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Abstract

It is common in pose graph optimization (PGO) algorithms to assume that noise in the translations and rotations of relative pose
measurements is uncorrelated. However, existing work shows that in practice these measurements can be highly correlated, which
leads to degradation in the accuracy of PGO solutions that rely on this assumption. Therefore, in this paper we develop a novel
algorithm derived from a realistic, correlated model of relative pose uncertainty, and we quantify the resulting improvement in the
accuracy of the solutions we obtain relative to state-of-the-art PGO algorithms. Our approach utilizes Riemannian optimization on
the planar unit dual quaternion (PUDQ) manifold, and we prove that it converges to first-order stationary points of a Lie-theoretic
maximum likelihood objective. Then we show experimentally that, compared to state-of-the-art PGO algorithms, this algorithm
produces estimation errors that are lower by 10% to 25% across several orders of magnitude of correlated noise levels and graph
sizes.
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I. INTRODUCTION

Pose graph optimization (PGO) algorithms aim to optimally reconstruct the trajectory of a mobile agent using a set of
uncertain relative measurements that were collected en-route. PGO is a backend component for numerous applications in robotics
and computer vision, including simultaneous localization and mapping (SLAM) [1], [2], bundle adjustment [3], structure from
motion [4], and photogrammetry [5]. Additionally, a variety of related practical problems of interest [6]–[9] can be transformed
into PGO problems, making it a versatile tool for optimization in these fields.

Some well-established PGO frameworks, such as g2o [10], GTSAM [11], and iSAM [12], have addressed the PGO problem
using a mix of Euclidean and heuristic optimization techniques. More recently, algorithms based on Riemannian optimization,
including SE-Sync [13], Cartan-Sync [14], and CPL-Sync [15], have demonstrated that, under certain conditions, the PGO
problem admits a semidefinite relaxation whose solution approximates the solution of the original, unrelaxed problem. One
condition assumed by the above algorithms (and others) is that uncertainties in position and orientation are modeled by isotropic
(uncorrelated) noise.

However, the isotropic noise assumption runs contrary to existing results on uncertainty representations for rigid motion
groups, which mathematically encode PGO problems. Specifically, it was shown in 2D [16] and in 3D [17] that the propagation
of uncertainty through compound rigid motions is best captured by a Lie-theoretic model [18], namely, a Gaussian distribution
on the Lie algebra of a rigid motion group. In fact, the authors of [19] demonstrated that such a Lie-theoretic model accurately
predicted the distribution of a compound rigid motion trajectory where traditional models failed. These Lie-theoretic models
are inherently anisotropic, which suggests that a PGO algorithm that incorporates anisotropy may attain improved accuracy.

Therefore, in this paper, we formulate 2D PGO problems on the manifold of planar unit dual quaternions (PUDQs), which
we use to explicitly incorporate anisotropy in uncertainty models. To solve such problems, we use a Riemannian trust region
(RTR) algorithm, for which we derive global convergence guarantees. The contributions of this paper are:

• We present what is, to the best of our knowledge, the first provably convergent PGO algorithm that permits arbitrarily
large, anisotropic uncertainties.

• We prove that the proposed algorithm converges to first-order critical points given any initialization.
• We show that the resulting pose estimates are always at least 10% more accurate than the state of the art and more

than 25% more accurate on high-dimensional problems.
The closest related works are [20]–[22]. In [20], a unit dual quaternion approach to PGO was developed using heuristic

optimization techniques without formal guarantees, whereas we employ provably convergent Riemannian-geometric techniques.
The authors of [21] used a Lie-theoretic objective, but did not include convergence guarantees or quantify the accuracy of their
solutions. The work in [22] uses a similar problem formulation to us, though that work was entirely empirical. We differ both
by proving convergence and showing improvement in accuracy over a class of Riemannian algorithms that were not studied
in [22].

The rest of the paper is organized as follows. Section II provides preliminaries, and Section III provides a formal problem
statement. Section IV outlines the proposed algorithm, and Section V proves that it converges. Section VI contains numerical
results, and Section VII concludes.

II. PRELIMINARIES

In this section, we include mathematical preliminaries that are necessary for our PUDQ PGO problem formulation. For
detailed derivations, see Appendices A-B.

A. Planar unit dual quaternion construction
We construct the PUDQ manifold as a representation of planar rigid motion. Given an orthonormal basis {i, j,k}, a planar

rigid motion is characterized by a translation, denoted t = txi+ tyj, and a rotation about the k axis by an angle θ ∈ (−π, π].
The PUDQ parameterization of this motion is given by x = xr + ϵxd, where ϵ is a dual number satisfying ϵ2 = 0, ϵ ̸= 0. The
real and dual parts of x, denoted xr ∈ S1 and xd ∈ R2, respectively, are xr ≜ cos (θ/2) + sin (θ/2)k and xd ≜ 1

2t⊗ xr, with
“⊗” denoting the Hamilton product [23] under the convention i2 = j2 = k2 = ijk = −1. Applying the Hamilton product to
two PUDQs, denoted x and y, yields the composition operator “⊞”, which can be expressed as

x⊞ y =

[
x0 −x1 0 0
x1 x0 0 0
x2 x3 x0 −x1
x3 −x2 x1 x0

]
︸ ︷︷ ︸

QL(x)

[
y0
y1
y2
y3

]
︸ ︷︷ ︸

y

=

[
y0 −y1 0 0
y1 y0 0 0
y2 −y3 y0 y1
y3 y2 −y1 y0

]
︸ ︷︷ ︸

QR(y)

[
x0
x1
x2
x3

]
︸ ︷︷ ︸

x

, (1)

where QL(·) and QR(·) denote the left and right composition maps, respectively. From (1), we have the identity element
1 = [1, 0, 0, 0]

⊤ and inverse formula x−1 = [x0,−x1,−x2,−x3]⊤. The set of PUDQs forms the smooth manifold M ≜
S1 ⋊R2 ⊂ R4, which we embed in R4 as

M ≜
{
x ∈ R4 | h (x) = x⊤P̃x− 1 = 0

}
⊂ R4, (2)



where P̃ ≜ diag({1, 1, 0, 0}) and h(x) is the defining function [24] for M. PGO algorithms optimize over N poses, so we
extend (2) to the N -fold product manifold MN ≜ (S1 ⋊R2)N . Below, we will use the operator vec(·), where

vec((xi)
N
i=1) ≜ [x⊤

1 ,x
⊤
2 , . . . ,x

⊤
N ]⊤,

with each xi ∈ M. Since (S1 ⋊ R2)N ⊂ R4×N ∼= R4N , we embed MN in R4N . For X ,Y ∈ MN , this embedding lets
us write X = vec((xi)

N
i=1) and Y = vec((yi)

N
i=1), where xi,yi ∈ M for each i. This embedding also gives the identity

1
N = vec((1)Ni=1), the inverse formula X−1 = vec((x−1

i )Ni=1), and the product X ⊞ Y = vec((xi ⊞ yi)
N
i=1).

B. Logarithm and exponential maps

The smooth manifold M with the identity, inverse, and composition operator form a Lie group [18] whose Lie algebra
is the tangent space at the identity element, denoted T1M. Given x ∈ M, the logarithm map at the identity element is
Log

1
:M→ T1M, given by

Log
1
(x) =

1

γ (x)
[x1, x2, x3]

⊤
, (3)

with γ (x) ≜ sinc (ϕ (x)) = sin (ϕ (x)) /ϕ (x), where ϕ (x) ≜ wrap (arctan (x1, x0)), arctan : S1 → (−π, π] is the four-
quadrant arctangent and

wrap (α) ≜


α+ π if α ≤ −π/2

α− π if α > π/2

α otherwise.
(4)

Here, ϕ :M→ (−π/2, π/2] computes the half-angle of rotation about the k-axis encoded by a point on M. The half-angles
ϕ+ nπ for all n ∈ Z encode the same rotation, so it is valid to wrap ϕ to (−π/2, π/2] via (4).

Given some xt = [xt,1, xt,2, xt,3]
⊤ ∈ T1M, the exponential map at the identity, denoted Exp

1
: T1M→M, is given by

Exp
1
(xt) =

[
cos (xt,1) , γ (xt)x

⊤
t

]⊤
, where γ (xt) ≜ sinc (xt,1) as above. For any x,y ∈ M, we also have the point-wise

logarithm map
Logx(y) = x⊞ [0,Log

1
(x−1 ⊞ y)⊤]⊤, (5)

and, for x ∈M, and some yt ∈ TxM, the point-wise exponential map

Expx(yt) = x⊞ Exp
1

((
x−1 ⊞ yt

)
1:3

)
, (6)

where (·)1:3 selects the last three entries of a vector. For X ,Y ∈ MN , (5)-(6) give logarithm and exponential maps over the
product manifold MN , namely LogX (Y) = vec

(
(Logxi

(yi))
N
i=1

)
, and, for any Yt = vec

(
(yt,i)

N
i=1

)
∈ TXMN , the mapping

ExpX (Yt) = vec
(
(Expxi

(yt,i))
N
i=1

)
, (7)

with Logxi
(·) and Expxi

(·) given by (5) and (6).

C. Pose Graph Construction

We now address the construction of a pose graph, as exemplified in Figure 1. First, let G = (V, E) be a directed graph
with vertex set V and edge set E of ordered pairs (i, j) ∈ V × V . Letting |V| = N , we define X = vec((xi)i∈V) ∈ MN

to be the vector of N poses to be estimated, with individual poses denoted xi ∈ M. Then, letting |E| = M , we define
Z = vec((z̃ij)(i,j)∈E) ∈ MM to be the vector of M relative pose measurements, where z̃ij ∈ M encodes a measured
transformation from xi to xj , taken in the frame of xi. The noise covariance for z̃ij is given by the matrix Σij . The
corresponding pose graph is then constructed by associating the vertex set V with X , and the edge set E with Z .

III. PROBLEM FORMULATION

We now derive the problem to be solved. From the perspective of Bayesian inference, PGO algorithms aim to estimate the
posterior distribution of poses that best fits a given dataset of relative measurements made along a trajectory. Because a prior
distribution is not always available, PGO is typically formulated as a maximum likelihood estimation (MLE) problem [1], and
we use such a formulation here.

Motivated by [16], we utilize a Lie-theoretic measurement model for z̃ij in which zero-mean Gaussian noise ηij is mapped
from T1M to M via the exponential map, i.e.,

z̃ij = x−1
i ⊞ xj ⊞ Exp

1
(ηij) , (8)



x1 x2 x3

x4x5

z̃12,Σ12 z̃23,Σ23

z̃34,Σ34

z̃45,Σ45

z̃52,Σ52
z̃51,Σ51

Fig. 1. A pose graph with N = M = 5, labeled with vertex poses xi, edge measurements z̃ij , and edge covariances Σij . Odometry edges, shown in blue,
connect neighboring vertices (i.e., |j − i| = 1). Loop closure edges, shown in red, connect any non-neighboring vertices (i.e., |j − i| > 1).

with ηij ∈ R3 and ηij ∼ N (0,Σij). As noted in the Introduction, (8) gives a realistic model of compound, uncertain
transformations. In Appendix C, we show that (8) yields the MLE objective F :M→ R, given by

F (X ) = 1

2

∑
(i,j)∈E

fij (X ) , (9)

where
fij (X ) ≜ ∥eij (xi,xj)∥2Ωij

. (10)

Here, Ωij = Σ−1
ij is the information matrix for edge (i, j), and eij :M×M→ T1M is the tangent residual given by

eij (xi,xj) ≜ Log
1
(rij (xi,xj)) , (11)

and rij :M×M→M is the manifold residual, defined as1

rij (xi,xj) ≜ z̃−1
ij ⊞ x−1

i ⊞ xj . (12)

In a geometric sense, rij encodes the geodesic along M from a measurement z̃ij to the estimated relative transformation
x−1
i ⊞ xj . The map eij then “unwraps” the geodesic to the Lie algebra.
We now address anchoring, a problem that arises because the objective in (9) is invariant to certain transformations of X ,

i.e., F(X ) = F(Y ⊞ X ) = F(X ⊞ Y) for any Y ∈ MN . To remedy this, one must “anchor” at least one vertex by setting
xa ≜ 1 for some a ∈ V , so we assume that this has been done for some node. Given this formulation, we now formally state
the problem that we solve in the remainder of the paper.

Problem 1. Given a measurement set Z ∈MM , compute the maximum likelihood estimate X ⋆ ∈MN , where

X ⋆ = argmin
X∈MN

F (X ) , (13)

with F given by (9).

Problem 1 is a nonconvex, nonlinear least squares problem over a Riemannian manifold. In the following section, we employ
Riemannian optimization techniques to solve (13).

IV. ALGORITHM DESCRIPTION

This section presents the method by which we solve Problem 1, starting with a brief description of the class of algorithms
we employ. Trust-region methods [25] for optimization in Rn employ a local approximation of the objective function, called
the model, about each iterate. The model is restricted to a neighborhood of the current iterate, called the trust region. At each
iteration, a tentative update step is computed, and is accepted to compute the next iterate if the model sufficiently agrees with
the objective at the computed point. Riemannian trust region (RTR) methods [26, Chapter 7] generalize this idea to Riemannian
manifolds, and our proposed algorithm adapts the RTR framework to planar PGO on MN .

An illustration of the proposed RTR algorithm is shown in Figure 2. At each iteration k, instead of approximating the
objective F , RTR computes an approximation of F in the tangent space at Xk, called a pullback. The pullback is defined as

1Henceforth, we simply write eij ≜ eij (xi,xj) and rij ≜ rij (xi,xj).



Fig. 2. An illustration of two iterations of the RTR algorithm. At each iteration, the algorithm computes a tangent step Sk ∈ TXk
M, shown in red, within

a trust region of radius ∆k , which is indicated by the dotted circle shown in each tangent space. If the step is accepted (as defined in (18)), then the next
iterate is computed as Xk+1 = ExpXk

(Sk), which maps the step from the tangent space back to the manifold itself, as shown in green.

F̂k ≜ F ◦ ExpXk
.2 The approximation takes the form of a second-order model m̂k : TXk

→ R, namely

m̂k(S) ≜ F (Xk) + S⊤gradF (Xk) +
1

2
S⊤HkS, (14)

where S ∈ TXk
MN is a tangent vector centered at Xk, gradF : MN → TXk

MN is the Riemannian gradient, and Hk :
TXk
MN → TXk

MN is a symmetric approximation of the Riemannian Hessian at Xk. We include explicit forms for gradF
in Appendix E and our choice of Hk in Appendix F-B.

Our procedure corresponds to the RTR update given in [26, Chapter 7]. The algorithm is initialized with X0 ∈ MN and
trust-region radius ∆0 ∈

(
0, ∆̄

]
, where ∆̄ > 0 is the user-specified maximum radius. At iteration k, the tentative step Sk is

computed by solving the inner sub-problem

Sk = argmin
S∈TXk

MN

m̂k (S) subject to ∥S∥2 ≤ ∆k, (15)

where m̂k is from (14). To solve (15), we employ the Steihaug-Toint truncated conjugate gradients (tCG) algorithm [29], [30],
which offers unique benefits for trust-region sub-problems, including monotonic cost decrease and early termination (thereby
approximating (15)) in the cases of negative curvature or trust region violation. To measure the agreement between the model
and objective functions, we use

ρk =
F̂k (0)− F̂k (Sk)
m̂k (0)− m̂k (Sk)

, (16)

where 0 ∈ R4N is the zero vector. Based on the level of agreement, the trust-region radius ∆k is then updated via

∆k+1 =


1
4∆k if ρk < 1

4

min
{
2∆k, ∆̄

}
if ρk > 3

4 and ∥Sk∥2 = ∆k

∆k otherwise.
(17)

The tentative step Sk is accepted to compute Xk+1 only if the model agreement ratio ρk from (16) is greater than a user-defined
model agreement threshold ρ′ ∈ (0, 1/4), i.e.,

Xk+1 =

{
ExpXk

(Sk) if ρk > ρ′

Xk otherwise.
(18)

As summarized in Algorithm 1, the steps from (15)-(18) are repeated until the gradient norm crosses below a user-defined
threshold εg , i.e., until ∥gradF (Xk)∥2 ≤ εg .

V. CONVERGENCE ANALYSIS

In this section, we prove that Algorithm 1 is globally convergent. Specifically, given any initialization, it reaches a first-order
critical point to within a user-specified tolerance in finite time. The authors of [28] proposed global rates of convergence for
the RTR algorithm given a set of assumptions about the problem, so we treat these assumptions as sufficient conditions for
convergence. For our proof, we will establish:

2The pullback can be implemented using any retraction [27], [28], and we choose to use the exponential map since it is well-defined on MN and
straightforward to compute.



Algorithm 1: RTR for PUDQ PGO

Input: Edge measurement set Z ∈MM ,
Maximum trust-region radius ∆̄ > 0,
Model agreement threshold ρ′ ∈ (0, 1/4],
Gradient termination threshold εg > 0.
Initialize: k ← 0, X0 ∈MN , ∆0 ∈

(
0, ∆̄

]
while ∥gradF (Xk)∥2 > εg do

Compute Sk from (15) using tCG.
Compute ρk using (16).
Compute ∆k+1 using (17).
Compute Xk+1 using (18).
k ← k + 1

end while
return Xk

1) Lower-boundedness of F on MN .
2) Sufficient decrease in the model cost at each iteration.
3) A Lipschitz-type condition for gradients of pullbacks.
4) Radial linearity and boundedness of Hk.

We will make each of these statements mathematically precise in the following analysis. Towards proving Condition 1, we
first derive a lemma on continuity of F .

Lemma 1. The objective F is continuous on MN .

Proof: By inspection of (3) and (9)-(11), and continuity of “⊞” from (1) as a linear map, it suffices to show that Log
1

is
continuous on M. While (3) and (4) contain discontinuities independently, we will show that their composition to form Log

1

does not. Let ϕ1 ≜ arctan(r1, r0) (where rij = [r0, r1, r2, r3]
⊤ denotes the element-wise map), and let ϕ2 ≜ wrap(ϕ1).

Then, we have discontinuities in ϕ1 at (r0, r1) = (−1, 0), in wrap(ϕ1) at ϕ1 = ±π/2, and in (γ(ϕ2))
−1 at ϕ2 = ±π. We

now observe that wrap(−π) = wrap(π) = 0, so lim(r0,r1)→(−1,0) wrap(ϕ1) = 0, thereby nullifying the discontinuities in ϕ1.
Next, (sinc(ϕ2))−1 is even and continuous on the domain [−π/2, π/2], so limϕ2→−π/2(γ(ϕ2))

−1 = limϕ2→π/2(γ(ϕ2))
−1 = π/2,

nullifying the discontinuities in ϕ2. Finally, because limϕ2→0(γ(ϕ2))
−1 = 1 and, by (4), ϕ2 ∈ (−π/2,−π/2], we conclude that

Log
1

is continuous on M, which implies that F is continuous on MN . ■
We now show compactness of sublevel sets of F .

Theorem 1. The µ-sublevel sets of F , given by {X | F (X ) ≤ µ}, are compact.

Proof: From (7), for every X ∈MN , ExpX is globally defined on TXMN , which implies thatMN is geodesically complete.
Therefore, the Hopf-Rinow Theorem [31] implies that closed and bounded subsets of MN are compact, so it suffices to show
that the sublevel sets are closed and bounded.

From (9)-(10), F (X ) ≥ 0 for all X ∈ MN , which implies that the µ-sublevel sets of F are the preimages of the closed
subsets [0, µ], i.e., µ-sublevel sets are of the form F−1

(
[0, µ]

)
. These sets are closed because F is continuous by Lemma 1.

Turning to boundedness of sublevel sets, (2) implies that M is unbounded, and therefore MN is unbounded. Then, by [32,
Theorem 1], the µ-sublevel sets are bounded if and only if F is coercive, i.e., for all Y ∈MN , every sequence {Xl}l∈N ⊂MN

such that liml→∞ dMN (Xl,Y) = ∞ also satisfies liml→∞ F (Xl) = ∞.3 Therefore, it suffices to show that F is coercive,
which we do next.

First, let Xl = vec ((xl,i)i∈V) and Y = vec ((yi)i∈V), and observe from the definition of dMN (Xl,Y) that

lim
dMN (Xl,Y)→∞

max
i∈V
∥Log

1
(x−1

l,i ⊞ yi)∥22 =∞.

We now rewrite ∥Log
1
(x−1

l,i ⊞ yi)∥22 as

∥Log
1
(x−1

l,i ⊞ yi)∥22 = γ(x−1
l,i ⊞ yi)

−2x⊤
l,iM

−
LR(yi)xl,i,

where M−
LR(yi) ≜ Q−

LR (yi)
⊤
diag ({0, I3})Q−

LR (yi), with Q−
LR (yi) given in Appendix A. Since γ (x) ∈ [−π/2, π/2] for all

x ∈M, we have
∥Log

1
(x−1

l,i ⊞ yi)∥22 ≤ (π
2
/4)λmax(M

−
LR(yi))x

⊤
l,ixl,i, (19)

3Here, dMN (·, ·) is the geodesic distance on MN defined in Appendix B-F.



where λmax (·) denotes the maximum eigenvalue of a matrix. Since yi is constant and λmax(M
−
LR(yi)) ≥ 0, (19) implies

that lim∥Log
1
(x−1

l,i ⊞yi)∥2
2→∞(x⊤

l,ixl,i) = ∞. The first element of xl,i ∈ M is bounded by 1, so x⊤
l,ixl,i − 1 ≤ ∥Log

1
(xl,i) ∥22.

Therefore, lim(x⊤
l,ixl,i)→∞ ∥Log

1
(xl,i)∥22 =∞. Now, we note that for any x,y ∈M, we can write

∥Log
1
(x⊞ y)∥22 = γ (x⊞ y)

−1
y⊤ML (x)y

= γ (x⊞ y)
−1

x⊤MR (y)x,

where ML (x) ≜ QL (x)
⊤
diag ({0, I3})QL (x) and MR (y) ≜ QR (y)

⊤
diag ({0, I3})QR (y). Because ML(·),MR(·) ⪰ 0,

it holds that, for any x,y ∈M,

lim
∥Log

1
(x⊞y)∥2

2
→∞

max
{
∥Log

1
(x)∥22 , ∥Log

1
(y)∥22

}
=∞. (20)

We now observe that for any two vertices xi,xj ∈ M, with i, j ∈ V and i > j, it follows from connectedness of odometry
edges in E that xi = xj ⊞ ci,j , where

ci,j ≜ z̃j(j+1) ⊞ r(j+1)(j+2) ⊞ · · ·⊞ z̃(i−1)i ⊞ r(i−1)i. (21)

Equivalently, we have xj = xi ⊞ c−1
i,j . Per Section III, we have anchored xa ≜ 1 for some a ∈ V , and since Log

1
(x−1) =

−Log
1
(x), it holds that ∥Log

1
(xl,m)∥22 = ∥Log

1
(ca,m)∥22 for any m ∈ V . Furthermore, because the z̃ij terms in (21) are

constant, applying (20) inductively yields, for any m ∈ V ,

lim
∥Log

1
(xl,m)∥2

2
→∞

max
(i,j)∈E

∥Log
1
(ri,j)∥22 =∞.

From (10), λmin (Ωij) ∥Log
1
(ri,j)∥22 ≤ fij (Xl), where λmin(·) is the minimum eigenvalue, and λmin(Ωij) > 0 because Ωij =

Σ−1
ij ≻ 0. Then lim∥Log

1
(rij)∥2

2→∞ fij(Xl) =∞, and (9) gives limfij(Xl)→∞ F(Xl) =∞. Then F is coercive and the proof is
complete. ■

Next, we show that the objective F satisfies Condition 1.

Lemma 2. There exists F⋆ ≥ 0 such that F (X ) ≥ F⋆ for all X ∈MN .

Proof: Lemma 1, Theorem 1, and the Weierstrass Theorem [33, Prop. A.8] imply the existence of a global minimizer
X ⋆ ∈MN , which is the solution to Problem 1. Setting F⋆ ≜ F (X ⋆) completes the proof. ■

We now show that Algorithm 1 satisfies Condition 2.

Lemma 3. For all Xk computed by Algorithm 1 such that ∥gradF (Xk)∥2 > εg , it holds that the step Sk satisfies

m̂k (0)− m̂k (Sk) ≥
1

2
min{∆k, 2εg}εg. (22)

Proof: By design, iterates of the tCG algorithm produce a strict, monotonic decrease of the model cost m̂k [28]. For all k,
the first tCG iterate is the Cauchy step, which satisfies (22) by definition and thus completes the proof. ■

The forthcoming analysis in Lemma 4, Theorem 2, and Lemma 5 addresses Condition 3, namely, Lipschitz continuity of
the Riemannian gradient, gradF . First, we use Theorem 2 to prove its Lipschitz continuity on compact subsets of MN .

Theorem 2. The Riemannian gradient, gradF , is Lg-Lipschitz continuous on any compact subset K ⊂ MN . That is, there
exists Lg > 0 such that for all X ,Y ∈ K we have

∥PX→YgradF (X )− gradF (Y)∥2 ≤ LgdMN (X ,Y) , (23)

where PX→Y : TXMN → TYMN is the parallel transport operator defined in Appendix B-D.

Proof: A necessary and sufficient condition for (23) is that, for all X ∈ K, the Riemannian Hessian, HessF , has operator
norm bounded by Lg , i.e.,

sup
V∈TXM,∥V∥2=1

∥Hess F(X )[V]∥2 ≤ Lg. (24)

In Appendices F-G, we derive HessF and derive a constant Lg for which (24) holds on any compact subset K ⊂ MN ,
completing the proof. ■



To apply Theorem 2 to Algorithm 1, we must first show that the computed iterates remain within the F (X0)-sublevel set
for all k, which is accomplished by Lemma 4.

Lemma 4. The objective F is monotonically decreasing with respect to the iterates of Algorithm 1. In particular, it holds that
F (Xk) ≤ F (X0) for all k.

