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The Fourier Transform and Characteristic Cycles of

Monodromic ℓ-adic Sheaves

Tong Zhou

Abstract

Brylinski and Malgrange proved in 1986 that, for a monodromic algebraic D-module on a

finite dimensional vector space over the complex numbers, its characteristic cycle is canonically

identified with the characteristic cycle of its Fourier transform. We prove the exact analogue of

this in the ℓ-adic context.

1 Introduction

Let V = Spec(C[x1, x2, ..., xd]) be a finite dimensional vector space over C. Denote by D(V ) the trian-
gulated category of bounded holonomic algebraic D-modules on V . M ∈ D(V ) is called monodromic
if the Euler vector field eu = Σixi

∂
∂xi

acts locally finitely on each Hi(M) (i.e., for any local section
s, {eun(s)}n∈N span a finite dimensional C-vector space). Denote by Dmon(V ) the full subcategory
of monodromic D-modules. Let F denote the Fourier transform of D-modules (c.f. [KL85, 7.1]). It is
easy to see that being monodromic is preserved under the Fourier transform. We have:

Theorem 1.1 (Brylinski-Malgrange, [Bry86, 7.25]). 1) If M ∈ Dmon(V ), then CC(M) = CC(FM).
2) Further assume M is regular, then so is FM.

Here CC denotes the characteristic cycle, V ′ denotes the dual of V , and T ∗V is implicitly canon-
ically identified with T ∗V ′ via T ∗V = V × V ′ ∼= V ′ × V ∼= T ∗V ′. Note that statement 1) in Theorem
1.1 as we stated is more general than Brylinski-Malgrange’s original version, but in fact their proof
works in this generality.

The main theorem of this paper is the analogue of statement 1) for ℓ-adic sheaves1. Let V be a
finite dimensional vector space over an algebraically closed field of characteristic p > 0. Let Λ be either
a finite extension of Fℓ (the finite case), or a finite extension of Qℓ, or Qℓ (the rational case), for ℓ a
prime different from p. Denote by D(V ) the triangulated category of bounded constructible Λ-étale
sheaves. We will prove:

Theorem 1.2 (Corollary 4.2). If F ∈ D(V ) is monodromic, then CC(F) = CC(FF) and SS(F) =
SS(FF).

Here CC denotes the characteristic cycle, SS denotes the singular support2, and F denotes the ℓ-
adic Fourier transform or its finite coefficient analogue (c.f. [Lau87]). F ∈ D(V ) is called monodromic
if all Hi(F) are tame local systems on all Gm-orbits. This is preserved under the Fourier transform
(Proposition 2.5.4).

In fact, we will prove the following theorem, which implies Theorem 1.2 by the additivity of char-
acteristic cycles and singular supports with respect to irreducible constituents. We first introduce a
terminology.

February 2024
1Note that the analogue of statement 2) is false, i.e., being monodromic tame is not preserved under the Fourier

transform. Example: let k be an algebraically closed field of characteristic p > 0, V = Spec(k[x, y, z]), Z = {zp−1y =
xp} →֒ V . Consider F := ΛZ , which is evidently monodromic and tame. But, combining [Bry86, 9.13] and the
computation in [Zho23, 4.21], one sees that FF is not tame.

2We refer to [Bei16; Sai17b] for the theory of singular support and characteristic cycle for sheaves with finite
coefficients, and to [UYZ20; Bar23] for the case of rational coefficients.
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Definition 1.3 (F-good). F ∈ D(V ) is F-good if for each irreducible constituent P,3 CC(P) =
CC(FP).

Theorem 1.4 (Theorem 4.1). Monodromic sheaves are F-good.

Our proof of Theorem 1.4 consists of a precise realisation of the following intuition: a monodromic
sheaf “decomposes” into a “projective component” and a “radial component” (the twist). The case
where the twist is trivial can be proved utilising the relation between the Radon transform and the
Fourier transform (c.f. [Bry86, 9.13]) and the fact that characteristic cycles behave well under the
Radon transform ([Sai17b, 7.5]). The general case then follows, because the radial component is tame
by monodromicity, and thus does not affect the characteristic cycle. Our original way of making the
last sentence precise uses the notion of having the same wild ramification (see [Kat18; Kat21] and
references therein). Beilinson pointed out that the general case in fact follows formally from the trivial
twist case by untwisting the sheaf after pulling back to V ×A1. This leads to a much simpler proof.
Both proofs are presented.

In §2, we make a preliminary study on monodromic sheaves and F-good sheaves. In §3, we prove
Theorem 1.4 in the trivial twist case, and give a formula for the coefficient of T ∗

0 V in CC(F). In §4,
we prove Theorem 1.4. The Appendix reviews basic facts about characteristic cycles of sheaves with
rational coefficients and the notion of having the same wild ramification.

In [Zho24], we will apply our results to give a microlocal characterisation of admissible (or character)
sheaves on reductive Lie algebras in positive characteristic.

Conventions

We fix an algebraically closed field k of characteristic p > 0 and a prime ℓ 6= p. A variety means a
finite type reduced separated scheme over k. For a variety X , D(X) denotes Db

c(X,Λ) ([Del80, 1.1]).
Λ is either a finite extension of Fℓ, or a finite extension of Qℓ, or Qℓ. We refer to the former as the
finite coefficients case, and the latter as the rational coefficients case. In all statements below, Λ is
understood to be either finite or rational unless otherwise specified. For F ∈ D(X), by an irreducible
constituent of F we mean an irreducible subquotient of some pHi(F).

All derived categories are in the triangulated sense. All sheaf-theoretic functors are derived. A
“sheaf” means an object of D(X). A “local system” means an object of D(X) whose cohomology
sheaves are locally constant (if Λ is finite) or lisse (if Λ is rational) with finite type stalks.

V denotes a finite dimensional vector spaces over k, V ′ denotes its dual, V̊ denotes V −{0}, P(V )
denotes the projectivisation of V̊ , q denotes the projection V̊ → P(V ).

Gm acts on V by scaling. For n ≥ 1 in N, we call θ(n) : Gm × V → V, (λ, v) 7→ λnv the n-twisted
scaling action. We fix a non-trivial character ψ : Z/p→ Λ×. Fourier transforms are denoted by F and
are with respect to this character unless otherwise specified. As we work over an algebraically closed
field, we may ignore Tate twists.

By a Kummer sheaf K, we mean the !-extension to A1 of a rank 1 local system in degree −1 on
Gm corresponding to a non-trivial continuous character from the tame fundamental group πt

1(Gm, 1)
to Λ×. We sometimes abuse notations and denote its restriction to Gm also by K. We denote by K−1

the Kummer sheaf corresponding to the inverse character of that of K.

