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Abstract

It is common in pose graph optimization (PGO) algorithms to assume that noise in the translations and rotations of relative pose
measurements is uncorrelated. However, existing work shows that in practice these measurements can be highly correlated, which
leads to degradation in the accuracy of PGO solutions that rely on this assumption. Therefore, in this paper we develop a novel
algorithm derived from a realistic, correlated model of relative pose uncertainty, and we quantify the resulting improvement in the
accuracy of the solutions we obtain relative to state-of-the-art PGO algorithms. Our approach utilizes Riemannian optimization on
the planar unit dual quaternion (PUDQ) manifold, and we prove that it converges to first-order stationary points of a Lie-theoretic
maximum likelihood objective. Then we show experimentally that, compared to state-of-the-art PGO algorithms, this algorithm
produces estimation errors that are lower by 10% to 25% across several orders of magnitude of correlated noise levels and graph
sizes.
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I. INTRODUCTION

Pose graph optimization (PGO) algorithms aim to optimally reconstruct the trajectory of a mobile agent using a set of
uncertain relative measurements that were collected en-route. PGO is a backend component for numerous applications in robotics
and computer vision, including simultaneous localization and mapping (SLAM) [1]], [2], bundle adjustment [3]], structure from
motion [4], and photogrammetry [5]]. Additionally, a variety of related practical problems of interest [6]—[9] can be transformed
into PGO problems, making it a versatile tool for optimization in these fields.

Some well-established PGO frameworks, such as g2o [10], GTSAM [11], and iSAM [12]], have addressed the PGO problem
using a mix of Euclidean and heuristic optimization techniques. More recently, algorithms based on Riemannian optimization,
including SE-Sync [13]], Cartan-Sync [14], and CPL-Sync [15], have demonstrated that, under certain conditions, the PGO
problem admits a semidefinite relaxation whose solution approximates the solution of the original, unrelaxed problem. One
condition assumed by the above algorithms (and others) is that uncertainties in position and orientation are modeled by isotropic
(uncorrelated) noise.

However, the isotropic noise assumption runs contrary to existing results on uncertainty representations for rigid motion
groups, which mathematically encode PGO problems. Specifically, it was shown in 2D [16] and in 3D [[17] that the propagation
of uncertainty through compound rigid motions is best captured by a Lie-theoretic model [[18]], namely, a Gaussian distribution
on the Lie algebra of a rigid motion group. In fact, the authors of [[19] demonstrated that such a Lie-theoretic model accurately
predicted the distribution of a compound rigid motion trajectory where traditional models failed. These Lie-theoretic models
are inherently anisotropic, which suggests that a PGO algorithm that incorporates anisotropy may attain improved accuracy.

Therefore, in this paper, we formulate 2D PGO problems on the manifold of planar unit dual quaternions (PUDQs), which
we use to explicitly incorporate anisotropy in uncertainty models. To solve such problems, we use a Riemannian trust region
(RTR) algorithm, for which we derive global convergence guarantees. The contributions of this paper are:

o We present what is, to the best of our knowledge, the first provably convergent PGO algorithm that permits arbitrarily

large, anisotropic uncertainties.

« We prove that the proposed algorithm converges to first-order critical points given any initialization.

o We show that the resulting pose estimates are always at least 10% more accurate than the state of the art and more

than 25% more accurate on high-dimensional problems.

The closest related works are [20]—[22]. In [20], a unit dual quaternion approach to PGO was developed using heuristic
optimization techniques without formal guarantees, whereas we employ provably convergent Riemannian-geometric techniques.
The authors of [21]] used a Lie-theoretic objective, but did not include convergence guarantees or quantify the accuracy of their
solutions. The work in [22]] uses a similar problem formulation to us, though that work was entirely empirical. We differ both
by proving convergence and showing improvement in accuracy over a class of Riemannian algorithms that were not studied
in [22].

The rest of the paper is organized as follows. Section [[I] provides preliminaries, and Section [[II] provides a formal problem
statement. Section [[V] outlines the proposed algorithm, and Section [V] proves that it converges. Section [VI] contains numerical
results, and Section concludes.

II. PRELIMINARIES
In this section, we include mathematical preliminaries that are necessary for our PUDQ PGO problem formulation. For
detailed derivations, see Appendices
A. Planar unit dual quaternion construction

We construct the PUDQ manifold as a representation of planar rigid motion. Given an orthonormal basis {i, j, k}, a planar
rigid motion is characterized by a translation, denoted t = t,i +t,j, and a rotation about the k axis by an angle 6 € (—m, 7]
The PUDQ parameterization of this motion is given by x = x,. + €x4, where ¢ is a dual number satisfying €2 = 0, ¢ # 0. The
real and dual parts of x, denoted x, € S and x4 € R?, respectively, are x, = cos (9/2) + sin (9/2) k and x4 £ 3t ® x,, with
“®” denoting the Hamilton product [23]] under the convention i? = j2 = k? = ijk = —1. Applying the Hamilton product to
two PUDQs, denoted x and y, yields the composition operator “H”, which can be expressed as

o —x1 0 O Yo Yo —y1 0 O x0
_|lz1 zo 0 O yvi| _ |y1 yo 0 0 T1
x H y = T2 T3 To —T1 Y2 | 7 | y2 —ys Yo Y1 T2 | (l)
T3 —T2 T1 Zo ys Ys Y2 —Y1 Yo T3
Qr(x) y Qr(y) x

where Qr () and Qg(-) denote the left and right composition maps, respectively. From (T)), we have the identity element
1= [1,0,0,0]T and inverse formula x~! = [x¢, —x1, — 72, —frg]T. The set of PUDQs forms the smooth manifold M £
S % R?2 ¢ R4, which we embed in R? as

Mé{XGR4|h(x):xTPx—1:O}CR4, 2)



where P £ diag({1,1,0,0}) and h(x) is the defining function [24] for M. PGO algorithms optimize over N poses, so we
extend @) to the N-fold product manifold MY £ (S! x R?)V. Below, we will use the operator vec(-), where

Vec((xi)ilil) 2 [XlTa XQT? s 7XL]T
with each x; € M. Since (S' x R%)N < RN = R4V we embed MY in R*N. For X, € MY, this embedding lets
us write X = vec((x;)Y;) and Y = vec((y:)¥,), where x;,y; € M for each i. This embedding also gives the identity
1V = vec((1)X,), the inverse formula X' = vec((x; ")), and the product X B Y = vec((x; By;)N¥,).

K3

9

B. Logarithm and exponential maps

The smooth manifold M with the identity, inverse, and composition operator form a Lie group [18]] whose Lie algebra
is the tangent space at the identity element, denoted 73 M. Given x € M, the logarithm map at the identity element is

Log; : M — Ty M, given by .

7 (x
with 7 (x) £ sinc (¢ (x)) = sin (¢ (x)) /¢ (x), where ¢ (x)

quadrant arctangent and

Log, (x) = (21, 2, x3] ", 3)

~—

>

wrap (arctan (xq,)), arctan : S' — (—m, 7] is the four-

at+n ifa<—7/2
wrap (@) £ a—7 if a > /2 “4)
o otherwise.

Here, ¢ : M — (—7/2,7/2] computes the half-angle of rotation about the k-axis encoded by a point on M. The half-angles
¢ + nm for all n € Z encode the same rotation, so it is valid to wrap ¢ to (—7/2,7/2] via ({@).

Given some x; = [z41, 42, xt73]T € T1 M, the exponential map at the identity, denoted Exp; : T3 M — M, is given by
Exp, (x¢) = [cos (z4,1),7 (x¢) XHT, where 7 (x;) £ sinc (z4,1) as above. For any x,y € M, we also have the point-wise
logarithm map

Log,(y) = x B0, Logy(x " @y)]", )

and, for x € M, and some y; € TxM, the point-wise exponential map

Exp, (y:) = XEEExp]l((x_1 EEyt)lzg) , (6)

where (-),.5 selects the last three entries of a vector. For X, ) € M”, (§)-(€) give logarithm and exponential maps over the
product manifold M, namely Log, () = vec ((Log,. (yi))~,), and, for any V; = vec ((y¢:)~,) € Tx MY, the mapping

Expy(Ve) = vec ((Bxpy, (y1.i))iv1) » @)
with Log, (-) and Exp, (-) given by (5) and (6).

C. Pose Graph Construction

We now address the construction of a pose graph, as exemplified in Figure [I} First, let G = (V,€) be a directed graph
with vertex set V and edge set £ of ordered pairs (i,7) € V x V. Letting |V| = N, we define X = vec((x;)icy) € MY
to be the vector of N poses to be estimated, with individual poses denoted x; € M. Then, letting || = M, we define
Z = vec((2ij) (i, j)ec) € MM to be the vector of M relative pose measurements, where z;; € M encodes a measured
transformation from x; to x;, taken in the frame of x;. The noise covariance for z;; is given by the matrix X;;. The
corresponding pose graph is then constructed by associating the vertex set V with X', and the edge set £ with Z.

III. PROBLEM FORMULATION

We now derive the problem to be solved. From the perspective of Bayesian inference, PGO algorithms aim to estimate the
posterior distribution of poses that best fits a given dataset of relative measurements made along a trajectory. Because a prior
distribution is not always available, PGO is typically formulated as a maximum likelihood estimation (MLE) problem [1]], and
we use such a formulation here.

Motivated by [16]], we utilize a Lie-theoretic measurement model for z;; in which zero-mean Gaussian noise 7);; is mapped
from 73 M to M via the exponential map, i.e.,

z;; = x; ' Bx; BExpy (1), (8)
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Fig. 1. A pose graph with N = M = 5, labeled with vertex poses x;, edge measurements z;;, and edge covariances X;;. Odometry edges, shown in blue,
connect neighboring vertices (i.e., |j — ¢| = 1). Loop closure edges, shown in red, connect any non-neighboring vertices (i.e., |j — i| > 1).

with 7;; € R® and 7;; ~ N (0,%;;). As noted in the Introduction, gives a realistic model of compound, uncertain
transformations. In Appendix [C} we show that () yields the MLE objective F : M — R, given by

1
FX)=5 > fux), )
(i,)€€
where
2
fii (X) = llei; (xi %))l - (10)
Here, €;; = ijl is the information matrix for edge (7,5), and e;; : M x M — Ty M is the tangent residual given by
eij (xi,x;) = Logy (ryj (%i,%;)) , (11)
and r;; : M x M — M is the manifold residual, defined a
rij (Xi7Xj) éi;jlﬁﬂxflﬁﬂxj. (12)

In a geometric sense, r;; encodes the geodesic along M from a measurement z;; to the estimated relative transformation
x; ' B x;. The map e;; then “unwraps” the geodesic to the Lie algebra.

We now address anchoring, a problem that arises because the objective in (Q) is invariant to certain transformations of X,
ie, F(X)=F(YBX)=F(XBY) for any ¥ € MY . To remedy this, one must “anchor” at least one vertex by setting
x, £ 1 for some a € V, so we assume that this has been done for some node. Given this formulation, we now formally state
the problem that we solve in the remainder of the paper.

Problem 1. Given a measurement set Z € MM compute the maximum likelihood estimate X* € MY, where

X* = argmin F (X), (13)
Xemn

with F given by (9).

Problem [T]is a nonconvex, nonlinear least squares problem over a Riemannian manifold. In the following section, we employ
Riemannian optimization techniques to solve (T3).

IV. ALGORITHM DESCRIPTION

This section presents the method by which we solve Problem [I] starting with a brief description of the class of algorithms
we employ. Trust-region methods [25] for optimization in R™ employ a local approximation of the objective function, called
the model, about each iterate. The model is restricted to a neighborhood of the current iterate, called the frust region. At each
iteration, a tentative update step is computed, and is accepted to compute the next iterate if the model sufficiently agrees with
the objective at the computed point. Riemannian trust region (RTR) methods [26, Chapter 7] generalize this idea to Riemannian
manifolds, and our proposed algorithm adapts the RTR framework to planar PGO on MY,

An illustration of the proposed RTR algorithm is shown in Figure [2| At each iteration k, instead of approximating the
objective F, RTR computes an approximation of F in the tangent space at X}, called a pullback. The pullback is defined as

'Henceforth, we simply write e;j 4 eij (x4,%;) and ry; £ rij (Xi,%;).



Iteration 1 Iteration 2

Fig. 2. An illustration of two iterations of the RTR algorithm. At each iteration, the algorithm computes a tangent step Sy € Tx, M, shown in red, within
a trust region of radius Ay, which is indicated by the dotted circle shown in each tangent space. If the step is accepted (as defined in (I8)), then the next
iterate is computed as Xy 11 = Expy, (Sk), which maps the step from the tangent space back to the manifold itself, as shown in green.

Fe 2 Fo Exp, /| The approximation takes the form of a second-order model 7, : Tx, — R, namely
1
g (S) £ F (X) + S grad F (X)) + 5.8 HS, (14)

where S € Ty, MY is a tangent vector centered at X, grad F : MY — Ty MY is the Riemannian gradient, and Hy, :
Ta, MY — Ty, MY is a symmetric approximation of the Riemannian Hessian at X}. We include explicit forms for grad F
in Appendix [E] and our choice of H;, in Appendix

Our procedure corresponds to the RTR update given in [26, Chapter 7]. The algorithm is initialized with Xy € M* and
trust-region radius Ay € (O, A}, where A > 0 is the user-specified maximum radius. At iteration k, the tentative step Sy, is
computed by solving the inner sub-problem

Sr = argmin 1y, (S) subject to [|S]|, < Ay, (15)

S GTX)CMN
where 1y, is from (T4). To solve (I5), we employ the Steihaug-Toint truncated conjugate gradients (tCG) algorithm [29], [30],
which offers unique benefits for trust-region sub-problems, including monotonic cost decrease and early termination (thereby
approximating (T3))) in the cases of negative curvature or trust region violation. To measure the agreement between the model

and objective functions, we use R R
~ Fr(0) — Fi (Sk)

k= - ; (16)
P = S (0) — ring, (Sk)
where 0 € R*" is the zero vector. Based on the level of agreement, the trust-region radius Ay is then updated via
%Ak B if Pr < %
Apy1 = ¢ min {245, A} if p > 3 and ||Sill, = Ay (17)
Ay otherwise.

The tentative step Sy, is accepted to compute Xj11 only if the model agreement ratio py from (T6) is greater than a user-defined
model agreement threshold p’ € (0, 1/4), i.e.,

Ex Si) if pr, > p/
Xy = Px, (Sk) if p P (18)
X, otherwise.
As summarized in Algorithm [T] the steps from (T3)-(I8) are repeated until the gradient norm crosses below a user-defined
threshold ¢, i.e., until ||grad F (X)][, < &4.

V. CONVERGENCE ANALYSIS

In this section, we prove that Algorithm [I|is globally convergent. Specifically, given any initialization, it reaches a first-order
critical point to within a user-specified tolerance in finite time. The authors of [28]] proposed global rates of convergence for
the RTR algorithm given a set of assumptions about the problem, so we treat these assumptions as sufficient conditions for
convergence. For our proof, we will establish:

2The pullback can be implemented using any retraction [27], [28], and we choose to use the exponential map since it is well-defined on M¥ and
straightforward to compute.



Algorithm 1: RTR for PUDQ PGO

Input: Edge measurement set Z € MM,
Maximum trust-region radius A > 0,
Model agreement threshold p' € (0, /4],
Gradient termination threshold £, > 0.
Initialize: k < 0, Xy € MY, Aq € (0,4]
while ||grad F (X3)]|, > &, do

Compute Sy, from using tCG.

Compute pj, using (I6).