Proof: By (22), we have m̂k (0) − m̂k (Sk) > 0 for all k. If any Sk would yield an increase in F , then F (Xk) −
F(ExpXk

(Sk)) < 0, and (16) implies ρk < 0. By (18), such an Sk is rejected and, therefore the condition F(Xk+1) = F (Xk)
is enforced in such cases. Thus, since it cannot occur that F(Xk+1) > F(Xk), we see that F(Xk+1) ≤ F (Xk) for all k. By
induction, F (Xk) ≤ F (X0) for all k, completing the proof. ■

Now, Lemma 5 extends Theorem 2 to any Xk computed by Algorithm 1, which shows that Condition 3 is satisfied.

Lemma 5. For all Xk computed by Algorithm 1, there exists Lg ≥ 0 such that∣∣F (ExpXk
(S)
)
−
(
F (Xk) + S⊤gradF (Xk)

)∣∣ ≤ Lg

2
∥S∥22 (25)

for all S ∈ TXk
MN such that ∥S∥2 ≤ ∆̄ and for all k.

Proof: Let MX0 ≜ {X | F (X ) ≤ F (X0)} and set

K ≜MX0 ∪ {ExpX (S) | X ∈MX0 , ∥S∥2 ≤ ∆̄}. (26)

Then Theorem 1 implies that MX0 is compact, and therefore so is K. Lemma 4 implies Xk ∈ MX0 ⊂ K for all k. By
Theorem 2, there exists Lg > 0 to which (23) applies for all Xk ∈ K. From [34, Lemma 2.1], we find that (23) implies (25),
completing the proof. ■

Lemmas 6 and 7 address Condition 4, which pertains to properties of Hk, the Riemannian Hessian approximation used
in (15) and spelled out in Appendix F-B.

Lemma 6. The operator Hk in 121 is radially linear, i.e., for all S ∈ TXk
MN and all α ≥ 0, we have Hk[αS] = αHk[S].

Proof: Equation (121) is linear by inspection. ■

Lemma 7. The operator Hk in (121) is bounded for all Xk computed by Algorithm 1, i.e., there exists β <∞ such that

max
S

{
∥HkS∥2 | S ∈ TXk

MN , ∥S∥2 = 1
}
≤ β. (27)

Proof: First, ∥S∥2 = 1 implies ∥HkS∥2 ≤ ∥Hk∥2. Substituting (121), applying the triangle inequality, and using the fact
that λmax (PX ) = 1 yields

∥Hk∥2 ≤
∑

(i,j)∈E

∥PXRijPX ∥2 ≤
∑

(i,j)∈E

∥Rij∥2 . (28)

Since, by definition of ∥ · ∥2 and ∥ · ∥F we have ∥Rij∥2 ≤ ∥Rij∥F , we reach

∥Rij∥2 ≤ 4 ∥Aij∥F ∥Bij∥F ∥Ωij∥F . (29)

Now, we set K as in (26) and apply the bounds derived in Appendix J for ∥Aij∥F and ∥Bij∥F on compact subsets of MN .
Since every term on the right-hand side of (29) is bounded, we see that the right-hand side of (28) is bounded, completes the
proof. ■

Our convergence analysis culminates in Theorem 3.

Theorem 3. Let εg ≤ ∆0/λg be given, where ∆0 is from Section IV, λg ≜ 1/4min {1/β, 1/2(Lg+β)}, Lg is from (25), and β is
from (27). Then, for any initialization X0 ∈ MN , Algorithm 1 produces an iterate Xk that satisfies ∥gradF(Xk)∥2 ≤ εg in
no more than K iterations, where

K ≤ F (X0)−F (X ⋆)

ρ′λg

3

ε2g
+

1

2
log2

(
∆0

λgεg

)
, (30)

where ρ′ is from (18) and X ⋆ is from Lemma 2.

Proof: Lemmas 2, 3, and 5-7 show the satisfaction of Conditions 1-4 in [28, Theorem 12], which immediately implies
that (30) holds for Algorithm 1. ■



Fig. 3. (Left) The M3500 pose graph dataset, corrupted with Lie-theoretic noise. (Right) The estimated graph computed by Algorithm 1. Odometry edges
are blue, loop closures are red, and ground truth is shown in gray.

Theorem 3 gives provable convergence of Algorithm 1 to approximate first-order critical points of F under any initialization
X0, and we note that the tolerance εg can be made to take arbitrary values by adjusting ∆0.

VI. EXPERIMENTAL RESULTS

In this section, we validate the accuracy of Algorithm 1 relative to the Riemannian PGO solvers SE-Sync [13] and Cartan-
Sync [14]. Both yield a global minimizer identical to that computed by the class of Riemannian algorithms that use semidefinite
relaxations (e.g., [15], [35]), so we omit additional comparisons to those algorithms.

Because an objective comparison necessitated the use of exact ground truth, we opted to adapt three synthetic PGO datasets
with diverse vertex and edge counts. The first of these is Grid1000, which we synthesized4 with N = 1000 vertices and
M = 1250 edges. The remaining datasets are publicly available, and serve as common benchmarks for PGO evaluations,
namely, (i) M3500 [36], with N = 3500, M = 5598, and (ii) City10000 [12], with N = 10000, M = 20687. To generate
PGO trial datasets, we apply calibrated noise to the ground truth dataset for each graph. Each of these datasets, including
ground truth, is available at https://github.com/corelabuf/planar pgo datasets.

A. PGO dataset generation

To generate a PGO dataset, the true edge measurements from each dataset are corrupted using the Lie-theoretic noise model
from (8). The edge measurement noise covariance, Σij , is computed as Σij ∼W3 (σwΣw, 10), where Wd (V, n) is the Wishart
distribution with dimension d, scale matrix V , and n degrees of freedom5. Here, σw is a variance tuning parameter, and Σw

is given by Σw ≜ J3 + diag ([u1, u2, u3]), where J3 ∈ R3×3 is a matrix of ones and ui ∼ U(0,1] are uniformly sampled on
the interval (0, 1]. This generates random, positive-definite, anisotropic covariance matrices with E[Σij ] = 10σwΣw, which
simulates relative pose covariances computed by a Lie-theoretic estimator. Using this approach, we generated 5 trial datasets
per ground truth, for a total of 15. Figure 3 depicts an M3500 variant generated with σw = 5.62 · 10−5 alongside the estimate
computed by Algorithm 1.

B. Evaluation methodology

Solutions computed by each algorithm were evaluated using the root-mean square relative pose error (RPE) metric. RPE
measures total edge deformation with respect to the ground truth, and gives an objective performance metric for SLAM
algorithms [38]. We denote (x⋄

i )
N
i=1 to be the ground truth poses, and (x̂i)

N
i=1 to be the solution computed by a given

algorithm. The Lie-theoretic RPE (RPE-L) is defined as

RPE-L ≜

√√√√ 1

M

∑
(i,j)∈E

∥∥Log
1

(
ẑ−1
ij ⊞ z⋄ij

)∥∥2
2
, (31)

where ẑij ≜ x̂−1
i ⊞ x̂j and z⋄ij ≜ (x⋄

i )
−1⊞x⋄

j . Now, let (t̂i, θ̂i) and (t⋄i , θ
⋄
i ) denote the translations and rotations corresponding

to x̂i and x⋄
i , respectively. The Euclidean RPE (RPE-E) is defined as

RPE-E ≜

√√√√ 1

M

∑
(i,j)∈E

(∥∥t̂ij − t⋄ij
∥∥2 + d(θ̂ij , θ⋄ij)

2
)
, (32)

4To synthesize the Grid1000 dataset, a ground truth trajectory is computed along a randomized grid resembling the Manhattan datasets created for [36].
Loop closure edges were selected at random, specifically, with 3.0% probability of an edge at Euclidean inter-pose distances of up to 2 meters.

5The sample covariance matrix of a multivariate Gaussian random variable is Wishart-distributed [37], making it an apt choice for this application.

https://github.com/corelabuf/planar_pgo_datasets


Fig. 4. Percent reduction in Lie-theoretic RPE for the solutions computed by Algorithm 1 relative to Cartan-Sync and SE-Sync. Reduction in Euclidean RPE
was omitted due to it being indistinguishable from the Riemannian case. We see greater than 10% decrease for the Grid1000 dataset over the entire noise
regime, and greater than 15% & 25% for the M3500 and City10000 datasets, respectively. In all cases, the improvement in accuracy attained by Algorithm 1
grows with the number of vertices and edges present in a graph.

where t̂ij ≜ R⊤(θ̂i)
(
t̂j − t̂i

)
, t⋄ij ≜ R⊤ (θ⋄i )

(
t⋄j − t⋄i

)
, d (θ1, θ2) is the minimal angle between θ1 and θ2, and

R (θ) ≜
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

For evaluation, the variance scaling parameter, σw, was varied from 10−5 to 10−2, which equated to mean Euclidean
covariances with standard deviations ranging from 7.26 · 10−3 to 2.29 · 10−1 meters for translations, and from 4.05 · 10−1 to
12.81 degrees for rotations. We anchor x1 ≜ 1 for all three algorithms. The initial iterate X0 is computed using the chordal
relaxation [39] method; though not necessary for convergence of Algorithm 1, it is the default for both SE-Sync and Cartan-
Sync, so we implement it to provide a fair comparison. Algorithm 1 was configured with parameters εg = 10−2, ∆0 = 100,
∆̄ = 106, ρ′ = 10−2, and the inner tCG algorithm was implemented with parameters κ = 0.05, θ = 0.25, per the notation
in [24, Section 6.5].

C. Evaluation results

Algorithm 1 converged to an approximate stationary point in all of the 15 pose graphs. The RPEs computed for each run
according to (31) and (32) are included in Table I, alongside the percent reduction in RPE attained by Algorithm 1 for each run,
which is plotted in Figure 4. SE-Sync and Cartan-Sync computed identical solutions for each dataset, and exhibited a notable
estimation bias across the entire noise spectrum, owing to the assumption of isotropic noise and the resulting approximation
error. As shown in Figure 4, Algorithm 1 demonstrated a consistent reduction in RPE. In fact, the gap in RPE increases with
the number of vertices and edges in each graph, highlighting the scalability of our proposed solution.

VII. CONCLUSION

We presented a novel algorithm for planar PGO derived from a realistic, Lie-theoretic model for uncertainty in sensor
measurements. The proposed algorithm was proven to converge in finite-time to approximate first-order stationary points under
any initialization, while requiring no additional assumptions about the problem. Numerically, the proposed algorithm showed
significantly improved accuracy over the state of the art, and future work will extend the algorithm to the 3D case and
distributed/asynchronous implementations.



TABLE I
RESULTS OF THE 2D PGO DATASET EVALUATION. RPE AND PERCENT REDUCTION IN RPE ATTAINED BY ALGORITHM 1 ARE SHOWN ON THE RIGHT.

SE-Sync [13] Cartan-Sync [14] Algorithm 1 [ours] (% Reduction)
Dataset σw RPE-L RPE-E RPE-L RPE-E RPE-L RPE-E

Grid1000 1.0 · 10−5 6.2 · 10−3 1.2 · 10−2 6.2 · 10−3 1.2 · 10−2 5.4 · 10−3 (−12.4%) 1.1 · 10−2 (−12.4%)
Grid1000 5.6 · 10−5 1.5 · 10−2 2.9 · 10−2 1.5 · 10−2 2.9 · 10−2 1.3 · 10−2 (−12.7%) 2.6 · 10−2 (−12.7%)
Grid1000 3.2 · 10−4 3.5 · 10−2 7.1 · 10−2 3.5 · 10−2 7.1 · 10−2 3.1 · 10−2 (−11.8%) 6.2 · 10−2 (−11.8%)
Grid1000 1.8 · 10−3 7.9 · 10−2 1.6 · 10−1 7.9 · 10−2 1.6 · 10−1 7.0 · 10−2 (−11.5%) 1.4 · 10−1 (−11.5%)
Grid1000 1.0 · 10−2 1.9 · 10−1 3.9 · 10−1 1.9 · 10−1 3.9 · 10−1 1.7 · 10−1 (−11.8%) 3.4 · 10−1 (−11.7%)
M3500 1.0 · 10−5 5.4 · 10−3 1.1 · 10−2 5.4 · 10−3 1.1 · 10−2 4.4 · 10−3 (−19.4%) 8.7 · 10−3 (−19.4%)
M3500 5.6 · 10−5 1.3 · 10−2 2.6 · 10−2 1.3 · 10−2 2.6 · 10−2 1.0 · 10−2 (−19.8%) 2.1 · 10−2 (−19.8%)
M3500 3.2 · 10−4 3.1 · 10−2 6.2 · 10−2 3.1 · 10−2 6.2 · 10−2 2.5 · 10−2 (−19.0%) 5.0 · 10−2 (−19.0%)
M3500 1.8 · 10−3 7.4 · 10−2 1.5 · 10−1 7.4 · 10−2 1.5 · 10−1 6.0 · 10−2 (−18.4%) 1.2 · 10−1 (−18.4%)
M3500 1.0 · 10−2 1.7 · 10−1 3.4 · 10−1 1.7 · 10−1 3.4 · 10−1 1.4 · 10−1 (−16.8%) 2.9 · 10−1 (−16.8%)
City10k 1.0 · 10−5 4.9 · 10−3 9.7 · 10−3 4.9 · 10−3 9.7 · 10−3 3.6 · 10−3 (−26.8%) 7.1 · 10−3 (−26.8%)
City10k 5.6 · 10−5 1.2 · 10−2 2.3 · 10−2 1.2 · 10−2 2.3 · 10−2 8.5 · 10−3 (−26.9%) 1.7 · 10−2 (−26.9%)
City10k 3.2 · 10−4 2.8 · 10−2 5.5 · 10−2 2.8 · 10−2 5.5 · 10−2 2.0 · 10−2 (−26.7%) 4.0 · 10−2 (−26.7%)
City10k 1.8 · 10−3 6.6 · 10−2 1.3 · 10−1 6.6 · 10−2 1.3 · 10−1 4.8 · 10−2 (−27.5%) 9.5 · 10−2 (−27.5%)
City10k 1.0 · 10−2 1.6 · 10−1 3.1 · 10−1 1.6 · 10−1 3.1 · 10−1 1.2 · 10−1 (−25.7%) 2.3 · 10−1 (−25.7%)

APPENDIX A
ALGEBRAIC CONSTRUCTION

Given an orthonormal basis {i, j,k}, a rotation in the plane is characterized by a rotation angle θ ∈ (−π, π] about the k
axis. In standard form, we can write the planar unit quaternion6 q ∈ S1 corresponding to this rotation as

q = cos (θ/2) + k sin (θ/2) = r0 + kr1,

or, in vector form, q = [q0, q1]
⊤. Let “⊗” denote the Hamilton product [23] under the convention i2 = j2 = k2 = ijk = −1.

Then, performing the Hamiltonian multiplication of two planar quaternions, denoted r, s, yields

r⊗ s = (r0 + kr1) (s0 + ks1) = r0s0 − r1s1 + k (r1s0 + r0s1)

In matrix-vector form, the operation can be written as

r⊗ s =

[
r0 −r1
r1 r0

] [
s0
s1

]
=

[
s0 −s1
s1 s0

] [
r0
r1

]
.

A planar rigid motion is characterized by a translation, denoted t = txi + tyj, and a rotation about the k axis by an angle
θ ∈ (−π, π]. This can be written in R3 as the Euclidean vector p = [t⊤, θ]⊤. The planar unit dual quaternion (PUDQ)
parameterization of this motion is given by x = xr + ϵxd, where ϵ is a dual number satisfying ϵ2 = 0, ϵ ̸= 0. The real part
of x, denoted xr ∈ S1, is a planar unit quaternion of the form

xr = cos (θ/2) + sin (θ/2)k = r0 + kr1.

The dual part of x, denoted xd ∈ R2, is given by

xd =
1

2
t⊗ xr =

1

2
(txi+ tyj) (r0 + kr1) =

1

2
((txr0 + tyr1) i+ (tyr0 − txr1) j) . (33)

In matrix-vector form, (33) can be rewritten as

xd =
1

2

[
tx ty
ty −tx

] [
r0
r1

]
=

1

2

[
r0 r1
−r1 r0

] [
tx
ty

]
. (34)

In vector form, a PUDQ can be expressed in terms of the bases {i,k, ϵi, ϵj} as

x = x0 + kx1 + ϵ (ix2 + jx3) = [x0, x1, x2, x3]
⊤
.

6It is noted that a planar unit quaternion is a standard Hamiltonian unit quaternion restricted to a rotation about the k-axis, i.e., q ∈ H, q = w+xi+yj+zk,
with ∥q∥2 = 1 and x = y = 0.



Equivalently, we can write x = [x⊤
r ,x

⊤
d ]. Given two PUDQs, x = [x0, x1, x2, x3]

⊤ and y = [y0, y1, y2, y3]
⊤, we can

compute the composition operation “⊞” by applying Hamiltonian multiplication, which yields

x⊞ y = (x0 + kx1 + ϵ (ix2 + jx3)) (y0 + ky1 + ϵ (iy2 + jy3))

= (x0y0 − x1y1) + k (x0y1 + x1y0) + ϵ (i (x0y2 − x1y3 + x2y0 + x3y1) + j (x0y3 + x1y2 − x2y1 + x3y0)) . (35)

From (35), we can deduce the identity PUDQ, denoted 1, to be 1 = [1, 0, 0, 0]⊤, so that 1⊞ x = x⊞ 1 = x. Moreover, the
inverse of a PUDQ x, denoted x−1, is given by x−1 = [x0,−x1,−x2,−x3]⊤, so that x⊞x−1 = x−1⊞x = 1. The operation
described by (35) is equivalent to the matrix-vector multiplication(s)

x⊞ y =


x0 −x1 0 0
x1 x0 0 0
x2 x3 x0 −x1
x3 −x2 x1 x0


︸ ︷︷ ︸

QL(x)


y0
y1
y2
y3


︸ ︷︷ ︸

y

=


y0 −y1 0 0
y1 y0 0 0
y2 −y3 y0 y1
y3 y2 −y1 y0


︸ ︷︷ ︸

QR(y)


x0
x1
x2
x3


︸ ︷︷ ︸

x

, (36)

where we have implicitly defined the left and right-handed matrix-valued left and right-hand composition mappings QL :M→
R4×4 and QR :M→ R4×4. Using QL, we define Q−

RL (x) :M→ R4×4 such that

x⊞ y−1 =


x0 −x1 0 0
x1 x0 0 0
x2 x3 x0 −x1
x3 −x2 x1 x0


︸ ︷︷ ︸

QL(x)


y0
−y1
−y2
−y3


︸ ︷︷ ︸

y−1

=


x0 x1 0 0
x1 −x0 0 0
x2 −x3 −x0 x1
x3 x2 −x1 −x0


︸ ︷︷ ︸

Q−
RL(x)


y0
y1
y2
y3


︸ ︷︷ ︸

y

and Q−−
L :M→ R4×4 such that

x−1 ⊞ y−1 =


x0 x1 0 0
−x1 x0 0 0
−x2 −x3 x0 x1
−x3 x2 −x1 x0


︸ ︷︷ ︸

QL(x−1)


y0
−y1
−y2
−y3


︸ ︷︷ ︸

y−1

=


x0 −x1 0 0
−x1 −x0 0 0
−x2 x3 −x0 −x1
−x3 −x2 x1 −x0


︸ ︷︷ ︸

Q−−
L (x)


y0
y1
y2
y3


︸ ︷︷ ︸

y

. (37)

Using QR, we define the mapping Q−
LR :M→ R4×4 such that

x−1 ⊞ y =


y0 −y1 0 0
y1 y0 0 0
y2 −y3 y0 y1
y3 y2 −y1 y0


︸ ︷︷ ︸

QR(y)


x0
−x1
−x2
−x3


︸ ︷︷ ︸

x−1

=


y0 y1 0 0
y1 −y0 0 0
y2 y3 −y0 −y1
y3 −y2 y1 −y0


︸ ︷︷ ︸

Q−
LR(y)


x0
x1
x2
x3


︸ ︷︷ ︸

x

,

and Q−−
R :M→ R4×4 such that

x−1 ⊞ y−1 =


y0 y1 0 0
−y1 y0 0 0
−y2 y3 y0 −y1
−y3 −y2 y1 y0


︸ ︷︷ ︸

QR(y−1)


x0
−x1
−x2
−x3


︸ ︷︷ ︸

x−1

=


y0 −y1 0 0
−y1 −y0 0 0
−y2 −y3 −y0 y1
−y3 y2 −y1 −y0


︸ ︷︷ ︸

Q−−
R (y)


x0
x1
x2
x3


︸ ︷︷ ︸

x

(38)

The maps QL and QR additionally yield the definitions for Q−
LL (x) ≜ QL

(
x−1

)
and Q−

RR (x) ≜ QR

(
x−1

)
such that

x−1 ⊞ y = Q−
LL (x)y and x⊞ y−1 = Q−

RR (y)x.



APPENDIX B
RIEMANNIAN GEOMETRY OF THE PLANAR UNIT DUAL QUATERNION MANIFOLD

In this appendix, we provide derivations relating to the Riemannian geometry of the PUDQ manifold M and its product
manifold extension MN . For a general coverage of these topics, we refer the reader to [24].

A. Embedded Submanifolds

The set of all PUDQs forms a smooth manifold, denoted M. In this work, we employ an embedding of M in the ambient
Euclidean space R4 with the inner product ⟨u,w⟩ = u⊤w and induced Euclidean norm ∥u∥2 =

√
u⊤u for all u,w ∈ R4. This

embedding yields the coordinatized definition for M given by

M ≜
{
x ∈ R4 | h (x) = x⊤P̃x− 1 = 0

}
⊂ R4, (39)

where h(x) is the defining function [24] for M and P̃ ∈ R4×4 defined as

P̃ ≜

[
I2 02×2

02×2 02×2

]
, (40)

where I2 ∈ R2×2 denotes an identity matrix and 02×2 ∈ R2×2 denotes a matrix of zeroes. By (39), we haveM = S1⋊R2 ⊂ R4.
We now extend (39) to the N -fold PUDQ product manifold MN ≜ M×M × · · · × M = (S1 ⋊ R2)N . For notational
convenience, we define the operator vec(·) such that

vec((xi)
N
i=1) ≜ [x⊤

1 ,x
⊤
2 , . . . ,x

⊤
N ]⊤, (41)

with each xi ∈M. Since (S1 ⋊R2)N ⊂ R4×N ∼= R4N , we embed MN in R4N via the coordinatized definition

MN ≜
{
vec((xi)

N
i=1) | xi ∈M for all i ∈ {1, . . . , N}

}
⊂ R4N , (42)

with vec(·) given by (41). For X ,Y ∈ MN , the embedding in (42) lets us write X = vec((xi)
N
i=1) and Y = vec((yi)

N
i=1),

where xi,yi ∈ M for each i. Furthermore, (42) admits natural extensions to MN of the identity 1
N = [1⊤,1⊤, . . . ,1⊤]⊤,

inverse X−1 = [x−⊤
1 ,x−⊤

2 , . . . ,x−⊤
N ]⊤, and, for X ,Y ∈MN , the product X ⊞ Y = vec((xi ⊞ yi)

N
i=1).

B. Tangent Space and Projection Operators

The tangent space of M at a point x ∈M, denoted TxM, is the local, Euclidean linearization of M about x. It is defined
as TxM ≜ ker(Dh(x)), where h(x) is the definining function from (39), and Dh(x)[v] is the directional derivative of h along
v ∈ R4 at x. We compute Dh(x)[v] from the definition given in [24] as

Dh(x)[v] = lim
t→0

h(x+ tv)− h(x)
t

= lim
t→0

(x+ tv)
⊤
P̃ (x+ tv)− x⊤P̃x

t

= 2x⊤P̃ v. (43)

Since TxM ≜ ker (Dh (x)), it follows from (43) that x⊤P̃ v = 0 for all v ∈ TxM. Therefore, TxM is given by

TxM =
{
v ∈ R4 | x⊤P̃ v = 0

}
. (44)

We can then derive the orthogonal projection matrix, denoted Px, by identifying from (44) that, for any u ∈ R4, it holds that

projxu = u− projP̃xu,

where

projP̃xu = (x⊤P̃ u)
P̃x

∥P̃x∥2
.

Since ∥P̃x∥2 = x20 + x21 = 1 for all x = [x0, x1, x2, x3]
⊤ ∈M, we have projP̃xu = P̃xx⊤P̃ u. Therefore,

projxu = u− P̃xx⊤P̃ u = (I4 − P̃xx⊤P̃ )u, (45)

where Im ∈ Rm×m denotes the identity matrix. Equation (45) yields projxu = Pxu, with Px ∈ R4×4 given by the symmetric,
idempotent matrix

Px = I4 − P̃xx⊤P̃ , (46)



with P̃ given by (40). We also have the normal projection operator, denoted P⊥
x ∈ R4×4, given by

P⊥
x = I4 − Px = P̃xx⊤P̃ . (47)

Furthermore, the embedding in (42) gives the orthogonal projector onto TXMN , denoted PX ∈ R4N×4N , to be

PX = diag({Pxi
| i ∈ {1, . . . , N}}), (48)

with Pxi
given by (46). Finally, the normal projector onto T ⊥

X MN , denoted P⊥
X ∈ R4N×4N , is given by

P⊥
X = diag({P⊥

xi
| i ∈ {1, . . . , N}}), (49)

with P⊥
xi

given by (47).

C. Riemannian Metrics

Because we employ the embedding defined in Appendix B-A, M inherits the Euclidean metric gx (u,w) = ⟨u,w⟩x ≜ u⊤w
and norm ∥u∥x ≜ ∥u∥2 for all x ∈ M and u,w ∈ TxM. Moreover, per [24, Section 3.7], MN admits the product metric
gX (U ,W) =

∑N
i=1 gxi

(ui, wi) = U⊤W , and norm ∥U∥X ≜ ∥U∥2 for all X ∈MN and U ,W ∈ TXMN .