Acknowledgement

I am grateful to David Nadler for many valuable discussions, and for suggesting various improvements
to the draft of this paper. I would also like to thank Sasha Beilinson for discussions, especially for
pointing out a simpler way to deduce the general case of our main theorem from the trivial twist case.

3This means P is an irreducible subquotient of some pHi(F).
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2 Preliminaries on monodromic sheaves and F-good sheaves

The setup is as in the Conventions. Λ can be either finite or rational, unless otherwise specified. For
completeness, we have included more materials in this section than are actually needed in the sequel.
Recall:

Definition 2.1 (monodromic sheaves, [Ver83]). A sheaf F on V is monodromic if the restriction of
all Hi(F) to all Gm-orbits are tame local systems.

When Λ is finite, we have the following crucial equivalent characterisation of monodromic sheaves.

Proposition 2.2 ([Ver83, 5.1]). Let Λ be finite. Then, F ∈ D(V ) is monodromic if and only if ∃
n > 0 in N prime to p such that there exists an isomorphism θ(n)∗F→̃pr∗F . Here θ(n) : Gm × V →
V, (λ, v) 7→ λnv is the n-twisted scaling action and pr : Gm × V → V is the projection.

Proof. The “only if” direction is proved in loc. cit. In loc. cit., it is not stated that n can be chosen
to be prime to p, but the proof in fact shows this.

For the “if” direction, just observe that θ(n)∗F→̃pr∗F implies θ(n)∗Hi(F)→̃pr∗Hi(F). So for
each x ∈ V , (θ(1)∗Hi(F))|Gm×{x} is a sheaf concentrated in degree 0 and trivialised by the cover
Gm × {x} → Gm × {x}, λ 7→ λn, p ∤ n. So (θ(1)∗Hi(F))|Gm×{x}, hence Hi(F)|Gm.x, is necessarily a
tame local system.

The “if” direction is false for Λ rational:

Example 2.3. Let Λ = Qℓ.
1) Let K be a Kummer sheaf whose corresponding representation of the tame fundamental group

πt
1(Gm, 1) does not factor through a finite quotient, then K cannot be trivialised by any finite cover (it

has “infinite monodromy”), hence an n as in the proposition does not exist.

2) Consider the !-extension to A1 of the local system L of rank 2 concentrated in degree −1 on Gm

corresponding to the representation ρ : πt
1(Gm, 1) → GL2(Λ), t 7→

ï

1 1
0 1

ò

, where t is a topological

generator of πt
1(Gm, 1). This local system also has “infinite monodromy”, and an n as in the proposition

does not exist.

Let Λ be finite or rational, and F be a monodromic sheaf. If there exists an n as in Proposition
2.2, we say F is finite monodromic and refer to the (multiplicatively) smallest n as the twist of F , if
furthermore the twist is 1, we say F has trivial twist.

Lemma 2.4. 1) Being finite monodromic is preserved under taking irreducible constituents, ⊗, and
Verdier dual D.
2) Being monodromic is preserved under taking cones, irreducible constituents, ⊗, and Verdier dual
D. In particular, a sheaf is monodromic if and only if its irreducible constituents are.

For Λ rational, having finite monodromic irreducible constituents does not imply the sheaf itself is
finite monodromic, as Example 2.3.2 shows.

Proof. 1) Let F ,G be finite monodromic sheaves, and n > 0 in N prime to p such that there exist
isomorphisms θ(n)∗F→̃pr∗F , θ(n)∗G→̃pr∗G.

θ(n) and pr are smooth maps with connected geometric fibres, so θ(n)∗, pr∗ are perverse t-exact
and embeds Perv(V ) into Perv(Gm × V ) as a full subcategory closed under taking subquotients
([BBDG, 4.2.5]). We may thus take irreducible constituents on both sides of θ(n)∗F→̃pr∗F and get
the analogous isomorphisms for the irreducible constituents of F . So the irreducible constituents are
also finite monodromic.

The preservation under ⊗ and D is easily verified: θ(n)∗(F ⊗ G)→̃pr∗(F ⊗ G), so F ⊗ G is finite
monodromic. θ(n)∗DF ∼= Dθ(n)!F→̃Dpr!F ∼= pr∗DF , so DF is finite monodromic.
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2) We first show the preservation under taking cones. Let F → G → H → be a distinguished
triangle, with F ,G monodromic. The long exact sequence associated to Hi easily implies that Hi(H)
sit inside exact sequences of the form 0 → cokeri → Hi(H) → keri → 0. Restrict to any Gm-orbit O,
cokeri and keri become cokernels and kernels of map between tame local systems, so are themselves
tame local systems. Hi(H)|O are thus also tame local systems.

To show the preservation under taking irreducible constituents, because of the preservation under
taking cones, we may do induction on the amplitude to reduce to the case of a monodromic sheaf
F concentrated in degree 0. Recall that for a sheaf G concentrated in degree 0, being monodromic
is equivalent to θ∗λG

∼= G, ∀λ ∈ k×, where θλ : V → V is the map of multiplication by λ ([Ver83,
3.2]). So θ∗λF

∼= F . Since θ∗λ restricts to an equivalence Perv(V ) → Perv(V ), we may take irreducible
constituents on both sides and get θ∗λP

∼= P , for each irreducible constituent P of F . Further take Hi,
we get θ∗λH

i(P) ∼= Hi(P). By [Ver83, 3.2] again, Hi(P) is monodromic.

We now show the preservation under ⊗. Let F ,G be monodromic sheaves. Because of the preser-
vation under taking cones, we may do induction on the amplitude to reduce to the case where F ,G are
concentrated in degree 0. Then, for any Gm orbit O, F|O and G|O are tame local systems in degree 0.
It follows that (F|O)⊗ (G|O) is a tame local system. So Hi(F ⊗ G)|O = Hi((F|O)⊗ (G|O)) is a tame
local system, F ⊗ G is monodromic.

To show the preservation under D, because of the preservation under taking cones, we may reduce
to the case of perverse irreducible monodromic sheaves. The finite coefficient case is dealt with in 1).
For Λ rational, we may further assume Λ = Qℓ because of the easily verified fact that, for Λ rational,
F is monodromic if and only if F ⊗Λ Qℓ is. In this case, the statement follows from Proposition 2.5
items 1) and 3), and the compatibility of the Fourier transform and linear actions of algebraic groups
([Lau87, 1.2.3.4]).