Compute A1 using (7).

Compute X1 using (T8).

k<« k+1
end while

return A,

1) Lower-boundedness of F on M™Y.

2) Sufficient decrease in the model cost at each iteration.

3) A Lipschitz-type condition for gradients of pullbacks.

4) Radial linearity and boundedness of Hj.
We will make each of these statements mathematically precise in the following analysis. Towards proving Condition [I| we
first derive a lemma on continuity of F.

Lemma 1. The objective F is continuous on MY .

Proof: By inspection of (B) and (9)-(TI), and continuity of “B5” from (I) as a linear map, it suffices to show that Log, is
continuous on M. While and (@) contain discontinuities independently, we will show that their composition to form Log,
does not. Let ¢; £ arctan(ry, 7o) (where r;; = [ro,r1,72,73]" denotes the element-wise map), and let ¢ = wrap(¢p1).
Then, we have discontinuities in ¢1 at (rg,r1) = (—1,0), in wrap(¢1) at ¢1 = £7/2, and in (y(¢2))~! at ¢ = 7. We
now observe that wrap(—m) = wrap(m) = 0, so lim, ,,)—(—1,0) Wrap(¢1) = 0, thereby nullifying the discontinuities in ¢;.
Next, (sinc(¢2)) " is even and continuous on the domain [~7/2,7/2], s0 limy, =/ (V($2)) ™1 = limy, =/ (v(d2)) ™1 = 7/2,
nullifying the discontinuities in ¢. Finally, because limg, 0(v(¢2))~' = 1 and, by @), ¢2 € (~7/2, —7/2], we conclude that
Log, is continuous on M, which implies that F is continuous on M?%. [ |

We now show compactness of sublevel sets of F.

Theorem 1. The p-sublevel sets of F, given by {X | F (X) < u}, are compact.

Proof: From (), for every X € MY, Exp, is globally defined on Tx MY, which implies that M¥ is geodesically complete.
Therefore, the Hopf-Rinow Theorem [31] implies that closed and bounded subsets of M” are compact, so it suffices to show
that the sublevel sets are closed and bounded.

From ©)-(T0), F (X) > 0 for all X € MY, which implies that the u-sublevel sets of F are the preimages of the closed
subsets [0, ], i.e., p-sublevel sets are of the form F~'([0, u]). These sets are closed because F is continuous by Lemma 1l

Turning to boundedness of sublevel sets, @]) implies that M is unbounded, and therefore M?Y is unbounded. Then, by (32,
Theorem 1], the p-sublevel sets are bounded if and only if F is coercive, i.e., for all J € MM, every sequence { X} };en C MN
such that lim;_, o dpqn (X}, Y) = oo also satisfies lim;_, o, F(X]) = ooE] Therefore, it suffices to show that F is coercive,
which we do next.

First, let X} = vec ((x;):ey) and Y = vec ((y;)iev), and observe from the definition of d ¢~ (X7, ) that

: -1 2
dMN(lAle;l)i)%oo rax [Logy(x; ; Byl = oc.

We now rewrite ||Log,(x;;} By;)|3 as

[Logy(x; ! Byi)ll5 =~(x Byi) %/, My p(yi)xii,

where M| 5(yi) £ Qrp (vi)" diag ({0, I5}) QL (i), with Q@ (y:) given in Appendix [Al Since v (x) € [~7/2,7/2| for all
X € M, we have

||L0g]1(xl_,il Byl < (ﬂ2/4))‘max(ML_R(yi»XIiXLia (19)

3Here, d ;v (-, ) is the geodesic distance on M defined in Appendix



0, (T9) implies

where Amax (-) denotes the maximum eigenvalue of a matrix. Since y; is constant and A,z (M 5(yi)) ,
1 < |[Logy (xu,4) |I3-

>
that Hmyp 0 o —1gy.) 200 (X[X1,i) = 0. The first element of x;; € M is bounded by 1, so x/;x;; — 1 <
1,i i ) )

Therefore, lim,r 4, )00 ILogy(x,:)[|3 = oo. Now, we note that for any x,y € M, we can write

ILog, (xEBy)|; =v(xBy) 'y M, (x)y
=y (xBy) " x" Mg (y)x,

where My, (x) £ Qp (x) " diag ({0, I3}) Q1 (x) and Mz (y) £ Qg (y) ' diag ({0,13}) Qr (y). Because My (-), Mz(-) = 0,
it holds that, for any x,y € M,

tim  max { [[Log, (x)][3  [Log, ()13 } = oc. (20)

l[Log, (xBy)||5 o0

We now observe that for any two vertices x;,x; € M, with 7,5 € V and 7 > j, it follows from connectedness of odometry
edges in & that x; = x; Hc; ;, where

L

Cij = 2j(+1) Brgrn Gy B B2 B @D

Equivalently, we have x; = x; H c; !, Per Section we have anchored x, £ 1 for some a € V, and since Log,(x~ 1) =

)

—Log,(x), it holds that |[Logy(x;,m)[|3 = |[Logy(Cam)||3 for any m € V. Furthermore, because the Z;; terms in (2I) are
constant, applying (20) inductively yields, for any m € V,

2
max ||Logy (r;. )|l = oo.
ops oo 2y (T2 [Logy (ri sl

From (I0), Amin (€2;5) ||Logy (r”)||§ < fij (X&), where Amin(-) is the minimum eigenvalue, and Amin(£2;;) > 0 because €;; =
Zi_jl >~ 0. Then limyjLog (r,,)[j2—00 fij (A1) = 00, and @) gives limy,; (x,) 00 F (A1) = 00. Then F is coercive and the proof is
complete. |
Next, we show that the objective F satisfies Condition E}
Lemma 2. There exists F* > 0 such that F (X) > F* for all X € M.
Proof: Lemma (1| Theorem (1| and the Weierstrass Theorem [33, Prop. A.8] imply the existence of a global minimizer
X* € MY, which is the solution to Problem [I| Setting F* £ F (X*) completes the proof. |
We now show that Algorithm [I] satisfies Condition [2]
Lemma 3. For all X), computed by Algorithm |I| such that ||grad F (X},)||y > €4, it holds that the step Sy, satisfies
. . 1.
My (0) — 1y (Sg) > 3 min{Ay, 2e4}e,. (22)
Proof: By design, iterates of the tCG algorithm produce a strict, monotonic decrease of the model cost 1y [28|]. For all k,
the first tCG iterate is the Cauchy step, which satisfies (22)) by definition and thus completes the proof. [ |
The forthcoming analysis in Lemma 4 Theorem 2] and Lemma [5] addresses Condition [3] namely, Lipschitz continuity of
the Riemannian gradient, grad . First, we use Theorem [2| to prove its Lipschitz continuity on compact subsets of M.

Theorem 2. The Riemannian gradient, grad F, is Lg-Lipschitz continuous on any compact subset K C MPN . That is, there
exists Ly > 0 such that for all X,) € K we have

||,PX*>ygrad]:(X) - grad}—(-‘y)‘b S LQdMN (va) ) (23)
where Py _y : Ta MY — Ty MY is the parallel transport operator defined in Appendix

Proof: A necessary and sufficient condition for (23) is that, for all X € K, the Riemannian Hessian, Hess F, has operator
norm bounded by Lg, i.e.,
sup |[Hess F(X)[V]||, < Ly. (24)
VETx M, ||V|2=1
In Appendices we derive Hess F and derive a constant L, for which (24) holds on any compact subset £ C MY,
completing the proof. ]



To apply Theorem [2| to Algorithm [1} we must first show that the computed iterates remain within the F (Xj)-sublevel set
for all k, which is accomplished by Lemma [4]

Lemma 4. The objective F is monotonically decreasing with respect to the iterates of Algorithm[I} In particular, it holds that
F (X)) < F(X) for all k.

Proof: By 22), we have 7y, (0) — my, (Si) > 0 for all k. If any S would yield an increase in F, then F (Xj) —
F(Expy, (Sk)) <0, and (16) implies pj < 0. By (I8}, such an S, is rejected and, therefore the condition F (X 1) = F (A%)
is enforced in such cases. Thus, since it cannot occur that F(Xy41) > F(Xk), we see that F(Xyy1) < F (Xx) for all k. By
induction, F (X)) < F (&p) for all k, completing the proof. [ |

Now, Lemma [3] extends Theorem [2] to any A} computed by Algorithm [T} which shows that Condition [3] is satisfied.

Lemma 5. For all X}, computed by Algorithm |Z| there exists Ly > 0 such that
L
| (Expu, (S)) = (F () + S grad F ()] < 2|5l (25)
for all S € Ta, MY such that ||S||, < A and for all k.
Proof: Let Mx, = {X | F(X) < F(X,)} and set
K £ Mx, U{Expy(S) | X € Mx,, ||S||, < A}. (26)

Then Theorem |I| implies that My, is compact, and therefore so is K. Lemma E| implies X}, € My, C K for all k. By
Theorem [2] there exists L, > 0 to which (23) applies for all A}, € K. From [34, Lemma 2.1], we find that @23) implies @23,
completing the proof. ]

Lemmas [6] and [7] address Condition ] which pertains to properties of 7, the Riemannian Hessian approximation used
in (T3) and spelled out in Appendix
Lemma 6. The operator H;, in is radially linear, i.e., for all S € Tx, MY and all o > 0, we have Hy[aS] = aH[S).

Proof: Equation (I2) is linear by inspection. [ ]

Lemma 7. The operator Hy, in (121)) is bounded for all X), computed by Algorithm ]} i.e., there exists 3 < oo such that
max {||Hk8H2 1S € T, MY ||S]|, = 1} < B. 27)

Proof: First, ||S||, = 1 implies |[|[HxS|ly < ||Hk|l,. Substituting (I2T), applying the triangle inequality, and using the fact
that A\ppar (Px) = 1 yields

Hill, < Y IPxRyPxll, < D IRy, (28)

(i,9)€€ (i,5)€€

Since, by definition of || - |2 and || - || we have |R;;|2 < [|Rsj|/r, we reach
IRijlly < 411 As 1 g 1Bi |l o 1€ - (29)

Now, we set K as in (26) and apply the bounds derived in Appendix [J| for ||.A;;|» and ||B;;]|» on compact subsets of M?” .
Since every term on the right-hand side of (29) is bounded, we see that the right-hand side of (28) is bounded, completes the
proof. ]

Our convergence analysis culminates in Theorem [3]
Theorem 3. Let ¢, < 2o/x, be given, where Ay is from Section @ g = Vamin {1/8,1/2(L,+8)}, Ly is from @3), and B is
from 7). Then, for any initialization Xy € MY, Algorithm produces an iterate Xy, that satisfies ||grad F(Xy)||ly < g4 in

no more than K iterations, where y T A B
— 3 1
Ko PO -F@X)3 1 AN
p'Ag g2 2 AgEg

(30)

where p is from (18) and X* is from Lemma IZI

Proof: Lemmas [2] Bl and [3}{7] show the satisfaction of Conditions [I}fd] in [28] Theorem 12], which immediately implies
that (30) holds for Algorithm [T} [ ]
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Fig. 3. (Left) The M3500 pose graph dataset, corrupted with Lie-theoretic noise. (Right) The estimated graph computed by Algorithm m Odometry edges
are blue, loop closures are red, and ground truth is shown in gray.

Theorem [3] gives provable convergence of Algorithm [T]to approximate first-order critical points of F under any initialization
Xp, and we note that the tolerance €, can be made to take arbitrary values by adjusting Ay.

VI. EXPERIMENTAL RESULTS

In this section, we validate the accuracy of Algorithm [I] relative to the Riemannian PGO solvers SE-Sync [13]] and Cartan-
Sync [[14]. Both yield a global minimizer identical to that computed by the class of Riemannian algorithms that use semidefinite
relaxations (e.g., [15]], [35]]), so we omit additional comparisons to those algorithms.

Because an objective comparison necessitated the use of exact ground truth, we opted to adapt three synthetic PGO datasets
with diverse vertex and edge counts. The first of these is Grid1000, which we synthesizetﬂ with N = 1000 vertices and
M = 1250 edges. The remaining datasets are publicly available, and serve as common benchmarks for PGO evaluations,
namely, (i) M3500 [36], with N = 3500, M = 5598, and (ii) City10000 [[12], with N = 10000, M = 20687. To generate
PGO trial datasets, we apply calibrated noise to the ground truth dataset for each graph. Each of these datasets, including
ground truth, is available at https://github.com/corelabuf/planar_pgo_datasets.

A. PGO dataset generation

To generate a PGO dataset, the true edge measurements from each dataset are corrupted using the Lie-theoretic noise model
from (8). The edge measurement noise covariance, %;;, is computed as X;; ~ W35 (04,2, 10), where Wy (V, n) is the Wishart
distribution with dimension d, scale matrix V, and n degrees of freedo Here, o,, is a variance tuning parameter, and 3,
is given by ., £ J5 + diag ([u1, u2,us]), where J3 € R¥*3 is a matrix of ones and u; ~ U, are uniformly sampled on
the interval (0, 1]. This generates random, positive-definite, anisotropic covariance matrices with E[¥;;] = 100,,3,,, which
simulates relative pose covariances computed by a Lie-theoretic estimator. Using this approach, we generated 5 trial datasets
per ground truth, for a total of 15. Figure |3| depicts an M3500 variant generated with o, = 5.62 - 107> alongside the estimate
computed by Algorithm [T}

B. Evaluation methodology

Solutions computed by each algorithm were evaluated using the root-mean square relative pose error (RPE) metric. RPE
measures total edge deformation with respect to the ground truth, and gives an objective performance metric for SLAM
algorithms [38]. We denote (x¢)Y, to be the ground truth poses, and (%;)Y; to be the solution computed by a given

algorithm. The Lie-theoretic RPE (RPE-L) is defined as

RPE-L £ % > [lrog, (2" B25) 5, Gh
(i,9)€€
A

where z;; £ %; ' B%; and zg; = (x5) ' BxS. Now, let (t;,0;) and (t¢,0¢) denote the translations and rotations corresponding

177

to x; and xY, respectively. The Euclidean RPE (RPE-E) is defined as

1 . 2 A

S o 002

RPEEZ |- > (Htu t2,||” + d(8i;,65;) ) (32)
(i.5)€€

4To synthesize the Grid1000 dataset, a ground truth trajectory is computed along a randomized grid resembling the Manhattan datasets created for [36].

Loop closure edges were selected at random, specifically, with 3.0% probability of an edge at Euclidean inter-pose distances of up to 2 meters.
5The sample covariance matrix of a multivariate Gaussian random variable is Wishart-distributed [37], making it an apt choice for this application.
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Fig. 4. Percent reduction in Lie-theoretic RPE for the solutions computed by Algorithm |I| relative to Cartan-Sync and SE-Sync. Reduction in Euclidean RPE
was omitted due to it being indistinguishable from the Riemannian case. We see greater than 10% decrease for the Grid1000 dataset over the entire noise
regime, and greater than 15% & 25% for the M3500 and City10000 datasets, respectively. In all cases, the improvement in accuracy attained by Algorithm |I|
grows with the number of vertices and edges present in a graph.

where t;; 2 RT(0;) (t; — ;). t3, £ R" (67) (t5 — t9), d (01, 02) is the minimal angle between ¢; and s, and

2

A | cos(0) —sin(6
R(Q) = |:sin((0)) cos(é)):| :

For evaluation, the variance scaling parameter, o,,, was varied from 10~° to 10~2, which equated to mean Euclidean
covariances with standard deviations ranging from 7.26 - 1073 to 2.29 - 10~ meters for translations, and from 4.05 - 107! to
12.81 degrees for rotations. We anchor x; 2 1 for all three algorithms. The initial iterate X, is computed using the chordal
relaxation [39] method; though not necessary for convergence of Algorithm [I] it is the default for both SE-Sync and Cartan-
Sync, so we implement it to provide a fair comparison. Algorithm [l| was configured with parameters £, = 1072, Ay = 100,
A =10°% p’ = 1072, and the inner tCG algorithm was implemented with parameters x = 0.05, § = 0.25, per the notation
in [24, Section 6.5].