D. Parallel Transport
The parallel transport operator maps tangent vectors between tangent spaces. On M, Px→y : TxM → TyM denotes the

parallel transport from TxM to TyM for any x,y ∈M. For uy ∈ TyM, it is given by

Px→y(uy) = x⊞ (y−1 ⊞ uy). (50)

Extending this definition to MN yields PX→Y : TXMN → TYMN to be

PX→Y(UY) = vec
(
(xi ⊞ (y−1

i ⊞ ui))
N
i=1

)
for UY = vec((ui)

N
i=1) ∈ TYMN , X = vec((xi)

N
i=1) ∈MN , and Y = vec((yi)

N
i=1) ∈MN .

E. Logarithm and Exponential
Here, we derive the logarithm and exponential maps for M and MN . The smooth manifold M with the identity, inverse,

and composition operator form a Lie group [18] whose Lie algebra is the tangent space (44) at the identity element, denoted
T1M. The geometry of screw motions encoded by elements of the PUDQ group is a consequence of Chasles’ Theorem [40],
which states that any rigid transformation can be modeled as a rotation and translation about a singular axis, termed the
screw axis. In [41], the logarithm map at the identity for the unit dual quaternion (UDQ) group DH was derived for rigid
transformations in 3D in terms of four screw parameters: the rotation angle θ, pitch d, direction vector l, and moment m.
Given an orthonormal basis {i, j,k}, we define a translation t ≜ txi+ tyj+ tzk and direction vector l ≜ lxi+ lyj+ lzk. Then,
the pitch is d given by d = t⊤l, and the moment m is given by

m =
1

2

(
t× l+ cot

(
θ

2

)
l× (t× l)

)
, (51)

where “×” denotes the standard cross product in 3D. Following the methodology in [22], we can treat the PUDQ groupM as
the degenerate, planar case of the UDQ group DH, in which case θ remains unchanged, t = txi+ tyj, and l = k. Furthermore,
for planar rigid motions, t and k are orthogonal vectors, so d = t⊤l = t⊤k = 0. Moreover, applying these planar definitions
to (51) and simplifying yields the planar moment m to be

m =
1

2

(
t× k+ cot

(
θ

2

)
k× (t× k)

)
=

1

2

((
ty + cot

(
θ

2

)
tx

)
i+

(
cot

(
θ

2

)
ty − tx

)
j

)
. (52)

Finally, substituting (52) and the preceding planar definitions into the UDQ logarithm map derived in [41] and simplifying
yields the PUDQ logarithm map at the identity for x ∈M to be

Log
1
(x) =

1

2
(θ + εd) (l+ εm) =

θ

2
(k+ εm) . (53)

We can express (53) in vector form according to the basis {k, εi, εj} as Log
1
(x) = [12 ,

1
2m

⊤]⊤. Then, substituting (52), letting
ϕ ≜ θ/2, and applying the definition of cot(·) yields the vector expression

Log
1
(x) =

[
ϕ,
ϕ

2

(
ty +

cos (ϕ)

sin (ϕ)
tx

)
,
ϕ

2

(
cos (ϕ)

sin (ϕ)
ty − tx

)]⊤
,



which simplifies to

Log
1
(x) =

[
ϕ,

1

2

ϕ

sin (ϕ)

([
cos (ϕ) sin (ϕ)
− sin (ϕ) cos (ϕ)

] [
tx
ty

])⊤
]
. (54)

Now, we write x = [x⊤
r ,x

⊤
d ]

⊤ = [x0, x1, x2, x3]
⊤, and note that, from (34), we have

xd =
1

2

[
cos (ϕ) sin (ϕ)
− sin (ϕ) cos (ϕ)

] [
tx
ty

]
. (55)

Finally, substituting (55) into (54) and simplifying with x1 = sin(ϕ) yields

Log
1
(x) =

ϕ

sin (ϕ)
[x1, x2, x3] .

Therefore, given x ∈M, the logarithm map at the identity, denoted Log
1
:M→ T1M, is given by

Log
1
(x) =

1

γ (x)
[x1, x2, x3]

⊤
, (56)

where
γ (x) ≜ sinc (ϕ (x)) =

sin (ϕ (x))

ϕ (x)
, (57)

with
ϕ (x) ≜ wrap (arctan (x1, x0)) , (58)

where arctan : S1 → (−π, π] is the four-quadrant arctangent and

wrap (α) ≜


α+ π if α ≤ −π/2

α− π if α > π/2

α otherwise.
(59)

Here, ϕ :M→ (−π/2, π/2] computes the half-angle of rotation about the k-axis encoded by a point on M. The half-angles
ϕ+nπ for all n ∈ Z encode the same rotation, so it is valid to wrap ϕ to (−π/2, π/2] via (59). Moreover, the exponential map
at the identity, denoted Exp

1
: T1M→M, is the inverse of (56). Given xt = [xt,1, xt,2, xt,3]

⊤ ∈ T1M, it is given by

Exp
1
(xt) =

[
cos (xt,1) , γ (xt)x

⊤
t

]⊤
, (60)

where γ (xt) ≜ sinc (xt,1) from (57). For context, (56) and (60) constitute the Lie-theoretic logarithm and exponential maps
on M, when treated as a Lie group. By equipping M with the Riemannian metric derived in Appendix B-C, we can treat M
as a Riemannian manifold, in which case (56) and (60) define the logarithm and exponential maps evaluated at the identity.
Furthermore, we can apply the parallel transport operator on M from (50) to extend (56) and (60) to arbitrary points on M
as in [42]. This yields, for any x,y ∈M, the pointwise logarithm map

Logx(y) = x⊞ [0,Log
1
(x−1 ⊞ y)⊤]⊤, (61)

and, for x ∈M,yt ∈ TxM, the pointwise exponential map

Expx(yt) = x⊞ Exp
1

((
x−1 ⊞ yt

)
1:3

)
, (62)

where (·)1:3 selects the last three elements of a vector. For the product manifold MN , (56)-(62) yield, for X ,Y ∈MN ,

LogX (Y) = vec
(
(Logxi

(yi))
N
i=1

)
,

and, for Yt = vec
(
(yt,i)

N
i=1

)
∈ TXMN ,

ExpX (Yt) = vec
(
(Expxi

(yt,i))
N
i=1

)
,

with Logxi
(·) and Expxi

(·) given by (61) and (62).

F. Geodesic Distance

The geodesic distance metric extends the Riemannian metric to measure the lengths of minimal curves between points on
manifolds. The geodesic distance on M is given by

dM(x,y) =
∥∥Log

1
(x−1 ⊞ y)

∥∥
2



for x,y ∈M. For the product manifold MN , it is given by

dMN (X ,Y) =

√√√√ N∑
i=1

∥∥Log
1
(x−1

i ⊞ yi)
∥∥2
2

for X = vec((xi)
N
i=1) ∈MN , and Y = vec((yi)

N
i=1) ∈MN .

G. Weingarten Map

The Weingarten map describes the extrinsic curvature of a manifold. Here, we derive the Weingarten maps forM andMN ,
which will be used in our derivation of the Riemannian Hessian in Appendix F. From [43], the Weingarten map at x ∈ M,
denoted Ax : TxM×T ⊥

x M→ TxM, is given by, for u ∈ TxM, w ∈ T ⊥
x M,7

Ax (u,w) = PxDuPxw, (63)

with Px given by (46). In (63), Du denotes the directional derivative along u at x, which is defined for any function f on M
into a vector space, and for any u ∈ TxM as

Duf (x) = lim
t→0

d

dt
f (c (t)) , (64)

where c is any curve on M with c (0) = x and c′ (0) = u. Applying (46) to (64) and letting x = c (t) yields

DuPx = lim
t→0

d

dt
Pc(t) = −P̃

(
c′ (0) (c (0))

⊤
+ c (0) (c′ (0))

⊤
)
P̃ , (65)

which simplifies to
DuPx = −

(
P̃ ux⊤P̃ + P̃xu⊤P̃

)
, (66)

with P̃ given by (40). Substituting (66) into (63) yields

Ax (u,w) = PxDuPxw = −Px

(
P̃ ux⊤P̃ + P̃xv⊤P̃

)
w = −PxP̃ ux

⊤P̃w − PxP̃xu
⊤P̃w. (67)

The following two lemmas allow us to further simplify (67).

Lemma 8. For all w ∈ T⊥
xM and for all x ∈M, it holds that P̃w = w.

Proof: Since w ∈ T⊥
xM, it holds that P⊥

x w = w. Therefore, since P̃ is idempotent (i.e., P̃ P̃ = P̃ ) we have

P̃w = P̃P⊥
x w = P̃

(
P̃xx⊤P̃

)
w = P̃xx⊤P̃w = P⊥

x w = w,

completing the proof. ■

Lemma 9. For all x ∈M, P̃Px = PxP̃ .

Proof: Since P̃ is idempotent, we have

P̃Px = P̃
(
I − P̃xx⊤P̃

)
= P̃ − P̃ P̃xx⊤P̃ = P̃ − P̃xx⊤P̃ P̃ =

(
I − P̃xx⊤P̃

)
P̃ = PxP̃ ,

completing the proof. ■

Applying Lemmas 8 and (9) to (67) yields

Ax (u,w) = −P̃Pxux
⊤w − P̃Pxxu

⊤w. (68)

Finally, since u ∈ TxM and w ∈ T⊥
xM, it follows that u and w are orthogonal and therefore u⊤w = 0. Applying this to (68)

yields
Ax (u,w) = −PxP̃ ux

⊤w, (69)

which gives the Weingarten map forM. We now extend (69) to derive the Weingarten map forMN , denoted AX : TXMN ×
T ⊥
X MN → TXMN . First, given X ∈MN , U ∈ TXMN , and W ∈ T ⊥

X MN , we define C (t) =
[
c⊤1 (t) , c⊤2 (t) , . . . , c⊤N (t)

]⊤
such that C (0) = X and C ′ (0) = U . Rewriting (66) in terms of MN yields the Weingarten map at X ∈MN to be

AX (U ,W) = PXDUPXW, (70)

7It is noted that u ∈ TxM implies Pxu = u and w ∈ T ⊥
x M implies P⊥

x w = w.



for any U = vec((ui)
N
i=1) ∈ TXMN , W = vec((wi)

N
i=1) ∈ T ⊥

X MN , with PX given by (48). From the definition in (64), we
now derive DUPX to be

DUPX = lim
t→0

d

dt
PC(t) =

d

dt
lim
t→0

(
diag

({
Pci(t) | i ∈ {1, . . . , N}

}))
= diag

({ d
dt

lim
t→0
Pci(t) | i ∈ {1, . . . , N}

})
. (71)

Now, using (65), we see that (71) simplifies to

DUPX = diag ({Dui
Pxi
| i ∈ {1, . . . , N}}) . (72)

Substituting (72) into (70) yields

AX (U ,W) = PXdiag ({DuiPxi | i ∈ {1, . . . , N}})W,

which simplifies to
AX (U ,W) = vec

(
(PxiDuiPxiwi)

N
i=1

)
.

Finally, noting that (63) gives Pxi
Dui
Pxi

wi = Axi
(ui, wi), we observe that

AX (U ,W) = vec
(
(Axi

(ui, wi))
N
i=1

)
, (73)

which gives the Weingarten map for MN .

APPENDIX C
MAXIMUM LIKELIHOOD OBJECTIVE DERIVATION

Here, we derive the MLE objective F for PGO on the PUDQ product manifold. First, let G = (V, E) be a (directed) pose
graph with vertex set V and edge set E consisting of ordered pairs (i, j) ∈ V × V . Let X = vec((xi)i∈V) ∈ MN denote N
poses to be estimated. The M relative pose measurements are denoted Z = vec((z̃ij)(i,j)∈E) ∈ MM , where each z̃ij ∈ M
encodes a measured transformation from xi to xj , taken in the frame of xi. We utilize a Lie-theoretic measurement model for
z̃ij in which zero-mean Gaussian noise ηij is mapped from T1M to M via the exponential map, i.e.,

zij = x−1
i ⊞ xj ⊞ Exp

1
(ηij) , ηij ∈ R3, ηij ∼ N (0,Σij) . (74)

Rearranging terms and noting that Log
1

(
x−1

)
= −Log

1
(x) and (x⊞ y)

−1
= y−1⊞x−1, we see that (74) gives the likelihood

function L(X | Z) = P(Z = Z | X ) (where Z denotes the random variable corresponding to observation Z), with

L (X | Z) =
∏

(i,j)∈E

1√
(2π)

3
det(Σij)

exp

(
−1

2
Log

1

(
z̃−1
ij ⊞ x−1

i ⊞ xj

)⊤
Σ−1

ij Log
1

(
z̃−1
ij ⊞ x−1

i ⊞ xj

))
,

whose maximizer over X ∈ MN is the maximum likelihood estimate, denoted X ⋆. Equivalently, X ⋆ is the minimizer of the
negative likelihood −(L(X | Z)). Now, taking the natural logarithm of − log (L (X | Z)) and simplifying yields

− log (L (X | Z)) =
∑

(i,j)∈E

log

 1√
(2π)

3
det (Σij)

+
∑

(i,j)∈E

1

2

(
Log

1

(
z̃−1
ij ⊞ x−1

i ⊞ xj

)⊤
Σ−1

ij Log
1

(
z̃−1
ij ⊞ x−1

i ⊞ xj

))
.

(75)
We now observe from (75) that

argmin
X

(− log (L (X | Z))) = argmin
X

F (X ) ,

where the maximum likelihood objective, denoted F (X ), is given by

F (X ) =
∑

(i,j)∈E

fij (X ) , (76)

where
fij (X ) =

1

2
eij (xi,xj)

⊤
Ωijeij (xi,xj) =

1

2
∥eij (xi,xj)∥2Ωij

. (77)

In (77), Ωij = Σ−1
ij is the information matrix for edge (i, j), and eij :M×M→ T1M is the tangent residual given by

eij (xi,xj) ≜ Log1 (rij (xi,xj)) = Log
1

(
z̃−1
ij ⊞ x−1

i ⊞ xj

)
, (78)

where we have implicitly defined the manifold residual rij :M×M→M as rij (xi,xj) ≜ z̃−1
ij ⊞ x−1

i ⊞ xj .8

8Henceforth, we omit the dependency on (xi,xj) from our notation, i.e., eij ≜ eij (xi,xj), rij ≜ rij (xi,xj).



APPENDIX D
TRANSFORMATIONS OF POSE PARAMETERIZATIONS AND UNCERTAINTIES

In this appendix, we derive transformations of poses and pose uncertainties between three parameterizations of planar rigid
motion, namely, Euclidean space, denoted R3, and the planar unit dual quaternion group, denoted M, and the planar special
Euclidean group, denoted SE (2).

A. Pose Transformations

Here, we derive transformations of poses between the three aforementioned parameterizations. We first define a planar pose
represented in an orthonormal basis (i, j,k) and characterized by a translation t = txi+ tyj and a rotation angle θ ∈ (−π, π]
about the k axis. In Euclidean space, such a pose is given by the vector p =

[
t⊤, θ

]⊤ ∈ R3, with no additional structure
applied. An alternative planar pose parameterization is that of the planar unit dual quaternion group (as detailed in Section II-A),
which we denote M. Letting ϕ ≜ θ/2, Euclidean poses are mapped to M via ψp : R3 →M, defined as

ψp (p) ≜

[
cos (ϕ) , sin (ϕ) ,

1

2
(Rϕt)

⊤
]⊤

, (79)

where, letting x = [x0, x1, x2, x3]
⊤, Rϕ is given by

Rϕ ≜

[
cos (ϕ) sin (ϕ)
− sin (ϕ) cos (ϕ)

]
=

[
x0 x1
−x1 x0

]
.

The inverse map, ψ−1
p :M→ R3, is defined as

ψ−1
p (x) = 2

[
(R⊤

ϕ P̃x)
⊤, ϕ(x)

]⊤
, (80)

with ϕ(x) given by (58). Another common pose parameterization is the planar special Euclidean group, denoted SE (2), which
is defined as SE (2) ≜ SO (2) ⋊ R2, where “⋊” denotes the semidirect product, and SO (2) is the special orthogonal group,
i.e., the set of all rotation matrices, which is given by

SO (2) ≜
{
R ∈ R2×2 | R⊤R = RR⊤ = I2,det (R) = 1

}
,

where I2 ∈ R2×2 is an identity matrix. SE (2) is traditionally coordinatized using the homogeneous transformation matrix
(HTM) representation, which gives the definition

SE (2) ≜

{[
R t
0 1

]
∈ R3×3 | R ∈ SO (2) , t ∈ R2

}
. (81)

In this work, we equate SE (2) with its HTM representation in (81). Given a planar Euclidean pose, p ∈ R3, the mapping
from Euclidean space to SE (2), which we denote ψs : R3 → SE (2), is then given by

ψs (p) =

 cos (θ) − sin (θ) tx
sin (θ) cos (θ) ty

0 0 1

 . (82)

Moreover, given a planar special Euclidean pose T ∈ SE (2), the mapping from SE (2) back to Euclidean space is given by
the inverse mapping ψ−1

s : SE (2)→ R3, which is given by

ψ−1
s (T ) = [T13, T23, arctan (T21, T11)]

⊤
, (83)

where Tij denotes the entry of the matrix T at row i, column j, and arctan(·) denotes the four-quadrant arctangent function.
Furthermore, poses can be mapped between SE (2) and M using compositions of (82)-(83), (79), and (80), i.e., ψs ◦ ψ−1

p :
M→ SE (2) and ψp ◦ ψ−1

s : SE (2)→M.

B. Pose Covariance Transformations

We now derive transformations between uncertainties of poses corresponding to random variables in R3, M, and SE (2).
These transformations presume that pose uncertainties in M and SE (2) are modeled as Gaussian distributions in the Lie
algebras of their respective groups. First, let xe ≜ [tx, ty, θ]

⊤ ∈ R3 be a planar Euclidean pose. Then, given vp ∈ T1M, where
vp ≜ Log

1
(ψp (xe)), and noting that θ ≜ 2ϕ, it holds from (56) that

vp =

[
θ

2
,
(x0tx + x1ty)

2sinc (θ/2)
,
(x0ty − x1tx)
2sinc (θ/2)

]⊤
,



which simplifies to

Log
1
(x) =

1

2
BpMp (θ)xe, (84)

where

Bp ≜

 0 0 1
1 0 0
0 1 0

 , and Mp ≜

 ω (θ) θ/2 0
−θ/2 ω (θ) 0
0 0 1

 , with ω(θ) ≜
cos (θ/2)

sinc (θ/2)
.

Here, (84) gives an invertible map from R3 to T1M. Now, let xe ∼ N (0,Σe) be a random vector. Letting Σp ≜ Cov [vp]
and applying (84) yields

Σp =
1

4
BpMp (θ) ΣeM

⊤
p (θ)B⊤

p . (85)

Additionally, letting Ωp ≜ Σ−1
p , Ωe ≜ Σ−1

e , and noting that B−1
p = B⊤

p , we have

Ωp = 4M−⊤
p (θ)BpΩeB

⊤
p M

−1
p (θ) . (86)

Equations (85) and (86) give invertible maps, and thus transform the covariance and information matrices of Gaussian random
variables between R3 and T1M. However, this requires a priori knowledge of θ, which is not always available. Moreover,
given a vector in the Lie algebra of SE (2), denoted vs ∈ se(2), with vs = ψs (xe) (where ψs : R3 → SE (2) is derived
in [16]), it holds that

xe =Ms (θ) v
∨
s , (87)

where

Ms (θ) ≜

 sinc (θ) cos θ−1
θ 0

1−cos θ
θ sinc (θ) 0
0 0 1

 ,
and the operator ∨ : se(2) → R3 maps from the Lie algebra to its Euclidean representation. Combining (84) and (87) yields
the mapping from se(2) to T1M to be

vp =
1

2
BpMp (θ)Ms (θ) v

∨
s , (88)

and since Mp (θ)Ms (θ) = I3, (88) reduces to

vp =
1

2
Bpv

∨
s , (89)

which gives an invertible vector map from T1M to se(2) that is independent of θ. Now, consider v∨s ∼ N (0,Σs). From (89),
we have

Σp = Cov

[
1

2
Bpv

∨
s

]
=

1

4
BpΣsB

⊤
p . (90)

Letting Ωs ≜ Σ−1
s , we also have

Ωp =

(
1

4
BpΣsB

⊤
p

)−1

= 4BpΩsB
⊤
p . (91)

The maps in (90) and (91) are also invertible, and thus transform the covariance and information matrices of Gaussian random
variables between T1M and se(2).

APPENDIX E
RIEMANNIAN GRADIENT DERIVATION

In this appendix, we derive the Riemannian gradient for the maximum likelihood objective F given by (76). BecauseMN is
an Riemannian submanifold of a Euclidean space [24], the Riemannian gradient at X ∈MN , denoted gradF (X ), is computed
by projecting the Euclidean gradient at X , denoted ∂F̄ (X ), onto TXMN , i.e.,

gradF (X ) = PX∂F̄ (X ) , (92)

with PX given by equation (46). Thus, the remainder of this appendix serves to derive the Euclidean gradient of F .



A. Euclidean Gradient

The Euclidean gradient of F , denoted ∂F̄ , is derived by omitting the manifold constraint from equation (76) and computing
the gradient of F in R4N with respect to X . Differentiating (76) in this manner and simplifying yields

∂F̄ (X ) = ∂F (X )
∂X

=
∂

∂X
∑

(i,j)∈E

fij (X ) =
∑

(i,j)∈E

∂fij (X )
∂X

.

Since

∂fij (X )
∂xl

=


∂

∂xi
fij (X ) l = i,

∂
∂xj

fij (X ) l = j,

0 otherwise,

(93)

it suffices to compute the partial derivatives of fij with respect to xi and xj . Omitting the arguments (xi,xj) from eij and
applying the chain rule to (93), we have

∂fij (X )
∂xi

=
∂

∂xi

(
e⊤ijΩijeij

)
=

(
∂eij
∂xi

)⊤

Ωijeij . (94)

Similarly,
∂fij (X )
∂xj

=

(
∂eij
∂xj

)⊤

Ωijeij . (95)

Now, we denote Aij ≜ ∂
∂xi

eij and Bij ≜ ∂
∂xj

eij to be the Jacobians of eij , which we derive in Appendix H. Applying these
definitions to (94) and (95) yields

∂fij (X )
∂xi

= A⊤
ijΩijeij and

∂fij (X )
∂xj

= B⊤ijΩijeij .

For each fij , with (i, j) ∈ E , we have the block column vector

gij (X ) ≜
∂fij (X )
∂X

=
[
g⊤ij,1, g

⊤
ij,2, . . . , g

⊤
ij,N

]⊤
, (96)

where

gij,l =


A⊤

ijΩijeij l = i,

B⊤ijΩijeij l = j,

04×1 otherwise,

(97)

with each gij,l ∈ R4. Therefore, the Euclidean gradient of F is given by

∂F̄ (X ) =
∑

(i,j)∈E

gij (X ) , (98)

with gij given by (96).

APPENDIX F
RIEMANNIAN HESSIAN DERIVATION

In this appendix, we derive the Riemannian Hessian for the maximum likelihood objective F given by (76). Additionally,
in Appendix F-B, we derive Riemannian Gauss-Newton Hessian approximation utilized in Section IV. Towards deriving the
Riemannian Hessian, we note that the embedding in Appendix B-A gives MN as a Riemannian submanifold of the ambient
Euclidean space R4N , and thus MN takes on an extrinsic definition within the confines of this work. Leveraging this fact, we
utilize the derivation proposed in [43], in which, given X ∈MN and U ∈ TXMN , the Riemannian Hessian is derived to be

HessF (X ) [U ] = PX∂
2F̄(X )U + AX

(
U ,P⊥

X ∂F̄ (X )
)
, (99)

where ∂2F̄ is the Euclidean Hessian of F which we derive in Appendix F-A, ∂F̄ is the Euclidean gradient of F given by (98),
PX is the orthogonal projector onto TXM given by (48), P⊥

X is the orthogonal projector onto T ⊥
X M given by (49), and AX

is the Weingarten map for MN given by (73). To simplify (99), we first separate the equation in terms of individual edges
(i, j) ∈ E . Substituting (76) into (99) and simplifying yields

HessF (X ) [U ] =
∑

(i,j)∈E

PX H̄ij (X )U + AX

(
U ,

∑
(i,j)∈E

P⊥
X gij (X )

)
, (100)



where gij denotes the Euclidean gradient of fij given by (96), and H̄ij denotes the Euclidean Hessian of fij , which we derive
in Appendix F-A. To further simplify (100), we prove in the following lemma that the Weingarten map on MN is linear in
its second argument.

Lemma 10. Given X ∈MN , U ∈ TXMN , and W ∈ T ⊥
X MN , the Weingarten map AX (U ,W) on MN is linear in W .