Proposition 2.5. 1) If F ∈ D(V ) is perverse, then F is (finite monodromic) with trivial twist if and
only if F is Gm-equivariant. This is preserved under the Fourier transform.
2) Let F ∈ D(V ) be perverse irreducible finite monodromic with twist n > 1. Assume Λ contains a
primitive n-th root of unity4. Then there exists a Kummer sheaf K on Gm (unique up to isomorphism),
trivialised by the power n cover of Gm, such that θ(1)∗F ∼= K ⊠ F [−1]. Furthermore, θ(1)∗FF ∼=
K−1

⊠ FF [−1].
3) Let Λ = Qℓ. Let F ∈ D(V ) be perverse irreducible monodromic with twist n > 1. Then there exists
a Kummer sheaf K on Gm (unique up to isomorphism), trivialised by the power n cover of Gm, such
that θ(1)∗F ∼= K ⊠ F [−1]. Furthermore, θ(1)∗FF ∼= K−1

⊠ FF [−1].
4) F ∈ D(V ) is monodromic (resp. finite monodromic) if and only if FF is monodromic (resp. finite
monodromic). In the finite monodromic case, they have the same twist.

Note that in situations 2) and 3), the restriction of F to any Gm-orbit not equal to {0} is of the
form C ⊗K, for some constant sheaf C (depending on the orbit). We also say that K is the twist of F .

Proof. 1) The first statement follows from the characterisation of perverse sheaves being equivariant
under actions of connected algebraic groups (c.f. [Ach21, 6.2.17]). The second statement follows from
the compatibility of the Fourier transform and linear actions of algebraic groups.

2) Being perverse irreducible, F is of the form j!∗L for some irreducible local system L on some
smooth irreducible locally closed conic subvariety S →֒ V̊ .5 The restriction of θ(n)∗F→̃pr∗F to Gm×S
gives θ(n)|∗

Gm×SL→̃pr|∗
Gm×SL.

4This can always be achieved by adjoining a primitive n-th root of unity, see Remark 2.7.
5Proof that S can be chosen to be conic (note the proof only requires F being perverse irreducible monodromic):

assume F is not a local system, let D be its ramification divisor. We show D is conic. Let x be any closed point of
D. Then, for some i, Hi(F) is a local system near x. But Hi(F) is monodromic, hence isomorphic to itself under the
pullback by the λ-scaling, ∀λ ∈ k× ([Ver83, 3.2]), so Hi(F) is not a local system near λ.x,∀λ ∈ k×. This forces D to be
conic, as D is a divisor.
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Claim: θ(1)|∗
Gm×SL is isomorphic to K ⊠ L[−1] for some Kummer sheaf K on Gm (necessarily

unique up to isomorphism), trivialised by the power n cover of Gm.

Accepting this claim, the conclusions follow: using the well-known characterisation of j!∗ (c.f.
[Ach21, 3.3.4]), it is easily seen that θ(1)∗F ∼= K ⊠ pr∗F [−1]. In fact, θ(1)∗F ∼= θ(1)∗(j!∗L) ∼=
j!∗(θ(1)

∗L) ∼= j!∗(K ⊠ pr∗L[−1]). Apply 3.3.4 in loc. cit., we get K⊠ j!∗pr
∗L[−1] is the middle exten-

sion of K ⊠ pr∗L[−1], hence isomorphic to θ(1)∗F . The last statement follows from the compatibility
of the Fourier transform and linear actions of algebraic groups.

It remains to prove the claim. Denote e(n) : Gm → Gm, λ 7→ λn. Consider L′ := (e(n)×id)∗(e(n)×
id)∗θ(1)|∗

Gm×SL. Since e(n)× id is finite étale, L′ is a local system concentrated in a single degree. De-
note its corresponding π1(Gm×S) (we omit the base points in the notation from here on) representation
by ρ′ : π1(Gm × S) → AutΛ(L

′). ρ′ factors through π1(Gm × S) → πt
1(Gm)× π1(S) → Z/n× π1(S).

The adjunction id → (e(n) × id)∗(e(n) × id)∗ realises θ(1)|∗
Gm×SL as a sub-local-system of L′. Its

corresponding representation ρ : π1(Gm × S) → AutΛ(L1) thus also factors through Z/n × π1(S).
Since θ(1)|∗

Gm×SL is irreducible, ρ is irreducible. By our assumption on Λ, we can apply Lemma 2.6
case 1) and get L1

∼= K ⊠L as Z/n× π1(S) representations, for some 1-dimensional representation K
of Z/n. Consequently θ(1)|∗

Gm×SL
∼= K⊠G, for some Kummer sheaf K and some sheaf G. Looking at

the restriction of θ(1)|∗
Gm×SL to 1 × S →֒ Gm × S, we see G is necessarily isomorphic to L[−1]. K is

clearly trivialised by the power n cover of Gm.

3) The argument is similar to 2), we indicate the differences. Consider θ(1)|∗
Gm×SL as above. Fix

a torsion free integral model for θ(1)|∗
Gm×SL. For each of its reductions mod ℓr, the corresponding

π1(Gm × S)-representation (over Z/ℓr) factors through Z/m × π1(S) for varying m. Take the limit
over r, we get that the (continuous) π1(Gm×S)-representation over Qℓ corresponding to θ(1)|∗

Gm×SL
factors through πt

1(Gm)× π1(S). It is necessarily irreducible. Apply Lemma 2.6 case 2) (easily modi-
fied to take continuity into account), we get an external product decomposition of θ(1)|∗

Gm×SL. The
rest is similar.

4) The statements concerning the finite monodromic case follow from the compatibility of the
Fourier transform and linear actions of algebraic groups, and the fact that being finite monodromic
implies a∗F ∼= F , where a is the antipodal map. The statement concerning the monodromic (Λ
rational) case follows from 3) above, Lemma 2.4.1, and the easily verified fact that, for Λ rational, F
is monodromic if and only if F ⊗Λ Qℓ is.

Lemma 2.6. Let H be an abelian group, G be any group, Λ be a field. Assume either 1) H = Z/n for
n > 1 in N, and Λ contains a primitive n-th root of unity, or 2) Λ is algebraically closed. Then, for any
finite dimensional irreducible Λ-representation M of H ×G, there exist irreducible Λ-representations
K of H and L of G and an isomorphism K ⊠ L ∼=M as representations of H ×G. Note, necessarily,
dimΛ(K) = 1, dimΛ(L) = dimΛ(M).

Here ⊠ denotes the external tensor product of group representations. It is also denoted by ⊗ in
the literature.