C. Evaluation results

Algorithm [T] converged to an approximate stationary point in all of the 15 pose graphs. The RPEs computed for each run
according to (1)) and (32) are included in Table[l] alongside the percent reduction in RPE attained by Algorithm [T] for each run,
which is plotted in Figure ff] SE-Sync and Cartan-Sync computed identical solutions for each dataset, and exhibited a notable
estimation bias across the entire noise spectrum, owing to the assumption of isotropic noise and the resulting approximation
error. As shown in Figure i Algorithm [ demonstrated a consistent reduction in RPE. In fact, the gap in RPE increases with
the number of vertices and edges in each graph, highlighting the scalability of our proposed solution.

VII. CONCLUSION

We presented a novel algorithm for planar PGO derived from a realistic, Lie-theoretic model for uncertainty in sensor
measurements. The proposed algorithm was proven to converge in finite-time to approximate first-order stationary points under
any initialization, while requiring no additional assumptions about the problem. Numerically, the proposed algorithm showed
significantly improved accuracy over the state of the art, and future work will extend the algorithm to the 3D case and
distributed/asynchronous implementations.



TABLE I
RESULTS OF THE 2D PGO DATASET EVALUATION. RPE AND PERCENT REDUCTION IN RPE ATTAINED BY ALGORITHM [[]ARE SHOWN ON THE RIGHT.

SE-Sync [[13]] Cartan-Sync [ 14]] Algorithm El [ours] (% Reduction)

Dataset Ow RPE-L RPE-E RPE-L RPE-E RPE-L RPE-E

Grid1000 | 1.0-107° [ 6.2-107°3 [ 1.2-1072 [ 6.2-107° [ 1.2-1072 | 5.4-1073 (-12.4%) | 1.1-1072 (-12.4%)
Grid1000 | 5.6-107° [ 1.5-1072 [ 2.9-1072 [ 1.5-1072 [ 2.9-107%2 [ 1.3-1072 (-12.7%) | 2.6 - 10=2 (-12.7%)
Grid1000 [ 32-107* [ 35-1072 [ 71-1072 [ 35-1072 [ 71-1072 [ 3.1-1072 (-11.8%) | 6.2-1072 (-11.8%)
Grid1000 | 1.8-1072 | 7.9-1072 [ 1.6-10"' [ 7.9-1072 [ 1.6-107! | 7.0- 1072 (-11.5%) | 1.4-107" (-11.5%)
Grid1000 | 1.0-1072 [ 1.9-107' [ 39-10°T [ 1.9-107 T [ 39-107T [ 1.7-107 T (-11.8%) | 3.4-10~T (-11.7%)
M3500 | 1.0-107° | 54-1073 [ 1.1-1072 | 54-1073 [ 1.1-1072 | 441073 (-19.4%) | 8.7-1073 (-19.4%)
M3500 | 5.6-107° | 1.3-1072[26-10"2 | 1.3-10°2 [ 2.6-10"2 | 1.0- 102 (-19.8%) | 2.1-10~% (-19.8%)
M3500 |[3.2-107* [ 31-1072[6.2-1072 | 31-102[6.2-1072 | 2.5-10°2 (-19.0%) | 5.0- 102 (-19.0%)
M3500 | 1.8-1073 | 7.4-1072 [ 1.5-10° 1 | 74-1072 [ 1.5-107 T | 6.0- 102 (-18.4%) | 1.2- 10~ T (-18.4%)
M3500 | 1.0-1072 | 1.7-107F [ 34-10" T | 1.7-107 ' [ 34-107T | 1.4-107 T (-16.8%) | 2.9-10" T (-16.8%)
CitylOk | 1.0-107° [ 4.9-1073 [ 9.7-1073 [ 4.9-1072 | 9.7-1073 [ 3.6 - 1073 (-26.8%) | 7.1-1073 (-26.8%)
CitylOk | 5.6-107° | 1.2-1072 [ 23-1072 [ 1.2-1072 [ 2.3-1072 | 8.5-1072 (-26.9%) | 1.7-1072 (-26.9%)
Citylok | 32-107%[28-1072 [ 55-1072 [ 2.8-1072 [ 5.5-10"2 | 2.0- 1072 (-26.7%) | 4.0- 1072 (-26.7%)
CitylOk | 1.8-107°[6.6-1072 [ 1.3-10 1 [ 6.6-1072 | 1.3-10° T | 4.8-1072 (-27.5%) | 9.5-1072 (-27.5%)
Citylok | 1.0-1072 [1.6-107T [ 31-107T [ 1.6-107T [ 3.1-10°T [ 1.2-107 T (-25.7%) | 2.3- 10" T (-25.7%)

APPENDIX A
ALGEBRAIC CONSTRUCTION

Given an orthonormal basis {i,j,k}, a rotation in the plane is characterized by a rotation angle § € (—m, 7] about the k
axis. In standard form, we can write the planar unit quaterniorﬁ q € St corresponding to this rotation as

q = cos (9/2) + ksin (9/2) = ro + krq,

or, in vector form, q = [qo, q1] . Let “®” denote the Hamilton product [23] under the convention i = j? = k2 = ijk = —1.
Then, performing the Hamiltonian multiplication of two planar quaternions, denoted r,s, yields

rQ@s= (7’0 =+ k’l"l) (80 + kSl) =T0So —T151 =+ k(T150 =+ 7’051)
In matrix-vector form, the operation can be written as
rg —T s Sg —S T
1 To S1 S1 S0 r1

A planar rigid motion is characterized by a translation, denoted t = ¢,i + ¢,j, and a rotation about the k axis by an angle
§ € (—m,m). This can be written in R® as the Euclidean vector p = [t",0]". The planar unit dual quaternion (PUDQ)
parameterization of this motion is given by x = X, + x4, where € is a dual number satisfying ¢ = 0, ¢ # 0. The real part
of x, denoted x, € S', is a planar unit quaternion of the form

x, = cos (9/2) + sin (¢/2) k = ro + kry.

The dual part of x, denoted x4 € R?, is given by

1 L. . 1 . .
Xq = it ®x =3 (tpi+tyd) (ro+kr) = 3 ((tpro +tyr1) i+ (tyro —ter1)]) - (33)
In matrix-vector form, can be rewritten as
1 tm tU To 1 To T1 tw
— - : — - . 34
d 2[ty —tw}[ﬁ} 2{—7‘1 ro ty GY

In vector form, a PUDQ can be expressed in terms of the bases {i,k,¢€i, €j} as
. . T
x =z + kay + € (izy + jr3) = [x0, 21, 22, 23]

61t is noted that a planar unit quaternion is a standard Hamiltonian unit quaternion restricted to a rotation about the k-axis, i.e., q € H, q = w+zi+yj+zk,
with [|q|l, =1 and z =y = 0.



Equivalently, we can write x = [x,|,x]]. Given two PUDQs, x = [z, =1, 2, z5]" and y = [yo, Y1, v2, ys] . we can

compute the composition operation “H” by applying Hamiltonian multiplication, which yields
xBy = (vo + kr1 + € (ir2 + jz3)) (vo + ky1 + € (iy2 + jys))
= (zoyo — z1y1) + k (xoy1 + z1y0) + € (i (Toy2 — z1ys + Tayo + x3y1) +J (Toys + T1y2 — T2y + 3y0)) - (35)
From (33)), we can deduce the identity PUDQ, denoted 1, to be 1 = [1,0,0, 0]T, so that 1 Bx = x A 1 = x. Moreover, the

inverse of a PUDQ x, denoted x 1, is given by x~! = [z, —2, —%9, —x3] ", so that x Hx~! = x "B x = 1. The operation
described by (35)) is equivalent to the matrix-vector multiplication(s)

i) —X1 0 0 Yo Yo —U1 0 O i)
xBy = 1 1wz O 0 Y| _ |1 Y% 0 0 1 (36)
T2 T3 To —T1 Yo Y2 —Ys Yo Y1 z2 |’
r3 —T2 1 To Y3 Y3 Y2 —Y1 Yo €3
Qr(x) y Qr(y) x

where we have implicitly defined the left and right-handed matrix-valued left and right-hand composition mappings @, : M —
R*** and Qg : M — R**4. Using Q, we define Qx; (x) : M — R*** such that

9 —wx1 0 0 Yo To @1 0 0 Yo

x @ y_l _ X1 Zo 0 0 - _ X1 —X0 0 0 Y1
€2 €3 o —I1 —Y2 T2 —I3 —To gl Y2

T3 —I2 T1 Xo —Ys I3 X2 —X1 —Xo Ys

Qr(x) y! Qrr (%) y

and Q7 : M — R*** such that

o T 0 0 Yo o —x1 0 0 Yo
X_l =) y_l _ —X To O O —U1 _ —X1 —X0 O 0 Y1 ) (37)
—X2 —I3 Top 1 —Y2 —T2 X3 —Xo —T1 Y2
—x3 X2 —x1 o —Ys —r3 —X2 I —Zo Ys
QL1 y~! QL™ (%) y

Using Qr, we define the mapping Q7 p : M — R*** such that

Y —y1r 0 0 To Yo Y1 0 0 T
X_l = y = U1 Yo 0 0 —T1 _ Y1 —Yo0 0 0 T :
Y2 —Ys Yo WY1 —T2 Y2 Y3 —Y% U1 T2
Ys Y2 —Yr Yo —I3 Ys —Y2 U1 —Yo zs3
QR(Y) x—1 QZR(y) x

and Qp" : M — R**4 such that

Y yr 0 0 T Yo -~y 0 0 Zo
x 1@yl = -y1 Y 0 0 21 | _| =% —v% O 0 x1 (38)
—Y2  Ys Yo —Y1 —T2 —Y2 —Y3s —Yo Y1 X2
—Y3 —Y2 Y1 Yo —I3 —Y3 Y2 —Y1 Yo x3
AN —
Qr(y—1) x~! Qr () *

The maps Q1 and Qr additionally yield the definitions for Q;; (x) = Qr (x’l) and Qpp (%) £ Qr (x’l) such that
x 1Hy=0Q;;, x)yand xBy ' =Qzrp(y)x.



APPENDIX B
RIEMANNIAN GEOMETRY OF THE PLANAR UNIT DUAL QUATERNION MANIFOLD

In this appendix, we provide derivations relating to the Riemannian geometry of the PUDQ manifold M and its product
manifold extension M?” . For a general coverage of these topics, we refer the reader to [24].
A. Embedded Submanifolds

The set of all PUDQs forms a smooth manifold, denoted M. In this work, we employ an embedding of M in the ambient
Euclidean space R* with the inner product (u,w) = u'w and induced Euclidean norm |ju||, = vVuTu for all u,w € R*. This
embedding yields the coordinatized definition for M given by

Mé{x€R4|h(x):xTPx—1:O}CR4, (39)
where h(x) is the defining function [24) for M and P € R*** defined as
5 I 0axo
P : 40
{ O2x2  O2x2 ] “0)

where Iy € R?*2 denotes an identity matrix and Oz € R?*2 denotes a matrix of zeroes. By (39), we have M = S xR? C R*.
We now extend (39) to the N-fold PUDQ product manifold MY £ M x M x -+ x M = (S! x R%)N. For notational
convenience, we define the operator vec(-) such that

VGC((Xi)é\Ll) = [XI7X;7'~'7X—I\|—[]Tu 41)
with each x; € M. Since (S! x R%)N ¢ RN = R4V we embed M¥ in R*M via the coordinatized definition
2

MY {Vec((xi)i]\il) | x; € M forall i € {1,.. .,N}} C R (42)

1=

where x;,y; € M for each 4. Furthermore, admits natural extensions to M¥ of the identity 1V = [17,17,...1
inverse X' = [x; |,x; |,...,xy ]|, and, for X, € MY, the product X B Y = vec((x; By:)X,).

with vec(-) given by @I)). For X, € MY, the embedding in @2) lets us write X = vec((x;)¥;) and Y = vec((y:)Y,),
)

B. Tangent Space and Projection Operators

The tangent space of M at a point x € M, denoted 7x.M, is the local, Euclidean linearization of M about x. It is defined
as TxM = ker(Dh(x)), where h(x) is the definining function from (39), and Dh(x)[v] is the directional derivative of h along
v € R* at x. We compute Dh(x)[v] from the definition given in [24] as

h(x + tv) — h(x)

DAG) ] = i "L
T 5 LT P
— fim (x+tv) P(x+tv)—x Px
t—0 t
=2x' Pu. (43)

Since TxM £ ker (Dh (x)), it follows from that x ' Pv = 0 for all v € T M. Therefore, T M is given by
TM = {v eR*|x"Pv= 0}. (44)
We can then derive the orthogonal projection matrix, denoted P, by identifying from that, for any u € R?, it holds that
Proj, U = U — PIroj p, U,
where 5
. T = X
projp,u = (x Pu)m
Since || Px||2 = 23 + 2} = 1 for all x = [z, 21, %2, 23] € M, we have projp u = Pxx' Pu. Therefore,
proj,u = u — Pxx' Pu= (I, — Pxx" P)u, (45)

where I,,, € R™*™ denotes the identity matrix. Equation (@3) yields proj,u = Pxu, with Px € R*** given by the symmetric,
idempotent matrix . 3
Px = I, — Pxx' P, (46)



with P given by (@0). We also have the normal projection operator, denoted P € R**4, given by
’Pi =1, — Py = PXXTP. (47)

Furthermore, the embedding in (@2) gives the orthogonal projector onto T4 M?®, denoted Py € RV *4N (o be

P = diag({Py, | i € {1,..., N}}), (48)
with Py, given by (@6). Finally, the normal projector onto 7+ M?®Y, denoted P35 € R*N*4N s given by
Py = diag({Px | i € {1,...,N}}), (49)

with P- given by @7).
C. Riemannian Metrics

Because we employ the embedding defined in Appendix M inherits the Euclidean metric gx (u, w) = (u,w), =u'w
and norm ||ul|, £ ||lu||, for all x € M and u,w € TxM. Moreover, per [24, Section 3.7], M" admits the product metric
gx UW) = Zfil gx; (Ui, w;) =UTW, and norm |[U|| , £ U], for all X € MY and U, W € Tx MV,

D. Parallel Transport

The parallel transport operator maps tangent vectors between tangent spaces. On M, Px_,y : TxM — T, M denotes the
parallel transport from 7xM to 7T, M for any x,y € M. For u, € T, M, it is given by

Prosy(uy) =xB (y ' Buy). (50)
Extending this definition to M” yields Px_,y : Ta MY — Ty MY to be
PxyUy) = vee ((x; B (y; ' Bu))ily)
for Uy = vec((u;))N 1) € TyMN, X = vec((x;)N;) € MV, and Y = vec((y:)Y,) € MV,

E. Logarithm and Exponential

Here, we derive the logarithm and exponential maps for M and M¥. The smooth manifold M with the identity, inverse,
and composition operator form a Lie group [18] whose Lie algebra is the tangent space (44) at the identity element, denoted
T1M. The geometry of screw motions encoded by elements of the PUDQ group is a consequence of Chasles’ Theorem [40]],
which states that any rigid transformation can be modeled as a rotation and translation about a singular axis, termed the
screw axis. In [41]], the logarithm map at the identity for the unit dual quaternion (UDQ) group DH was derived for rigid
transformations in 3D in terms of four screw parameters: the rotation angle 6, pitch d, direction vector I, and moment m.
Given an orthonormal basis {i, j, k}, we define a translation t £ ¢,i+ tyj+t.k and direction vector 1 L Li+ ly,j+ 1. k. Then,
the pitch is d given by d = t "I, and the moment m is given by

m:é(txl—i—cot(g)lx(txl)), (51)

where “x” denotes the standard cross product in 3D. Following the methodology in [22]], we can treat the PUDQ group M as
the degenerate, planar case of the UDQ group IDH, in which case § remains unchanged, t = ¢,i+1¢,j, and I = k. Furthermore,
for planar rigid motions, t and k are orthogonal vectors, so d =t 'l = t "k = 0. Moreover, applying these planar definitions
to and simplifying yields the planar moment m to be

mzé(txk—i—cot(g)kx(txk))

(e e ()51

Finally, substituting and the preceding planar definitions into the UDQ logarithm map derived in [41]] and simplifying
yields the PUDQ logarithm map at the identity for x € M to be

1 0
Log, (x) = 5 (0+ed) (l+em) = B (k+em). (53)
We can express (53) in vector form according to the basis {k, ci,ej} as Log; (x) = [, 2mT]". Then, substituting (52)), letting

¢ = 9/2, and applying the definition of cot(-) yields the vector expression

o= 1.8 (1 2200 ) 5 (200, )]




which simplifies to

I P cos(¢) sin(s) [t )
Log, () = [qs,zsm(@ ([ st o) [ ] | b
Now, we write x = [x,|,x)]" = [0, 21,72, 73] ", and note that, from (34), we have
_ 1| cos(¢) sin(g) ty
Xd = 9 { —sin(¢) cos () } [ ty } ’ (53)
Finally, substituting (33) into (34) and simplifying with z; = sin(¢) yields
Log, (x) = suf)@) (21, 22, 23] .