Proof: First, we observe from (69) that for any x ∈M, u ∈ TxM, w, y ∈ T ⊥
x M, and α, β ∈ R, it holds that

Ax (u, αw + βy) = −PxP̃ ux
⊤ (αw + βy) = −αPxP̃ vx

⊤w − βPxP̃ vx
⊤y = αAx (u,w) + βAx (u, y) , (101)

which implies linearity of Ax (v, w) in w onM. It then suffices to show that linearity of AX (U ,W) inW onMN then follows
from linearity of Ax (v, w) in w on M. Applying (101) to (73) yields, for any X ∈ MN , U ∈ TXMN , W,Y ∈ T ⊥

X MN ,
and α, β ∈ R,

AX (U , αW + βY) = vec
((

Axi
(ui, αwi + βyi)

N
i=1

))
= vec

(
(αAxi

(ui, wi) + βAxi
(ui, yi))

N
i=1

)
. (102)

Furthermore, (102) implies that
AX (U , αW + βY) = αAX (U ,W) + βAX (U ,Y) ,

which gives linearity of AX in W , completing the proof. ■

Now, applying Lemma 10 to equation (100) yields

HessF (X ) [U ] =
∑

(i,j)∈E

PX H̄ij (X )U +
∑

(i,j)∈E

AX
(
U ,P⊥

X gij (X )
)

=
∑

(i,j)∈E

(
PX H̄ij (X )U + AX

(
U ,P⊥

X gij (X )
))

(103)

Moreover, applying (99) to fij from (77) yields the Riemannian Hessian of fij to be

Hess fij (X ) [U ] = PX H̄ij (X )U + AX
(
U ,P⊥

X gij (X )
)
, (104)

and substituting (104) into (103) yields

HessF (X ) [U ] =
∑

(i,j)∈E

Hess fij (X ) [U ] . (105)

Therefore, it suffices to derive Hess fij in order to derive HessF . Towards accomplishing this, we first expand the Weingarten
map term in (104) as

AX
(
U ,P⊥

X gij (X )
)
= vec

((
Axl

(
ul,P⊥

xl
gij,l

))
l∈V

)
= vec

((
− Pxl

P̃ ulx
⊤
l P⊥

xl
gij,l

)
l∈V

)
, (106)

with gij,l given in (97). Because the x⊤
l P⊥

xl
gl terms in (106) are scalars, it holds that

AX
(
U ,P⊥

X gij (X )
)
= vec

((
−Pxl

P̃x⊤
l P⊥

xl
gij,lul

))
= −PX P̃V diag

({
x⊤
l P⊥

xl
gij,lI4

}
l∈V

)
U , (107)

where P̃V ≜ diag({P̃}l∈V) ∈ R4N×4N . Furthermore, (107) is equivalent to the expression

AX
(
U ,P⊥

X gij (X )
)
= −PX P̃V

(
(J4 ⊗ IN ) ◦ X⊤P⊥

X ∂f̄ij (X )
)
U , (108)

where J4 ∈ R4×4 is a matrix of ones, ⊗ is the Kronecker product, and ◦ is the Hadamard product. Substituting (108) into (104)
and simplifying yields the operator form of Hess fij to be

Hess fij (X ) [U ] = PX

(
H̄ij (X )− P̃V

(
(J4 ⊗ IN ) ◦ X⊤P⊥

X gij (X )
))
U , (109)

and since (109) gives a matrix-vector multiplication, we deduce the matrix form of Hess fij to be

Hess fij (X ) = PX

(
H̄ij (X )− P̃V

(
(14 ⊗ IN ) ◦ X⊤P⊥

X gij (X )
))
. (110)

Finally, substituting (110) into (105) and simplifying yields the Riemannian Hessian of F in matrix form to be

HessF (X ) =
∑

(i,j)∈E

Hess fij (X ) ,

with Hess fij (X ) given by (110).



A. Euclidean Hessian

The Euclidean Hessian of F , denoted ∂2F̄ , is computed by differentiating the Euclidean gradient of F from (98) with
respect to X , i.e.,

∂2F̄ =
∂

∂X

(
∂F(X )
∂X

)
=

∑
(i,j)∈E

∂

∂X

(
∂fij(X )
∂X

)
=

∑
(i,j)∈E

H̄ij (X ) , (111)

with H̄ij (X ) ≜ ∂
∂X gij (X ) denoting the Euclidean Hessian of fij , and with gij given by (96). From (96), we observe that

∂

∂xm

(
∂fij (X )
∂xl

)
=



∂
∂xi

(
A⊤

ijΩijeij
)

m = l = i
∂

∂xj

(
A⊤

ijΩijeij
)

m = i, l = j
∂

∂xi

(
B⊤ijΩijeij

)
m = j, l = i

∂
∂xj

(
B⊤ijΩijeij

)
m = l = j

04×1 otherwise.

(112)

We now denote the four nonzero blocks in (112) to be

hii ≜
∂

∂xi

(
A⊤

ijΩijeij
)
, hij ≜

∂

∂xj

(
A⊤

ijΩijeij
)
, hji ≜

∂

∂xi

(
B⊤ijΩijeij

)
, hjj ≜

∂

∂xj

(
B⊤ijΩijeij

)
. (113)

Applying the product rule to compute the expressions in (113) yields

hii =
∂

∂xi

(
A⊤

ij

)
Ωijeij +A⊤

ijΩijAij ,

hij =
∂

∂xj

(
A⊤

ij

)
Ωijeij +A⊤

ijΩijBij ,

hji =
∂

∂xi

(
B⊤ij
)
Ωijeij + B⊤ijΩijAij ,

hjj =
∂

∂xj

(
B⊤ij
)
Ωijeij + B⊤ijΩijBij .

Leting Cii ≜ ∂
∂xi

(Aij)
⊤
Ωijeij , Cij ≜ ∂

∂xj
(Aij)

⊤
Ωijeij , Cji ≜ ∂

∂xi
(Bij)⊤ Ωijeij , and Cjj ≜ ∂

∂xj
(Bij)⊤ Ωijeij gives9

hii = Cii +A⊤
ijΩijAij , hij = Cij +A⊤

ijΩijBij , hji = Cji + B⊤ijΩijAij , and hjj = Cjj + B⊤ijΩijBij . (114)

From equation (112), it holds that the matrix H̄ij has only 4 nonzero blocks, which we now define in terms of (114). Denoting
block indices i ≜ 4i+ 1 : 4i+ 4 and j ≜ 4j + 1 : 4j + 4, they are given by

H̄ij[i,i] = hii, H̄ij[i,j] = hij , H̄ij[j,i] = hji, and H̄ij[j,j] = hjj , (115)

with hii, hij , hji and hjj given by equations (114). It then follows that the Euclidean Hessian of F is computed by
applying (115) to (111).

Remark 1. We note that, as expected, hii = h⊤
ii , hji = h⊤

ij , and hjj = h⊤
jj , so H̄ij is symmetric, and therefore the Euclidean

Hessian ∂2F̄ in (111) is symmetric.

B. Riemannian Gauss-Newton Hessian

In (14), Hk : TXk
MN → TXk

MN is the Riemannian Gauss-Newton (RGN) approximation of the Riemannian Hessian at
Xk, which we now derive. First, because Ωij is an information matrix, we have Ωij ≻ 0, and can write Ωij = Ω

1/2
ij Ω

1/2
ij , with

Ω
1/2
ij = (Ω

1/2
ij )⊤. Applying this to the definition of fij(X ) given in (77), we can then write

fij (X ) = ∥Fij (X )∥22 = ⟨Fij (X ) , Fij (X )⟩ ,

where Fij (X ) ≜ Ω
1/2
ij eij . From [26, Section 8.4], the RGN approximation of Hess fij , denoted H̃ij , is given by

Hess fij (X ) [ξ, η] ≈ H̃ij (X ) [ξ, η] ≜ ⟨DFij (X ) [ξ] ,DFij (X ) [η]⟩ ,

for ξ, η ∈ TXMN . Applying the inner product definition from Appendix B yields

H̃ij (X ) [ξ, η] = ξ⊤ (DFij (X ))⊤ DFij (X ) η,

9Expressions for Cii, Cij , Cji, and Cjj are derived in Appendix K-D.



from which we deduce that
H̃ij (X ) = (DFij (X ))⊤ DFij (X ) . (116)

Furthermore, it holds from [26, Section 8.4] that

grad fij (X ) = (DFij (X ))∗ [Fij (X )] , (117)

where (·)∗ is the adjoint operator, which we now define. Given two Euclidean spaces, denoted O and Q, and an operator
T : O → Q, the adjoint of T is the operator T ∗ : Q → O satisfying ⟨T [U ] ,W⟩ = ⟨U , T ∗ [W]⟩ for all U ∈ O and all
W ∈ Q [26, Appendix A]. Applying the inner product definition yields ⟨T [U ] ,W⟩ = U⊤T⊤W , from which it follows that
T ∗ = T⊤. Applying this to (117) yields

grad fij (X ) = (DFij (X ))⊤ Fij (X ) , (118)

and equating (118) with (92) yields
(DFij (X ))⊤ = PX g̃ij (X ) ,

with PX from (48) and with g̃ij (X ) ≜ [g̃⊤ij,1, g̃
⊤
ij,2, . . . , g̃

⊤
ij,N ]⊤, where

g̃ij,k =


A⊤

ijΩ
1/2
ij i = k,

B⊤ijΩ
1/2
ij j = k,

04×3 otherwise.

Substituting this into (116) and noting that PX = P⊤
X yields

H̃ij (X ) = PXRij (X )PX , (119)

where Rij ≜ g̃ij g̃
⊤
ij (with argument (X ) omitted from g̃ij (X )). The matrix Rij ∈ R4N×4N in (119) has only four nonzero

blocks, which we now define. Denoting block indices i ≜ 4i+ 1 : 4i+ 4 and j ≜ 4j + 1 : 4j + 4, they are given by

Rij[i,i] = A⊤
ijΩijAij , Rij[i,j] = A⊤

ijΩijBij , Rij[j,i] = B⊤ijΩijAij , and Rij[j,j] = B⊤ijΩijBij . (120)

Moreover, applying (119) to the definition of F given in (76) yields the RGN Hessian approximation for HessF at Xk ∈MN ,
denoted Hk, to be

Hk =
∑

(i,j)∈E

H̃ij (Xk) =
∑

(i,j)∈E

PXk
Rij (Xk)PXk

. (121)

Remark 2. As evidenced by comparing the Riemannian Hessian blocks in (114) to the RGN Hessian blocks in (120), H̃ij

closely approximates HessF when the Cii-Cjj terms are negligible.

APPENDIX G
LIPSCHITZ CONTINUITY OF THE RIEMANNIAN GRADIENT

In this appendix, we derive a Lipschitz constant for the Riemannian gradient of the maximum likelihood objective given
by (92), and our derivation serves as a proof for Theorem 2. From [44] (see also [24], [45]), if F : K → R is twice continuously
differentiable on K, then its Riemannian gradient is Lipchitz continuous on K with constant Lg > 0 if and only if HessF (X )
has operator norm bounded by Lg for all X ∈ K, that is, if for all X ∈ K, we have

∥HessF (X ) ∥X = sup {∥HessF (X ) [U ]∥X | U ∈ TXM, ∥U∥X = 1} ≤ Lg, (122)

where ∥·∥X is the norm induced by the Riemannian metric at X on M. Here, K ⊂MN is any compact subset of MN , and
the results we derive in this appendix hold for all X ∈ K. Using the inherited Riemannian metric and induced norm included
in Appendix B-C, we first rewrite the operator norm from equation (24) as

∥HessF (X )∥2 = sup {∥HessF (X ) [U ]∥2 | U ∈ TXM, ∥U∥2 = 1} . (123)

Next, we rewrite (123) in terms of Hess fij according to equation (105), which gives

∥HessF (X )∥2 = sup

{∥∥∥ ∑
(i,j)∈E

Hess fij(X ) [U ]
∥∥∥
2
| U ∈ TXM, ∥U∥2 = 1

}
. (124)



Applying the triangle inequality to (124) yields

∥HessF (X )∥2 ≤ sup

{ ∑
(i,j)∈E

∥∥Hess fij(X ) [U ]
∥∥
2
| U ∈ TXM, ∥U∥2 = 1

}
,

and since sup{x+ y} ≤ sup{x}+ sup{y}, we observe that

∥HessF (X )∥2 ≤
∑

(i,j)∈E

sup
{
∥Hess fij(X ) [U ]∥2 | U ∈ TXM, ∥U∥2 = 1

}
. (125)

We will now bound (125) by bounding the Hess fij operator norms individually. First, it follows from (110) and (115) that
Hess fij has four nonzero blocks. Letting Hij ≜ Hess fij(X ), and denoting block indices i ≜ 4i+1 : 4i+4 and j ≜ 4j+1 : 4j+4,
they are given by

Hij[i,i] = Pxi

(
hii − P̃x⊤

i P⊥
xi
gij,i

)
,

Hij[i,i] = Pxi
hij ,

Hij[i,i] = Pxj
hji,

Hij[i,i] = Pxj

(
hjj − P̃x⊤

j P⊥
xj
gij,j

)
,

with gij,i, gij,j from (97) and hii-hjj from (114). Then, given X ∈MN and U = vec((ul)l∈V) ∈ TXMN , we have

Hess fij (X ) [U ] = vec
(
(hij,l)i∈V

)
, (126)

with

hij,l ≜


Pxi

(
hiiui + hijuj − P̃x⊤

i P⊥
xi
gij,iui

)
l = i,

Pxj

(
hjiui + hjjuj − P̃x⊤

j P⊥
xj
gij,juj

)
l = j,

04×1 otherwise.

(127)

Using (126) and (127), we observe that

∥Hess fij (X ) [U ]∥2 =

√
∥Hi [U ]∥22 + ∥Hj [U ]∥22, (128)

where

Hi [U ] = Pxi (hiiui + hijuj − diiui) ,

Hj [U ] = Pxj (hjiui + hjjuj − djjuj) ,

with

dii ≜ P̃x⊤
i P⊥

xi
gij,i, (129)

djj ≜ P̃x⊤
j P⊥

xj
gij,j .

Substituting (128) into (125) yields

∥HessF (X )∥2 ≤
∑

(i,j)∈E

sup

{√
∥Hi [U ]∥22 + ∥Hj [U ]∥22 | U ∈ TXM, ∥U∥2 = 1

}
, (130)

which implies that boundedness of ∥Hi [U ]∥2 and ∥Hj [U ]∥2 for all X ∈ K ⊂ MN implies boundedness of ∥HessF (X )∥2
for all X ∈ K ⊂MN , which we will now show. First, we observe that symmetricity and idempotence of Pxi

implies

∥Hi [U ]∥22 = ∥hiiui + hijuj − diiui∥2Pxi
≤ λmax (Pxi) ∥hiiui + hijuj − diiui∥22 (131)

where λmax (Pxi
) denotes the maximum eigenvalue of Pxi

, which we compute in the following lemma.

Lemma 11. For all x ∈M, λmax (Px) = 1.

Proof: Letting x = [cos(ϕ), sin(ϕ), x2, x3]
⊤, we observe from (46) that

Px =

 sin (ϕ)
2 − sin (ϕ) cos (ϕ)

− sin (ϕ) cos (ϕ) cos (ϕ)
2 02×2

02×2 I2

 .



The characteristic polynomial of Px, denoted f (λ) is then given by

f (λ) = |λI − Px| =
(
λ− sin2 (ϕ)

) (
λ− cos2 (ϕ)

)
(λ− 1)

2 − sin2 (ϕ) cos2 (ϕ) (λ− 1)
2
,

which simplifies to f (λ) = λ (λ− 1)
3. Therefore, the eigenvalues of Px are {0, 1, 1, 1} for all x ∈ M and λmax (Px) = 1,

completing the proof. ■

Applying Lemma (11) and the triangle inequality to (131) yields

∥Hi [U ]∥22 ≤ ∥hiiui + hijuj − diiui∥22 ≤
(
∥hiiui∥2 + ∥hijuj∥2 + ∥diiui∥2

)2
and further simplifying gives

∥Hi [U ]∥22 ≤
(
∥hii∥2 ∥ui∥2 + ∥hij∥2 ∥uj∥2 + ∥diiui∥2

)2
(132)

First, we observe that
∥U∥22 =

∑
l∈V

∥ul∥22 = 1, (133)

which implies that ∥ul∥2 ≤ 1 for all l ∈ V . Applying this and the fact that ∥ · ∥2 ≤ ∥ · ∥F to (132) yields

∥Hi [U ]∥22 ≤
(
∥hii∥2 + ∥hij∥2 + ∥diiui∥2

)2 ≤ (∥hii∥F + ∥hij∥F + ∥diiui∥2
)2
. (134)

To further bound (134), we will derive a bound for ∥diiui∥2, with dii given by (129). Letting x = [cos(ϕ), sin(ϕ), x2, x3]
⊤,

we observe from (47) that

P⊥
x =

 cos2(ϕ) sin(ϕ) cos(ϕ)
sin(ϕ) cos(ϕ) sin2(ϕ)

02×2

02×2 02×2


Therefore,

x⊤P⊥
x =

[
cos(ϕ)

(
cos2(ϕ) + sin2(ϕ)

)
, sin(ϕ)

(
cos2(ϕ) + sin2(ϕ)

)
, 0, 0

]
,

and simplifying with cos2(ϕ) + sin2(ϕ) = 1 yields

x⊤P⊥
x = [cos(ϕ), sin(ϕ), 0, 0] ,

which holds for all x ∈M. Now, letting x = [cos(ϕi), sin(ϕi), xi,2, xi,3]
⊤ and gij,i = [gi,0, gi,1, gi,2, gi,3]

⊤, we observe that

dii = P̃x⊤
i gij,i = diag ({gi,0 cos (ϕi) + gi,1 sin (ϕi) , gi,0 cos (ϕi) + gi,1 sin (ϕi) , 0, 0}) .

Then, letting ui = [ui,0, ui,1, ui,2, ui,3]
⊤, it holds that

diiui = [(gi,0 cos (ϕi) + gi,1 sin (ϕi))ui,0, (gi,0 cos (ϕi) + gi,1 sin (ϕi))ui,1, 0, 0]
⊤
,

which implies that

∥diiui∥2 =
√
u⊤i d

⊤
iidiiui =

√
(gi,0 cos (ϕi) + gi,1 sin (ϕi))

2 (
u2i,0 + u2i,1

)
. (135)

Now, because (133) implies that u2i,0 + u2i,1 ≤ 1 for all i, (135) simplifies to

∥diiui∥2 ≤ |gi,0 cos (ϕi) + gi,1 sin (ϕi)| ≤ |gi,0|+ |gi,1| , (136)

and applying (136) to (134) yields

∥Hi [U ]∥22 ≤
(
∥hii∥F + ∥hij∥F + |gi,0|+ |gi,1|

)2
. (137)

Furthermore, following the derivation of (137) for Hj [U ] and letting gij,j = [gj,0, gj,1, gj,2, gj,3]
⊤ yields

∥Hj [U ]∥22 ≤
(
∥hji∥F + ∥hjj∥F + |gj,0|+ |gj,1|

)2
. (138)

In Appendix J, we derive bounds for the Euclidean gradient terms appearing in (137) and (138), namely, |gi,0|, |gi,1|, |gj,0|,
and |gj,1| that hold for all X ∈ K ⊂MN , with K compact. Specifically, from (402) we have

|gi,0|+ |gi,1| ≤ 2ḡ and |gj,0|+ |gj,1| ≤ 2ḡ, (139)

with constant ḡ given by (400). Furthermore, in Appendix K, we derive bounds for the Euclidean Hessian terms appearing
in (137) and (138), namely, ∥hii∥F , ∥hij∥F , ∥hji∥F , and ∥hjj∥F , that also hold for all X ∈ K ⊂ MN , with K compact.



Specifically, (487) and (488) give

∥hii∥F , ∥hjj∥F ≤ hii ∥Ωij∥F (140)

∥hij∥F , ∥hji∥F ≤ hij ∥Ωij∥F , (141)

with hii and hij defined in (486) and (485). Applying (139) and (140)- (141) to (137) and (138) and substituting the result
into (128) yields

sup
{
∥Hess fij(X ) [U ]∥2 | U ∈ TXM, ∥U∥2 = 1

}
≤
√
2
((
hii + hij

)
∥Ωij∥F + 2g

)
,

and applying this to (130) and simplifying yields ∥HessF (X )∥2 ≤ Lg , with

Lg ≜
√
2
(
hii + hij

)
Ω+ 2Mg, (142)

where M = |E| and Ω ≜
∑

(i,j)∈E ∥Ωij∥F . Equation (142) gives a Lipschitz constant Lg satisfying (122) which holds for
all X ∈ K ⊂ MN , with K compact. Therefore, the Riemannian gradient from (92) is Lipschitz continuous on any compact
subset of MN , completing our derivation.

APPENDIX H
DERIVATION OF EUCLIDEAN GRADIENT JACOBIANS

As derived in Appendix E-A, The Jacobians of the tangent residual eij from (78) with respect to xi and xj , which
are necessary to compute the Euclidean gradient of F (X ), which is given by (98). In vector form, we denote xi =
[xi,0, xi,1, xi,2, xi,3]

⊤, xj = [xj,0, xj,1, xj,2, xj,3]
⊤, and eij = [e0, e1, e2]

⊤. In this appendix, we derive the Jacobian
matrices Aij ,Bij ∈ R3×4, with element-wise definitions given by

Aij =

 A11 · · · A14

...
. . .

...
A31 · · · A34

 =


∂e0
∂xi,0

· · · ∂e0
∂xi,3

...
. . .

...
∂e2
∂xi,0

· · · ∂e2
∂xi,3

 , Bij =

 B11 · · · B14
...

. . .
...

B31 · · · B34

 =


∂e0
∂xj,0

· · · ∂e0
∂xj,3

...
. . .

...
∂e2
∂xj,0

· · · ∂e2
∂xj,3

 .
We first rewrite eij in a manner that is conducive to differentiation with respect to xi and xj . Using (36)-(37), the residual
rij = z̃−1

ij ⊞ x−1
i ⊞ xj can be rewritten as two equivalent expressions, which are given by

rij = z̃−1
ij ⊞ x−1

i ⊞ xj = QR (xj)Q
−−
L (z̃ij)xi = Q−

LL (z̃ij)Q
−
LL (xi)xj . (143)

We now define Qi ≜ QR (xj)Q
−−
L (z̃ij) and Qj ≜ Q−

LL (z̃ij)Q
−
LL (xi), such that rij = Qixi = Qjxj , and write these

matrices in the form

Qi =


µi ωi 0 0
ηi κi 0 0
α1 β1 ξ1 ζ1
α2 β2 −ζ1 ξ1

 , Qj =


µj ωj 0 0
ηj κj 0 0
α3 β3 κj −ηj
β3 −α3 ηj κj

 , (144)

where the element-wise definitions for Qi are given by

µi ≜ z0xj,0 + z1xj,1, (145)

ωi ≜ −z1xj,0 + z0xj,1, (146)

ηi ≜ −z1xj,0 + z0xj,1, (147)

κi ≜ −z0xj,0 − z1xj,1, (148)

α1 ≜ −z2xj,0 − z3xj,1 + z0xj,2 + z1xj,3, (149)

β1 ≜ z3xj,0 − z2xj,1 − z1xj,2 + z0xj,3, (150)

ξ1 ≜ −z0xj,0 + z1xj,1, (151)

ζ1 ≜ −z1xj,0 − z0xj,1, (152)

α2 ≜ −z3xj,0 + z2xj,1 − z1xj,2 + z0xj,3 (153)

β2 ≜ −z2xj,0 − z3xj,1 − z0xj,2 − z1xj,3, (154)



and for Qj ,

µj ≜ z0xi,0 − z1xi,1, (155)

ωj ≜ z1xi,0 + z0xi,1, (156)

ηj ≜ −z1xi,0 − z0xi,1, (157)

κj ≜ z0xi,0 − z1xi,1, (158)

α3 ≜ −z2xi,0 + z3xi,1 − z0xi2 − z1xi,3, (159)

β3 ≜ −z3xi,0 − z2xi,1 + z1xi,2 − z0xi,3. (160)

Letting rij = [r0, r1, r2, r3]
⊤, we can substitute (143)-(144) to expand each term of rij as

r0 = µixi,0 + ωixi,1 = µjxj,0 + ωjxj,1 (161)
r1 = ηixi,0 + κixi,1 = ηjxj,0 + κjxj,1, (162)
r2 = α1xi,0 + β1xi,1 + ξ1xi,2 + ζ1xi,3 = α3xj,0 + β3xj,1 + κjxj,2 − ηjxj,3, (163)
r3 = α2xi,0 + β2xi,1 − ζ1xi,2 + ξ1xi,3 = β3xj,0 − α3xj,1 + ηjxj,2 + κjxj,3, (164)

which simplifies the calculation of ∂r
∂xl,m

for any entry rl of rij and any entry xl,m of xi,xj . From (11), letting γ ≜ γ (ϕ (rij))
yields the element-wise definitions of eij to begin

e0 =
r1
γ
, e1 =

r2
γ
, e2 =

r3
γ
. (165)

Before differentiating eij , we precompute a general form for partial derivatives of γ with respect to any entry xl,m of xi,xj .
Letting ϕ ≜ ϕ (rij) and applying the chain rule to (57) yields

∂γ

∂xl,m
=
∂γ

∂ϕ

∂ϕ

∂xl,m
. (166)

The term ∂γ
∂ϕ is computed by applying the quotient rule to differentiate (57), yielding

∂γ

∂ϕ
=

∂

∂ϕ

(
sin (ϕ)

ϕ

)
=
ϕ cos (ϕ)− sin (ϕ)

ϕ2
=
ϕr0 − r1
ϕ2

. (167)

Given the definition of ϕ from (58), applying the chain rule yields

∂ϕ

∂xl,m
=

∂ϕ

∂r0

∂r0
∂xl,m

+
∂ϕ

∂r1

∂r1
∂xl,m

. (168)

We now observe that in (58), ∂wrap(u)/∂u = 1 for all u ∈ (−π/2, π/2), and ϕ is continuously differentiable on (−π/2, π/2], with

∂

∂rl
(arctan (r1, r0)) =

∂

∂rl

(
arctan

(
r1
r0

))
,

where arctan(u/v) is the two-quadrant arctangent, so we have

∂ϕ

∂r0
= − r1

r20 + r21
,
∂ϕ

∂r1
=

r0
r20 + r21

. (169)

Substituting (169) into (168) then gives

∂ϕ

∂xl,m
=

(
1

r20 + r21

)(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
. (170)

Substituting (167) and (170) into (166) yields the general form for ∂γ
∂xl,m

to be

∂γ

∂xl,m
=

(
ϕr0 − r1
ϕ2

)(
1

r20 + r21

)(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
. (171)

Using (171), it is straightforward to further compute general forms for partial derivatives of eij with respect to xi,xj . For
example, applying the quotient rule to differentiate e0 from (165) with respect to any entry xl,m of xi,xj yields

