N − 2k+1). Substituting β∗

k into T (k,β), we obtain the local optimal

objective value T ∗ (k) shown in Equation (4.7). The second order condition yields that

∂2 lnT (k,β)

∂β2
=− 1

2β2 (β− 1)
2

(
2N − 2k− 2β− 4Nβ+4kβ+2Nβ2 +1

)
.

The numerator is a convex and quadratic function with respect to β. The determinant of this

quadratic equation equals

∆= (−2− 4N +4k)
2 − 4 · 2N · (2N − 2k+1)=−4 (2k− 1) (2N − 2k+1)< 0

due to 1≤ k≤N . Thus, the numerator is always positive, meaning that ∂2 lnT (k,β)

∂β2 < 0 and making

lnT (k,β) a log-concave function with respect to β. We conclude that β∗
k =

1
2N

(2N − 2k+1) is a

local optimal solution over the interval [δk, δk−1].

(i) The symmetry property as illustrated in Figure 1(a) is trivial due to the relationship

β∗
k =

1

2N
(2N − 2k+1)= 1− 1

2N
(2N − 2 (N − k)+ 1) = 1−β∗

N−k

and the symmetry of T (k,β) = T (N − k,1−β).

(ii) To prove the log-convex property, we take logarithm such that

lnTk = lnΓ(N)− lnΓ (k)− lnΓ (N − k+1)

+

(
k− 1

2

)
ln

(
2k− 1

2N

)
+

(
N − k+

1

2

)
ln

(
1− 2k− 1

2N

)
,

where Γ(k) = (k− 1)! is the Gamma function. Since

∂2

∂k2

((
k− 1

2

)
ln

(
2k− 1

2N

)
+

(
N − k+

1

2

)
ln

(
1− 2k− 1

2N

))
=

1

k− 1
2

+
1

N − k+ 1
2

,

and lnΓ(N) is a constant, our task is to show that

G=
∂2 lnΓ (k)

∂k2
+
∂2 lnΓ (N − k+1)

∂k2
<

1

k− 1
2

+
1

N − k+ 1
2

.

It is known that ∂2 lnΓ(k)

∂k2
=ψ(1) (k) is the Trigamma function satisfying ψ(1) (k)≈ 1

k
+ 1

2k2
+ 1

6k3
−

1
30x5

+ .... As the fourth term has a negative coefficient, we use the first three terms of the expansion

to construct an upper bound on G as follows:

G≤ 1

k
+

1

2k2
+

1

6k3
+

1

N − k+1
+

1

(N − k+1)
2 +

1

6(N − k+1)
3 ,

which is consistent with Theorem 4 in Gordon (1994). Due to symmetry, it suffices to show that

1

k
+

1

2k2
+

1

6k3
− 1

k− 1
2

=− k+1

6k3 (2k− 1)
< 0,

for any 1≤ k≤N . We conclude that G< 1

k− 1
2
+ 1

N−k+ 1
2
, which ensures that ∂2

∂k2
(ln(Tk))> 0. ■
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Proof of Proposition 3:

When optimizing Z1(β), we solve the following first order condition:

∂Z1 (β)

∂β
=

∂

∂β

(
Nµ

(
1−βN

)
+Nσ

√
β (1−β)βN−1

)
= − NβN−1

2
√
β (1−β)

(
σ− 2Nσ+2Nσβ+2Nµ

√
β (1−β)

)
= 0,

which results in Equation (4.9). The candidate solution β̂1 is in the interior of [δ1,1], meaning that

− (N − 1)σ

√
1− β̂1

β̂1

+σ

√
β̂1

1− β̂1

> 0.

Thus, under β̂1, only when all Xn = µ− σ
√

1−β̂1

β̂1
, can the sum ξ be negative. The expected loss

indeed equals Z∗ =Nµ−Nβ̂
N

1

(
µ−σ

√
1−β̂1

β̂1

)
under this extreme two-point distribution. Similarly,

by optimizing ZN (β) we solve the following first order condition:

∂ZN (β)

∂β
=

∂

∂β

(
Nµ (1−β)

N
+Nσ

√
β (1−β) (1−β)

N−1
)

= −
N (1−β)

N
√
β (1−β)

2β (1−β)
2

(
2Nσβ−σ+2Nµ

√
β (1−β)

)
= 0,

which results in Equation (4.10).