Proof. In case 1), all finite dimensional representations of Z/n are semisimple (note that n is ne-
cessarily invertible in Λ), and irreducible ones are 1-dimensional. View M as a representation of
Z/n = Z/n × {1}, it decomposes as M = ⊕iK

⊕ri
i , for some 1-dimensional representations Ki of

Z/n, and ri > 1. Since the G = {1} ×G action commutes with the Z/n action, each K⊕ri
i is a sub-

representation of Z/n×G. By the irreducibility of M , there is only one of them. Denote it by M = Kr.
View M as a representation of G, and denote it by L, then clearly M ∼= K ⊠ L as representations of
Z/n×G.

In case 2), since H × {1} and {1}×G commute, and H is abelian, the homomorphism H ×{1} →
EndΛM lands in EndH×G−repM . By Schur’s Lemma, EndH×G−repM ∼= Λ. We see that each element
ofH×{1} must act through scaling. Denote the corresponding 1-dimensional representation ofH byK,
and M regarded as a G-representation (clearly irreducible) by L. Then M ∼= K ⊠L as representations
of H ×G.
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Remark 2.7. We own the following observation to Beilinson: for Λ finite, and F ∈ D(V ) a perverse
irreducible monodromic sheaf, the twist n is always prime to ℓ. Proof: using the same notations as in
the fourth paragraph of the proof of Proposition 2.5.2, we claim the representation ρ : Z/n× π1(S) →
AutΛL1 must factor through ((Z/n)/{ℓ−torsion})×π1(S). Since it follows easily from the definition of
the twist that n is the smallest positive integer for which a factorisation π1(Gm×S) → Z/n×π1(S) →
AutΛL1 exists, n must be prime to ℓ. To see the claim, note that Z/n × {1} is in the centre of
Z/n × π1(S), so it lands in EndZ/n×π1(S)−repL1. As ρ is irreducible, the latter is a division algebra
over Λ by Schur’s Lemma. If m ∈ Z/n× {1} is ℓ-torsion, say ℓrm = 0, then ρ(ℓrm) = ρ(m)ℓ

r

= id,
so ρ(m)ℓ

r

− id = (ρ(m) − id)ℓ
r

= 0, so ρ(m) = id.

Proposition 2.8. Let F ∈ D(V ) be perverse irreducible monodromic, with non-trivial twist K. Assume
either 1) F is finite monodromic with twist n and Λ contains a primitive n-th root of unity, or 2)
Λ = Qℓ. Let (W,σ) be the data of an open conic subvariety W of V̊ := V − {0} together with a
section σ of the projection q : V̊ → P(V ) (restricted to W ). Then, F|W ∼= Fσ ⊠K for some perverse
irreducible sheaf Fσ on P(V ) (unique up to isomorphism).

Here, σ determines an isomorphism W ∼=σ W ×Gm, and the ⊠ is with respect to this isomorphism.
We emphasise that Fσ depends on σ.

Proof. F is of the form j!∗L for some irreducible local system L on some smooth irreducible locally
closed conic subvariety S →֒ V̊ , F|W ∼= j!∗(L|W∩S). Consider the sheaf (L|W∩S) ⊗ pr∗2K

−1, where
pr2 : W ∼=σ W × Gm → Gm is the second projection. By the comment after the statement of
Proposition 2.5, (L|W∩S)⊗ pr∗2K

−1 is a local system concentrated in a single degree and constant on
each closed fibre of the projection pr1 :W ∩ S ×Gm →W ∩ S. Apply Lemma 2.9, we get (L|W∩S)⊗
pr∗2K

−1 ∼= pr∗1L
′[2] for some (perverse) local system L′ on W ∩ S. (In fact L′ must be isomorphic to

((L|W∩S)⊗pr
∗
2K

−1)|W∩S×{1}[−2].) So L|W∩S
∼= L′

⊠K. Reasoning as in the third paragraph in proof
of Proposition 2.5.2, the well-known characterisation of j!∗ implies F|W ∼= j!∗(L|W∩S) ∼= j!∗(L

′
⊠K) ∼=

(j!∗L
′)⊠K =: Fσ ⊠K.

Lemma 2.9. Let f : X → Y be a smooth morphism between varieties of relative dimension d, with
geometrically connected fibres. If F is a sheaf on X concentrated in degree 0, such that for each closed
point y ∈ Y , there exists an isomorphism F|Xy

∼= Λr, for some ri ∈ N independent of y. Then the
canonical map F → f∗H2d(f!F) is an isomorphism. If F is perverse, then H2d(f!F) is the unique
(up to isomorphism) sheaf on Y (necessarily perverse and concentrated in degree 0) whose pullback is
isomorphic to F .

Here the map F → f∗H2d(f!F) is obtained by taking H0 of the adjunction map F → f !f!F .

Proof. 6 It suffices to show F → f∗H2d(f!F) is an isomorphism for each closed point x ∈ X . This,
in turn, is implied by F|Xy

→̃(f∗H2d(f!F))|Xy
∼= f∗H2d(f!(F|Xy

)) for each closed point y ∈ Y , where
the last isomorphism is from proper base change. Using F|Xy

∼= Λr, the question reduces to showing
ΛXy

→̃p∗H2d(p!ΛXy
), which is clear (here we use the connectedness of Xy). The assertion when F is

perverse is a direct consequence of the fact that f∗ induces a fully faithful embedding of Perv(Y ) into
Perv(X) ([BBDG, 4.2.5], here we use again the geometrically-connectedness of fibres).

Remark 2.10. Proposition 2.8 can fail without the assumptions on Λ. In fact, if L|W∩S corresponds
to an irreducible representation of π1(W ∩ S) × Z/n which cannot be written as an external tensor
product (which can exist without the assumptions on Λ), then L|W∩S cannot be written as an external
tensor product.

We now turn to F-good sheaves. Recall:

Definition 2.11 (F-good sheaves). F ∈ D(V ) is F-good if for each irreducible constituent P, CC(P) =
CC(FP).

6This proof follows the suggestion of Will Sawin in https://mathoverflow.net/questions/225468
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Remark 2.12. F-good sheaves are not necessarily monodromic. For example, let L be a local system
concentrated in degree 0 on Gm, F be the !-extension of L[1] to A1. If L is purely of slope < 1 at
∞, then F is F-good, as one can verify using Laumon’s local Fourier transforms (c.f. [Lau87, 2.3.1,
2.4.3]). But such an F is not monodromic if L is not tame.