∂e0
∂xl,m

=
∂

∂xl,m

(
r1
γ

)
=

∂r1
∂xl,m

γ − r1 ∂γ
∂xl,m

γ2
,



and substituting (171) and simplifying yields

∂e0
∂xl,m

=

∂r1
∂xl,m

γ
+

r1
r20 + r21

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)(
r1 − ϕr0
γ2ϕ2

)
,

which can be further simplified by the fact that γ2ϕ2 = sin2 (ϕ) = r21 . Applying this simplification gives the expression

∂e0
∂xl,m

=

∂r1
∂xl,m

γ
+

r1
r20 + r21

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)(
r1 − ϕr0

r21

)
. (172)

To simplify (172), we define the function f1 : R→ R as

f1 (ϕ) ≜
r1 − ϕr0

r21
=

sin (ϕ)− ϕ cos (ϕ)
sin2 (ϕ)

= csc2 (ϕ) (sin (ϕ)− ϕ cos (ϕ)) . (173)

Letting r0 = cos (ϕ) and r1 = sin (ϕ) yields the equivalence

r1 − ϕr0
r21

=
sin (ϕ)− ϕ cos (ϕ)

sin2 (ϕ)
= f1 (ϕ) . (174)

Letting f1 ≜ f1 (ϕ) and substituting (174) into (172) yields the general form for ∂e0
∂xl,m

to be

∂e0
∂xl,m

=

∂r1
∂xl,m

γ
+

r1
r20 + r21

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (175)

From (161), it is straightforward to compute the derivatives

∂r0
∂xi,0

= µi
∂r0
xi,1

= ωi,
∂r0
∂xi,2

=
∂r0
∂xi,3

= 0, (176)

and
∂r0
∂xj,0

= µj ,
∂r0
∂xj,1

= ωj ,
∂r0
∂xj,2

=
∂r0
∂xj,3

= 0,

Similarly, differentiating (162) gives

∂r1
∂xi,0

= ηi,
∂r1
∂xi,1

= κi,
∂r1
∂xi,2

=
∂r1
∂xi,3

= 0,

and
∂r1
∂xj,0

= ηj ,
∂r1
∂xj,1

= κj ,
∂r1
∂xj,2

=
∂r1
∂xj,3

= 0. (177)

Substituting (176)-(177) into the general form given by (175) yields A11-A14 and B11-B14 to be

A11 =
∂e0
∂xi,0

=
ηi
γ

+
r1

r20 + r21
(ηir0 − µir1) f1, (178)

A12 =
∂e0
∂xi,1

=
κi
γ

+
r1

r20 + r21
(κir0 − ωir1) f1, (179)

A13 =
∂e0
∂xi,2

= 0, (180)

A14 =
∂e0
∂xi,3

= 0, (181)

B11 =
∂e0
∂xj,0

=
ηj
γ

+
r1

r20 + r21
(ηjr0 − µjr1) f1, (182)

B12 =
∂e0
∂xj,1

=
κj
γ

+
r1

r20 + r21
(κjr0 − ωjr1) f1, (183)

B13 =
∂e0
∂xj,2

= 0,

B14 =
∂e0
∂xj,3

= 0. (184)



Because ∂e1
∂xl,m

has the same structure as ∂e0
∂xl,m

, its general form is computed to be

∂e1
∂xl,m

=
∂

∂xl,m

(
r2
γ

)
=

∂r2
∂xl,m

γ
+

r2
r20 + r21

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (185)

From (163), we have the derivatives

∂r2
xi,0

= α1,
∂r2
xi,1

= β1,
∂r2
xi,2

= ξ1,
∂r2
xi,3

= ζ1, (186)

and
∂r2
xj0

= α3,
∂r2
xj1

= β3,
∂r2
xj2

= κj ,
∂r2
xj3

= −ηj . (187)

The terms A21 −A24 and B21 − B24 are then computed by substituting (176)-(177) and (186)-(187) into (185), yielding

A21 =
∂e1
∂xi,0

=
α1

γ
+

r2
r20 + r21

(ηir0 − µir1) f1 (188)

A22 =
∂e1
∂xi,1

=
β1
γ

+
r2

r20 + r21
(κir0 − ωir1) f1 (189)

A23 =
∂e1
∂xi,2

=
ξ1
γ

(190)

A24 =
∂e1
∂xi,3

=
ζ1
γ

(191)

B21 =
∂e1
∂xj,0

=
α3

γ
+

r2
r20 + r21

(ηjr0 − µjr1) f1 (192)

B22 =
∂e1
∂xj,1

=
β3
γ

+
r2

r20 + r21
(κjr0 − ωjr1) f1 (193)

B23 =
∂e1
∂xj,2

=
κj
γ

(194)

B24 =
∂e1
∂xj,3

= −ηj
γ

(195)

The final derivative, ∂e2
∂xl,m

, also has the same structure as ∂e0
∂xl,m

, so its general form is given by

∂e2
∂xl,m

=
∂

∂xl,m

(
r3
γ

)
=

∂r3
∂xl,m

γ
+

r3
r20 + r21

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (196)

From equations (164), we have the derivatives

∂r3
xi,0

= α2,
∂r3
xi,1

= β2,
∂r3
xi,2

= −ζ1,
∂r3
xi,3

= ξ1, (197)

and
∂r3
xj,0

= β3,
∂r3
xj,1

= −α3,
∂r3
xj,2

= ηj ,
∂r3
xj,3

= κj . (198)



Finally, the terms A31 −A34 and B31 − B34 are computed by substituting (176)-(177) and (197)-(198) into (196), yielding

A31 =
∂e2
∂xi,0

=
α2

γ
+

r3
r20 + r21

(ηir0 − µir1) f1, (199)

A32 =
∂e2
∂xi,1

=
β2
γ

+
r3

r20 + r21
(κir0 − ωir1) f1, (200)

A33 =
∂e2
∂xi,2

= −ζ1
γ
, (201)

A34 =
∂e2
∂xi,3

=
ξ1
γ
, (202)

B31 =
∂e2
∂xj,0

=
β3
γ

+
r3

r20 + r21
(ηjr0 − µjr1) f1, (203)

B32 =
∂e2
∂xj,1

= −α3

γ
+

r3
r20 + r21

(κjr0 − ωjr1) f1, (204)

B33 =
∂e2
∂xj,2

=
ηj
γ
, (205)

B34 =
∂e2
∂xj,3

=
κj
γ
. (206)

which concludes the derivation of Jacobians Aij and Bij .

APPENDIX I
DERIVATION OF EUCLIDEAN HESSIAN TENSORS

Here we compute the quantities ∂
∂xi
Aij , ∂

∂xj
Aij , ∂

∂xi
Bij , and ∂

∂xj
Bij . Because we are differentiating a matrix in R3×4 with

respect to a vector in R4, each of these quantities represents a tensor in R3×4×4, in which the third dimension encodes the
index of a respective entry in xi or xj . We note that since further derivatives will not be taken, we are directly computing the
implementation form of each of the expressions in this section.

A. Partial Derivatives of Aij

We begin by deriving a general form for differentiating A11, which is given by (178), with respect to any entry xl,m of
xi,xj . We first separate the derivative as

∂A11

∂xl,m
=

∂

∂xl,m

(
ηi
γ

+
r1

r20 + r21
(ηir0 − µir1) f1

)
=

∂

∂xl,m

(
ηi
γ

)
+

∂

∂xl,m

(
r1

r20 + r21
(ηir0 − µir1) f1

)
. (207)

We first examine the left-hand derivative in equation (207). Applying the quotient rule yields

∂

∂xl,m

(
ηi
γ

)
=

1

γ2

(
∂ηi
∂xl,m

γ − ηi
∂γ

∂xl,m

)
. (208)

We now substitute (171) into (208) and simplify to obtain

∂

∂xl,m

(
ηi
γ

)
=

∂ηi

∂xl,m

γ
+

ηi
r20 + r21

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1.

Since we are solving for the implemention form directly, we can subtitute r20 + r21 = 1 into (208) to obtain

∂

∂xl,m

(
ηi
γ

)
=

∂ηi

∂xl,m

γ
+ ηi

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (209)

We now address the right-hand derivative from equation (207). Applying the product rule twice yields

∂

∂xl,m

(
r1

r20 + r21
(ηir0 − µir1) f1

)
=

∂

∂xl,m

(
r1

r20 + r21

)
(ηir0 − µir1) f1

+
r1

r20 + r21

∂

∂xl,m
(ηir0 − µir1) f1

+
r1

r20 + r21
(ηir0 − µir1)

∂f1
∂xl,m

. (210)



The expression given by (211) have three derivative terms, which we will now compute invidually. For the first term from the
top, applying the quotient rule and simplifying yields

∂

∂xl,m

(
r1

r20 + r21

)
=

∂r1
∂xl,m

r20 + r21
− 2

r1

(r20 + r21)
2

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

)
.

Applying the constraint equation r20 + r21 = 1 then yields

∂

∂xl,m

(
r1

r20 + r21

)
=

∂r1
∂xl,m

− 2r1

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

)
. (211)

For the second term from the top of (211), we simply distribute and apply the product rule, which gives

∂

∂xl,m
(ηir0 − µir1) = ηi

∂r0
∂xl,m

− µi
∂r1
∂xl,m

+
∂ηi
∂xl,m

r0 −
∂µi

∂xl,m
r1. (212)

To compute the third term, we apply the chain rule to write

∂f1
∂xl,m

=
∂f1
∂ϕ

∂ϕ

∂xl,m
, (213)

where ∂ϕ/∂xl,m is given by (170). For ∂f1/∂ϕ, with f1 given by (173), a combination of quotient, chain, and product rules and
trigonometric simplifications is applied to write

∂f1
∂ϕ

=
∂

∂ϕ

(
sin (ϕ)− ϕ cos (ϕ)

sin2 (ϕ)

)
=

(
1

sin4 (ϕ)

)(
∂

∂ϕ
(sin (ϕ)− ϕ cos (ϕ)) sin2 (ϕ)− (sin (ϕ)− ϕ cos (ϕ)) ∂

∂ϕ
sin2 (ϕ)

)
=

(
1

sin4 (ϕ)

)(
(ϕ sin (ϕ)) sin2 (ϕ)− (sin (ϕ)− ϕ cos (ϕ)) (2 sin (ϕ) cos (ϕ))

)
=

(
1

sin (ϕ)

)(
ϕ− 2

cos (ϕ)

sin (ϕ)
+ 2ϕ

cos2 (ϕ)

sin2 (ϕ)

)
= csc (ϕ)

(
ϕ− 2 cot (ϕ) + 2ϕ cot2 (ϕ)

)
.

We now define the function f2 : R→ R as

f2 (ϕ) ≜ csc (ϕ)
(
ϕ− 2 cot (ϕ) + 2ϕ cot2 (ϕ)

)
, (214)

so that ∂f1/∂ϕ = f2. Substituting equations (214) and (170) into equation (213) now gives

∂f1
∂xl,m

=

(
1

r20 + r21

)(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2, (215)

Substituting (211), (212), and (215) into equation (210), and letting r20 + r21 = 1 yields

∂

∂xl,m

(
r1

r20 + r21
(ηir0 − µir1) f1

)
=

(
∂r1
∂xl,m

− 2r1

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(ηir0 − µir1) f1

+ r1

(
∂r0
∂xl,m

ηi −
∂r1
∂xl,m

µi +
∂ηi
∂xl,m

r0 −
∂µi

∂xl,m
r1

)
f1

+ r1 (ηir0 − µir1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2 (216)

Finally, substituting (209) and (216) back into equation (207) and simplifying yields the general form for derivatives of A11

as

∂A11

∂xl,m
=

∂ηi

∂xl,m

γ
+

(
ηi

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r1
∂xl,m

− 2r1

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(ηir0 − µir1)

)
f1

+ r1

(
∂r0
∂xl,m

ηi −
∂r1
∂xl,m

µi +
∂ηi
∂xl,m

r0 −
∂µi

∂xl,m
r1

)
f1 + r1 (ηir0 − µir1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (217)



Now, from (147), it is straightforward to compute

∂ηi
∂xi,0

=
∂ηi
∂xi,1

=
∂ηi
∂xi,2

=
∂ηi
∂xi,3

= 0, (218)

and
∂ηi
∂xj,0

= −z1,
∂ηi
∂xj,1

= z0,
∂ηi
∂xj,2

=
∂ηi
∂xj,3

= 0.

From (145), we have
∂µi

∂xi,0
=

∂µi

∂xi,1
=

∂µi

∂xi,2
=

∂µi

∂xi,3
= 0,

and
∂µi

∂xj,0
= z0,

∂µi

∂xj,1
= z1,

∂µi

∂xj,2
=

∂µi

∂xj,3
= 0. (219)

Substituting equations (176)-(177) and (218)-(219) into (217) yields the following expressions for ∂A11/∂xl,m.

∂A11

∂xi,0
= 2 (ηi − r1 (µir0 + ηir1)) (ηir0 − µir1) f1 + r1 (ηir0 − µir1)

2
f2, (220)

∂A11

∂xi,1
= (ηi (κir0 − ωir1) + (κi − 2r1 (ωir0 + κir1)) (ηir0 − µir1) + r1) f1

+ r1 (ηir0 − µir1) (κir0 − ωir1) f2, (221)
∂A11

∂xi,2
=
∂A11

∂xi,3
= 0, (222)

∂A11

∂xj,0
=− z1

γ
+ (ηi (ηjr0 − µjr1) + (ηj − 2r1 (µjr0 + ηjr1)) (ηir0 − µir1)) f1

+ r1 (µjηi − ηjµi − z1r0 − z0r1) f1
+ r1 (ηir0 − µir1) (ηjr0 − µjr1) f2, (223)

∂A11

∂xj,1
=
z0
γ

+ (ηi (κjr0 − ωjr1) + (κj − 2r1 (ωjr0 + κjr1)) (ηir0 − µir1)) f1

+ r1 (ωjηi − κjµi + z0r0 − z1r1) f1
+ r1 (ηir0 − µir1) (κjr0 − ωjr1) f2, (224)

∂A11

∂xj,2
=
∂A11

∂xj,3
= 0, (225)

where we have additionally used the fact that

ωiηi − κiµi = cos (ϕj − ϕz)2 + sin (ϕj − ϕz)2 = 1 (226)

to simplify (221). Furthermore, since A12, which is given by (179), has identical structure to A11, the general form for its
partial derivatives is computed as

∂A12

∂xl,m
=

∂κi

∂xl,m

γ
+

(
κi

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r1
∂xl,m

− 2r1

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(κir0 − ωir1)

)
f1

+ r1

(
∂r0
∂xl,m

κi −
∂r1
∂xl,m

ωi +
∂κi
∂xl,m

r0 −
∂ωi

∂xl,m
r1

)
f1

+ r1 (κir0 − ωir1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (227)

From (148), it is straightforward to compute

∂κi
∂xi,0

=
∂κi
∂xi,1

=
∂κi
∂xi,2

=
∂κi
∂xi,3

= 0, (228)

and
∂κi
∂xj,0

= −z0,
∂κi
∂xj,1

= −z1,
∂κi
∂xj,2

=
∂κi
∂xj,3

= 0, (229)



and from (146)
∂ωi

∂xi,0
=

∂ωi

∂xi,1
=

∂ωi

∂xi,2
=

∂ωi

∂xi,3
= 0,

and
∂ωi

∂xj,0
= −z1,

∂ωi

∂xj,1
= z0,

∂ωi

∂xj,2
=

∂ωi

∂xj,3
= 0. (230)

Substituting equations (176)-(177) and (228)-(230) into (227) yields the following expressions for ∂A12/∂xl,m.

∂A12

∂xi,0
=(κi (ηir0 − µir1) + (ηi − 2r1 (µir0 + ηir1)) (κir0 − ωir1)− r1) f1

+ r1 (κir0 − ωir1) (ηir0 − µir1) f2, (231)
∂A12

∂xi,1
= 2 (κi − r1 (ωir0 + κir1)) (κir0 − ωir1) f1 + r1 (κir0 − ωir1)

2
f2, (232)

∂A12

∂xi,2
=
∂A12

∂xi,3
= 0, (233)

∂A12

∂xj,0
=− z0

γ
+ (κi (ηjr0 − µjr1) + (ηj − 2r1 (µjr0 + ηjr1)) (κir0 − ωir1)) f1

+ r1 (µjκi − ηjωi − z0r0 + z1r1) f1

+ r1 (κir0 − ωir1) (ηjr0 − µjr1) f2, (234)
∂A12

∂xj,1
=− z1

γ
+ (κi (κjr0 − ωjr1) + (κj − 2r1 (ωjr0 + κjr1)) (κir0 − ωir1)) f1

+ r1 (ωjκi − κjωi +−z1r0 − z0r1) f1
+ r1 (κir0 − ωir1) (κjr0 − ωjr1) f2, (235)

∂A12

∂xj,2
=
∂A12

∂xj,3
= 0, (236)

where we have used (226) to simplify (231). Because A13 = A14 = 0, we have

∂A13

∂xi,0
=
∂A13

∂xi,1
=
∂A13

∂xi,2
=
∂A13

∂xi,3
=
∂A13

∂xj,0
=
∂A13

∂xj,1
=
∂A13

∂xj,2
=
∂A13

∂xj,3
= 0, (237)

and
∂A14

∂xi,0
=
∂A14

∂xi,1
=
∂A14

∂xi,2
=
∂A14

∂xi,3
=
∂A14

∂xj,0
=
∂A14

∂xj,1
=
∂A14

∂xj,2
=
∂A14

∂xj,3
= 0. (238)

Because A21 from (188) again follows the same general structure as A11, the general form for its derivatives is given by

∂A21

∂xl,m
=

∂α1

∂xl,m

γ
+

(
α1

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r2
∂xl,m

− 2r2

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(ηir0 − µir1)

)
f1

+ r2

(
∂r0
∂xl,m

ηi −
∂r1
∂xl,m

µi +
∂ηi
∂xl,m

r0 −
∂µi

∂xl,m
r1

)
f1

+ r2 (ηir0 − µir1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (239)

From (149), it is straightforward to compute

∂α1

∂xi,0
=

∂α1

∂xi,1
=

∂α1

∂xi,2
=

∂α1

∂xi,3
= 0, (240)

and
∂α1

∂xj,0
= −z2,

∂α1

∂xj,1
= −z3,

∂α1

∂xj,2
= z0,

∂α1

∂xj,3
= z1. (241)



Substituting equations (176)-(177), (186)-(187), and (240)-(241) into (239) yields the following expressions for ∂A21/∂xl,m.

∂A21

∂xi,0
= 2 (α1 − r2 (µir0 + ηir1)) (ηir0 − µir1) f1 + r2 (ηir0 − µir1)

2
f2, (242)

∂A21

∂xi,1
=(α1 (κir0 − ωir1) + (β1 − 2r2 (ωir0 + κir1)) (ηir0 − µir1) + r2) f1

+ r2 (ηir0 − µir1) (κir0 − ωir1) f2, (243)
∂A21

∂xi,2
= ξ1 (ηir0 − µir1) f1, (244)

∂A21

∂xi,3
= ζ1 (ηir0 − µir1) f1, (245)

∂A21

∂xj,0
=− z2

γ
+ (α1 (ηjr0 − µjr1) + (α3 − 2r2 (µjr0 + ηjr1)) (ηir0 − µir1)) f1

+ r2 (µjηi − ηjµi − z1r0 − z0r1) f1
+ r2 (ηir0 − µir1) (ηjr0 − µjr1) f2, (246)

∂A21

∂xj,1
=− z3

γ
+ (α1 (κjr0 − ωjr1) + (β3 − 2r2 (ωjr0 + κjr1)) (ηir0 − µir1)) f1

+ r2 (ωjηi − κjµi + z0r0 − z1r1) f1
+ r2 (ηir0 − µir1) (κjr0 − ωjr1) f2, (247)

∂A21

∂xj,2
=
z0
γ

+ κj (ηir0 − µir1) f1,

∂A21

∂xj,3
=
z1
γ
− ηj (ηir0 − µir1) f1,

where we have used (226) to simplify (243). Because A22 from (189) again follows the same general structure as A11, the
general form for its derivatives is given by

∂A22

∂xl,m
=

∂β1

∂xl,m

γ
+

(
β1

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r2
∂xl,m

− 2r2

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(κir0 − ωir1)

)
f1

+ r2

(
κi

∂r0
∂xl,m

− ωi
∂r1
∂xl,m

+
∂κi
∂xl,m

r0 −
∂ωi

∂xl,m
r1

)
f1

+ r2 (κir0 − ωir1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2.

From (150), it is straightforward to compute

∂β1
∂xi,0

=
∂β1
∂xi,1

=
∂β1
∂xi,2

=
∂β1
∂xi,3

= 0, (248)

and
∂β1
∂xj,0

= z3,
∂β1
∂xj,1

= −z2,
∂β1
∂xj,2

= −z1,
∂β1
∂xj,3

= z0. (249)



Substituting equations (176)-(177), (186)-(187), and (248)-(249) into (239) yields the following expressions for ∂A22/∂xl,m.

∂A22

∂xi,0
=(β1 (ηir0 − µir1) + (α1 − 2r2 (µir0 + ηir1)) (κir0 − ωir1)− r2) f1

+ r2 (κir0 − ωir1) (ηir0 − µir1) f2, (250)
∂A22

∂xi,1
= 2 (β1 − r2 (ωir0 + κir1)) (κir0 − ωir1) f1 + r2 (κir0 − ωir1)

2
f2,

∂A22

∂xi,2
= ξ1 (κir0 − ωir1) f1, (251)

∂A22

∂xi,3
= ζ1 (κir0 − ωir1) f1, (252)

∂A22

∂xj,0
=
z3
γ

+ (β1 (ηjr0 − µjr1) + (α3 − 2r2 (µjr0 + ηjr1)) (κir0 − ωir1)) f1

+ r2 (κiµj − ωiηj − z0r0 + z1r1) f1

+ r2 (κir0 − ωir1) (ηjr0 − µjr1) f2, (253)
∂A22

∂xj,1
=− z2

γ
+ (β1 (κjr0 − ωjr1) + (β3 − 2r2 (ωjr0 + κjr1)) (κir0 − ωir1)) f1

+ r2 (κiωj − ωiκj − z1r0 − z0r1) f1
+ r2 (κir0 − ωir1) (κjr0 − ωjr1) f2, (254)

∂A22

∂xj,2
=− z1

γ
+ κj (κir0 − ωir1) f1, (255)

∂A22

∂xj,3
=
z0
γ
− ηj (κir0 − ωir1) f1, (256)

where we have again used (226) to simplify (250). To compute derivatives of A23, which is given by (190), we follow the
derivation of (209) to derive the general form

∂A23

∂xl,m
=

∂ξ1
∂xl,m

γ
+ ξ1

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (257)

From (151), we have
∂ξ1
∂xi,0

=
∂ξ1
∂xi,1

=
∂ξ1
∂xi,2

=
∂ξ1
∂xi,3

= 0, (258)

and
∂ξ1
∂xj,0

= −z0,
∂ξ1
∂xj,1

= z1,
∂ξ1
∂xj,2

=
∂ξ1
∂xj,3

= 0. (259)

Substituting equations (176)-(177) and (258)-(259) into (257) yields the following expressions for ∂A23/∂xl,m.

∂A23

∂xi,0
= ξ1 (ηir0 − µir1) f1, (260)

∂A23

∂xi,1
= ξ1 (κir0 − ωir1) f1, (261)

∂A23

∂xi,2
=
∂A23

∂xi,3
= 0, (262)

∂A23

∂xj,0
= −z0

γ
+ ξ1 (ηjr0 − µjr1) f1, (263)

∂A23

∂xj,1
=
z1
γ

+ ξ1 (κjr0 − ωjr1) f1, (264)

∂A23

∂xj,2
=
∂A23

∂xj,3
= 0, (265)

Similarly, the general form for derivatives of A24 from (191) is given by

∂A24

∂xl,m
=

∂ζ1
∂xl,m

γ
+ ζ1

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (266)



From (152), we have
∂ζ1
∂xi,0

=
∂ζ1
∂xi,1

=
∂ζ1
∂xi,2

=
∂ζ1
∂xi,3

= 0, (267)

and
∂ζ1
∂xj,0

= −z1,
∂ζ1
∂xj,1

= −z0,
∂ζ1
∂xj,2

=
∂ζ1
∂xj,3

= 0. (268)

Substituting equations (176)-(177) and (267)-(268) into (266) yields the following expressions for ∂A24/∂xl,m.

∂A24

∂xi,0
= ζ1 (ηir0 − µir1) f1, (269)

∂A24

∂xi,1
= ζ1 (κir0 − ωir1) f1, (270)

∂A24

∂xi,2
=
∂A24

∂xi,3
= 0, (271)

∂A24

∂xj,0
= −z1

γ
+ ζ1 (ηjr0 − µjr1) f1, (272)

∂A24

∂xj,1
= −z0

γ
+ ζ1 (κjr0 − ωjr1) f1, (273)

∂A24

∂xj,2
=
∂A24

∂xj,3
= 0, (274)

Again following a similar derivation to (217), the general form for derivatives of A31 from (199) is derived to be

∂A31

∂xl,m
=

∂α2

∂xl,m

γ
+

(
α2

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r3
∂xl,m

− 2r3

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(ηir0 − µir1)

)
f1

+ r3

(
ηi

∂r0
∂xl,m

− µi
∂r1
∂xl,m

+
∂ηi
∂xl,m

r0 −
∂µi

∂xl,m
r1

)
f1

+ r3 (ηir0 − µir1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (275)

From (153), it is straightforward to compute

∂α2

∂xi,0
=

∂α2

∂xi,1
=

∂α2

∂xi,2
=

∂α2

∂xi,3
= 0, (276)

and
∂α2

∂xj,0
= −z3,

∂α2

∂xj,1
= z2,

∂α2

∂xj,2
= −z1,

∂α2

∂xj,3
= z0. (277)



Substituting equations (176)-(177), (197)-(198), and (276)-(277) into (275) yields the following expressions for ∂A22/∂xl,m.