Therefore, given x € M, the logarithm map at the identity, denoted Log; : M — T3 M, is given by

Log, (x) = m[ml, To, w3, (56)
where
a _ sin (¢ (x))
70 & sine (5 () = OB, 7
with
# (x) = wrap (arctan (z1, 29)) , (58)

where arctan : S! — (—m, 7] is the four-quadrant arctangent and

at+7n ifa<—7/2
wrap (@) £ a—7 if a > /2 (59)
o otherwise.

Here, ¢ : M — (—7/2,7/2] computes the half-angle of rotation about the k-axis encoded by a point on M. The half-angles
¢+ nm for all n € Z encode the same rotation, so it is valid to wrap ¢ to (—7/2, 7/2] via (59). Moreover, the exponential map
at the identity, denoted Expy : Ty M — M, is the inverse of (36). Given x; = [z11, Tt 2, xt73]T € Ti M, it is given by

Exp, (x;) = [cos (z,1),7 (x1) %, ] (60)

where 7y (x;) £ sinc (z;1) from (7). For context, (56) and (60) constitute the Lie-theoretic logarithm and exponential maps
on M, when treated as a Lie group. By equipping M with the Riemannian metric derived in Appendix [B-C} we can treat M
as a Riemannian manifold, in which case (36) and (60) define the logarithm and exponential maps evaluated at the identity.
Furthermore, we can apply the parallel transport operator on M from (50) to extend (56) and to arbitrary points on M
as in [42]]. This yields, for any x,y € M, the pointwise logarithm map

Log,(y) = x B [0, Log,(x " Hy)"]", (61)
and, for x € M,y; € TxM, the pointwise exponential map
Exp, (y:) = XEEExp]l((x_1 EEyt)lzg) , (62)
where (-),., selects the last three elements of a vector. For the product manifold MY, [56)-(62) yield, for X,V € MY,
Logy () = vec ((Logy, (¥i))il1) »
and, for Y, = vec ((yi,i) ) € TaMP,
Expy (V4) = vec ((EXPxi (y?fl))zlil) )
with Log, (-) and Exp, (-) given by (&) and (62).

F. Geodesic Distance

The geodesic distance metric extends the Riemannian metric to measure the lengths of minimal curves between points on
manifolds. The geodesic distance on M is given by

dam(x,y) = ||[Log,(x ' By)|,



for x,y € M. For the product manifold MY, it is given by

N

dpes (X, 9) = | [[Logy(x By
i=1

for X = vec((x;)N;) € MY, and Y = vec((y;)¥;) € MV.

G. Weingarten Map

The Weingarten map describes the extrinsic curvature of a manifold. Here, we derive the Weingarten maps for M and MY,
which will be used in our derivation of the Riemannian Hessian in Appendix [Fl From [43]], the Weingarten map at x € M,
denoted 2y : TxM x TEM — Tx M, is given by, for u € oM, w € T LM/

le (Ua UJ) = PxDquwa (63)

with Py given by (@6). In (63), D,, denotes the directional derivative along u at x, which is defined for any function f on M
into a vector space, and for any u € TxM as

. d
Duf () = limy 47 (e (1)) (64
where ¢ is any curve on M with ¢ (0) = x and ¢’ (0) = u. Applying @6) to (64) and letting x = ¢ (¢) yields
i 4 _ T T 5
D, P = lim = Puy = =P (¢ (0) (c(0)" +e(0) (¢ (0))") P, (65)
which simplifies to
D,Px =— (PuxTP + quTP) , (66)
with P given by (@0). Substituting (66) into (63) yields
Ay (u,w) = PxDyPyrw = =Py (Pux—'—]3 + ﬁXUTP) w = —PyPux' Pw — Py Pxu' Pw. (67)

The following two lemmas allow us to further simplify (67).
Lemma 8. For all w € TXLM and for all x € M, it holds that Pw = w.
Proof: Since w € T'- M, it holds that P-w = w. Therefore, since Pis idempotent (i.e., PP = P) we have
Pw = PPtw=P (pxxTﬁ) w = Pxx" Pw = Plw=w,
completing the proof. ]
Lemma 9. For all x € M, PP, = Py P.

Proof: Since Pis idempotent, we have

PPo=P (I Pxx"P) = P~ PPxx"P= P~ Pxx" PP = (I - Pxx"P) P = PP,
completing the proof. |

Applying Lemmas [§] and (9) to (67) yields
A (u,w) = —PPuxw— PPyxu’w. (63)

Finally, since u € Ty M and w € T'Z M, it follows that v and w are orthogonal and therefore u " w = 0. Applying this to (33)
yields -
Ay (v, w) = =Py Pux"w, (69)

which gives the Weingarten map for M. We now extend (69) to derive the Weingarten map for M*, denoted 2y : TAx MY x
T MY — TxMN . First, given X € MY, U € Tx MY, and W € T MY, we define C (t) = [¢] (t),c5 (t),...,cy (t)]T
such that C (0) = X and C’ (0) = U. Rewriting (66) in terms of M?” yields the Weingarten map at X € M®" to be

Ax (UW) =PxDyPxW, (70)

71t is noted that u € T M implies Pxu = u and w € ’7;}/\/( implies P,{w = w.



for any U = vec((u;)N.1) € Ta MY, W = vec((w;)N.;) € T# MY, with Py given by [@S). From the definition in (64), we
now derive Dy, Py to be

d . . ) . d .. ,
= @11;1_1}1(1) (diag ({Pe,y | i € {1,...,N}})) = dlag({atlg%Pci(t) |ie {1,...,N}}). (71)

Now, using (63)), we see that simplifies to
Dy Px = diag ({Dy, Px;

. d
DyPx = tlg% %,PC(t)

N (72)

Substituting into yields
Ay (U, W) = Pydiag ({Dy,Px, |1 € {1,....N}})) W,

which simplifies to

Ay (U, W) = vec ((PxiDuiPxiwi)iil) :
Finally, noting that (63) gives Px, Dy, Px,wi = Ux, (ui, w;), we observe that
x (UW) = vec ((lei (ui,wi))f\/ﬂ) , (73)

which gives the Weingarten map for M.

APPENDIX C
MAXIMUM LIKELIHOOD OBJECTIVE DERIVATION

Here, we derive the MLE objective F for PGO on the PUDQ product manifold. First, let G = (V,£) be a (directed) pose
graph with vertex set ) and edge set € consisting of ordered pairs (i,7) € V x V. Let X = vec((x;)icy) € MY denote N
poses to be estimated. The M relative pose measurements are denoted Z = vec((Z;)(;,jyes) € MM where each z;; € M
encodes a measured transformation from x; to x;, taken in the frame of x;. We utilize a Lie-theoretic measurement model for
Z;; in which zero-mean Gaussian noise 7);; is mapped from 73 M to M via the exponential map, i.e.,

z;; =x; ' Bx; BExpy(ni;), ni; € R®, nij ~ N (0,55) . (74)

Rearranging terms and noting that Log, (x ') = —Log, (x) and (x B y) ' =y tEx!, we see that gives the likelihood

function £L(X | Z2) =P(Z = Z | X) (where Z denotes the random variable corresponding to observation Z), with

1
cxz)=]] Kexp( =Log, (z;;' Bx; 'mx;) %) 'Log, (z;;' Bx; Baxj)>7
(e \/ (2m)% det(Sy;)

whose maximizer over X € MY is the maximum likelihood estimate, denoted X*. Equivalently, X'* is the minimizer of the
negative likelihood —(L(X | Z)). Now, taking the natural logarithm of —log (£ (X | Z)) and simplifying yields

“log(L(X]Z2)= Y log ! + Y = (Log]l lExBx;) S Log, (7 BxEx) ).
(i,5)€E (27’1’)3 det (le) (1, j)GE
(75)
We now observe from that
argmin (—log (£ (X | Z))) = argmin F (X),
X X

where the maximum likelihood objective, denoted F (X), is given by
FX)= > fi(x), (76)
(i,5)€E

where

fii (X) = Sei; (x5,%;) T Qe (x5,%;) = % leis (xi, ;)] g . (77)
In (77), Q;; = Ei_jl is the information matrix for edge (¢,7), and e;; : M x M — Ty M is the tangent residual given by

e;; (xi,x;) = Log; (rij (xi,%,)) = Logy (2 ( '@ x; “1H XJ) (78)
where we have implicitly defined the manifold residual r;; : M x M — M as r;; (x;,X;) £ 271 B x; e x]

8Henceforth, we omit the dependency on (x;,x;) from our notation, i.e., €;; £ e;; (xi,X;), rij = ri; (X4, X;)-



APPENDIX D
TRANSFORMATIONS OF POSE PARAMETERIZATIONS AND UNCERTAINTIES

In this appendix, we derive transformations of poses and pose uncertainties between three parameterizations of planar rigid
motion, namely, Euclidean space, denoted R3, and the planar unit dual quaternion group, denoted M, and the planar special
Euclidean group, denoted SE (2).

A. Pose Transformations

Here, we derive transformations of poses between the three aforementioned parameterizations. We first define a planar pose
represented in an orthonormal basis (i, j, k) and characterized by a translation t = t,i + ¢,j and a rotation angle 0 € (—m, 7]
about the k axis. In Euclidean space, such a pose is given by the vector p = [tT, Q]T € R3, with no additional structure
applied. An alternative planar pose parameterization is that of the planar unit dual quaternion group (as detailed in Section [[I-A),
which we denote M. Letting ¢ = ¢/2, Euclidean poses are mapped to M via v, : R® — M, defined as

1 T
0y () = [cos () 5in (0). 5 (R0) | 19)

where, letting x = [z, 21, T2, (E3]T, Ry is given by
R, | cos () sin(¢) | _ | o =
¢ —sin(¢) cos(¢) -1 X0 |

The inverse map, w; L. M — R3, is defined as

Uyt (0 = 2 [(RI PR 6(x)] (50)

with ¢(x) given by (58). Another common pose parameterization is the planar special Euclidean group, denoted SE (2), which
is defined as SE (2) £ SO (2) x R2, where “x” denotes the semidirect product, and SO (2) is the special orthogonal group,
i.e., the set of all rotation matrices, which is given by

SO(2) £ {ReR>? | RTR=RR" = I, det (R) = 1},

where I € R?*2 is an identity matrix. SE (2) is traditionally coordinatized using the homogeneous transformation matrix
(HTM) representation, which gives the definition

SE(2)AH1§’ HGRSXﬂReSO(Q),teR?}. (81)
In this work, we equate SE (2) with its HTM representation in (81). Given a planar Euclidean pose, p € R?, the mapping
from Euclidean space to SE (2), which we denote v, : R® — SE (2), is then given by

cos(f) —sin(0) t,

Ys(p)= | sin(f) cos(0) t, |. (82)
0 0 1

Moreover, given a planar special Euclidean pose T' € SE (2), the mapping from SE (2) back to Euclidean space is given by
the inverse mapping ;! : SE (2) — R3, which is given by

ws_l (T) = [Tlg, T23, arctan (Tgl, Tll)]T 5 (83)

where T;; denotes the entry of the matrix 7" at row 4, column j, and arctan(-) denotes the four-quadrant arctangent function.
Furthermore, poses can be mapped between SE (2) and M using compositions of (82)-@83), (79), and 0, i.e., s 0 1, :
M — SE (2) and ¢, 07 : SE(2) — M.

B. Pose Covariance Transformations

We now derive transformations between uncertainties of poses corresponding to random variables in R®, M, and SE (2).
These transformations presume that pose uncertainties in M and SE (2) are modeled as Gaussian distributions in the Lie
algebras of their respective groups. First, let x, = [t,, Ty, 0]T € R? be a planar Euclidean pose. Then, given vp € T1 M, where
v, £ Log; (1, (x.)), and noting that § £ 2¢, it holds from (56) that

Q (SC()tz +I]L‘1ty) (l‘oty 7$1tz) T
27 2sinc(9/2) ~  2sinc (9/2) ’

'Up:



which simplifies to

1
Logy (x) = 5B, M, (0) xe, (84)
where 00 1 @ .
w 2 0
By |1 0 0],andM,=| —02 w(®) 0 ,withw(a)éM,
010 0 0 1 sinc (9/2)

Here, gives an invertible map from R3 to 73 M. Now, let x, ~ N (0,%.) be a random vector. Letting 3, £ Cov [v,)]
and applying (84) yields

¥, = inMp (0)xcM,) (0) B, . (85)

Additionally, letting 2, £ ¥, Q. = ¥7!, and noting that B, = B/, we have
Q, =4M, " (0) B,Q.B,) M, (6). (86)

Equations (85) and (86) give invertible maps, and thus transform the covariance and information matrices of Gaussian random
variables between R® and 77 M. However, this requires a priori knowledge of #, which is not always available. Moreover,
given a vector in the Lie algebra of SE (2), denoted vy € se(2), with v = 1, (x.) (where ¥5 : R* — SE(2) is derived
in [[16]), it holds that
X, = M, (0)v), (87)
where
sinc ()  <=f=L 0
M, (0) £ | =520 ginc(d) 0 |,
0 0 1

and the operator V : se(2) — R? maps from the Lie algebra to its Euclidean representation. Combining (84) and (87) yields
the mapping from se(2) to 73 M to be

1
vp = inMp (0) M, (0) v, (88)
and since M, () M, (6) = I5, (88) reduces to
1
vp =5 LUy (89)

which gives an invertible vector map from 73 M to se(2) that is independent of 6. Now, consider vy ~ A (0, X5). From (89),
we have

1 1
¥, = Cov {QB,,USV} = 1BPESBPT : (90)
Letting €2 £ E;l, we also have
1 -1
Q, = <4BPESBPT) = 4B,Q,B, . 1)

The maps in (90) and (O1) are also invertible, and thus transform the covariance and information matrices of Gaussian random
variables between 73 M and se(2).