Lemma 2.13. 1) Being F-good is preserved under taking cones, taking irreducible constituents, and
Verdier dual D.
2) Let f : W → V be a linear injection (resp. surjection) between finite dimensional vector spaces, F
(resp. G) be an F-good sheaf on W (resp. V ). Then f∗F (resp. f∗G) is F-good.

Proof. 1) That being F-good is preserved under taking irreducible constituents is clear. If F → G →
H → is a distinguished triangle, the long exact sequence associated to pHi easily implies that irre-
ducible constituents of G is a subset of the union of irreducible constituents of F and H. So the
F-goodness of F and H implies the F-goodness of G. Finally, let F be F-good, we show DF is F-good:
as D is an anti-equivalence preserving Perv(V ), it suffices to prove CC(DF) = CC(FDF) for F per-
verse irreducible. Apply the formula FD ∼= a∗DF to F (where a is the “multiplication by −1” on V ),
using the monodromicity of DFF , we get FDF ∼= DFF . So CC(FDF) = CC(DFF). By CCD = CC
(see [Sai17b, 5.13.4] for Λ finite, and Proposition 5.3 for Λ rational), and use the assumption that F
is F-good, we get CC(DF) = CC(F) = CC(FF) = CC(DFF) = CC(FDF).

2) This follows directly from the compatibility of the Fourier transform with linear maps ([Lau87,
1.2.2.4] and its dual version), and the behaviour of CC under closed immersions and smooth pullbacks
(see [Sai17b, 5.13.2, 5.17] for Λ finite, the rational case follows easily from the finite case and the
definition of CC, reviewed in the Appendix).

3 The case of the trivial twist

As above, Λ can be either finite or rational. We prove the special case of Theorem 1.4 where the sheaf
has trivial twist, which will be the basis for the proof of the general case. In the terminology of the
intuition mentioned in the Introduction, we deal with the “projective components” in this section.

Proposition 3.1. If F ∈ D(V ) is perverse irreducible with trivial twist, then F is F-good.

Recall that, for F perverse, having trivial twist is equivalent to being Gm-equivariant, and this is
preserved under the Fourier transform (Proposition 2.5.1). We fix some notations. Let π : Ṽ → V be
the blowup of V at 0, q̃ : Ṽ → P(V ) be the natural projection, j be the inclusion V̊ ⊆ V . We use the
same letters with “ ′ ” to denote the corresponding maps on the dual side.

Proof. We first prove CC(F) = CC(FF) away from the 0-sections and 0-fibres (i.e., with the compon-
ents supported on V × 0 and 0× V ′ removed). Consider the following diagram, where each sequence
is a distinguished triangle:

F!

F F̃

F0 F̃0

Here F! := j!(F|V̊ ), F̃ := π∗q̃
∗F , and F0 (resp. F̃0) is the stalk of F (resp. F̃) at 0, viewed as

skyscraper sheaves. As F is Gm-equivariant, F|V̊ descends to some G on P(V ). By the compatibility

of the Radon transform and the Fourier transform ([Bry86, 9.13]), (F F̃)|V̊ ′

∼= q′∗RG, where R is the
Radon transform on P(V ). By the smooth pullback formula for CC and the compatibility of CC
with the Radon transform (see [Sai17b, 7.5] for Λ finite, and Proposition 5.3.3 for Λ rational) this
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easily implies CC(F F̃) = CC(F) away from the 0-sections and 0-fibres. By the above diagram and its
Fourier dual, CC(F) = CC(F̃) − CC(F̃0) + CC(F!), CC(FF) = CC(F F̃) − CC(F F̃0) + CC(FF!).
Since the last two terms in each equality are supported on the 0-sections and 0-fibres, we conclude
that CC(F) = CC(FF) away from the 0-sections and 0-fibres.

To prove the full equality CC(F) = CC(FF), consider i : V →֒ V × A1, v 7→ (v, 0) and its dual
p′ : (V ×A1)′ → V ′. i∗F is still perverse irreducible with trivial twist, so, by the above paragraph,
CC(i∗F) = CC(Fi∗F) = CC(p′∗FF [1]) away from the 0-sections and 0-fibres (of V × A1). The
0-section in CC(F) corresponds to the component {(v, adt), v ∈ V, a ∈ k} in CC(i∗F) (t is the linear
coordinate on A1), and the 0-fibre in CC(FF) corresponds to the component {(0, ξ), ξ ∈ V ∼= T ∗

0′V
′}

in CC(p′∗FF [1]). They are away from the 0-sections and 0-fibres (of V × A1), hence equal. This
proves the 0-section in CC(F) equals the 0-fibre in CC(FF). Apply the Fourier inversion, we get the
0-section in CC(FF) equals the 0-fibre in CC(F). Hence the full equality CC(F) = CC(FF).

Corollary 3.2. If F ∈ D(V ) is such that all its irreducible constituents have trivial twists (equivalently,
Gm-equivariant), then F is F-good.

Corollary 3.3. If F ∈ D(V ) is such that F|V̊
∼= q∗F for some F ∈ D(P(V )), then F is F-good.

Proof. By the corollary above, it suffices to show all irreducible constituents of F are Gm-equivariant.
Let P be an irreducible constituent. If P is supported at {0}, this is clear. If not, then P is of the
form j!∗L for L some perverse irreducible local system on some smooth irreducible subvariety in V̊ .
So P|V̊ is still perverse irreducible. Since the restriction to V̊ is perverse t-exact, P|V̊ is an irreducible
constituent of F|V̊

∼= q∗F . Since q∗ is also perverse t-exact and induces a fully faithful embedding

of Perv(P(V )) into Perv(V̊ ) closed under taking subquotients ([BBDG, 4.2.5]), it is easily seen that
irreducible constituents of q∗F are exactly q∗ of irreducible constituents of F . So P|V̊

∼= q∗P for some
perverse irreducible P on P(V ). So P|V̊ , hence P , is Gm-equivariant.

Remark 3.4. It follows from the proof that the irreducible constituents of such an F have trivial
twists, so F is necessarily monodromic (Lemma 2.4). Note that, for Λ finite, F needs not have trivial
twist; for Λ rational, F needs not be of finite monodromy. The Fourier transform of j!∗L for L as
in Example 2.3.2 and j : Gm → A1 gives such an example (j!∗L is in fact the maximal extension of
Λ
Gm

[1]).

For a monodromic sheaf F ∈ V , its singular support is Gm-stable7. The 0-fibre SS(F) ∩ T ∗
0 V is

either T ∗
0 V or SS(F)|V̊ ∩ T ∗

0 V (closure taken in T ∗V ). As an application of the above, we record a
formula, applicable to perverse sheaves with trivial twists, which allows us to tell which case happens.
This will not be used in the sequel.