∂A31

∂xi,0
= 2 (α2 − r3 (µir0 + ηir1)) (ηir0 − µir1) f1 + r3 (ηir0 − µir1)

2
f2, (278)

∂A31

∂xi,1
=(α2 (κir0 − ωir1) + (β2 − 2r3 (ωir0 + κir1)) (ηir0 − µir1) + r3) f1

+ r3 (ηir0 − µir1) (κir0 − ωir1) f2, (279)
∂A31

∂xi,2
=− ζ1 (ηir0 − µir1) f1, (280)

∂A31

∂xi,3
= ξ1 (ηir0 − µir1) f1, (281)

∂A31

∂xj,0
=− z3

γ
+ (α2 (ηjr0 − µjr1) + (β3 − 2r3 (µjr0 + ηjr1)) (ηir0 − µir1)) f1

+ r3 (ηiµj − µiηj − z1r0 − z0r1) f1
+ r3 (ηir0 − µir1) (ηjr0 − µjr1) f2, (282)

∂A31

∂xj,1
=
z2
γ

+ (α2 (κjr0 − ωjr1)− (α3 + 2r3 (ωjr0 + κjr1)) (ηir0 − µir1)) f1

+ r3 (ηiωj − µiκj + z0r0 − z1r1) f1
+ r3 (ηir0 − µir1) (κjr0 − ωjr1) f2, (283)

∂A31

∂xj,2
=− z1

γ
+ ηj (ηir0 − µir1) f1, (284)

∂A31

∂xj,3
=
z0
γ

+ κj (ηir0 − µir1) f1, (285)

where we have again used (226) to simplify (279). Again following a similar derivation to (217), the general form for derivatives
of A32 from (200) is derived to be

∂A32

∂xl,m
=

∂β2

∂xl,m

γ
+

(
β2

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r3
∂xl,m

− 2r3

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(κir0 − ωir1)

)
f1

+ r3

(
∂r0
∂xl,m

κi −
∂r1
∂xl,m

ωi +
∂κi
∂xl,m

r0 −
∂ωi

∂xl,m
r1

)
f1

+ r3 (κir0 − ωir1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2 (286)

From (154), it is straightforward to compute

∂β2
∂xi,0

=
∂β2
∂xi,1

=
∂β2
∂xi,2

=
∂β2
∂xi,3

= 0, (287)

and
∂β2
∂xj,0

= −z2,
∂β2
∂xj,1

= −z3,
∂β2
∂xj,2

= −z0,
∂β2
∂xj,3

= −z1. (288)



Substituting equations (176)-(177), (197)-(198), and (287)-(288) into (286) yields the following expressions for ∂A32/∂xl,m.

∂A32

∂xi,0
=(β2 (ηir0 − µir1) + (α2 − 2r3 (µir0 + ηir1)) (κir0 − ωir1)− r3) f1

+ r3 (κir0 − ωir1) (ηir0 − µir1) f2, (289)
∂A32

∂xi,1
=2 (β2 − r3 (ωir0 + κir1)) (κir0 − ωir1) f1 + r3 (κir0 − ωir1)

2
f2,

∂A32

∂xi,2
=− ζ1 (κir0 − ωir1) f1, (290)

∂A32

∂xi,3
=ξ1 (κir0 − ωir1) f1, (291)

∂A32

∂xj,0
=− z2

γ
+ (β2 (ηjr0 − µjr1) + (β3 − 2r3 (µjr0 + ηjr1)) (κir0 − ωir1)) f1

+ r3 (κiµj − ωiηj − z0r0 + z1r1) f1

+ r3 (κir0 − ωir1) (ηjr0 − µjr1) f2, (292)
∂A32

∂xj,1
=− z3

γ
+ (β2 (κjr0 − ωjr1)− (α3 + 2r3 (ωjr0 + κjr1)) (κir0 − ωir1)) f1

+ r3 (κiωj − ωiκj − z1r0 − z0r1) f1
+ r3 (κir0 − ωir1) (κjr0 − ωjr1) f2, (293)

∂A32

∂xj,2
=− z0

γ
+ ηj (κir0 − ωir1) f1, (294)

∂A32

∂xj,3
=− z1

γ
+ κj (κir0 − ωir1) f1, (295)

where we have again used (226) to simplify (289). To compute derivatives of A33 from (201), we again follow the derivation
of (209) to derive the general form

∂A33

∂xl,m
= −

∂ζ1
∂xl,m

γ
− ζ1

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1 (296)

Substituting equations (176)-(177) and (267)-(268) into (296) yields the following expressions for ∂A33/∂xl,m.

∂A33

∂xi,0
= −ζ1 (ηir0 − µir1) f1, (297)

∂A33

∂xi,1
= −ζ1 (κir0 − ωir1) f1, (298)

∂A33

∂xi,2
=
∂A33

∂xi,3
= 0, (299)

∂A33

∂xj,0
=
z1
γ
− ζ1 (ηjr0 − µjr1) f1, (300)

∂A33

∂xj,1
=
z0
γ
− ζ1 (κjr0 − ωjr1) f1, (301)

∂A33

∂xj,2
=
∂A33

∂xj,3
= 0. (302)

Similarly, the general form for derivatives of A34 from (202) is given by

∂A34

∂xl,m
=

∂ξ1
∂xl,m

γ
+ ξ1

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1 (303)



Substituting equations (176)-(177) and (258)-(259) into (303) yields the following expressions for ∂A34/∂xl,m.

∂A34

∂xi,0
= ξ1 (ηir0 − µir1) f1, (304)

∂A34

∂xi,1
= ξ1 (κir0 − ωir1) f1, (305)

∂A34

∂xi,2
=
∂A34

∂xi,3
= 0, (306)

∂A34

∂xj,0
= −z0

γ
+ ξ1 (ηjr0 − µjr1) f1, (307)

∂A34

∂xj,1
=
z1
γ

+ ξ1 (κjr0 − ωjr1) f1, (308)

∂A34

∂xj,2
=
∂A34

∂xj,3
= 0. (309)

B. Partial Derivatives of Bij
Partial derivatives of Bij with respect to x ∈ xi,xj are computed in a similar manner. For example, following the derivation

from equations (207)-(217) with respect to the structure of B11 from (182), the general form for its derivatives is given by

∂B11
∂xl,m

=

∂ηj

∂xl,m

γ
+

(
ηj

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r1
∂xl,m

− 2r1

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(ηjr0 − µjr1)

)
f1

+ r1

(
∂r0
∂xl,m

ηj −
∂r1
∂xl,m

µj +
∂ηj
∂xl,m

r0 −
∂µj

∂xl,m
r1

)
f1 + r1 (ηjr0 − µjr1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (310)

From (157), it is straightforward to compute

∂ηj
∂xi,0

= −z1,
∂ηj
∂xi,1

= −z0,
∂ηj
∂xi,2

=
∂ηj
∂xi,3

= 0, (311)

and
∂ηj
∂xj,0

=
∂ηj
∂xj,1

=
∂ηj
∂xj,2

=
∂ηj
∂xj,3

= 0, (312)

and from (155), we have
∂µj

∂xi,0
= z0,

∂µj

∂xi,1
= −z1,

∂µj

∂xi,2
=

∂µj

∂xi,3
= 0,

and
∂µj

∂xj,0
=

∂µj

∂xj,1
=

∂µj

∂xj,2
=

∂µj

∂xj,3
= 0, (313)

Substituting equations (176)-(177) and (311)-(313) into (310) yields the following expressions for ∂B11/∂xl,m.

∂B11
∂xi,0

=− z1
γ

+ (ηj (ηir0 − µir1) + (ηi − 2r1 (µir0 + ηir1)) (ηjr0 − µjr1)) f1

+ r1 (µiηj − ηiµj − z1r0 − z0r1) f1 + r1 (ηjr0 − µjr1) (ηir0 − µir1) f2,

∂B11
∂xi,1

=− z0
γ

+ (ηj (κir0 − ωir1) + (κi − 2r1 (ωir0 + κir1)) (ηjr0 − µjr1)) f1

+ r1 (ωiηj − κiµj − z0r0 + z1r1) f1 + r1 (ηjr0 − µjr1) (κir0 − ωir1) f2,

∂B11
∂xi,2

=
∂B11
∂xi,3

= 0,

∂B11
∂xj,0

= 2 (ηj − r1 (µjr0 + ηjr1)) (ηjr0 − µjr1) f1 + r1 (ηjr0 − µjr1)
2
f2,

∂B11
∂xj,1

=(ηj (κjr0 − ωjr1) + (κj − 2r1 (ωjr0 + κjr1)) (ηjr0 − µjr1)− r1) f1

+ r1 (ηjr0 − µjr1) (κjr0 − ωjr1) f2, (314)
∂B11
∂xj,2

=
∂B11
∂xj,3

= 0,



where we have used the fact that

µjκj − ηjωj = sin2 (ϕi + ϕz) + cos2 (ϕi + ϕz) = 1 (315)

to simplify (314). Furthermore, since B12 from (183) has identical structure to B11, the general form for its partial derivatives
is computed as

∂B12
∂xl,m

=

∂κj

∂xl,m

γ
+

(
κj

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r1
∂xl,m

− 2r1

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(κjr0 − ωjr1)

)
f1

+ r1

(
∂r0
∂xl,m

κj −
∂r1
∂xl,m

ωj +
∂κj
∂xl,m

r0 −
∂ωj

∂xl,m
r1

)
f1 + r1 (κjr0 − ωjr1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (316)

From (158), it is straightforward to compute

∂κj
∂xi,0

= z0,
∂κj
∂xi,1

= −z1,
∂κj
∂xi,2

=
∂κj
∂xi,3

= 0, (317)

and
∂κj
∂xj,0

=
∂κj
∂xj,1

=
∂κj
∂xj,2

=
∂κj
∂xj,3

= 0, (318)

and from (156), we have
∂ωj

∂xi,0
= z1,

∂ωj

∂xi,1
= z0,

∂ωj

∂xi,2
=

∂ωj

∂xi,3
= 0,

and
∂ωj

∂xj,0
=

∂ωj

∂xj,1
=

∂ωj

∂xj,2
=

∂ωj

∂xj,3
= 0, (319)

Substituting equations (176)-(177) and (317)-(319) into (316) yields the following expressions for ∂B12/∂xl,m.

∂B12
∂xi,0

=
z0
γ

+ (κj (ηir0 − µir1) + (ηi − 2r1 (µir0 + ηir1)) (κjr0 − ωjr1)) f1

+ r1 (µiκj − ηiωj + z0r0 − z1r1) f1 + r1 (κjr0 − ωjr1) (ηir0 − µir1) f2,

∂B12
∂xi,1

=− z1
γ

+ (κj (κir0 − ωir1) + (κi − 2r1 (ωir0 + κir1)) (κjr0 − ωjr1)) f1

+ r1 (ωiκj − κiωj − z1r0 − z0r1) f1 + r1 (κjr0 − ωjr1) (κir0 − ωir1) f2,

∂B12
∂xi,2

=
∂B12
∂xi,3

= 0,

∂B12
∂xj,0

=(κj (ηjr0 − µjr1) + (ηj − 2r1 (µjr0 + ηjr1)) (κjr0 − ωjr1) + r1) f1

+ r1 (κjr0 − ωjr1) (ηjr0 − µjr1) f2, (320)
∂B12
∂xj,1

= 2 (κj − r1 (ωjr0 + κjr1)) (κjr0 − ωjr1) f1 + r1 (κjr0 − ωjr1)
2
f2,

∂B12
∂xj,2

=
∂B12
∂xj,3

= 0,

where we have again used (315) to simplify (320). Because B13 = B14 = 0, we have

∂B13
∂xi,0

=
∂B13
∂xi,1

=
∂B13
∂xi,2

=
∂B13
∂xi,3

=
∂B13
∂xj,0

=
∂B13
∂xj,1

=
∂B13
∂xj,2

=
∂B13
∂xj,3

= 0,

and
∂B14
∂xi,0

=
∂B14
∂xi,1

=
∂B14
∂xi,2

=
∂B14
∂xi,3

=
∂B14
∂xj,0

=
∂B14
∂xj,1

=
∂B14
∂xj,2

=
∂B14
∂xj,3

= 0.

Because B21 from (192) again follows the same general structure as B11, the general form for its derivatives is given by

∂B21
∂xl,m

=

∂α3

∂xl,m

γ
+

(
α3

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r2
∂xl,m

− 2r2

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(ηjr0 − µjr1)

)
f1

+ r2

(
∂r0
∂xl,m

ηj −
∂r1
∂xl,m

µj +
∂ηj
∂xl,m

r0 −
∂µj

∂xl,m
r1

)
f1 + r2 (ηjr0 − µjr1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (321)



From (159), it is straightforward to compute

∂α3

∂xi,0
= −z2,

∂α3

∂xi,1
= z3,

∂α3

∂xi,2
= −z0,

∂α3

∂xi,3
= −z1, (322)

and
∂α3

∂xj,0
=

∂α3

∂xj,1
=

∂α3

∂xj,2
=

∂α3

∂xj,3
= 0. (323)

Substituting equations (176)-(177), (186)-(187), and (322)-(323) into (321) yields the following expressions for ∂B21/∂xl,m.

∂B21
∂xi,0

=− z2
γ

+ (α3 (ηir0 − µir1) + (α1 − 2r2 (µir0 + ηir1)) (ηjr0 − µjr1)) f1

+ r2 (µiηj − ηiµj − z1r0 − z0r1) f1 + r2 (ηjr0 − µjr1) (ηir0 − µir1) f2,

∂B21
∂xi,1

=
z3
γ

+ (α3 (κir0 − ωir1) + (β1 − 2r2 (ωir0 + κir1)) (ηjr0 − µjr1)) f1

+ r2 (ωiηj − κiµj − z0r0 + z1r1) f1 + r2 (ηjr0 − µjr1) (κir0 − ωir1) f2,

∂B21
∂xi,2

=− z0
γ

+ ξ1 (ηjr0 − µjr1) f1,

∂B21
∂xi,3

=− z1
γ

+ ζ1 (ηjr0 − µjr1) f1,

∂B21
∂xj,0

= 2 (α3 − r2 (µjr0 + ηjr1)) (ηjr0 − µjr1) f1 + r2 (ηjr0 − µjr1)
2
f2,

∂B21
∂xj,1

=(α3 (κjr0 − ωjr1) + (β3 − 2r2 (ωjr0 + κjr1)) (ηjr0 − µjr1)− r2) f1

+ r2 (ηjr0 − µjr1) (κjr0 − ωjr1) f2, (324)
∂B21
∂xj,2

= κj (ηjr0 − µjr1) f1,

∂B21
∂xj,3

=− ηj (ηjr0 − µjr1) f1,

where we have again used (315) to simplify (324). Because B22 from (193) again follows the same general structure as B11,
the general form for its derivatives is given by

∂B22
∂xl,m

=

∂β3

∂xl,m

γ
+

(
β3

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r2
∂xl,m

− 2r2

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(κjr0 − ωjr1)

)
f1

+ r2

(
∂r0
∂xl,m

κj −
∂r1
∂xl,m

ωj +
∂κj
∂xl,m

r0 −
∂ωj

∂xl,m
r1

)
f1 + r2 (κjr0 − ωjr1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (325)

From (160), it is straightforward to compute

∂β3
∂xi,0

= −z3,
∂β3
∂xi,1

= −z2,
∂β3
∂xi,2

= z1,
∂β3
∂xi,3

= −z0, (326)

and
∂β3
∂xj,0

=
∂β3
∂xj,1

=
∂β3
∂xj,2

=
∂β3
∂xj,3

= 0. (327)



Substituting equations (176)-(177), (186)-(187), and (326)-(327) into (325) yields the following expressions for ∂B22/∂xl,m.

∂B22
∂xi,0

=− z3
γ

+ (β3 (ηir0 − µir1) + (α1 − 2r2 (µir0 + ηir1)) (κjr0 − ωjr1)) f1

+ r2 (µiκj − ηiωj + z0r0 − z1r1) f1 + r2 (κjr0 − ωjr1) (ηir0 − µir1) f2,

∂B22
∂xi,1

=− z2
γ

+ (β3 (κir0 − ωir1) + (β1 − 2r2 (ωir0 + κir1)) (κjr0 − ωjr1)) f1

+ r2 (ωiκj − κiωj − z1r0 − z0r1) f1 + r2 (κjr0 − ωjr1) (κir0 − ωir1) f2,

∂B22
∂xi,2

=
z1
γ

+ ξ1 (κjr0 − ωjr1) f1,

∂B22
∂xi,3

=− z0
γ

+ ζ1 (κjr0 − ωjr1) f1,

∂B22
∂xj,0

=(β3 (ηjr0 − µjr1) + (α3 − 2r2 (µjr0 + ηjr1)) (κjr0 − ωjr1) + r2) f1

+ r2 (κjr0 − ωjr1) (ηjr0 − µjr1) f2, (328)
∂B22
∂xj,1

=2 (β3 − r2 (ωjr0 + κjr1)) (κjr0 − ωjr1) f1 + r2 (κjr0 − ωjr1)
2
f2,

∂B22
∂xj,2

=κj (κjr0 − ωjr1) f1,

∂B22
∂xj,3

=− ηj (κjr0 − ωjr1) f1,

where we have again used (315) to simplify (328). To compute derivatives of B23 from (194), we follow the derivation of (209)
to derive the general form

∂B23
∂xl,m

=

∂κj

∂xl,m

γ
+ κj

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (329)

Substituting equations (176)-(177) and (228)-(229) into (329) yields the following expressions for ∂B23/∂xl,m.

∂B23
∂xi,0

=
z0
γ

+ κj (ηir0 − µir1) f1,

∂B23
∂xi,1

= −z1
γ

+ κj (κir0 − ωir1) f1,

∂B23
∂xi,2

=
∂B23
∂xi,3

= 0,

∂B23
∂xj,0

= κj (ηjr0 − µjr1) f1,

∂B23
∂xj,1

= κj (κjr0 − ωjr1) f1,

∂B23
∂xj,2

=
∂B23
∂xj,3

= 0.

Derivatives of B24 from (195) again follow the derivation of (209), allowing us to derive the general form

∂B24
∂xl,m

= −
∂ηj

∂xl,m

γ
− ηj

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1.



Substituting equations (176)-(177) and (311)-(312) into (329) yields the following expressions for ∂B24/∂xl,m.

∂B24
∂xi,0

=
z1
γ
− ηj (ηir0 − µir1) f1,

∂B24
∂xi,1

=
z0
γ
− ηj (κir0 − ωir1) f1,

∂B24
∂xi,2

=
∂B24
∂xi,3

= 0,

∂B24
∂xj,0

= −ηj (ηjr0 − µjr1) f1,

∂B24
∂xj,1

= −ηj (κjr0 − ωjr1) f1,

∂B24
∂xj,2

=
∂B24
∂xj,3

= 0.

Since B31 from (203) matches the structure of A11, its general form is given by

∂B31
∂xl,m

=

∂β3

∂xl,m

γ
+

(
β3

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r3
∂xl,m

− 2r3

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(ηjr0 − µjr1)

)
f1

+ r3

(
∂r0
∂xl,m

ηj −
∂r1
∂xl,m

µj +
∂ηj
∂xl,m

r0 −
∂µj

∂xl,m
r1

)
f1 + r3 (ηjr0 − µjr1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (330)

Substituting equations (176)-(177), (197)-(198), (311)-(313), and (326)-(327) into (330) yields the following expressions for
∂B31/∂xl,m.

∂B31
∂xi,0

= −z3
γ

+ (β3 (ηir0 − µir1) + (α2 − 2r3 (µir0 + ηir1)) (ηjr0 − µjr1)) f1

+ r3 (µiηj − ηiµj − z1r0 − z0r1) f1 + r3 (ηjr0 − µjr1) (ηir0 − µir1) f2,

∂B31
∂xi,1

= −z2
γ

+ (β3 (κir0 − ωjr1) + (β2 − 2r3 (ωjr0 + κir1)) (ηjr0 − µjr1)) f1

+ r3 (ωjηj − κiµj − z0r0 + z1r1) f1 + r3 (ηjr0 − µjr1) (κir0 − ωjr1) f2,

∂B31
∂xi,2

=
z1
γ
− ζ1 (ηjr0 − µjr1) f1,

∂B31
∂xi,3

= −z0
γ

+ ξ1 (ηjr0 − µjr1) f1,

∂B31
∂xj,0

= 2 (β3 − r3 (µjr0 + ηjr1)) (ηjr0 − µjr1) f1 + r3 (ηjr0 − µjr1)
2
f2,

∂B31
∂xj,1

= (β3 (κjr0 − ωjr1)− (α3 + 2r3 (ωjr0 + κjr1)) (ηjr0 − µjr1)− r3) f1

+ r3 (ηjr0 − µjr1) (κjr0 − ωjr1) f2, (331)
∂B31
∂xj,2

= ηj (ηjr0 − µjr1) f1,

∂B31
∂xj,3

= κj (ηjr0 − µjr1) f1,

where we have again used (315) to simplify (331). B32 from (204) also matches the structure of A11, so its general form is
given by

∂B32
∂xl,m

=−
∂α3

∂xl,m

γ
+

(
−α3

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
+

(
∂r3
∂xl,m

− 2r3

(
∂r0
∂xl,m

r0 +
∂r1
∂xl,m

r1

))
(κjr0 − ωjr1)

)
f1

+ r3

(
∂r0
∂xl,m

κj −
∂r1
∂xl,m

ωj +
∂κj
∂xl,m

r0 −
∂ωj

∂xl,m
r1

)
f1 + r3 (κjr0 − ωjr1)

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f2. (332)



Substituting equations (176)-(177), (197)-(198), (317)-(319), and (322)-(323) into (332) yields the following expressions for
∂B32/∂xl,m.

∂B32
∂xi,0

=
z2
γ

+ (−α3 (ηir0 − µir1) + (α2 − 2r3 (µir0 + ηir1)) (κjr0 − ωjr1)) f1

+ r3 (µiκj − ηiωj + z0r0 − z1r1) f1 + r3 (κjr0 − ωjr1) (ηir0 − µir1) f2,

∂B32
∂xi,1

=− z3
γ

+ (−α3 (κir0 − ωjr1) + (β2 − 2r3 (ωjr0 + κir1)) (κjr0 − ωjr1)) f1

+ r3 (ωjκj − κiωj − z1r0 − z0r1) f1 + r3 (κjr0 − ωjr1) (κir0 − ωjr1) f2,

∂B32
∂xi,2

=
z0
γ
− ζ1 (κjr0 − ωjr1) f1,

∂B32
∂xi,3

=
z1
γ

+ ξ1 (κjr0 − ωjr1) f1,

∂B32
∂xj,0

=(−α3 (ηjr0 − µjr1) + (β3 − 2r3 (µjr0 + ηjr1)) (κjr0 − ωjr1) + r3) f1

+ r3 (κjr0 − ωjr1) (ηjr0 − µjr1) f2, (333)
∂B32
∂xj,1

=− 2 (α3 + r3 (ωjr0 + κjr1)) (κjr0 − ωjr1) f1 + r3 (κjr0 − ωjr1)
2
f2,

∂B32
∂xj,2

=ηj (κjr0 − ωjr1) f1,

∂B32
∂xj,3

=κj (κjr0 − ωjr1) f1,

where we have again used (315) to simplify (333). Derivatives of B33 from (205) follow the derivation of (209), allowing us
to derive the general form

∂B33
∂xl,m

=

∂ηj

∂xl,m

γ
+ ηj

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (334)

Substituting equations (176)-(177) and (311)-(312) into (334) yields the following expressions for ∂B33/∂xl,m.

∂B33
∂xi,0

= −z1
γ

+ ηj (ηir0 − µir1) f1,

∂B33
∂xi,1

= −z0
γ

+ ηj (κir0 − ωir1) f1,

∂B33
∂xi,2

=
∂B33
∂xi,3

= 0,

∂B33
∂xj,0

= ηj (ηjr0 − µjr1) f1,

∂B33
∂xj,1

= ηj (κjr0 − ωjr1) f1,

∂B33
∂xj,2

=
∂B33
∂xj,3

= 0.

Derivatives of B34 from (206) again follow the derivation of (209), yielding the general form

∂B34
∂xl,m

=

∂κj

∂xl,m

γ
+ κj

(
∂r1
∂xl,m

r0 −
∂r0
∂xl,m

r1

)
f1. (335)



Substituting equations (176)-(177) and (317)-(318) into (335) yields the following expressions for ∂B34/∂xl,m.

∂B34
∂xi,0

=
z0
γ

+ κj (ηir0 − µir1) f1,

∂B34
∂xi,1

= −z1
γ

+ κj (κir0 − ωir1) f1,

∂B34
∂xi,2

=
∂B34
∂xi,3

= 0,

∂B34
∂xj,0

= κj (ηjr0 − µjr1) f1,

∂B34
∂xj,1

= κj (κjr0 − ωjr1) f1,

∂B34
∂xj,2

=
∂B34
∂xj,3

= 0,

concluding the derivation of Hessian tensors ∂
∂xi
Aij , ∂

∂xj
Aij , ∂

∂xi
Bij , and ∂

∂xj
Bij .

APPENDIX J
DERIVATION OF EUCLIDEAN GRADIENT BOUNDS

In this appendix, we derive bounds for components of the Euclidean gradient that are necessary for the proof of Lipschitz
continuity of the Riemannian gradient in Appendix G. Specifically, we show that ∥eij∥2, ∥Aij∥F , and ∥Bij∥F are bounded
for all (i, j) ∈ E , given that X ∈ K, where K is a compact subset of MN . We begin by providing preliminary derivations that
will serve as a reference for the subsequent analysis in this appendix as well as in Appendix K.