APPENDIX E
RIEMANNIAN GRADIENT DERIVATION

In this appendix, we derive the Riemannian gradient for the maximum likelihood objective F given by (76). Because MY is
an Riemannian submanifold of a Euclidean space [24], the Riemannian gradient at X’ € MY denoted grad F (X), is computed
by projecting the Euclidean gradient at X, denoted O.F (X), onto Tax MY, ie.,

grad F (X) = PxOF (X), (92)

with Py given by equation [@6). Thus, the remainder of this appendix serves to derive the Euclidean gradient of F.



A. Euclidean Gradient

The Euclidean gradient of F, denoted O.F, is derived by omitting the manifold constraint from equation and computing
the gradient of F in R*" with respect to X. Differentiating [76) in this manner and simplifying yields

— 8]: Ofi; (X)
OF (X) = Z fi@) = 3 57)((.
(z J)EE (i,7)€€
Since 5
5 fig (X) 1 =1,
ofy (x) % .
Tcl = ijfzg (X) L=, (93)
0 otherwise,

it suffices to compute the partial derivatives of f;; with respect to x; and x;. Omitting the arguments (x;,x;) from e;; and
applying the chain rule to (93), we have

af; (X) 8 dei;\ |
ani = 78 ( TQijeij) = <8Xj> Qijeij. (94)
Similarly,
afij (X) - 8eij T o
ox, = Ix, Q;jei;5. (95)

Now, we denote Aw = 88 e;; and Bw = iv e;; to be the Jacobians of e;;, which we derive in Appendix [Hl Applying these
J
definitions to (@4) and (93) yields

(X (X
M = A;;Qijeij and M = B;;Qijeij.

6Xi 8Xj
For each f;;, with (4,7) € £, we have the block column vector
8fz X T
gij (X) é % = [9;571792;727"‘79;;7N] 9 (96)
where .
.AijQijeij l =1,
9iji = { B Qijei; 1=, ©7)
0451 otherwise,
with each g;;, € R*. Therefore, the Euclidean gradient of F is given by
OF (X)= Y &;(X), 98)
(4,9)€€
with g;; given by (96).
APPENDIX F

RIEMANNIAN HESSIAN DERIVATION

In this appendix we derive the Riemannian Hessian for the maximum likelihood objective F given by (76). Additionally,
in Appendix we derive Riemannian Gauss-Newton Hessian approximation utilized in Section [[V] Towards deriving the
Riemannian Hesswn we note that the embedding in Appendix - gives M¥ as a Riemannian submanifold of the ambient
Euclidean space R*", and thus M?” takes on an extrinsic definition within the confines of this work. Leveraging this fact, we
utilize the derivation proposed in [43], in which, given X € MY and U € TA MY, the Riemannian Hessian is derived to be

Hess F (X) U] = PxO*F(X)U + Ax (U, P3OF (X)), (99)

where 0% F is the Euclidean Hessian of F which we derive in Appendix OF is the Euclidean gradient of F given by (08),
Py is the orthogonal projector onto Tx M given by (@3), 73;% is the orthogonal projector onto TXLM given by {@9), and Ay
is the Weingarten map for M” given by (73). To simplify (@9), we first separate the equation in terms of individual edges
(i,4) € &. Substituting into (99) and simplifying yields

Hess F (X Z PXH” YU+ Ql;(( Z PXg” ) (100)

(i,5)€€ (i,5)€E



where g;; denotes the Euclidean gradient of f;; given by (96), and H;; denotes the Euclidean Hessian of f;;, which we derive
in Appendix To further simplify (T00), we prove in the following lemma that the Weingarten map on M is linear in
its second argument.

Lemma 10. Given X € MY, U € Ty MY, and W € T MY, the Weingarten map Ax (U, W) on MY is linear in W.
Proof: First, we observe from (69) that for any x € M, u € ToM, w,y € T2 M, and «, 3 € R, it holds that
Ay (u, cw + By) = — P Pux" (aw+ By) = —aPyxPuxTw — BPxPux "y = afly (u, w) + BAx (u,y), (101)

which implies linearity of 2, (v, w) in w on M. It then suffices to show that linearity of 2y (U, W) in W on M then follows
from linearity of 2 (v,w) in w on M. Applying (T0I) to (73) yields, for any X € MY, U € TAMN, W, Y € TEMY,
and o, § € R,

Ay (U, aW + BY) = vec <<2(x (u;, cw; + Byl)fil)) = vec ((c&lxi (us, w;) + Ay, (ul,yz))fv:l) . (102)

Furthermore, (T02) implies that
A U, aW + BY) = aRlx (U, W) + BRAx U, ),

which gives linearity of 2 in W, completing the proof. ]

Now, applying Lemma [I0] to equation (I00) yields
Hess F (X) U] = Y PaHy (X)U+ Y Ax (U, Prgi; (X))

(i,5)€€ (i,7)€€
= 3" (Pt (X)U + Az (U, Pigi; (X)) (103)
(i,5)€€&

Moreover, applying (99) to f;; from (77) yields the Riemannian Hessian of f;; to be
Hess fi; (X) U] = PaHi; (X)U + A (U, Prgij (X)), (104)
and substituting (104) into yields

Hess F (X) U] = > Hess fi; (X)[U]. (105)
(i,9)€€

Therefore, it suffices to derive Hess f;; in order to derive Hess 7. Towards accomplishing this, we first expand the Weingarten
map term in (T04) as

Ay (Z/I,’P;%gij (X)) = vec ((QLXZ (“lvpilgij:l))lev> = vec (( — Px, pulxlTP,flgijJ)lev) , (106)
with g;;; given in (7). Because the x; P g; terms in (T06) are scalars, it holds that
U (U, Py (X)) = vee ((~Pu Px] Pigijawn) ) = PPy diag ({x] Piygizli}e,, ) Us (107)
where Py £ diag({P}iey) € RV ¥4V Furthermore, is equivalent to the expression
Ay (U, Pygij (X)) = —PaPy (Ja® In) o X TP3Ofij (X)) U, (108)

where J; € R*** is a matrix of ones, ® is the Kronecker product, and o is the Hadamard product. Substituting (T08) into (T04))
and simplifying yields the operator form of Hess f;; to be

Hess fi; (X) U] = Px (7'_lij (X) =Py (Js® In) o X " Pygi; (X))) U, (109)
and since (T09) gives a matrix-vector multiplication, we deduce the matrix form of Hess f;; to be
Hess fi; (X) = Px (ﬁij (X) = Py (1a® In) o X Py (X))) . (110)
Finally, substituting (TT0) into (T03) and simplifying yields the Riemannian Hessian of F in matrix form to be

Hess F (X) = Z Hess fi; (X),
(i,9)€E

with Hess f;; (X) given by (TT0).



A. Euclidean Hessian

The Euclidean Hessian of F, denoted 9F, is computed by differentiating the Euclidean gradient of F from (©8) with
respect to X, i.e., ) @)
— 0 (OF o [(90fi(X _
0? = — == = i (X 111
F=aw (o) = X ax (T ) - T @, )
(i,7)€€ (i,7)€€
with H;; (X) £ %gij (X) denoting the Euclidean Hessian of f;;, and with g;; given by (96). From (96), we observe that

Bxl (‘A Qlﬂeij) m=1=i
ij (‘A Qlﬂeij) m=1il=]j

0 Ofi;i (X
2 (faix()) )0 (BTe,) m=ji=i (112)
m 1 ! .
8)8(]' (B;;Q”e”) m=10=
O4x1 otherwise.

We now denote the four nonzero blocks in @) to be

0 0

0
his £ 5~ (Af5e) , hij £ a - (A Qijei;) by = oz (Bjjei;) , hy; = 9, (B%uei5) - (113)
Applying the product rule to compute the expressions in (T13) yields
0
h;, = a (AZTJ) Qijeij + A;;Qiinjv
0
hij = 5— (Ajj) Qijei; + Ajj 2B,
j
0
hyi = = (BS) Qujess + B Q4 Ai,
0
h;; = (B;g) Q€5 + B;;Qijlgij.

Letlng C” = (Aij)—r Qijeij, C” £ % (Aij)—r Qijei]‘, Cji £ %xt (Bij)—r Qijeij, and ij £ % (Bij)—r Qijeij giVC

hy = Cii + A5Q; Aij, by = Cij + A QiBij, hyi = Cji + B Aij, and hy; = Cj; + B, Bi;. (114)

From equation (TT2), it holds that the matrix 7;; has only 4 nonzero blocks, which we now define in terms of (TT4). Denoting
block indices i £ 45+ 1:45+4 and j £ 45 + 1 : 45 + 4, they are given by

Hijraa) = Wi, Hijiag) = hag, Hijza) = hyi, and Hijyg = hyj, (115)
with h;;, h;;, hj; and h;; given by equations (IT4). It then follows that the Euclidean Hessian of F is computed by
applying (TT3) to (TTT)

Remark 1. We note that, as expected, h;; = h' hj; =h/ and h;; = =h!

iis i SO ’H,»j is symmetric, and therefore the Euclidean
Hessian 02F in (TTI) is symmetric.

33’

B. Riemannian Gauss-Newton Hessian

In (), Hy, : Taxu MY — Ta, MY is the Riemannian Gauss-Newton (RGN) approximation of the Riemannian Hessian at
1 1
X}, which we now derive. First, because €);; is an information matrix, we have €2;; > 0, and can write Q;; = €2, / 2Q /2 with

ij
sz = (% A 2) Applying this to the definition of f;;(X) given in (77), we can then write
2
fig (X) = [|F5; (X)) = (Fi; (X)), Fij (X)),
where Fj; (X) £ Q;;Qeij. From [26, Section 8.4], the RGN approximation of Hess f;;, denoted H;;, is given by

Hess fij (X) [, n] = Hij (X) [, 1] = (DFy; (X) [€] ,DF; (X) [n]) ,
for £,n € Tax M™Y. Applying the inner product definition from Appendix [B] l yields

Hij (X)[€,n] = € (DF;; (X)) DFy; (X)n

9Expressions for C;;,Cij,Cjs, and Cj; are derived in Appendix



from which we deduce that R .
Hij (X) = (DF;; (X)) DF; (X). (116)

Furthermore, it holds from [26, Section 8.4] that
grad fi; (X) = (DFj; (X))" [Fy; (X)], (117)

where ()* is the adjoint operator, which we now define. Given two Euclidean spaces, denoted O and Q, and an operator
T : 0O — Q, the adjoint of T" is the operator T* : Q — O satisfying (T [U], W) = (U, T*[W)]) for all U € O and all
W € Q [26, Appendix A]. Applying the inner product definition yields (7' [U], W) = UTTTW, from which it follows that
T* =T7. Applying this to yields

grad fi; (X) = (DFy; (X)) " Fy (X), (118)
and equating (II8) with yields .
(DE; (X)) =Pxgij (X),
with Py from and with &;; (X) 2 (31,050,055 > Where
ALQL =k,
~ 1 .
9ij.k = B;;Qlf J= kv
043 otherwise.
Substituting this into (TT6) and noting that Py = P, yields
Hij (X) = PaRij (X) P, (119)
where R;; £ g;;&,; (with argument (X) omitted from g;; (X)). The matrix R;; € R*N**N in (TT9) has only four nonzero
blocks, which we now define. Denoting block indices i = 4i+1:4i+4 and j £ 45 4 1: 45 + 4, they are given by
Rijisa) = AjQijAijs Rijisg) = AGQuiBij, Rijiya) = B Aij, and Ryjiy 51 = B By (120)

Ji
Moreover, applying (TT9) to the definition of F given in yields the RGN Hessian approximation for Hess F at X}, € MY,
denoted Hj, to be

Hi= > Hiy(X)= Y PxRij(X)Px,. (121)

(i,4)€€ (i,5)€€
Remark 2. As evidenced by comparing the Riemannian Hessian blocks in (TT4) to the RGN Hessian blocks in (T20), H,;
closely approximates Hess 7 when the C;;-C;; terms are negligible.
APPENDIX G
L1PSCHITZ CONTINUITY OF THE RIEMANNIAN GRADIENT

In this appendix, we derive a Lipschitz constant for the Riemannian gradient of the maximum likelihood objective given
by @]), and our derivation serves as a proof for Theorem@ From [44] (see also [24], [45]]), if F : L — R is twice continuously
differentiable on K, then its Riemannian gradient is Lipchitz continuous on K with constant L, > 0 if and only if Hess F (X)
has operator norm bounded by L, for all X € K, that is, if for all X € K, we have

|Hess F (X) || x = sup {|[Hess F (X) [U]||x |U € TaM, |U||x =1} < Ly, (122)

where ||-||  is the norm induced by the Riemannian metric at X on M. Here, K C M® is any compact subset of M", and
the results we derive in this appendix hold for all X € K. Using the inherited Riemannian metric and induced norm included
in Appendix [B-C| we first rewrite the operator norm from equation (24)) as

|Hess F (X)||, = sup {||Hess F (X) U]||, | U € TaM, | U], =1}. (123)

Next, we rewrite (I23) in terms of Hess f;; according to equation (I03)), which gives

|[Hess F (X)||, = sup H Z Hess f;,;(X) [U] H2 |U € TxM, |U|2 = 1}. (124)
(i,5)€€



Applying the triangle inequality to (I24) yields
|[Hess F (X)|ly < sup{ Z H Hess f;;(X H2 |U € TaM, |U|2 = 1}
(i,5)€€
and since sup{x + y} < sup{z} + sup{y}, we observe that
[Hess F (X)[l, < Y sup {|[Hess f;;(X) U] ||, | U € TaM, ||z =1} . (125)
(i,5)€€

We will now bound (I23) by bounding the Hess f;; operator norms individually. First, it follows from (TT0) and (IT3) that
Hess f;; has four nonzero blocks. Letting H;; £ Hess f;;(X), and denoting block indices i £ 4i+1: 4i+4 and j £ 45+1 : 4j+4,
they are given by

Hijiiq) = Px, (hz‘z‘ - sz—'rp)tgij,i) ;
h

Hijji5) = Px; (hy; — px;rpi}gij,j) ,

with gi;.i, 9ij,; from @7) and h;;-h;; from (T14). Then, given X € MY and U = vec((u;)1ev) € Ta MY, we have

Hess fij (X) U] = vec ((hiji)icy) - (126)
with ~
Px,; | hiju; + hiju; — ijp)tgij,iui) I =1,
hiju = Px,; (hjiu; + hyju; — ﬁx}r’/),fjgimuj) =7, (127)
04x1 otherwise.