Next, we investigate the sign of g (µ) = 1
N

(
Z1(β̂1)−ZN(β̂N)

)
. When µ= 0, Lemma 5 has shown

that g (0) = 0. Applying the envelope theorem, we find that

g′ (µ) =
1

N

∂Z1(β)

∂µ
|β=β̂1

− 1

N

∂ZN(β)

∂µ
|β=β̂N

= 1− β̂
N

1 −
(
1− β̂N

)N

.

At the point µ= 0, it holds that

g′ (µ) |µ=0 = 1−
(
2N − 1

2N

)N

−
(
1− 1

2N

)N

< 0.

Thus, when ∆µ > 0 (which occurs when µ increases from zero to a positive number), g (µ) ≃

[g′ (µ) |µ=0]∆µ < 0, suggesting that Z1(β̂1)− ZN(β̂N) < 0, making β̂N a better solution than β̂1.

Likewise, when ∆µ < 0 (which occurs when µ decreases from zero to a negative number), g (µ)≃

[g′ (µ) |µ=0]∆µ> 0, suggesting that Z1(β̂1)−ZN(β̂N)> 0, making β̂1 a better solution than β̂N .

Using the same method, we can contrast max
{
Z1(β̂1),ZN(β̂N)

}
with any other local optimum

objective value Zk(β̂k), where k ∈ {2,3, ...,N − 1}. We notice that

Zk (β) =
N !

(N − k)!(k− 1)!
σ
√
β(1−β)(1−β)k−1βN−k

+Nµ

(
1−βN −NβN−1(1−β)− ...− N !

(N − k+1)!(k− 1)!
βN−k+1(1−β)k−1

)
.
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The first order condition yields that

∂Zk (β)

∂β
=−σ

2

N !βN−k+1 (1−β)
k−1

(N − k)!(k− 1)!
√
β (1−β)

[
(2k− 1)σ− 2Nσ+2Nσβ+2Nµ

√
β (1−β)

]
= 0.

Thus, we find that

β̂k =
σ2 (2N − 2k+1)+Nµ2 −µ

√
N 2µ2 +σ2 (2k− 1) (2N − 2k+1)

2N (σ2 +µ2)
.

In a special case with µ = 0, we recover the same result in the proof of Lemma 5 that β̂k =

2N−2k+1
2N

. When µ< 0 (which implies ∆µ< 0), we find that

1

N

∂

∂µ
Zk(β̂k)|µ=0 = 1− β̂

N

k −Nβ̂
N−1

k (1− β̂k)− ...− N !

(N − k+1)!(k− 1)!
β̂
N−k+1

k (1− β̂k)
k−1

= 1−
(
2N − 2k+1

2N

)N

− ...− N !

(N − k+1)!(k− 1)!

(
2N − 2k+1

2N

)N−k+1(
2k− 1

2N

)k−1

> 1−
(
2N − 1

2N

)N

=
∂

∂µ
Z1(β̂1)|µ=0.

At the point µ= 0, Lemma 5 already shows that Z1(β̂1)>Zk(β̂k). We find that Z1(β̂1)−Zk(β̂k)≃
∂
∂µ

(
Z1(β̂1)−Zk(β̂k)

)
|µ=0∆µ > 0, making β̂1 the global optimal solution for Z (β) when µ < 0.

Similarly, we find that when µ> 0, ZN(β̂N)>Zk(β̂k).

In summary, the global optimal solution is 1) β̂1 when µ < 0 or 2) β̂N when µ > 0. Certainly,

Lemma 5 already shows that when µ= 0, there exist two global optimal solutions β̂1 =
2N−1
2N

and

β̂N = 1
2N

. ■
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