Proposition 3.5. Let F ∈ D(V ) be such that F|V̊
∼= q∗F [1] for some sheaf F on P(V ). Then, the

coefficient of T ∗
0 V in CC(F) equals rk0F − χ(P(V ),F [1]) + χ(H,F [1]), where χ denotes the Euler

characteristic, and H is a general hyperplane on P(V ).8 If F is also perverse, then SS(F) ∩ T ∗
0 V =

T ∗
0 V if and only if rk0F − χ(P(V ),F [1]) + χ(H,F [1]) 6= 0.

Proof. It suffices to prove the first statement, as the second statement follows from the first and the
effectivity of characteristic cycles of perverse sheaves. Denote dimV by d. It follows from Corollary 3.3
that the coefficient of T ∗

0 V in CC(F) equals (−1)d.rk(FF), where rk denotes the generic rank. Using
the same diagram and notations at the beginning of the proof of Proposition 3.1, we get rk(FF) =
rk(FF0) + rk(F F̃)− rk(F F̃0). Compute:
rk(FF0) = (−1)d.rk0(F);
rk(F F̃0) = (−1)d.rk(F̃0) = (−1)d.χ(P(V ),F [1]);
rk(F F̃) = rk(q∗RF [1]) = rk(RF [1]) = (−1)d−2.χ(H,F [1]),
where in the last line we have used the compatibility of the Radon transform and the Fourier transform.
The statement easily follows.

7This can be seen, e.g., using Proposition 2.8.
8More precisely: there exists an open dense U ⊆ P(V ′), such that χ(H̃,F [1]), as a function of hyperplanes H̃

(parametrised by closed points of P(V ′)), is constant. χ(H,F [1]) is defined to be this constant.
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4 Proof of the main theorem

As above, Λ can be either finite or rational.

Theorem 4.1. Monodromic sheaves are F-good.

We present two proofs. The first one follows Beilinson’s key idea of untwisting the sheaf after
pulling back to V ×A1, reducing the general case to the trivial twist case.

Proof. Since irreducible constituents of a monodromic sheaf are monodromic (Lemma 2.4), it suffices
to prove the claim for perverse irreducible monodromic sheaves. Further, since being monodromic
is clearly preserved under a finite extension of the coefficient field, and characteristic cycles do not
change under this extension (c.f. the discussion after Definition 5.1), we may assume that Λ contains
a primitive n-th root of unity9, where n is the twist of the sheaf in consideration. In the rational case,
we may further assume Λ = Qℓ.

Let F ∈ D(V ) be perverse irreducible monodromic. We want to show CC(F) = CC(FF). If
F has trivial twist, then it is F-good by Proposition 3.1. Assume F has non-trivial twist K. Con-
sider F ⊠ K on V × A1. We claim that F ⊠ K−1 satisfies (F ⊠ K−1)|(V ×A1)−{0}

∼= q∗(F ⊠K−1)
for some F ⊠ K−1 ∈ D(P(V × A1)), where q : (V × A1) − {0} → P(V × A1) is the projection.
Accepting this claim, Corollary 3.3 implies that CC(F ⊠ K−1) = CC(F (F ⊠ K−1)). As, in general,
CC(F1⊠F2) = CC(F1)⊠CC(F2) (for Λ finite, see [Sai17a, 2.2]; for Λ rational, this is verified in Pro-
position 5.3).4 and F commutes with ⊠ (c.f. [Lau87, 1.2.2.7]), it easily follows that CC(F) = CC(FF).

It remains to show the claim. F is of the form j!∗L for some irreducible local system L on some
smooth irreducible locally closed conic subvariety S →֒ V̊ . So F⊠K−1 ∼= (j!∗L)⊠K−1 ∼= j!∗(L⊠K−1).
By our construction, L ⊠ K−1 is a local system concentrated in a single degree, which is constant
when restricted to each Gm orbit in S × A1 (note that K−1 is 0 at {0} ∈ A1). By Lemma 2.9,
L ⊠ K−1 ∼= q∗(L⊠K−1), for some L⊠K−1 ∈ D(P(S ×A1)). Then F ⊠ K−1 ∼= j!∗q

∗(L⊠K−1). Its
restriction to (V ×A1)− {0} is isomorphic to q∗j!∗(L⊠K−1).

We now present our original proof, which uses the local decomposition (Proposition 2.8) and the
notion of having the same wild ramification to reduce to the trivial twist case.

Proof. As explained at the beginning of the previous proof, it suffices to consider perverse irreducible
monodromic sheaves, and we may assume, in the finite case, that Λ contains a primitive n-th root of
unity where n is the twist of the sheaf in consideration, or, in the rational case, that Λ = Qℓ .

We do induction on d = dimV . For d = 1, there are three types of perverse irreducible mono-
dromic sheaves: i) the rank 1 skyscraper at {0}, ii) the rank 1 constant sheaf in degree −1 on V , iii)
(!-extension of) Kummer sheaves {K}. Their Fourier transforms are easy to compute: i’) the rank 1
constant sheaf in degree −1 on V ′, ii’) the rank 1 skyscraper at {0′}, iii’) (!-extension of) Kummer
sheaves {K−1} ([Lau87, 1.4.3.2]). In each case, F-goodness can be directly verified.

Now consider the case d > 1. Let F ∈ D(V ) be a perverse irreducible monodromic sheaf. If F has
trivial twist, then it is F-good by Proposition 3.1. Assume F has non-trivial twist K (recall, by our
convention, K is in degree −1). Fix linear coordinates (x1, x2, ..., xd) (i.e. an isomorphism V ∼= Ad =
Spec(k[x1, x2, ..., xd])), this induces coordinates [x1 : x2 : ... : xd] on P(V ). Let D1 = {x1 = 0}, U1 its
complement in V . The projection q : V̊ → P(V ) maps U1 to U1 = {x1 6= 0} ⊆ P(V ). Fix the section
σ1 : U1 → U1, [x1 : x2, ..., xd] 7→ (1, x2

x1

, ..., xd

x1

).