Using (126) and (I127), we observe that

[Hess £y (2¢) @A)l = \/I1E: )2+ 1 )2, (128)
where
H; U] = Px, (hiu; + hjju; — diu),
H; U] = Py, (hjiu; + hjju; — djjug),
with
d;i 2 Px] PLgiji, (129)
d;; £ f’x;r’P,fjgij,j.
Substituting (128) into (123) yields
Ihess 7 (0, < 3 sup {1 G+ 11, G | T et = 1. (130)

(1, 1)65

which implies that boundedness of ||H; []||, and ||H; [U/]], for all X € K C M” implies boundedness of |[Hess F (X)]|,
for all X € K C MY, which we will now show. First, we observe that symmetricity and idempotence of Py, implies

|H; U] = IIhyiu; + hyju; — dn‘uiH%xi < Amax (P;) [ + hyjuy — dygus |3 (131)
where Apax (Px;) denotes the maximum eigenvalue of Px,, which we compute in the following lemma.
Lemma 11. For all x € M, Ayax (Px) = 1.
Proof: Letting x = [cos(¢), sin(¢), x2, 73] T, we observe from @) that
sin (¢)* — sin () cos ()

Py = — sin (@) cos (¢) cos (¢)”
022 Iz

022



The characteristic polynomial of Py, denoted f ()\) is then given by
F) =M = Px| = (A= sin? (9)) (A = cos? () (A = 1)° —sin® (§) cos® (9) (A = 1)°,

which simplifies to f (A) = A (A — 1)°. Therefore, the eigenvalues of Py are {0,1,1,1} for all x € M and Apax (Px) = 1,
completing the proof. |
Applying Lemma (T1)) and the triangle inequality to (I31) yields
2 2 2
1H: U]l < hasws + hyjuy — diuslly < ([haually + [hijuglly + dswill,)
and further simplifying gives )
2
I ]l < (il (il + gl sl + lldiull,) (132)
First, we observe that
2
ed)5 = llwllz =1, (133)
lev
which implies that |Ju||> < 1 for all [ € V. Applying this and the fact that || - || < || - || to (132) yields
2 2 2
1 U5 < (hailly + [haslly + l1daully) ™ < (Iill e+ il o + [ diuilly)” - (134)

To further bound (T34), we will derive a bound for ||d;;u;||,, with d;; given by (129). Letting x = [cos(¢), sin(¢), z2, 23] T,
we observe from (@7) that
co2(¢)  sin(8) cos(d)

PL = sin(¢)cos(¢) sin®(¢) Ouce
022 022

Therefore,
x' Py = [cos(9) (cos®(¢) +sin*(9)) , sin(¢) (cos®(¢) +sin’(¢)) ,0,0] ,
and simplifying with cos?(¢) + sin?(¢) = 1 yields
xPL = [cos(),sin(¢),0,0],
"

which holds for all x € M. Now, letting x = [cos(¢;), sin(¢;), zi2,2:,3] | and gij.; = [gi.0,Gi1, Gi,2, 9i3] > We observe that

d;; = Px; gij; = diag ({gi,0 cos (¢:) + gi.18in (¢:) , gi,0 cos (¢;) + gi,1 5in (¢5) ,0,0}) .
Then, letting u; = [ui707 Ui, 1, Ui 2, Ui73]T, it holds that
djiu; = [(gi,0 cos (¢i) + gi,18in (¢4)) wi 0, (gi,0 cos (¢i) + gi1sin (d4)) w1, 0, 0",
which implies that

ldiiwill, = \/u;dldiiui = \/(gi70 cos (¢;) + g1 sin (6:))° (ufﬁo + U121) (135)
Now, because (I33) implies that u%O +uf; <1 for all 4, simplifies to
| dsiilly < |gi,0 cos (¢i) + gisin(oi)| < |giol + |gia], (136)
and applying (136) to (134) yields
1 )3 < (Il o+ i L+ lgiol + lgia ) (137)
Furthermore, following the derivation of for H;[U] and letting g, ; = [g;.0. 95.15 952, gj.3] | yields
1 @)[5 < (il p + sl + lgs0l + lgal)” - (138)
In Appendix EI, we derive bounds for the Euclidean gradient terms appearing in (I37) and (138), namely, |g;ol. |gi1], 1950l
and |g;1| that hold for all X € K ¢ MY, with K compact. Specifically, from (#02) we have
|gi,0] + lgin| < 2g and |g;0] + [g5,1] < 28, (139)

with constant g given by (@00). Furthermore, in Appendix [Kl we derive bounds for the Euclidean Hessian terms appearing
in (I37) and (138), namely, |||z, ||hijll - [|hyill -, and |[hy;| ., that also hold for all X € K c MY, with K compact.



Specifically, (487) and (@88) give
il (sl < s (192451 (140)
il g [Pgill o < (1235 5 (141)
with h;; and h;; defined in (@86) and {83). Applying (139) and (T40)- (T41) to (I37) and (I38) and substituting the result
into (128) yields
sup {||Hessfij(X) U, U € TaM, U2 = 1} <V2 ((H“ +E¢j) 125 1| = + 2g) ,
and applying this to (I30) and simplifying yields ||Hess F (X)||, < L,, with
Ly 2 V2 (hy; + hy;) Q@+ 2Mg, (142)

where M =[] and @ £ 3, ;¢ ||| - Equation (T42) gives a Lipschitz constant L, satisfying (T22) which holds for
all ¥ € K ¢ MY, with K compact. Therefore, the Riemannian gradient from (92) is Lipschitz continuous on any compact
subset of M¥, completing our derivation.

APPENDIX H
DERIVATION OF EUCLIDEAN GRADIENT JACOBIANS

As derived in Appendix @ The Jacobians of the tangent residual e;; from with respect to x; and x;, which
are necessary to compute the Euclidean gradient of F (X), which is given by (98). In vector form, we denote x; =
[,TZ"(), Ti1, T42, Jiiﬁg]—r, Xj = [.’Ej,o, Tj1, Tj2, $j73]—r, and € = [60, €1, 62}—'—. In this appendix, we derive the Jacobian
matrices A;;, B;; € R3*4, with element-wise definitions given by

Oeo .. Oeq Oeo ... _Oeq_
A - Aug 9710 9215 By -+ Bu 9,0 3%,,3
Ag=| t =] Ba= s = s
Oey .. Oey Oey .. Oeg
A?’l A34 3131’,0 ami73 831 634 61_,»,0 Br]‘,s

We first rewrite e;; in a manner that is conducive to differentiation with respect to x; and x;. Using (36)-(37), the residual
ri; = ijl Hx, 'm x; can be rewritten as two equivalent expressions, which are given by

ri; =z Bx; Bx; = Qr (x) QL (Zij) xi = Qpy (Zi;) Qrp (xi) X5 (143)

We now define Q; = Qr (x;) Q; (2i;) and Q; = Q1 (zij) Qr, (X;), such that rj; = Q;x; = Q;x;, and write these
matrices in the form

i w0 0 i wj 0 0
Q=10 h e al OT|m b ow | e
ay B2 —C1 & B3 —az m;  Kj
where the element-wise definitions for (); are given by
i = 20%4,0 + 21T4,1, (145)
wi & —21250 + 20251, (146)
N = —21%5,0 + 20241, (147)
Ri £ —20L5,0 — 21L4,1, (148)
a & —22Tj0 — 23T;1 + 20%5,2 + 217543, (149)
B £ 23250 — 22051 — 21850 + 20753, (150)
&1 2 —z20zj0+ 21751, (151)
G & —mwjp — 20251, (152)
Q2 & —23T50 + 22T51 — 21%j,2 + 20743 (153)
Ba & —2omj0 — 2351 — 20Tj2 — 21243, (154)



and for @)},

i = 2050 — 21241, (155)
wj £ 21T4,0 + 204,15 (156)
N £ —21Ti0 — 20Ti1, (157)
Kj £ 20T5.0 — Z1%i 1, (158)
a3 £ —20mi0 + 23T51 — 20Ti2 — 21T 3, (159)
B3 & —z3mi0 — 22T51 + 21T4.2 — 20Ti 3. (160)
Letting r;; = [ro, 71,72, Tg]T, we can substitute (T43)-(T44) to expand each term of r;; as
TO = MiTq,0 T Wiki1 = MjTi0 T WiTj1 (161)
T =1T50 + KiTi 1 = N;T50 + KT, (162)
ro = a1wio + B1win + &1wi2 + Qi3 = azwjo + B350 + KT 2 — 0T 3, (163)
r3 = Qamio + Bawi1 — Qxi2 +&1wi3 = Ba3xj0 — a3 + 1T 2 + KTy 3, (164)

Br

which simplifies the calculation of for any entry 7, of r;; and any entry z; ,,, of x;, ;. From (TI), letting v = v (¢ (r;5))
yields the element-wise definitions of e” to begin
o= e =2 e =12 (165)
v 8 v
Before differentiating e;;, we precompute a general form for partial derivatives of - with respect to any entry z;,, of x;,X;.
Letting ¢ = ¢ (r;;) and applying the chain rule to (57) yields

Oy Oy 09

= — . 166
axl,m 8¢ 8xl,m ( )
The term g—; is computed by applying the quotient rule to differentiate (37), yielding
o _ 0 (sm <¢>> _ Geos(¢) —sin(¢) _ éro—n 16
op 9o \ ¢ ¢? ¢?
Given the definition of ¢ from (58), applying the chain rule yields
0 0p O 09 O
¢ _9¢ O | 9% On (168)

3xl,m 8’1"0 8xl’m 8r1 8£Ul,m '

We now observe that in (38), owrap(v)/au = 1 for all u € (—7/2,7/2), and ¢ is continuously differentiable on (—/2, 7/2], with

0 0 1
o (arctan (r1,79)) = o <arctan <7’0)) ,

where arctan(v/v) is the two-quadrant arctangent, so we have

9] 9]
% ___ 19 _ 1 (169)
oro rg+ri Ory  ri+ri
Substituting (T69) into (I68) then gives
8¢ 1 67“1 a’f‘o
= — . 170
axlm (7”8 +T%) <8xlmr0 8xlmr1 ( )
Substituting (T67) and (T70) into (T66) yields the general form for 5—— to be
oy ¢ro — 11 1 87“1 org
= — . 171
axl,m < ¢2 7"(2) +T% a’JJLm "o 6$l7m & ( )

Using (171), it is straightforward to further compute general forms for partial derivatives of e;; with respect to x;,x;. For
example, applying the quotient rule to differentiate ¢y from (I63) with respect to any entry x;,, of x;,x; yields

or1 _ 9y
deg 0 (rl)_azuﬂ "1

axl,m N axl,m ; 72 ’




and substituting (I71)) and simplifying yields
87"1

ey Day LN ( o . dro . ) (7‘1 —¢r0>
- 0 — 1 )
0T m, v 3+ \0zim Oxy m v2¢?

which can be further simplified by the fact that v2¢? = sin? (¢) = r2. Applying this simplification gives the expression

87"1

860 ox; 1 87’1 87’0 r — ¢T(]
_ Bom _ , 172
OTm ol * red +r? \ Oz m "o 0Ty m " r? (172)
To simplify (172), we define the function f; : R — R as
1 — ¢r sin — ¢cos .
fi(p) & Lo ro - SOV 2008 (0) _ o2 (4) (s (¢) - pos () (173)
1 sin” (¢)
Letting 19 = cos (¢) and 71 = sin (¢) yields the equivalence
r1—¢rg  sin (@) — @cos (@)
= = . 174
T% sinQ (¢) fl (¢) ( )
Letting f1 = f1 (¢) and substituting (T74)) into (T72)) yields the general form for a?c,eom to be
or,
860 oz 71 87"1 87’0
= Zoum - : 175
Ozy,m v * 3+ 712 \ Oz m ro Oz1,m m ) h (175
From (T61), it is straightforward to compute the derivatives
87“0 aTO 87"() 87“0
=M — =Wy o— = =0, 176
3$¢,0 s T4.1 “ 556i,2 3177:,3 ( )
d
an (97‘0 o 87‘0 — W 87"0 - 6’)"0 -0
dujo " 0wy Dujn  Ougs
Similarly, differentiating (T62) gives
(9’/‘1 (97‘1 37‘1 87‘1
= i, = Ri, = = Oa
&Ci,o awi,l 3%‘,2 3%‘,3
d
an 67“1 o 87“1 — s 8’/‘1 o 87‘1 -0 (177)
8%0 = 8xj,1 o 8%-,2 - 8(Ej73 e

Substituting (T76)-(T77) into the general form given by (T73) yields A;1-A14 and By1-Biy to be
660 771 1

- =B (e — i) fi 178
Air B 4 Jrr%—i—r% (niro — pir1) f1 (178)
860 Kj T1
=— = —+ ——— (kiro — w; , 179
Aia Doy 5 +T(Q)+T% (kiTo — wir1) fi (179)
0
Ay = 20—, (180)
a$i_’2
0
Ay = 20—, (181)
al'i,g
860 77 (&
B~ 90 1 ro— i) fu, 182
A A (152
Oeg K7 71
Bio = - (ki — W 183
12 aij ~y + T%‘FT% (Hﬂ”o ijl)f17 ( )
860
Bis = =0
13 axjg )
0
By = 20 _y. (184)



Because a?g% has the same structure as (ﬁfo , its general form is computed to be

67‘2

From (163), we have the derivatives
a’f‘z 87“2 87“2 87“2

= 0, :Bla :gla :Cla
Z4,0 Xi,1 T5.2 T3
and
87“2 8’/“2 8’/‘2 67“2
— =a3, — = 33, — = Kj, — = ;.
50 Tj1 Lj2 Lj53

861 8 T2 OIlynl + ) arl 87"0 f
= - = To — T .
ath 8xl,m vy ¥ 7”8 + 7"% afl,m 0 &El,m ! '

(185)

(186)

(187)

The terms Ag; — Asgg and Ba; — Bay are then computed by substituting (T76)-(T77) and (186)-(187) into (T83), yielding

861 (05} T9
Az = = — 4+ ——= (niro — Wi
21 210 5 2 1 12 (miro — pir1) fr
deq B T2
Agg = —— = — + ——— (kiTo — wir
22 81‘2‘71 ~ T% —‘r’l"% ( 270 ) 1).f1
der &
T4,2 Y
861
Ay = 2L -8
Oxiz v
(961 Q3 T2
By = 5— = = + ——— (njro— jm1) fu
dxjo v ri+ri (n; i)
Oer B3 2
B = ==+ 55 (kjro —wjr1) f1
dwjn v  rE+7T? (55 i)
oeq K
Bas = =2
drja v
Oe ;
Bu= o =-2
0z 3 ¥
The final derivative, 8?;2 , also has the same structure as 32;30 , so its general form is given by

87“3

OTim  Oxim \ v re +r? \ Oz m 0Ty m

From equations (T64), we have the derivatives

67“3 87“3 67“3 87“3
= (a2, :627 7:_§17 2617
Z5.0 L4, 1 Z;.2 Z5.3
and
87“3 87‘3 aTg 67“3
7:&37 — = =03, — =1, —— = kj.

T4,3

dey 0 (7’3> T < ory "o Iro 7"1) .

(188)

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

197)

(198)



Finally, the terms As3; — Aszy and Bs; — B3y are computed by substituting (I76)-(T77) and (197)-(198) into (196), yielding

Oes Qg r3
Az = = =4+ 5~ (nr T ,
31 9210 5 + + (7% 0 — pir1) f1
Oes B2 T3
Aoy = —2 — 22 e s ’
32 9y . (fiﬂ“o wir1) fi
de ¢
A33 = B} 2 = 717
X2 Y
Oe
-A34 = 572 = é?
Zi,3 Y
Oes B3 T3
B3y = = — 45— (n;r ir ,
31 axj,o ~ + 7”0"‘7"1 (77] 0~ My 1) f1
662 Q3 T3
Bao — "
2 By, Y * g +r? (k570 = wjm) fi,
862 i
833 = 8 = 777]7
Ti2
Oe K
B3y = 3 2=
Lj,3 Y

which concludes the derivation of Jacobians 4;; and B;;.