A. Preliminaries

For reference, we first include definitions for the Frobenius norm and matrix 2-norm. Given a matrix A ∈ Rn×m with entries
aij , the Frobenius norm of A, denoted ∥A∥F , is computed as

∥A∥F =

√√√√ n∑
i=1

m∑
j=1

|aij |2. (336)

The matrix 2-norm of A, denoted ∥A∥2, is given by

∥A∥2 =
√
λmax(A⊤A), (337)

where λmax(·) denotes the maximum eigenvalue of a matrix. We now define the notion of the Euclidean norm, denoted ∥ · ∥2,
on M and MN . Following from the embedding of M in R4 given by (39), we have, for x ∈M, ∥x∥2 =

√
x⊤x. Moreover,

from the embedding of MN in R4N given by (42), we have, for X ∈ MN , ∥X∥2 =
√
X⊤X . Using these definitions, we

now derive a lemma on the boundedness of the translational components of poses and manifold residuals associated with pose
graphs whose poses are limited to compact subsets of MN .

Lemma 12. Let G = (V, E) be a pose graph, with associated poses X = vec((xi)i∈V) and relative edge measurements
Z = vec((z̃ij)(i,j)∈E), with |V| = N and |E| = M . Now, let xi = [x⊤

i,r,x
⊤
i,d]

⊤ ∈ M and rij = [r⊤ij,r, r
⊤
ij,d]

⊤ ∈ M, for all
i ∈ V , and for all (i, j) ∈ E , denote the poses and manifold residuals associated with G, respectively, represented in vector
form with explicit rotational and translational (dual) components. Then, given any compact subset K ⊂MN , it holds for all
X ∈ K that for all i ∈ V , and for all (i, j) ∈ E , that ∥xi,d∥2 ≤ t̄x and ∥rij,d∥2 ≤ t̄r, with

t̄x ≜

√
T

2 −N, and t̄r ≜
(
t̄2x + 3

)
z̄, (338)

where
T ≜ sup {∥X∥2 | X ∈ K} (339)

and
z̄ ≜ max

(i,j)∈E

{
∥z̃ij∥2

}
. (340)



Proof: Because K is compact, it is valid to define T as in (339). It then follows that for all X ∈ K, we have

∥X∥2 =

√∑
i∈V
∥xi∥22 ≤ T. (341)

Since xi = [x⊤
i,r,x

⊤
i,d]

⊤, we have ∥xi∥22 = 1 + ∥xi,d∥2, and therefore∑
i∈V
∥xi∥22 = N +

∑
i∈V
∥xi,d∥22 .

Applying this to equation (341) and simplifying yields

∥xi,d∥2 ≤
√
T

2 −N ≜ t̄x, (342)

which gives the left side of (338). We now address the translational component of rij = [r⊤ij,r, r
⊤
ij,d]

⊤. Applying (36) and (38)
to the definition of rij given in (12) yields

rij = z̃−1
ij ⊞ x−1

i ⊞ xj = QR (xj)Q
−−
R (xi) z̃

−1
ij .

It then holds that
∥rij∥2 ≤ ∥QR (xj)∥2

∥∥Q−−
R (xi)

∥∥
2
∥z̃ij∥2 , (343)

where ∥QR(·)∥2 and ∥Q−−
R (·)∥2 denote the matrix 2-norm given by (337). To simplify (343), we first derive a bound on

∥QR(·)∥2. For any x =
[
x⊤
r ,x

⊤
d

]⊤ ∈M, applying the

∥QR (x)∥2 =

√√√√1 +
1

2

(
∥xd∥22 +

√
∥xd∥22

(
∥xd∥22 + 4

))
.

Therefore, letting x = [x0, x1, x2, x3]
⊤, we have

∥QR (x)∥2 ≤

√√√√1 +
1

2

(
∥xd∥22 +

√(
∥xd∥22 + 4

)2)

=
√
x22 + x23 + 3. (344)

Since ∥x∥22 = x22 + x23 + 1, equation (344) implies that

∥QR (x)∥2 ≤
√
∥x∥22 + 2 ≤ ∥x∥2 +

√
2, (345)

which holds for all x ∈M. Noting that ∥QL (x)∥2 = ∥QR (x)∥2 = ∥Q−−
R (x) ∥2, we can apply (345) to (343) to write

∥rij∥2 ≤
(
∥xi∥2 +

√
2
)(
∥xj∥2 +

√
2
)
∥z̃ij∥2 . (346)

Now, we apply (342) and the fact that ∥rij∥22 = ∥rij,d∥22 + 1 to (346) to obtain√
∥rij,d∥22 + 1 ≤

(
t̄2x + 3

)
∥z̃ij∥2 , (347)

and applying (340) to (347) yields, for all (i, j) ∈ E ,

∥rij,d∥2 ≤
(
t̄2x + 3

)
z̄ = t̄r, (348)

with t̄r from (338), completing the proof. ■
Using Lemma 12, we now derive a set of preliminary bounds that will aid in the forthcoming analysis. Given a pose graph

G = (V, E) as defined in Lemma 12, we denote xi = [xi,0, xi,1, xi,2, xi,3]
⊤ and xj = [xj,0, xj,1, xj,2, xj,3]

⊤, with i, j ∈ V , to
be the poses corresponding to relative measurement z̃ij = [z0, z1, z2, z3]

⊤, with (i, j) ∈ E , and let rij = [r0, r1, r2, r3]
⊤ be

the manifold residual computed via (12). Noting that xi,xj , z̃ij , rij ∈M, we denote ϕi and ϕj to be the rotation half-angles
associated with xi and xj such that

xi,0 = cos (ϕi) , xi,1 = sin (ϕi) , xj,0 = cos (ϕj) , xj,1 = sin (ϕj) , (349)



and we denote ϕz and ϕr to be the rotation half-angles associated with z̃ij and rij such that

z0 = cos (ϕz) , z1 = sin (ϕz) , r0 = cos (ϕr) , r1 = sin (ϕr) . (350)

From (349)-(350), we can immediately write

|xi,0| , |xi,1| , |xj,0| , |xj,1| , |z0| , |z1| , |r0| , |r1| ≤ 1. (351)

We now define constants z̄2, z̄3, and z̄23 such that

z̄2 ≜ max
(i,j)∈E

|z2| , z3 ≜ max
(i,j)∈E

|z3| , z̄23 ≜ z̄2 + z̄3. (352)

It then follows from (352) that
|z2| ≤ z̄2, |z3| ≤ z̄3, |z2|+ |z3| ≤ z̄23 (353)

for all (i, j) ∈ E . Furthermore, the function sinc(ϕ) is maximized at ϕ = 0, so γ(ϕ(x)), as defined in (57), is bounded by

|γ (ϕ (x))| ≤ γ (0) = 1

for all x ∈M. Additionally, the reciprocal (sinc(ϕ))−1 is maximized at ϕ = π/2 over the domain ϕ ∈
(
−π

2 ,
π
2

]
. Applying this

fact to (57) and (59) yields ∣∣∣∣ 1

γ (ϕ (x))

∣∣∣∣ ≤ ∣∣∣∣ 1

γ (π/2)

∣∣∣∣ = π

2
(354)

for all x ∈M. Because the function f1 (ϕ) from (173) takes on values within the range (−1, 1] over the domain ϕ ∈
(
−π

2 ,
π
2

]
,

it holds that
|f1 (ϕ (x))| ≤ |f1 (π/2)| = 1 (355)

for all x ∈M. Since ∥·∥1 ≤
√
2 ∥·∥2, it holds from (342) that

|xi,2| , |xi,3| ≤ |xi,2|+ |xi,3| = ∥xi,d∥1 ≤
√
2 ∥xi,d∥2 ≤ t̄x

√
2

and
|xj,2| , |xj,3| ≤ |xj,2|+ |xj,3| = ∥xj,d∥1 ≤

√
2 ∥xj,d∥2 ≤ t̄x

√
2.

From (348), we have
|r2| , |r3| ≤ |r2|+ |r3| = ∥rij,d∥1 ≤

√
2 ∥rij,d∥2 ≤ t̄r

√
2. (356)

We now bound entries of the matrix Qi from (144), which correspond to (145)-(154). Substituting (351) into (145)-(148), (151)-
(152) and applying angle sum and difference identities yields

µi = z0xj,0 + z1xj,1 = cos (ϕz) cos (ϕj) + sin (ϕz) sin (ϕj) = cos (ϕj − ϕz) , (357)
ωi = −z1xj,0 + z0xj,1 = − sin (ϕz) cos (ϕj) + cos (ϕz) sin (ϕj) = sin (ϕj − ϕz) , (358)
ηi = −xj,0z1 + xj,1z0 = − cos (ϕj) sin (ϕz) + sin (ϕj) cos (ϕz) = sin (ϕj − ϕz) , (359)
κi = −xj,0z0 − xj,1z1 = − cos (ϕj) cos (ϕz)− sin (ϕj) sin (ϕz) = − cos (ϕj − ϕz) , (360)
ξ1 = −xj,0z0 + xj,1z1 = − cos (ϕj) cos (ϕz) + sin (ϕj) sin (ϕz) = − cos (ϕj + ϕz) , (361)
ζ1 = −xj,0z1 − xj,1z0 = − cos (ϕj) sin (ϕz)− sin (ϕj) cos (ϕz) = − sin (ϕj + ϕz) . (362)

It then follows from (357)-(362) that
|µi| , |ωi| , |ηi| , |κi| , |ξ1| , |ζ1| ≤ 1. (363)

Next, we apply the triangle inequality and (351) to the absolute value of (149) yields

|α1| = |−xj,0z2 − xj,1z3 + xj,2z0 + xj,3z1| ≤ |z2|+ |z3|+ |xj,2|+ |xj,3| , (364)

and further applying (353) and (356) to (364), (150), and (153)-(154) yields

|α1| , |β1| , |α2| , |β2| ≤ z̄23 + t̄x
√
2. (365)

We now bound entries of the matrix Qj from (144), which correspond to (155)-(160). Substituting (351) into (155)-(158) and



applying angle sum and difference identities yields

µj = z0xi,0 − z1xi,1 = cos (ϕz) cos (ϕi)− sin (ϕz) sin (ϕi) = cos (ϕi + ϕz) , (366)
ωj = z1xi,0 + z0xi,1 = sin (ϕz) cos (ϕi) + cos (ϕz) sin (ϕi) = sin (ϕi + ϕz) , (367)
ηj = −xi,0z1 − xi,1z0 = − cos (ϕi) sin (ϕz)− sin (ϕi) cos (ϕz) = − sin (ϕi + ϕz) , (368)
κj = xi,0z0 − xi,1z1 = cos (ϕi) cos (ϕz)− sin (ϕi) sin (ϕz) = cos (ϕi + ϕz) . (369)

It then follows from (366)-(369) that
|µj | , |ωj | , |ηj | , |κj | ≤ 1. (370)

Furthermore, applying the derivation of (365) to (159)-(160) yields

|α3| , |β3| ≤ z̄23 + t̄x
√
2. (371)

We can also write derivatives of ϕr in trigonometric form by substituting (350), (357)-(360), and (366)-(369) and applying
angle sum and difference identities, which yields

∂ϕr
∂xi,0

= ηir0 − µir1 = sin (ϕj − ϕz) cos (ϕr)− cos (ϕj − ϕz) sin (ϕr) = sin (ϕj − ϕz − ϕij) , (372)

∂ϕr
∂xi,1

= κir0 − ωir1 = − cos (ϕj − ϕz) cos (ϕr)− sin (ϕj − ϕz) sin (ϕr) = − cos (ϕj − ϕz − ϕr) , (373)

∂ϕr
∂xj,0

= ηjr0 − µjr1 = − sin (ϕi + ϕz) cos (ϕr)− cos (ϕi + ϕz) sin (ϕr) = − sin (ϕi + ϕz + ϕr) , (374)

∂ϕr
∂xj,1

= κjr0 − ωjr1 = cos (ϕi + ϕz) cos (ϕr)− sin (ϕz + ϕi) sin (ϕr) = cos (ϕi + ϕz + ϕr) . (375)

It then follows from (372)-(375) that

|ηir0 − µir1| , |κir0 − ωir1| , |ηjr0 − µjr1| , |κjr0 − ωjr1| ≤ 1, (376)

concluding our preliminary derivations for computing Euclidean gradient bounds.

B. Residual Bounds

We now compute a bound on ∥eij∥2 for all (i, j) ∈ E . Applying the definition of ∥ · ∥2 to (11) yields

∥eij∥2 = ∥Log
1
(rij)∥2 =

∥∥∥∥ 1

γ (ϕ (rij))
[r1, r2, r3]

⊤
∥∥∥∥
2

=

∣∣∣∣ 1

γ (ϕ (rij))

∣∣∣∣√r21 + r22 + r23. (377)

Applying the bounds from (354) and the fact that r21 = sin(ϕr)
2 ≤ 1 to (377) yields

∥eij∥2 ≤
π

2

√
1 + r22 + r23 =

π

2

√
1 + ∥rij,d∥22. (378)

Finally, applying (348) to (378) gives, for all (i, j) ∈ E ,

∥eij∥2 ≤
π

2

√
t̄2r + 1 ≜ ē, (379)

where we have defined the constant ē such that ∥eij∥2 ≤ ē.

C. Jacobian Bounds

We now compute a bound on the Frobenius norm of Aij , whose elements are included in equations (178)-(181), (188)-(191),
and (199)-(202). First, applying the triangle inequality to |A11| yields

|A11| =
∣∣∣∣ηiγ + r1 (ηir0 − µir1) f1

∣∣∣∣ ≤ ∣∣∣∣ηiγ
∣∣∣∣+ |r1| |ηir0 − µir1| |f1| . (380)

Applying (363), (354), (351), (376), and (355) to (380) yields

|A11| ≤
π

2
+ 1. (381)

Because A12 has similar structure, applying the same procedure yields

|A12| =
∣∣∣∣κiγ + r1 (κir0 − ωir1) f1

∣∣∣∣ ≤ π

2
+ 1. (382)



From (179)-(180), we have
|A12| = |A13| = 0. (383)

For |A21|, we can apply the triangle inequality to write

|A21| =
∣∣∣∣α1

γ
+ r2 (ηir0 − µir1) f1

∣∣∣∣ ≤ |α1|
|γ|

+ |r2| |ηir0 − µir1| |f1| (384)

We now define
ρ ≜

π

2

(
z̄23 + t̄x

√
2
)
+ t̄r
√
2. (385)

Then, applying equations (365), (354), (356), (376), and (355) to (384) yields

|A21| ≤
π

2

(
z̄23 + t̄x

√
2
)
+ t̄r
√
2 = ρ. (386)

Applying the same process to A22 from (189) yields

|A22| =
∣∣∣∣β1γ + r2 (κir0 − ωir1) f1

∣∣∣∣ ≤ ρ. (387)

The remaining terms have similar structure to A11-A22, so applying the derivations for (381)-(383), (386)-(387) to (190),
(191), (199), (200), (201), and (202) yields

|A23| , |A24| , |A33| , |A34| ≤
π

2
(388)

and
|A31| , |A32| ≤ ρ. (389)

Now, we define

J̄ ≜

√
2
(π
2
+ 1
)2

+ 4ρ2 + 4
(π
2

)2
. (390)

Then, substituting (381)-(383) and (386)-(389) into the definition of the Frobenius norm from (336) yields

∥Aij∥F ≤
√
2
(π
2
+ 1
)2

+ 4ρ2 + 4
(π
2

)2
= J̄ , (391)

which holds for all (i, j) ∈ E .

We now derive a bound on ∥Bij∥F . Because A11-A34 and B11-B34 share identical structure, we apply (351), (354), (355),
(356), (370)-(371), and (376) to the definitions of Bij entries in (182)-(184), (192)-(195), and (203)-(206) to write

|B11| , |B12| ≤
π

2
+ 1, (392)

|B13| = |B14| = 0, (393)

|B21| , |B22| , |B31| , |B32| ≤ ρ, (394)

and
|B23| , |B24| , |B33| , |B34| ≤

π

2
, (395)

with ρ given by (385). Therefore, we can substitute (392)-(395) into the definition of the Frobenius norm from (336) to obtain

∥Bij∥F ≤ J̄ , (396)

with J̄ given by (390), which holds for all (i, j) ∈ E .

D. Euclidean Gradient Bounds
The proof of Lipschitz continuity of the Riemannian gradient in Appendix G depends on the boundedness of the first two

entries of gij,k from (97) for all (i, j) ∈ E and for all k ∈ V , which we now show. To accomodate the subsequent analysis,
we write A⊤

ijΩijeij = [gi,0, gi,1, gi,2, gi,3]
⊤ and B⊤ijΩijeij = [gj,0, gj,1, gj,2, gj,3]

⊤ in entry-wise vector form. It then suffices
to show that |gi,0|, |gi,1|, |gj,0|, and |gj,1| are bounded. First, we have

A⊤
ijΩijeij = A⊤

ij

 〈[Ωij ]1 , eij
〉〈

[Ωij ]2 , eij
〉〈

[Ωij ]3 , eij
〉
 ,



where ⟨·, ·⟩ denotes the Euclidean inner product and [Ωij ]l denotes the lth row of Ωij . We then have
gi,0
gi,1
gi,2
gi,3

 =


A11 [Ωij ]

⊤
1 eij +A21 [Ωij ]

⊤
2 eij +A31 [Ωij ]

⊤
3 eij

A12 [Ωij ]
⊤
1 eij +A22 [Ωij ]

⊤
2 eij +A32 [Ωij ]

⊤
3 eij

A13 [Ωij ]
⊤
1 eij +A23 [Ωij ]

⊤
2 eij +A32 [Ωij ]

⊤
3 eij

A14 [Ωij ]
⊤
1 eij +A24 [Ωij ]

⊤
2 eij +A34 [Ωij ]

⊤
3 eij

 . (397)

Extracting the first two terms from (397) and taking absolute values yields

|gi,0| =
∣∣∣A11 [Ωij ]

⊤
1 eij +A21 [Ωij ]

⊤
2 eij +A31 [Ωij ]

⊤
3 eij

∣∣∣ , (398)

|gi,1| =
∣∣∣A12 [Ωij ]

⊤
1 eij +A22 [Ωij ]

⊤
2 eij +A32 [Ωij ]

⊤
3 eij

∣∣∣ .
Letting eij = [e0, e1, e2]

⊤, then applying the triangle inequality to (398) and simplifying yields

|gi,0| =

(
3∑

l=1

|Al1| |Ωl1|

)
|e0|+

(
3∑

l=1

|Al1| |Ωl2|

)
|e1|+

(
3∑

l=1

|Al1| |Ωl3|

)
|e2| . (399)

Now, we define

ḡ ≜
√
2

((π
2
+ 1
)( 3∑

l=1

|Ω1l|

)
+ ρ

(
3∑

l=1

(|Ω2l|+ |Ω3l|)

))
ē, (400)

with ρ defined in (385) and ē defined in (379). From (379), it follows that

|e0| , |e1| , |e2| ≤ ∥eij∥1 ≤
√
2∥eij∥2 ≤ ē

√
2. (401)

Applying (401) and the bounds from (381), (386), (389) into (399) yields |gi,0| ≤ ḡ, and applying the same procedure for
|gi,1| yields |gi,1| ≤ ḡ. Furthermore, repeating the derivation for |gj,0|, and |gj,1| using the bounds from (392) and (393) yields
|gj,0|, |gj,1| ≤ ḡ. Summarizing, we have

|gi,0| , |gi,1| , |gj,0| , |gj,1| ≤ ḡ, (402)

with ḡ given by (400), which holds for all (i, j) ∈ E . Moreover, we observe from gij,k in (97) that (402) holds for all k.

APPENDIX K
DERIVATION OF EUCLIDEAN HESSIAN BOUNDS

In this appendix, we derive bounds for the Euclidean Hessian tensors derived in Appendix I that are necessary for the proof
of Lipschitz continuity of the Riemannian gradient in Appendix G. Specifically, we will show that∥∥∥∥∂Aij

∂xi,l

∥∥∥∥2
F

,

∥∥∥∥∂Aij

∂xj,l

∥∥∥∥2
F

,

∥∥∥∥ ∂Bij∂xj,l

∥∥∥∥2
F

, and
∥∥∥∥∂Bij∂xi,l

∥∥∥∥2
F

are bounded for k = 0 . . . 3 and for all (i, j) ∈ E , given that X ∈ K, where K is a compact subset of MN .. We begin by
providing preliminary derivations that will serve as a reference for the subsequent analysis in this appendix.

A. Preliminaries

The function f2 (ϕ) given by equation (214) takes on values within the range
(
−π

2 ,
π
2

]
over the domain ϕ ∈

(
−π

2 ,
π
2

]
, so it

holds that
|f2 (ϕ (x))| ≤ |f2 (π/2)| =

π

2
(403)

for all x ∈M. Using the techniques from Appendix J-A, we now compute the following quantities in trigonometric form.

µir0 + ηir1 = cos (ϕj − ϕz) cos (ϕr) + sin (ϕj − ϕz) sin (ϕr) = cos (ϕj − ϕz − ϕr) , (404)
ωir0 + κir1 = sin (ϕj − ϕz) cos (ϕr)− cos (ϕj − ϕz) sin (ϕr) = sin (ϕj − ϕz − ϕr) , (405)
µjr0 + ηjr1 = cos (ϕi + ϕz) cos (ϕr)− sin (ϕi + ϕz) sin (ϕr) = cos (ϕi + ϕz + ϕr) , (406)
ωjr0 + κjr1 = sin (ϕi + ϕz) cos (ϕr) + cos (ϕi + ϕz) sin (ϕr) = sin (ϕi + ϕz + ϕr) . (407)

It follows from (404)-(407) that

|µir0 + ηir1| , |ωir0 + κir1| , |µjr0 + ηjr1| , |ωjr0 + κjr1| ≤ 1. (408)



From equations (350), (359), and (404)-(407) we apply angle sum and difference identities to compute

ηi − r1 (µir0 + ηir1) = cos (ϕj − ϕz) sin (ϕj − ϕz − ϕr) ,
ηi − 2r1 (µir0 + ηir1) = sin (ϕj − ϕz − 2ϕr) ,

κi − 2r1 (ωir0 + κir1) = cos (ϕj − ϕz − 2ϕr) ,

ηj − r1 (µjr0 + ηjr1) = cos (ϕr) sin (ϕi + ϕz + ϕr) ,

ηj − 2r1 (µjr0 + ηjr1) = − sin (ϕi + ϕz + 2ϕr) ,

κj − 2r1 (ωjr0 + κjr1) = cos (ϕi + ϕz + 2ϕr) ,

from which it follows that

|ηi − r1 (µir0 + ηir1)| , |ηi − 2r1 (µir0 + ηir1)| , |κi − 2r1 (ωir0 + κir1)| ≤ 1 (409)

and
|ηj − r1 (µjr0 + ηjr1)| , |ηj − 2r1 (µjr0 + ηjr1)| , |κj − 2r1 (ωjr0 + κjr1)| ≤ 1. (410)

We also compute

µjηi − ηjµi = cos (ϕi + ϕz) sin (ϕj − ϕz) + sin (ϕi + ϕz) cos (ϕj − ϕz) = sin (ϕi + ϕj) ,

µjκi − ηjωi = − cos (ϕi + ϕz) cos (ϕj − ϕz) + sin (ϕi + ϕz) sin (ϕj − ϕz) = − cos (ϕi + ϕj) ,

from which it follows that
|µjηi − ηjµi| , |µjκi − ηjωi| ≤ 1. (411)

Furthermore, it holds that

−z0r0 + z1r1 = − cos (ϕz) cos (ϕr) + sin (ϕz) sin (ϕr) = − cos (ϕz + ϕr) ≤ 1,

z1r0 + z0r1 = cos (ϕz) cos (ϕr) + sin (ϕz) sin (ϕr) = cos (ϕz − ϕr) ≤ 1,

and, therefore,
|−z0r0 + z1r1| , |z1r0 + z0r1| ≤ 1. (412)

Finally, we have the trigonometric bounds

|κi (ηir0 − µir1) + (ηi − 2r1 (µir0 + ηir1)) (κir0 − ωir1)− r1| = |cos (ϕij) sin (2 (ϕj − ϕz − ϕij))| ≤ 1

and
|ηi (κir0 − ωir1) + (κi − 2r1 (ωir0 + κir1)) (ηir0 − µir1) + r1| = |− cos (ϕij) sin (2 (ϕj − ϕz − ϕij))| ≤ 1,

which concludes our derivation of preliminary bounds for the Euclidean Hessian Tensors.