Apply Proposition 2.8 to (U1, σ1), we get a decomposition F|U1

∼= Fσ1
⊠ K. We denote the !-

extension of Fσ1
to P(V ) by F1. Then j!(F|U1

) ∼= j!(Fσ1
⊠ K) ∼= (j!q

∗F1) ⊗ pr∗1K, where j denotes

the inclusions into V (we use the same j for the inclusion from U1 as well as V̊ ), and pr : V → A1

denotes the projection to the first coordinate. The last isomorphism follows from the observation that

9In the extended coefficient field Λ′, we will use the character ψ′ : Z/p → Λ →֒ Λ′ to define the Fourier transform,
where the first arrow is the character ψ for Λ. This ensures (FψF)⊗Λ Λ′ ∼= Fψ′(F ⊗Λ Λ′).
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the map U1
∼=σ1

U1 ×Gm followed by the projection to Gm coincides with the map pr1 (restricted to
U1).

We have the distinguished triangle: j!(F|U1
) → F → i1∗(F|D1

) →, where i1∗ is the inclusion of D1

to V . As F|D1
is clearly monodromic, it is F-good by the induction hypothesis. Using the compatib-

ility of the Fourier transform with linear maps between vector spaces, it is easily seen that i1∗(F|D1
)

is F-good. As being F-good is stable under taking cones (Lemma 2.13), it suffices to show j!(F|U1
) is

F-good, i.e., to show CC(Fj!(F|U1
)) = CC(j!(F|U1

)). In the following, we assume j!(F|U1
) is nonzero

(with non-trivial twist K).

We compute: Fj!(F|U1
) = F ((j!q

∗F1)⊗ pr∗1K) = (Fj!q
∗F1) ∗F (pr

∗
1K)[d], where −∗− denotes the

convolution: let s be the sum map: V ′ × V ′ → V ′, (v1, v2) 7→ v1 + v2, then − ∗ − : D(V ′)×D(V ′) →
D(V ′), (G1,G2) 7→ s!(G1 ⊠ G2). Further compute: F (pr∗1K) = i′1!FK[1− d] = i′1!K

−1[1− d], where i′1 is
the inclusion of the x′1-axis into V ′ (we use the dual coordinates on V ′).

Claim: (Fj!q
∗F1)⊠ (i′1!K

−1) has the same wild ramification (swr) as (Fj!q
∗F1)⊠ (i′1!ΛGm

[1]).

Accepting the claim, then by Theorem 5.5 and Theorem 5.7, (Fj!q
∗F1) ∗ F (pr

∗
1K)[d] has the

swr as (Fj!q
∗F1) ∗ (i′1!ΛGm

[1])[1], and they have the same characteristic cycle. Now, i′1!ΛGm
[1] =

FFi′1!ΛGm
[1] = Fpr∗1H[d − 1], where H := Fi′1!ΛGm

[1] is a sheaf on A1 whose restriction to Gm is
constant and concentrated in degree −1. So (Fj!q

∗F1) ∗ (i
′
1!ΛGm

[1]) = F ((j!q
∗F1)⊗ pr∗1H)[−1]. Note

that (j!q
∗F1)⊗ pr∗1H is isomorphic to j!q

∗F1[1], which is F-good by Corollary 3.3. Put these together,
we get the equalities CC(Fj!(F|U1

)) = CC(F ((j!q
∗F1)⊗ pr∗1H)[1 − d]) = CC(j!q

∗F1[1]). Recall that
we want to show this equals CC(j!(F|U1

)).

Claim: j!(F|U1
) = (j!q

∗F1)⊗ pr∗1K has the swr as (j!q
∗F1)⊗ pr∗1ΛGm,![1] = j!q

∗F1[1], where Λ
Gm,!

denotes the !-extended to A1 of the constant sheaf on Gm.

Accepting this claim and combining it with the previous equalities, we get the desired equality:
CC(Fj!(F|U1

)) = CC(j!q
∗F1[1]) = CC(j!(F|U1

)).

It remains to prove the two claims. We prove the second claim, the first is completely analogous.
We first consider the Λ finite case. Denote j!q

∗F1 by A, K by B. Let C be a smooth proper curve,

g : C ⊆ C an open dense, f : C → X a map, s ∈ C a closed point. We want to show as(g!f
∗A[1]) =

as(g!f
∗(A⊗ pr∗1B)). Recall as = rkηs

+ swηs
− rks. Clearly, the ranks are the same for g!f

∗A[1] and
g!f

∗(A⊗pr∗1B) (note A is 0 alongD1). For the Swan conductors, observe (A⊗pr∗1B)ηs
= Aηs

⊗(pr∗1B)ηs
,

(pr∗1B)ηs
is 0 (if ηs is mapped to 0 by pr1 ◦f) or tame of rank 1 concentrated in degree −1 (otherwise).

In both cases, swηs
(A ⊗ pr∗1B) = swηs

(A ⊗ pr∗1ΛGm,![1]) = swηs
(A[1]). This completes the proof for

the Λ finite case. For the Λ = Qℓ case, it suffices to make the following changes to this paragraph: A
denotes the reduction of any integral model of j!q

∗F1, and B denotes the reduction of any torsion free
integral model of K. Note, B is then a rank 1 local system concentrated in degree −1 trivialised by a
power n cover of Gm, p ∤ n, hence a Kummer sheaf.

Corollary 4.2. If F ∈ D(V ) is monodromic, then CC(F) = CC(FF) and SS(F) = SS(FF).

Proof. The characteristic cycle (resp. singular support) of a sheaf is the sum (resp. union) of the
characteristic cycles (resp. singular supports) of its irreducible constituents. The Fourier transform
preserves the irreducible constituents. So it suffices to proveCC(F) = CC(FF) and SS(F) = SS(FF)
for F perverse irreducible monodromic. The first equality follows from the theorem above. The support
of the characteristic cycle of a perverse sheaf equals its singular support (for Λ finite, this is [Sai17b,
5.17]; for Λ rational, this is verified in Proposition 5.3.2), the second equality follows.
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5 Appendix: review of the characteristic cycle and the notion

of having the same wild ramification

5.1 The characteristic cycle of a sheaf with rational coefficient

We refer to [UYZ20, §5] and [Zhe15] for details. Let X be a variety over k. Denote the Grothendieck
group of constructible Fℓ (resp. Zℓ, resp. Qℓ)-sheaves on X by K(X,Fℓ) (resp. K(X,Zℓ), resp.
K(X,Qℓ)). There are natural group homomorphisms:

K(X,Fℓ) K(X,Zℓ) K(X,Qℓ)
i∗

i∗

j∗

where i∗, i∗, and j∗ are induced by the reduction, restricting scalars, and tensoring to Qℓ, respectively.
It is known that i∗ = 0, i∗ is surjective, and j∗ is an isomorphism. Define the decomposition homomorphism

d : K(X,Qℓ) → K(X,Fℓ) as i∗ ◦ (j∗)−1.