APPENDIX I
DERIVATION OF EUCLIDEAN HESSIAN TENSORS

(199)

(200)

201)

(202)

(203)

(204)

(205)

(206)

Here we compute the quantities 8‘9 Aij, ai Aijy 2 7 Bij» and 3 B,J Because we are differentiating a matrix in R3** with

respect to a vector in R*, each of these quantities represents a tensor in R3*4x4

in which the third dimension encodes the

index of a respective entry in x; or X;. We note that since further derivatives will not be taken, we are directly computing the

implementation form of each of the expressions in this section.

A. Partial Derivatives of A;;

We begin by deriving a general form for differentiating 4,7, which is given by (178), with respect to any entry z;,, of

X;,X;. We first separate the derivative as

6./411 8 (’m T1

axl,m - 8xl,rn Y * T(Q) + 7"

We first examine the left-hand derivative in equation (207). Applying the quotient rule yields

O (m\_ 1 (0 Oy
8(El,m Y B ’72 axl,mry i ath .

We now substitute (I71) into (208) and simplify to obtain
on;

9 (m _ Pom M ory . dro f
orym \v/) v T3 412 5Iz,m0 3$lm v

Since we are solving for the implemention form directly, we can subtitute 73 + rf = 1 into (208) to obtain
Omi

0 (m) Dot ( or ro )f
— 1= i\ 35— To— r 1-
a1‘l,m v v 8Il,m axl,m !

We now address the right-hand derivative from equation (207). Applying the product rule twice yields

9 <2rl (miro — pir1) f1> S <2Tl2> (niro — pir1) fr

Oxym \ 15+ r? Oz m \rg+ 11
T1 8
+ 5 g - (W‘o wir1) fi
L (n‘r iry) 221
g + T% 2170 211 81‘1,7”'

o 8 ;i 8 T1
5 (Mo — Mﬂ"l)fl) = D (W) + D21 <T0+T (niro — Mﬂ“l)fl)-

(207)

(208)

(209)

(210)



The expression given by (Z11) have three derivative terms, which we will now compute invidually. For the first term from the
top, applying the quotient rule and simplifying yields

67‘1
0 ( T1 ) DT1m g T ( Org n or )
= - — To 1] -
Oxym \ 78 + 13 T3 412 (r2 + r%)2 OT1.m 0T m

Applying the constraint equation r3 + 72 = 1 then yields

0 1 87'1 87"0 8’1"1

= -2 . 211
OTym (r% + r%) 0Ty m " (89617,” L Oz1,m " @b

For the second term from the top of ZTI)), we simply distribute and apply the product rule, which gives

Oro ory on; O
= (miro — i) = mi = i - : 212
aZL'l,rrL (77 o K rl) K axl,m, K axl,m * axl,m "o axl,m E ( )
To compute the third term, we apply the chain rule to write
0 0 0]

fi  0fi 0¢ (213)

axl}m o 87(? é%cl,m ’

where 99/az, ,, is given by (I70). For 9/1/a¢, with f; given by (I73), a combination of quotient, chain, and product rules and
trigonometric simplifications is applied to write

ofh _ 0 (Sin(¢)—¢008(¢)>

¢ 09 sin® (¢)
_ (L (o sin (¢) — ] in? (¢) — (sin (¢) — 9 Sh
~ (577 ) (35 6 (0) — dcos @) sin (6) = s () ~ 6003 () 3 sv? ()
~ () (@sin (@) sin (0) = (s (6) o5 (4)) (25im (0} cos ()
B 1 cos (¢) cos? (¢)
(@) (2500 )
= csc (@) (¢ — 2cot (¢) + 2¢ cot® (¢)) .
We now define the function fo : R — R as
F2(9) = esc (@) (¢ — 2ot (@) + 26 cot® (9)) , (214)
so that 9f1/0¢ = fy. Substituting equations (214) and (T70) into equation (Z13) now gives
ai{l = (r241r72> (837;1 ro — 38:1:7;0 7"1) f2, (215)
»m 0 1 ,m m

Substituting @21T), (212), and (2T3) into equation 210), and letting 73 + 72 = 1 yields

48 ! [ On Org ory
Ox1m (r% + i (miro = pir) fl) B <5$z,m 2N (3xl,m rot 0%y m r1>) (mro = pir) fi
+7‘1< w0 i R o " 7‘1) fi

_ Lbi _
8$l’m 8$17m ¢ 8$l,m 3xl’m

0 0
+7r (’17,"/‘0 — ,uirl) ( ik 0 ro 7‘1) fg (216)

rag —
5$l’m a’El’m

Finally, substituting (209) and (216) back into equation (207) and simplifying yields the general form for derivatives of A;;
as

On;
0A11 0x1,m ory 87“0 ory 87.0 ory
Itim 1 ’ N -2 iT0 — fi
axl’m v " " 81‘17771 "o 8xl7m m axl,m " al‘l;m To =+ 8l'l,m " (77 "o " Tl) fl
87"0 ory 8772- 8/11- orq ({97“0
t ' - iT0 — Hi - . @17
+ <8$z,mn axlm,u + 5$l,m 0 5$z,m ri) fit+r (77 To — M 7'1) al‘hm 0 8331,m r1 ) fa. ( )



Now, from (T47), it is straightforward to compute
o o o o

al‘i,o 8wi,1 8‘%1',2 a$i73 ’ ( )
d
" on;i ., on; _, on; O P
658]'70 o b 81371 -0 6Ij,2 o al‘j73 e
From ( @5), we have
Opg — Ow;  Opy Oy —0
0w B 0w B 0o B w3 S
and
Op; Op; O Op;
oo Ho_ pi _ 9Hi (219)

= 2o =21 =
8£Ej,0 ’ 8xj71 ’ 6xj,2 317]‘73

Substituting equations (T76)-(T77) and 2I8)-219) into 217) yields the following expressions for 94 /o .

0A
or .1; = 2(n; —r1 (miro +mir1)) (miro — pir1) fr+r1 (niro — uirl)Q fa, (220)
0A11
e (i (kiro — wir1) + (ki — 2r1 (Wiro + Kir1)) (Mo — wiT1) +7r1) f1
+ 11 (niro — piry) (Kiro — wirt) fa, (221)
0An  0An
= =0 222
89@,2 ('):ci,3 ’ ( )
0A1; 21
e = ot (o = pyra) + (0 = 2y (pyro + 1)) (iro — par)) fu
3,0 Y
+ 71 (jmi — ks — z1m0 — 2071) J1
+ 11 (niro — pary) (Miro — pir1) fo, (223)
oA 2
3 2= 2 (s (570 — wyr1) + (k5 — 2r1 (wiro + K571)) (mire — par1)) fi
Zj1 0
+ 11 (wini — Kjpi + 2om0 — 2171) f1
+ 71 (miro — piry) (kjro — wjirt) fo, (224)
0A11  0An

= =0 225
ij,g 8xj13 ’ ( )

where we have additionally used the fact that
wini — ki = cos (¢ — ¢:)° +sin (g5 — ¢.)> =1 (226)

to simplify (22T). Furthermore, since A;2, which is given by (T79), has identical structure to A;1, the general form for its
partial derivatives is computed as

Ok,
8,412 0Ty m (‘)rl 87"0 87“1 87‘0 87‘1
= — i -5 —2r | 53— iTo — Wi
i~ v T\ Grn T B ) TG T 0 T By, ) ) (i i) )
+r 67“0 i — 87“1 w; + 8/@» - &ui r f
! 8xl,m ’ aa'fl,m ’ aIl,m 0 aml,m ! '
+ 71 (Kiro — wir1) Ory 0 — Iro r1 ) f: (227)
1 i’ 0 il 3Iz,m 0 &L‘zm 1 2
From (148), it is straightforward to compute
6:‘% _ 8/@ _ 8/12' _ 3/&1 :O, (228)
Ozio  Oxzin  Oviz  Oxys
and
(9/% __ 6/@ _ 85:,- - 8ni :0’ (229)

20, 21, -
8xj,0 81}]‘71 ij,z aﬁj’g,



and from (T46)

and

Substituting equations (I76)-

0A12
83:1'70

0A12
81%1
0x; 2
0A12

(9.’)3‘]'70

A5

3:cj,1

0A12

3xj72

8wi o 8wi - 8wi - 8wi
8xi,o 81}1‘71 8.131"2 8l‘i,3

:0’

80.)1' &ui 80.)2' o 8wi

= —z1,

20, -
8$j)0 8%‘]'71 8xj,2 8%‘]‘73

(I'77) and (228)-(230) into yields the following expressions for 9Ai2/az, ,,.

= (fii (771'7“0 - Mﬂ“l) + (77i — 27 (Mﬂ"o + 77#“1)) (fiﬂ"o - Wﬂ”l) - 7"1) f1
+ 71 (Kiro — wir1) (Mo — pir1) f,
2 (ki — 11 (wiro + Kir1)) (Kiro — wir1) f1 + 71 (kiro — wir1)” fa,

O A1

0301-’3

)

20
=== + (ki (njro — pyir1) + (n; — 2r1 (uiro + njr1)) (Kiro — wirt)) f1
+ 11 (pjRs — njws — zoro + 2171) f1
+ 71 (Kiro — wir1) (N0 — 1i71) f2,
21
= — ; —+ ("fi (/‘@jTO — wjrl) + (Hj — 27“1 (wjro + KjTl)) (/Qi’l“o - wirl)) f1
—+7r1 (wjm — Kjw; + —2z1719 — 207’1) fl
+ 7 (Kﬂ“o - wﬁ“l) (Kj?“o — L«)j’l“1) fg,
_ OA;2

3@73

:0’

where we have used (226) to simplify (231)). Because A3 = A4 = 0, we have

0A1i3  0A13  0A13  0A13  0Ai3  OAi3  0A13  O0Ai3

:O7

8%0 8xi71 8;62-72 8%1’73 8ij0 8(Ej71 8(Ej72 8%—73

and

0Al  O0Al  O0A  0Ay  0Ay  0Al  O0Alw  O0Aw

= =0.

8%0 8%1 8:52-72 8%173 8(Ej70 85ij1 8‘26]',2 8(ij3

(230)

(231)
(232)

(233)

(234)

(235)
(236)

(237)

(238)

Because A; from (T88) again follows the same general structure as .A;7, the general form for its derivatives is given by

Doy

0A21  oa, or dro Ors oro or, | |
Oxim " <a1 (3xl,m "0 0z1,m Tl) * <8xz,m 2" <3xz,m o 0z1m r1>> (1ira ulﬁ)) h

2 To

i

0 0 on; Opi
+T2< I e TR - “)fl

axl’m

0 0
—Mﬂ‘l)< i To 1o T1) fa.

+ 72 (niro

&vl,m ¢ 8(El’m axl’m

8(El’m axl’m

From (149), it is straightforward to compute

and

8&1 80[1 8041 aal

8xi,o 81},‘71 8331"2 8951'73

:0’

8&1 6a1 8a1 80[1
= —Z2, = —Z3, = 20, =21
83:]-,0 8l‘j71 83'}]‘72 81‘]‘73

(239)

(240)

(241)



Substituting equations (T76)-(T77), (I86)-(187), and (240)-(241) into (239) yields the following expressions for 9A21/az, ,,.

0A2
6%‘1‘70
0A2;

31@,-71

8./42]_
0x; o
8A21
3%,3
0A21

8.’17j70

=2 (al — T2 (,uﬂ"o + 77ﬂ"1)) (ﬂﬂ”o - Mﬂ"l) fi+re (77i7"o - /Mﬁ)2 fa,

= (a1 (kiro — wir1) + (B1 — 2r2 (wiro + Kir1)) (iro — pir1) +72) f1
+ 1o (niro — pir1) (Kiro — wir1) fa,

=& (Uﬂ"o - ,uﬂ"l) fi,
= (1 (miro — pir1) f1,

Z
=- ;2 + (a1 (njro — pyr1) + (az — 2r2 (pyro +njr1)) (niro — pir1)) fi

+ 1o (ins — njpi — 21m0 — 2071) f1
+ 7o (niro — pir1) (o — p571) fo,

z
= ;3 + (a1 (kjro — wjry) + (B3 — 212 (wire + K;71)) (Miro — pir1)) fi

+ 1o (wjni — Kjs + zoro — 2171) f1
+ 7o (miro — pir1) (Km0 — wjr1) fa,
20

= 5 + k5 (niro — pir1) fi,

21
=5 nj (niro — pir1) f1,

(242)

(243)
(244)

(245)

(246)

(247)

where we have used (226) to simplify (243). Because A, from (I89) again follows the same general structure as Ajq, the
general form for its derivatives is given by

0By

0A T1m 0 0 0 0 0
i _ Smm (&( L o rl) +( 2 —2r2< 0y 4 ot r1)> (mro—wirl)> fi

OT1,m Y

5(511m 8.%17m &rlm ath Bxl,m

To

67”0 87“1 6/@- 8(,«)1' )
) f1

e (Ki 8xl,m T 8$l,m + al'l’m
0 0
_ Wirl) ( 1 T ro 7"1) fg.

+ 12 (KiTo

axl,m

0 —
axl,m 8xl,m

From (T30), it is straightforward to compute

and

0B 961 0B 0B

= = = =0

83@)0 8.%‘2‘71 8:51-,2 8.’1%‘)3 ’
0 _ 0 _ 0k _ 96 _
81']',0 3 al‘j’l 2, afL'j)Q 1 33;‘]‘73 0-

(248)

(249)



Substituting equations (T76)-(T77), (I86)-(187), and (248)-(249) into (239) yields the following expressions for 9A22/az, ,,.

A
(‘33&2(? =(B1 (niro — par1) + (a1 — 2r2 (piro + mir1)) (Kiro — wirt) — 12) fi
+ 12 (Riro — wir1) (Miro — pir1) fa, (250)
0A
(‘33&2? = 2(B1 — r2 (wiro + Kir1)) (Kiro — wir1) fi + 72 (Kiro — wir1)” fa,
945
a;j = &1 (Kiro —wir1) fi, (251)
0A
axjj = (1 (riro — wir) f1, (252)
0A z
P 2 =24 (B1 (njro — pym1) + (az — 2r2 (pro + mjr1)) (Kiro — wir1)) fi
Z;.0 0
+ 72 (muj — win; — 2070 + 21711) f1
+ 1o (Kito — wir1) (N0 — pir1) fo, (253)
0A z
o ==+ (B wgro = wym) + (Bs = 2r2 (wyro + r)) (Riro — wir)) fi
Zj.1 Y
+ T2 (mwj — wmj — Z17T0 — ZoT'l) fl
+ 19 (/ﬂ?"() — wirl) (K,j’r‘o — wjrl) fz, (254)
0A22 21
=—— i (KiTo — Wy ; 255
. S + Kj (Rirg —wir1) f1 (255)
0A z
axjj = ;0 —n; (Kiro — wir1) fu, (256)

where we have again used (226) to simplify (230). To compute derivatives of As3, which is given by (190), we follow the
derivation of (209) to derive the general form

961
0Az3 _ Omim or Oro
7817,711 = +& (&Ez,mm D21 7“1) fi. (257)

From (T31)), we have
&, 31 %31 061

61'7;,0 &m,l 8.’2@2 8:@’3 ’ ( )
and
06 _ . 96 _ ; 06 06 0 (259)
8.%3'10 0 8xj71 b ij,g 8%-,3 '
Substituting equations (T76)-(T77) and (238)-(259) into (237) yields the following expressions for 9A23/az, ,,.
0A
3 2 =& (niro — ) f1, (260)
Z5,0
0A
axjf = &1 (kiro — wir1) f1, (261)
0Az3  OAa3
= = 262
Oxio  Oxig 0 (262)
0A2s 20
_ A L 2
D250 S + & (njro — pyr1) f1, (263)
0A z
8(1;‘5? = ?1 —+ 51 (Iﬁ)jT‘o — w]"f‘l) f17 (264)
0w _ 0Aw _ (265)

axm B 833‘]'73
Similarly, the general form for derivatives of 454 from (I91) is given by

(/81
0A24 _ Ba;’;,m +C1< ory To 67"0 Tl) fl- (266)

OT.m OT1,m Oxy,m




From (132), we have

G _ 06 _ 0G _ 9G _0
8xi,o 61}1‘71 8.131"2 8l‘i’3 ’
and
oG _ 0 o 9G _ 9a _
8.%]')0 b 8%‘]‘71 o 8l‘j72 8%‘]'73

Substituting equations (I76)-(177) and 267)-(268) into (266) yields the following expressions for 9A24/az, ,,.