B. Aij Tensor Bounds

We first derive bounds for
∥∥∥∂Aij

∂xi,l

∥∥∥2
F

for k = 0 . . . 3, starting with
∥∥∥ ∂Aij

∂xi,0

∥∥∥
F

. Applying the triangle inequality to (220) yields∣∣∣∣∂A11

∂xi,0

∣∣∣∣ = ∣∣∣2 (ηi − r1 (µir0 + ηir1)) (ηir0 − µir1) f1 + r1 (ηir0 − µir1)
2
f2

∣∣∣
≤ 2 |(ηi − r1 (µir0 + ηir1))| |ηir0 − µir1| |f1|+ |r1| |ηir0 − µir1|2 |f2| (413)

Applying (409), (376), (355), (351), and (403) to (413) and simplifying yields∣∣∣∣∂A11

∂xi,0

∣∣∣∣ ≤ π

2
. (414)

Next, applying the triangle inequality to (231) yields∣∣∣∣∂A12

∂xi,0

∣∣∣∣ = |(κi (ηir0 − µir1) + (ηi − 2r1 (µir0 + ηir1)) (κir0 − ωir1)− r1) f1 + r1 (κir0 − ωir1) (ηir0 − µir1) f2|

≤ |(κi (ηir0 − µir1) + (ηi − 2r1 (µir0 + ηir1)) (κir0 − ωir1)− r1) f1|
+ |r1| |κir0 − ωir1| |ηir0 − µir1| |f2| (415)



To simplify (415), we observe that

|κi (ηir0 − µir1) + (ηi − 2r1 (µir0 + ηir1)) (κir0 − ωir1)− r1| = |cos (ϕij) sin (2 (ϕj − ϕz − ϕij))| ≤ 1. (416)

Applying (416), (351), (376), and (403) to (415) yields∣∣∣∣∂A12

∂xi,0

∣∣∣∣ ≤ π

2
+ 1. (417)

From (237) and (238), we have ∣∣∣∣∂A13

∂xi,0

∣∣∣∣ = ∣∣∣∣∂A14

∂xi,0

∣∣∣∣ = 0. (418)

From (242), we have ∣∣∣∣∂A21

∂xi,0

∣∣∣∣ = ∣∣∣2 (α1 − r2 (µir0 + ηir1)) (ηir0 − µir1) f1 + r2 (ηir0 − µir1)
2
f2

∣∣∣
≤ 2 (|α1|+ |r2| |µir0 + ηir1|) |ηir0 − µir1| |f1|+ |r2| |ηir0 − µir1|2 |f2| ,

and further simplifying with (376) and (355) yields∣∣∣∣∂A21

∂xi,0

∣∣∣∣ ≤ 2 |α1|+ (|f2|+ 2) |r2| . (419)

We now define
τ̄1 ≜ 2

(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 2
)
t̄r. (420)

Applying (365), (403) and (356) to (419) and simplifying yields∣∣∣∣∂A21

∂xi,0

∣∣∣∣ ≤ 2
(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 2
)
t̄r = τ̄1. (421)

Applying the triangle inequality to (250) yields∣∣∣∣∂A22

∂xi,0

∣∣∣∣ = |(β1 (ηir0 − µir1) + (α1 − 2r2 (µir0 + ηir1)) (κir0 − ωir1)− r2) f1 + r2 (κir0 − ωir1) (ηir0 − µir1) f2|

≤ (|β1| |ηir0 − µir1|+ (|α1|+ 2 |r2| |µir0 + ηir1|) |κir0 − ωir1|+ |r2|) |f1|+ |r2| |κir0 − ωir1| |ηir0 − µir1| |f2| ,

and simplifying with (376) and (355) yields∣∣∣∣∂A22

∂xi,0

∣∣∣∣ ≤ |β1|+ |α1|+ (|f2|+ 3) |r2| (422)

Next, we define
τ̄2 ≜ 2

(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 3
)
t̄r. (423)

Applying (365), (403) and (356) to (422) and simplifying yields∣∣∣∣∂A22

∂xi,0

∣∣∣∣ ≤ 2
(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 3
)
t̄r = τ̄2. (424)

Applying the triangle inequality and (363), (376),and (355) to (260) and (269) yields∣∣∣∣∂A23

∂xi,0

∣∣∣∣ , ∣∣∣∣∂A24

∂xi,0

∣∣∣∣ ≤ 1 (425)

Since A21 and A31 have similar structure, applying the derivation for (421) to (278) yields∣∣∣∣∂A31

∂xi,0

∣∣∣∣ ≤ τ̄1. (426)

Similarly, A22 and A32 have similar structure, so applying the derivation for (424) to (289) yields∣∣∣∣∂A32

∂xi,0

∣∣∣∣ ≤ τ̄2. (427)



From (297), (304), and (425), it holds that ∣∣∣∣∂A33

∂xi,0

∣∣∣∣ = ∣∣∣∣−∂A24

∂xi,0

∣∣∣∣ ≤ 1 (428)∣∣∣∣∂A34

∂xi,0

∣∣∣∣ = ∣∣∣∣∂A23

∂xi,0

∣∣∣∣ ≤ 1. (429)

Finally, substituting (414), (417)-(418), (421), (424), and (425)-(429) into the Frobenius norm definition from (336) yields∥∥∥∥∂Aij

∂xi,0

∥∥∥∥2
F

≤ 2
(
τ̄21 + τ̄22

)
+
(π
2

)2
+
(π
2
+ 1
)2

+ 4, (430)

which holds for all (i, j) ∈ E . We now address
∥∥∥ ∂Aij

∂xi,1

∥∥∥
F

. Applying the triangle inequality to (221) gives∣∣∣∣∂A11

∂xi,1

∣∣∣∣ ≤ |(ηi (κir0 − ωir1) + (κi − 2r1 (ωir0 + κir1)) (ηir0 − µir1) + r1) f1 + r1 (ηir0 − µir1) (κir0 − ωir1) f2|

≤ |ηi (κir0 − ωir1) + (κi − 2r1 (ωir0 + κir1)) (ηir0 − µir1) + r1| |f1|
+ |r1| |ηir0 − µir1| |κir0 − ωir1| |f2| . (431)

Noting that

|ηi (κir0 − ωir1) + (κi − 2r1 (ωir0 + κir1)) (ηir0 − µir1) + r1| = |− cos (ϕij) sin (2 (ϕj − ϕz − ϕij))| ≤ 1,

we see that applying (355), (351), (376) and (403) to (431) yields∣∣∣∣∂A11

∂xi,1

∣∣∣∣ ≤ π

2
+ 1. (432)

Moreover, applying the triangle inequality, (409), (376), (355), (351), and (403) to (232) yields∣∣∣∣∂A12

∂xi,1

∣∣∣∣ = ∣∣∣2 (κi − r1 (ωir0 + κir1)) (κir0 − ωir1) f1 + r1 (κir0 − ωir1)
2
f2

∣∣∣ ≤ π

2
+ 2.

From (237) and (238), we have ∣∣∣∣∂A13

∂xi,1

∣∣∣∣ = ∣∣∣∣∂A14

∂xi,1

∣∣∣∣ = 0.

Applying the derivation for (424) to (243) yields∣∣∣∣∂A21

∂xi,1

∣∣∣∣ ≤ |α1|+ |β1|+ (|f2|+ 3) |r2| ≤ τ̄2,

with τ̄2 given by (423), and applying the derivation for (421) to (243) gives∣∣∣∣∂A22

∂xi,1

∣∣∣∣ ≤ 2 |β1|+ (|f2|+ 2) |r2| ≤ τ̄1,

with τ̄1 given by (420). Applying the triangle inequality and (363), (376),and (355) to (261) and (270) yields∣∣∣∣∂A23

∂xi,1

∣∣∣∣ , ∣∣∣∣∂A24

∂xi,1

∣∣∣∣ ≤ 1, (433)

Now, applying the derivation for (424) to (279) yields∣∣∣∣∂A31

∂xi,1

∣∣∣∣ ≤ |α2|+ |β2|+ (|f2|+ 3) |r3| ≤ τ̄2,

with τ̄2 given by (423), and applying the derivation for (421) to (279) gives∣∣∣∣∂A32

∂xi,1

∣∣∣∣ ≤ 2 |β2|+ (|f2|+ 2) |r3| ≤ τ̄1



with τ̄1 given by (420). Finally, from (298), (305), and (433), we have∣∣∣∣∂A33

∂xi,1

∣∣∣∣ = ∣∣∣∣−∂A24

∂xi,1

∣∣∣∣ ≤ 1∣∣∣∣∂A34

∂xi,1

∣∣∣∣ = ∣∣∣∣∂A23

∂xi,1

∣∣∣∣ ≤ 1 (434)

Finally, substituting (432)-(434) into (336) yields∥∥∥∥∂Aij

∂xi,1

∥∥∥∥2
F

≤ 2
(
τ̄21 + τ̄22

)
+
(π
2
+ 1
)2

+
(π
2
+ 2
)2

+ 4, (435)

which holds for all (i, j) ∈ E . We now address
∥∥∥ ∂Aij

∂xi,2

∥∥∥
F

. From (222), (233), (237), (238), (262), (271), (299) and (306), we
have ∣∣∣∣∂A11

∂xi,2

∣∣∣∣ = ∣∣∣∣∂A12

∂xi,2

∣∣∣∣ = ∣∣∣∣∂A13

∂xi,2

∣∣∣∣ = ∣∣∣∣∂A14

∂xi,2

∣∣∣∣ = ∣∣∣∣∂A23

∂xi2

∣∣∣∣ = ∣∣∣∣∂A24

∂xi2

∣∣∣∣ = ∣∣∣∣∂A33

∂xi,2

∣∣∣∣ = ∣∣∣∣∂A34

∂xi,2

∣∣∣∣ = 0 (436)

Moreover, applying the triangle inequality and (363), (376), and (355) to (244), (251), (280), and (290) yields∣∣∣∣∂A21

∂xi,2

∣∣∣∣ , ∣∣∣∣∂A22

∂xi,2

∣∣∣∣ , ∣∣∣∣∂A31

∂xi,2

∣∣∣∣ , ∣∣∣∣∂A32

∂xi,2

∣∣∣∣ ≤ 1, (437)

Substituting (436)-(437) into (336) yields ∥∥∥∥∂Aij

∂xi,2

∥∥∥∥2
F

≤ 4, (438)

which holds for all (i, j) ∈ E . To address
∥∥∥ ∂Aij

∂xi,3

∥∥∥
F

, we first observe from (222), (233), (237), (238), (262), (271), (299),
and (306) that ∣∣∣∣∂A11

∂xi,3

∣∣∣∣ = ∣∣∣∣∂A12

∂xi,3

∣∣∣∣ = ∣∣∣∣∂A13

∂xi,3

∣∣∣∣ = ∣∣∣∣∂A14

∂xi,3

∣∣∣∣ = ∣∣∣∣∂A23

∂xi,3

∣∣∣∣ = ∣∣∣∣∂A24

∂xi,3

∣∣∣∣ = ∣∣∣∣∂A33

∂xi,3

∣∣∣∣ = ∣∣∣∣∂A34

∂xi,3

∣∣∣∣ = 0, (439)

Furthermore, applying the triangle inequality and (363), (376), and (355) to (245), (252), (281), and (291) gives∣∣∣∣∂A21

∂xi,3

∣∣∣∣ , ∣∣∣∣∂A22

∂xi,3

∣∣∣∣ , ∣∣∣∣∂A31

∂xi,3

∣∣∣∣ , ∣∣∣∣∂A32

∂xi,3

∣∣∣∣ ≤ 1. (440)

Finally, substituting (439)-(440) into (336) yields ∥∥∥∥∂Aij

∂xi,3

∥∥∥∥2
F

≤ 4, (441)

which holds for all (i, j) ∈ E . We now derive bounds for
∥∥∥∂Aij

∂xj,l

∥∥∥2
F

for k = 0 . . . 3, starting with
∥∥∥ ∂Aij

∂xj,0

∥∥∥
F

. First, applying the
triangle inequality to (223) yields∣∣∣∣∂A11

∂xj,0

∣∣∣∣ ≤ ∣∣∣∣−z1γ
∣∣∣∣+ (|ηi| |ηjr0 − µjr1|+ |ηj − 2r1 (µjr0 + ηjr1)| |ηir0 − µir1|+ |r1| (|µjηi − ηjµi|+ |z1r0 − z0r1|)) |f1|

+ |r1| |ηir0 − µir1| |ηjr0 − µjr1| |f2| . (442)

To simplify (442), we apply (351), (354), (363), (376), (410), (411), (412), and (355) to obtain∣∣∣∣∂A11

∂xj,0

∣∣∣∣ ≤ π + 4. (443)

Similarly, applying the same process to (234) yields ∣∣∣∣∂A12

∂xj,0

∣∣∣∣ ≤ π + 4. (444)

From (237) and (238), we have ∣∣∣∣∂A13

∂xj,0

∣∣∣∣ = ∣∣∣∣∂A14

∂xj,0

∣∣∣∣ = 0 (445)



Next, applying the triangle inequality to (246) yields∣∣∣∣∂A21

∂xj,0

∣∣∣∣ ≤ ∣∣∣∣z2γ
∣∣∣∣+ (|α1| |ηjr0 − µjr1|+ (|α2|+ 2 |r2| |µjr0 + ηjr1|) |ηir0 − µir1|+ |r2| (|µjηi − ηjµi|+ |z1r0 + z0r1|)) |f1|

+ |r2| |ηir0 − µir1| |ηjr0 − µjr1| |f2| (446)

Now, we define
τ̄3 ≜

π

2
z̄2 + 2

(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 4
)
t̄r. (447)

Applying (353), (365), (408), (356), (376), (411), (412), (355), and (403) to (446) yields∣∣∣∣∂A21

∂xj,0

∣∣∣∣ ≤ π

2
z̄2 + 2

(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 4
)
t̄r = τ̄3. (448)

Applying the triangle inequality to (253) gives∣∣∣∣∂A22

∂xj,0

∣∣∣∣ ≤ ∣∣∣∣z3γ
∣∣∣∣+ (|β1| |ηjr0 − µjr1|+ (|α2|+ 2 |r2| |µjr0 + ηjr1|) |κir0 − ωir1|+ |r2| (|κiµj − ωiηj |+ |−z0r0 + z1r1|)) |f1|

+ |r2| |κir0 − ωir1| |ηjr0 − µjr1| |f2| . (449)

By letting
τ̄4 =

π

2
z̄3 + 2

(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 4
)
t̄r, (450)

we see that applying (353), (365), (408), (356), (376), (411), (412), (355), and (403) to (449) yields∣∣∣∣∂A22

∂xj,0

∣∣∣∣ ≤ π

2
z̄3 + 2

(
z̄23 +

√
2t̄x

)
+
√
2
(π
2
+ 4
)
t̄r = τ̄4. (451)

Now, applying the triangle inequality and (351), (363), (376), and (355) to (263) and (272) gives∣∣∣∣∂A23

∂xj,0

∣∣∣∣ , ∣∣∣∣∂A24

∂xj,0

∣∣∣∣ ≤ π

2
+ 1 (452)

Applying the derivations for (451) and (448) to (282) and (292) yields∣∣∣∣∂A31

∂xj,0

∣∣∣∣ ≤ τ̄4, (453)∣∣∣∣∂A32

∂xj,0

∣∣∣∣ ≤ τ̄3. (454)

Finally, from (300), (307), (452), and (263), we have∣∣∣∣∂A33

∂xj,0

∣∣∣∣ = ∣∣∣∣−∂A24

∂xj,0

∣∣∣∣ ≤ π

2
+ 1, (455)∣∣∣∣∂A34

∂xj,0

∣∣∣∣ = ∣∣∣∣∂A23

∂xj,0

∣∣∣∣ ≤ π

2
+ 1 (456)

Finally, substituting (443)-(445), (448), and (451)-(456) into (336) yields∥∥∥∥ ∂Aij

∂xj,0

∥∥∥∥2
F

≤ 2
(
τ̄23 + τ̄24

)
+ 4

(π
2
+ 1
)2

+ 2 (π + 4)
2
, (457)

which holds for all (i, j) ∈ E . To address
∥∥∥ ∂Aij

∂xj,1

∥∥∥
F

, we apply the derivations for (443)-(445), (448), and (451)-(456)
to (224), (235), (237), (238), (247), (254), (264), (273), (283), (293), (301), and (308) to compute∣∣∣∣∂A11

∂xj,1

∣∣∣∣ , ∣∣∣∣∂A12

∂xj,1

∣∣∣∣ ≤ π + 4, (458)∣∣∣∣∂A13

∂xj,1

∣∣∣∣ = ∣∣∣∣∂A14

∂xj,1

∣∣∣∣ = 0, (459)



∣∣∣∣∂A21

∂xj,1

∣∣∣∣ , ∣∣∣∣∂A32

∂xj,1

∣∣∣∣ ≤ τ̄4, (460)∣∣∣∣∂A22

∂xj,1

∣∣∣∣ , ∣∣∣∣∂A31

∂xj,1

∣∣∣∣ ≤ τ̄3, (461)

and ∣∣∣∣∂A23

∂xj,1

∣∣∣∣ , ∣∣∣∣∂A24

∂xj,1

∣∣∣∣ , ∣∣∣∣∂A33

∂xj,1

∣∣∣∣ , ∣∣∣∣∂A34

∂xj,1

∣∣∣∣ ≤ π

2
+ 1. (462)

Substituting (458)-(462) into (336) yields∥∥∥∥ ∂Aij

∂xj,1

∥∥∥∥2
F

≤ 2
(
τ̄23 + τ̄24

)
+ 4

(π
2
+ 1
)2

+ 2 (π + 4)
2
, (463)

which holds for all (i, j) ∈ E . We now address
∥∥∥ ∂Aij

∂xj,2

∥∥∥
F

. From (225), (236), (237), (238), (265), (274), (302), and (309), we
observe that ∣∣∣∣∂A11

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A12

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A13

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A14

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A23

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A24

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A33

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A34

∂xj,2

∣∣∣∣ = 0. (464)

Furthermore, applying the triangle inequality and (351), (354), (370), (376), and (355) to (236), (255), (284), and (294) gives∣∣∣∣∂A21

∂xj,2

∣∣∣∣ , ∣∣∣∣∂A22

∂xj,2

∣∣∣∣ , ∣∣∣∣∂A31

∂xj,2

∣∣∣∣ , ∣∣∣∣∂A32

∂xj,2

∣∣∣∣ ≤ π

2
+ 1. (465)

Substituting (464)-(465) into (336) yields ∥∥∥∥ ∂Aij

∂xj,2

∥∥∥∥2
F

≤ 4
(π
2
+ 1
)2
. (466)

which holds for all (i, j) ∈ E . We now address
∥∥∥ ∂Aij

∂xj,3

∥∥∥
F

. From (225), (236), (237), (238), (265), (274), (302), and (309), it
holds that ∣∣∣∣∂A13

∂xj,3

∣∣∣∣ = ∣∣∣∣∂A11

∂xj,3

∣∣∣∣ = ∣∣∣∣∂A12

∂xj,3

∣∣∣∣ = ∣∣∣∣∂A14

∂xj,3

∣∣∣∣ = ∣∣∣∣∂A23

∂xj,3

∣∣∣∣ = ∣∣∣∣∂A24

∂xj,3

∣∣∣∣ = ∣∣∣∣∂A33

∂xj,2

∣∣∣∣ = ∣∣∣∣∂A34

∂xj,2

∣∣∣∣ = 0. (467)

Moreover, applying the triangle inequality and (351), (354), (370), (376), and (355) to (236), (256), (285), and (295) yields∣∣∣∣∂A21

∂xj,3

∣∣∣∣ , ∣∣∣∣∂A22

∂xj,3

∣∣∣∣ , ∣∣∣∣∂A31

∂xj,3

∣∣∣∣ , ∣∣∣∣∂A32

∂xj,3

∣∣∣∣ ≤ π

2
+ 1, (468)

and substituting (467)-(468) into (336) yields ∥∥∥∥ ∂Aij

∂xj,3

∥∥∥∥2
F

≤ 4
(π
2
+ 1
)2
, (469)

which concludes our derivation of tensor bounds involving Aij .

C. Bij Tensor Bounds

We now derive bounds for
∥∥∥ ∂Bij

∂xi,l

∥∥∥2
F

and
∥∥∥ ∂Bij

∂xj,l

∥∥∥2
F

for k = 0 . . . 3. Due to symmetries between Aij and Bij , the derivations
for these bounds are identical to those in Appendix K-B, so we omit them here and summarize our findings. First, following
from the derivations of (430) and (435), we have∥∥∥∥ ∂Bij∂xj,0

∥∥∥∥2
F

≤ 2
(
τ̄21 + τ̄22

)
+
(π
2

)2
+
(π
2
+ 1
)2

+ 4, (470)∥∥∥∥ ∂Bij∂xj,1

∥∥∥∥2
F

≤ 2
(
τ̄21 + τ̄22

)
+
(π
2
+ 1
)2

+
(π
2
+ 2
)2

+ 4. (471)

Next, following from the derivations of (438) and (441), we have∥∥∥∥ ∂Bij∂xj,2

∥∥∥∥2
F

,

∥∥∥∥ ∂Bij∂xj,3

∥∥∥∥2
F

≤ 4. (472)



Furthermore, following from the derivations of (457) and (463), we have∥∥∥∥ ∂Bij∂xi,0

∥∥∥∥2
F

,

∥∥∥∥ ∂Bij∂xi,1

∥∥∥∥2
F

≤ 2
(
τ̄23 + τ̄24

)
+ 4

(π
2
+ 1
)2

+ 2 (π + 4)
2
. (473)

Finally, following from the derivations of (466) and (469), we have∥∥∥∥ ∂Bij∂xi,2

∥∥∥∥2
F

,

∥∥∥∥ ∂Bij∂xi,3

∥∥∥∥2
F

≤ 4
(π
2
+ 1
)2
, (474)

which concludes our derivation of bounds for the Frobenius norms of Euclidean Hessian tensors.

D. Euclidean Hessian Bounds

We now utilize the bounds derived in Appendices J-B, J-C, J-D, K-B, and K-C to derive bounds for ∥hii∥F , ∥hij∥F , ∥hji∥F ,
and ∥hjj∥F , which appear in the Euclidean Hessian definition in (111). First, letting xi = [xi,0, xi,1, xi,2, xi,3]

⊤ we apply the
definitions of Cii-Cjj given in Appendix F-A to compute

Cii =
(
∂Aij

∂xi

)⊤

Ωijeij =

[ (
∂Aij

∂xi,0

)⊤
Ωijeij

(
∂Aij

∂xi,1

)⊤
Ωijeij

(
∂Aij

∂xi,2

)⊤
Ωijeij

(
∂Aij

∂xi,3

)⊤
Ωijeij

]
, (475)

Cij =
(
∂Aij

∂xj

)⊤

Ωijeij =

[ (
∂Aij

∂xj,0

)⊤
Ωijeij

(
∂Aij

∂xj,1

)⊤
Ωijeij

(
∂Aij

∂xj,2

)⊤
Ωijeij

(
∂Aij

∂xj,3

)⊤
Ωijeij

]
, (476)

Cji =
(
∂Bij
∂xi

)⊤

Ωijeij =

[ (
∂Bij

∂xi,0

)⊤
Ωijeij

(
∂Bij

∂xi,1

)⊤
Ωijeij

(
∂Bij

∂xi,2

)⊤
Ωijeij

(
∂Bij

∂xi,3

)⊤
Ωijeij

]
, (477)

Cjj =
(
∂Bij
∂xj

)⊤

Ωijeij =

[ (
∂Bij

∂xj,0

)⊤
Ωijeij

(
∂Bij

∂xj,1

)⊤
Ωijeij

(
∂Bij

∂xj,2

)⊤
Ωijeij

(
∂Bij

∂xj,3

)⊤
Ωijeij

]
. (478)

Next, taking the Frobenius norm of hii from (114), applying the triangle inequality, then simplifying, yields

∥hii∥F =
∥∥Cii +A⊤

ijΩijAij

∥∥
F
≤ ∥Cii∥F +

∥∥A⊤
ijΩijAij

∥∥
F
≤ ∥Cii∥F + ∥Ωij∥F ∥Aij∥2F . (479)

We now take the Frobeinus norm of (475) and apply the triangle and Cauchy-Schwarz inequalities to obtain

∥Cii∥F ≤

 3∑
l=0

∥∥∥∥∥
(
∂Aij

∂xi,l

)⊤

Ωijeij

∥∥∥∥∥
2

F

 1
2

≤

(
3∑

l=0

∥∥∥∥∂Aij

∂xi,l

∥∥∥∥2
F

) 1
2

∥Ωij∥F ∥eij∥2 (480)

Substituting (480) into (479) and simplifying yields

∥hii∥F ≤

(
3∑

l=0

∥∥∥∥∂Aij

∂xi,l

∥∥∥∥2
F

) 1
2 (
∥eij∥2 + ∥Aij∥2F

)
∥Ωij∥F . (481)

Furthermore, applying the derivation of (481) to ∥hij∥F , ∥hji∥F , and ∥hjj∥F using (476)-(478) yields

∥hij∥F ≤

(
3∑

l=0

∥∥∥∥∂Aij

∂xj,l

∥∥∥∥2
F

) 1
2 (
∥eij∥2 + ∥Aij∥F ∥Bij∥F

)
∥Ωij∥F ,

∥hji∥F ≤

(
3∑

l=0

∥∥∥∥∂Bij∂xi,l

∥∥∥∥2
F

) 1
2 (
∥eij∥2 + ∥Aij∥F ∥Bij∥F

)
∥Ωij∥F ,

∥hjj∥F ≤

(
3∑

l=0

∥∥∥∥ ∂Bij∂xj,l

∥∥∥∥2
F

) 1
2 (
∥eij∥2 + ∥Bij∥

2
F

)
∥Ωij∥F . (482)

Now, from (430), (435), (438), (441), and (470)-(472), we have
3∑

l=0

∥∥∥∥∂Aij

∂xi,l

∥∥∥∥2
F

,

3∑
l=0

∥∥∥∥ ∂Bij∂xj,l

∥∥∥∥2
F

≤ 4
(
τ̄21 + τ̄22

)
+
(π
2

)2
+ 2

(π
2
+ 1
)2

+
(π
2
+ 2
)2

+ 16, (483)



with τ̄1 from (420) and τ̄2 from (423). Similarly, (457), (463), (466), (473) and (474) give
3∑

l=0

∥∥∥∥∂Aij

∂xj,l

∥∥∥∥2
F

,

3∑
l=0

∥∥∥∥∂Bij∂xi,l

∥∥∥∥2
F

≤ 4
(
τ̄23 + τ̄24

)
+ 16

(π
2
+ 1
)2

+ 4 (π + 4)
2
, (484)

with τ̄3 from (447) and τ̄4 from (450). To aid in formulating bounds for (481)-(482), we define

hii ≜

(
4
(
τ̄21 + τ̄22

)
+
(π
2

)2
+ 2

(π
2
+ 1
)2

+
(π
2
+ 2
)2

+ 16

) 1
2 (

ē+ J̄ 2
)

(485)

and

hij ≜

(
4
(
τ̄23 + τ̄24

)
+ 16

(π
2
+ 1
)2

+ 4 (π + 4)
2

) 1
2 (

ē+ J̄ 2
)
, (486)

with ē from (379) and J̄ from (390). Finally, applying (379), (391), (396), (483) and (484) to (481)-(482) yields

∥hii∥F , ∥hjj∥F ≤ hii ∥Ωij∥F (487)

∥hij∥F , ∥hji∥F ≤ hij ∥Ωij∥F , (488)

with hii from (485) and hij from (486), which hold for all X ∈ K, where K ⊂MN is compact. This concludes the derivation
of bounds for the Euclidean Hessian.
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