Definition 5.1 (CC for rational coefficients, [UYZ20, 5.3.2]). Let Λ be rational. For F ∈ D(X),
CC(F) := CC(d[F ⊗Λ Qℓ]). Here “[ ]” denotes the class in K(X,Qℓ).

We will drop “[ ]” and “− ⊗Λ Qℓ” from the notation if there is no risk of confusion. Here by
CC(d[F ⊗Λ Qℓ]) we mean the characteristic cycle of any representative for F ⊗Λ Qℓ which is defined
over some finite extension of Fℓ. This is well-defined because CC is additive and does not change
under coefficient field extensions (which can be seen, for example, using the Milnor formula and the
fact that Swan conductors do not change under coefficient field extensions).

Concretely, CC(F) can be computed as follows: let Q be a large enough finite extension of Qℓ on
which F is defined. Denote by Z its ring of integers, and by F the residue field. Choose any integral
model F0 for F (i.e. a Z-sheaf F0 such that F0 ⊗Z Q ∼= F). Let F0 = F0 ⊗Z F be the reduction.
Then [F0] = d[F ⊗E Qℓ], and CC(F) = CC(F0).

As the operations f∗, f∗, f
!, f!,⊗ and RHom are exact functors between triangulated categories,

they induce the corresponding operations on the Grothendieck groups, denoted by the same letters.
The decomposition homomorphism commutes with all these operations. For f∗, f∗, f

!, f!, this is stated
in [UYZ20, 5.2.7], for ⊗ and RHom, this is verified in the following.

Lemma 5.2. Let Λ be rational. Let F ,G be sheaves on a variety. Then d(F ⊗ G) = (dF) ⊗
(dG), d(RHom(F ,G)) = RHom(dF , dG).

Proof. Suppose F ,G are defined over a finite extension Q of Qℓ, denote by Z (resp. F ) the ring of
integers (resp. residue field) of Q. Let F0,G0 be any integral models for F ,G, denote their reductions
by F0,G0.

Essentially by the definition of − ⊗Q − ([Zhe15, 6.1]), F0 ⊗Z G0 is an integral model for F ⊗Q G.
So d(F ⊗ G) = (F0 ⊗Z G0) ⊗Z F = F0 ⊗F G0 = (dF) ⊗ (dG), where in the second equality we used
[Zhe15, 5.3].

Essentially by the definition of RHomQ(−,−), RHomZ(F0,G0) is an integral model for RHomQ(F ,G).
So, d(RHom(F ,G)) = RHomZ(F0,G0) ⊗Z F = RHomF (F ⊗Z F,G ⊗Z F ) = RHom(dF , dG), where
in the second equality we used [Zhe15, 5.7].

One can thus transport results of characteristic cycles proved in the finite coefficient case to the
rational coefficient case. Here are a few that we need but not explicitly stated in [UYZ20].

Proposition 5.3. Let Λ be rational.
1) If F is a sheaf on a smooth variety, then CCD(F) = CC(F).
2) Let F be a sheaf on a smooth variety. Then CC(F) is supported on SS(F). If F is perverse, nonzero,
then the coefficients in CC(F) is positive on each irreducible component of SS(F). In particular, the
support of CC(F) equals SS(F).
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3) If G is a sheaf on a projective space P, then CC(RG) = LCC(G), where R is the Radon transform
and L is the Legendre transform (as defined above 7.5 in [Sai17b]).
4) Let X,Y be smooth varieties, F1,F2 be sheaves on X,Y , respectively. Then CC(F1 ⊠ F2) =
CC(F1)⊠ CC(F2) (see [Sai17a, §2] for the meaning of the notation).

Proof. 1) We want to show CC(DF) = CC(F). By definition, CC(DF) = CC(dDF), CC(F) =
CC(dF). By the corresponding result for finite coefficients ([Sai17b, 5.13.4]), it suffices to show
d ◦ D = D ◦ d, which is immediate from the commutativity of d with RHom.

2) Let F0 be an integral model for F , and F0 its reduction mod ℓ, such that SS(F) = SS(F0)
(which exists, by [Bar23, 1.5 (v)]). By definition, CC(F) = CC(F0). The first claim follows. The
second claim follows from the Milnor formula ([UYZ20, 5.3.3]) and the well-known fact that the van-
ishing cycle shifted by −1 is perverse t-exact (c.f. [Ill94, 4.6]).

3) and 4) follow from the commutativity of d with f∗, f∗, and ⊗, and the corresponding results for
finite coefficients ([Sai17b, 7.12; Sai17a, 2.2]).

5.2 The notion of having the same wild ramification

In situations relevant to us, this notion is equivalent to having universally the same conductors ([Kat21,
6.11]). We will only review (and use) the latter, as it is easier to state and verify (in our situation).
We refer to [Kat18; Kat21] and references therein for details.

Definition 5.4 (universally the same conductors for finite coefficients, [Kat18, 2.5]). Let Λ be finite.
Let X be a variety over k. We say F ,F ′ ∈ D(X) have universally the same conductors (usc), if for
all smooth proper curve C, all open dense j : C ⊆ C, all map f : C → X, all closed point s ∈ C, we
have as(j!f∗F) = as(j!f

∗F ′), where as := rkηs
+ swηs

− rks is the Artin conductor at s.

Theorem 5.5 ([Kat18, 4.6.ii, 4.7]). Let Λ be finite. Let f : X → Y be a map between varieties.
1) If F ,F ′ ∈ D(X) have usc, then f!F , f!F

′ ∈ D(Y ) have usc.
2) Assume X is smooth. If F ,F ′ ∈ D(X) have usc, then CC(F) = CC(F ′).

Note that as as, j! and f∗ are additive, having usc descends to the Grothendieck group. This
suggests that we can transport this notion to rational coefficients and get the analogue of the above
theorem.

Definition 5.6 (same wild ramification for rational coefficients). Let Λ be rational. Let X be a variety
over k. We say F ,F ′ ∈ D(X) have the same wild ramification (swr), or have universally the same conductors
(usc), if d(F), d(F ′) do.

Theorem 5.7. Let Λ be rational, f : X → Y be a map between varieties.
1) If F ,F ′ ∈ D(X) have the swr, then f!F , f!F

′ ∈ D(Y ) have the swr.
2) Assume X is smooth. If F ,F ′ ∈ D(X) have the swr, then CC(F) = CC(F ′).

Proof. 1) This follows from the corresponding statement for Λ finite and the fact that the decomposi-
tion homomorphism commutes with f!.

2) This follows from the corresponding statement for Λ finite and the definition of CC for Λ rational.
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