0Az,
8.731'70
0z 1

0A2

(31‘1"2

0A24
8$j70
0Aay
O0x;1
0A24

8(Ej72

= (ﬂﬂ”o —,uﬂ“l)fh

= (1 (kiro —wir1) f1,

z
= —;1 + C1 (mjro — pyr) fi,

2
= —?0 + G (Kjro — wjirt) f1,

0 Ay

8(ij3

Again following a similar derivation to (217), the general form for derivatives of A3, from (T99) is derived to be

Oan

6A31 0Ty, m ory 67‘0 87’3 31"0 ary
_— = 2 _ _ 2 ’ —
Oz1.m ~ + | D21 ro Dz ri )+ Dt T3 D21 ro + D1 r1 ) ) (niro — pir1) ) fr
ips ] 67’0 o 8r1 67’]2‘ — 6,[% - f
3\ ail'l,m Hi axl,m 8(El,m 0 axl,m 1 1

37"1
8(El’m

From (133), it is straightforward to compute

+ 73 (miro — pir1) (

31"0

To — T1 fg.
8$l,m )

80&2 - 80[2 - 3042 - 8042 —0
axi,o 83:,»71 8.131'72 8$i73 ’
and
8&2 80@ 5 8&2 5 80@ 5
= 3 = <2, = T X1, = <0-
83:]-,0 637]‘71 8.13j,2 61‘]‘73

(267)

(268)

(269)

(270)

Q271)

(272)

(273)

(274)

(275)

(276)

(277)



Substituting equations (T76)-(T77), (I97)-(198), and 276)-(277) into (Z73) yields the following expressions for 9A22/az, ,,.
0 A3

Ori0 2 (a — 73 (paro + mir1)) (niro — war) f1 + 73 (miro — par1)” fo, (278)
0.As
&Ugi = (a2 (Kiro —wir1) + (B2 — 2r3 (wiro + Kir1)) (Miro — par1) +13) f1
2y
+ T3 (T]iTO — /J,i’f‘l) (I‘ii’r‘o — wirl) fg, (279)
0A
3 L — — ¢ (iro — ) (280)
L2
0Az1
= iTo — Mi ; 281
D75 &1 (niro — pir1) f (281)
0A z
3 2= — 2 (ag (0 — 1) + (Bs — 23 (im0 + mym1)) (niro — pir1)) fu
Z4,0 0
+r3 (Mip; — pinj — z1r0 — zor1) f1
+ 73 (niro — pir1) (njro — pir1) fo, (282)
0A z
) 2= 2 4 (g (k0 — wyr1) — (ag + 23 (wyro + #5m1)) (mr0 — pir1)) i
Zj1 vy
+ rs (77in — ,U,i/ﬁ)j —+ zZoTo — ZlTl) fl
+ T3 (’177;7‘0 — ,Uﬂ‘l) (I’ij’f‘o — (.Uj’fj) fg, (283)
0A31 21
= - — i (Miro — My s 284
Fro 5 +nj (niro — pir1) f1 (284)
0A 2
am;j = ;0 + ki (o — par1) fu, (285)

where we have again used (226)) to simplify (279). Again following a similar derivation to (217), the general form for derivatives
of Asy from (200) is derived to be

982
0As2 0T, m ory Jro ors Oro ory
= 2 _ _ 2 : Yo ; . )
aml”” v “\” axl,m "0 arl,m n)r aZ‘l,m "3 8$l,m rot 8$l,m E (Kiro —wir) | fu

. Oro orq . OK; Ow; f
T R — W ro — T
s axl,m axl,m 8xl,m 0 axl,m ! !

or or
+r3 (kiro — w;iT1) ((%117“0 - &Cloﬁ> fo (286)

From (I54), it is straightforward to compute
032 082 0B 0B

= — — — 2
Ot Orry  Omis  Owig (287)
and
By _ . P2 _ . 9By _ . 0By _ . o88)
O0zjo % 0z 3 0z 2 05 91; 3 1-



Substituting equations (T76)-(T77), (197)-(198), and 287)-(288) into (286) yields the following expressions for 9As2/aaz, ,,.

0A
6m»3§ = (B2 (iro — par1) + (a2 — 2r3 (piro + mir1)) (Kiro — wirt) —r3) f1

+ 73 (kiro — wir1) (Miro — pir1) fa, (289)
0A
O 312 =2 (B2 — 3 (wiro + Kir1)) (kiro — wir1) f1 + 73 (Kiro — wir1)? fa,
DA
3%35 = — (1 (kiro —wir1) f1, (290)
0A
axjj =& (Kiro — wir1) fu, 291)
0A z

2 = = 2 4 (B2 (njro — 1) + (Bs — 275 (uro +1571)) (Kiro — wir1)) fu

8.’L‘j70 Yy

+ 173 (fsiuj — w;n; — 2070 + z171) f1

+ 73 (kito — wir1) (N0 — p171) f2, (292)
0A z

2= 24 (8, (kjro —wjry) — (a3 + 213 (wjre + K;j71)) (Kiro — wir1)) f1

3%‘,1 v

—+ T3 (Iﬁ:iwj' — o.)mj — Z1To — Z()Tl) fl

+ 173 (liﬂ'o — wﬂ'l) (Kj’/’o — OJj’I"1) fg, (293)
0As2 20

= — 2 4 (ko —wim) fu, 294

D5 5 +nj (kiro — wir1) f1 (294)
0A z
8%12, =— ;1 + Rj (Hi’/’o — wirl) fl, (295)

where we have again used (226) to simplify (289). To compute derivatives of A3z from (201)), we again follow the derivation
of (209) to derive the general form

0
o )
Substituting equations (T76)-(T77) and 267)-(268) into (296) yields the following expressions for 9Ass/az, ,,.
‘;;:3(? = —C1 (miro — pir1) f1, (297)
gfl?)f = =G (Riro — wir1) f1, (298)
e st
gﬁjj - % = Gu(mjro = Hyre) fu, (300
T = 2 G (o —ym) oD
0Ass _ 0Ass _ (302)

Oxjz2  Ojs
Similarly, the general form for derivatives of 434 from (202) is given by

231
OAs _ 62 e < ory  9ro 7‘1) f (303)

0 —
8,’El’m al'l,m 6‘rl,m




Substituting equations (T76)-(T77) and 238)-(259) into (303) yields the following expressions for 9As4/aa, ,,.

0A

3 2 —g (niro — pir) f1, (304)
4,0

0A

81::)? =& (kiro —wir1) f1, (305)

0Azy  OAzy

e = g = (306)

0A z

axji = f;o + &1 (njro — pyr1) fi, (307)

OA: z

ax;f . 71 + &1 (kjro —wjrt) fi, (308)

0Ass _ 04w _ (309)

8(Ej72 o 8xj,3
B. Partial Derivatives of Bi;

Partial derivatives of B;; with respect to « € x;,x; are computed in a similar manner. For example, following the derivation
from equations (207)-(217) with respect to the structure of By; from (I82), the general form for its derivatives is given by

on;
8811 _ Ozpm 87“1 67"0 87“1 87‘0 (‘)rl
BTim v + (77; (89:177” To Oz 7’1) + <3Iz,m 2ry (3$l,m ro + Ozt 7“1)) (njro M;ﬁ)) fi

0 0 on; O s 0 0
+r1( ro 1 M; 1y 71 ro_;‘oﬁ) 2. (310)

aQ'J'l,rn Ch al‘l,rn Hi * 6:Cl,m o 8xl mT1> fl n (anO a Mjrl) (axl,m %) lm

s

)

From (I57), it is straightforward to compute

i gy, gy, 2 00, G311
0z 01 Oxio O3
and
Oxjo Orjn  Oxjo  Oxjgs ’
and from (133), we have
ou; _, O _ O _ op;
8xi,0 o 8;102»’1 b 6951-,2 ({9.%'z 3
and
Op _ O _ Ou; _ O -0 (313)
ax]’#o 81']‘71 ax]’g 81']'73 ’
Substituting equations (T76)-(T77) and (GT1I)-(313) into (310 yields the following expressions for 9811/az, ,,.
oB z
axl(l) =— ;1 + (nj (miro — par1) + (i — 2r1 (paro +mir1)) (njro — pyr1)) fr
+ 71 (pan; — nipy — z1imo — zor1) f1 + 11 (njro — pira) (niro — pir1) fa,
oB 2
axli =— ;0 + (nj (Kiro — wiry) + (ki — 271 (wiro + Kir1)) (MjTo — py71)) f1
+ 71 (winy; — Kiy — 2om0 + 2171) f1 + 11 (o — 1) (Kiro — wir1) fa,
oBi1 0B 0
8xi,2 o 8,%2‘73 o
0B11 2
pra 2(n; — 1 (uiro +mir1)) (mjro — pyra) fr + 1 (njro — 1)~ fo,
4
0B
O ) = (’I]j (K,j’l“o — erl) + (Kj - 27‘1 (wjro + KjTl)) (77j7“0 - ,ujrl) — 7‘1) fl
4
+ 11 (njro — pgr1) (Km0 — wir1) fa, (314)
0By 0Bn

= = O
me 3:Ej73 ’



where we have used the fact that
ik — niw; = sin® (¢; + ¢.) + cos® (¢; + ¢.) = 1 (315)

to simplify (314). Furthermore, since B from (I83) has identical structure to Bi1, the general form for its partial derivatives
is computed as

Ok ;
aBl2 ox ,Jm 67"1 87"0 87‘1 87"0 8r1
0T.m - ; T (Kj <3$z,mr0 - (%l’m’"l) + <8$l,m —2r <5$z,mr0 + aﬁﬂﬂn)) (k;To —agm)) fi

+r ( Oro O 0K O 7"1) fi+ 71 (kjro — wjr) ( on Oro 7"1) f2. (316)

KRi — Wi ro — —
8x17m J &m,m J 8xl,m axlﬁm

o——T0
85El,m axl,m

From (138), it is straightforward to compute

6/@- 8@- 85]- 8,%]-
= 2, =z, —L = —0, 317
6xi,o =0 833‘1'71 1 8.%‘1'72 8@‘1‘,3 ( )
d
an 8/<aj o 8@- - 8%3]' o 6@- -0 (318)
81,‘]»,0 - 8l‘j71 a 8.133‘)2 N 83}3‘,3 -
and from ( !§§), we have
80Jj - &uj - 80.)j o &uj
Oxio 7 Omin ) Omin  Omis
and
8wj c'?cuj 8wj aCUj _ 07 (319)

8.1,‘]‘)0 - 8%‘]‘71 - 81,‘]»,2 - 8%‘3‘73
Substituting equations (I76)-(177) and (317)-(319) into (316) yields the following expressions for 9B12/oz, ,,.

oB 2
= = ;O + (m5 (miro — pary) + (i = 2r1 (paro + nir1)) (k70 — wjr)) fr

633‘7;70
+ 71 (pik; — niw; + 2oro — 217m1) f1 + 71 (Kjr0 — wirt) (it — pir1) fa,
oB z
2 -2 (K5 (Kiro — wir1) + (ki — 2r1 (wiro + KiT1)) (K70 — wjiT1)) fi
Ow; 1 v
+ 7 (wmj — Kiwj — 2179 — ZoT‘l) fl + 7 (Iﬂ)j?‘o — wjrl) (Kli’l“o — wirl) f2,
OB _ 9By _ 0
6331‘72 8.731'73 ’
OB
8x12 = (kj (njro — pyr1) + (m; — 2r1 (piro +ny71)) (kiro — wiry) +71) fi
7,0
+ 71 (K55m0 — wjr1) (NjT0 — p71) fas (320)
OB
o li =2 (/*Qj -7 (OJjT‘Q + KjTl)) (/Qj’f‘o - OJj’I“l) fl + 7 (I{j’l“o — ij1)2 fg,
7,

= = O
al‘j,g (93?j’3 ’

where we have again used (313) to simplify (320). Because B13 = B14 = 0, we have
OB13  0Bi3  0Bi3  0Biz  0Bi3 0Bz 0Bz 0Biz

Bxi,o 83@,»71 8.131'72 8$i73 833%0 (9333'71 833%2 8333-73

d
" OB 0B 0B OB By 9B 0B 9Bu

6xi,o 81‘,‘71 axi’g (9l‘i,3 aﬂl‘jp 63;]-71 aﬂl‘jg 833]-73

Because Bo; from (192) again follows the same general structure as Bi1, the general form for its derivatives is given by

8043
OBar o or or Or or or
21 _ Omum +(a3< LI 0 7"1)—1—( 2 —27”2< 0 T0+aml1 Tl))(ﬁjro_ﬂjrl)>f1

8ml,m Y axl,m o axl,m axl,m arl,m
Oro orq on; ol ory Org
— ; - iro — Mg —17T9 — . (321
tre (61'l,m i al'l,m Hi + 8xl,m "o ale,'m E fl T (77]7'0 M]rl) 8-7L'l,m "o 8xl,m " f2 ( )



From (139), it is straightforward to compute

Oas dag Odas das
_ _ O 322
81'170 22, a$i71 23, (’91’1-72 20, 8$l‘73 21, ( )
d
an Oas Oag Oag Ooz

afﬂj,o 89@71 afﬂj,g an73 ( )

Substituting equations (T76)-(T77)., (186)-(187), and (322)-(323) into (321)) yields the following expressions for 9821/z, ,,.

oB P
3xj(1) T 72 + (a3 (niro — pir1) + (a1 — 2ra (piro +nir1)) (njro — pjri)) fi
+ 72 (#ﬂb‘ — Mift; — 2170 — 2or1) f1 + 12 (njro - Mﬁ) (niro — pir1) fo,
oB 2
afzi B ;3 + (a3 (Kiro — wiry) + (B1 — 2ra (wiro + Kir1)) (Njro — pjr1)) fi
+ 79 (win; — Ky — 2om0 + 2171) f1 + 72 (Mo — pj71) (KiTo — wir1) fa,
0By 20
driz v +& (mjro — i) fi,
0By 21
dxiz 7 + G (o — ) fi,
0Ba
0o =2 (a3 — T2 (ero + 77j7”1)) (njro — #jﬁ) fl + 79 (77j7”0 . ,ujﬁ)z f2,
7
oB
53321 = (a3 (rjro = wjr1) + (B3 = 2r2 (wjro + w511)) (70 = p1j11) = 72) i
g1
+r2 (o = pg71) (Km0 — wjirn) fa, (324)
0By
orja (njro = pjr1) fr,
0By
B,y = o= )

where we have again used (313)) to simplify (324). Because By from (193) again follows the same general structure as 511,
the general form for its derivatives is given by

983
8622 0Ty, m 67”1 8’/‘0 67-2 8’/"0 67‘1
= - — oy [ 2 ey
0Ty m Y T\ Ox1m O\ Otim * 0t 2\ Ozim © + Dzrm (kjro —wjir1) | fi
dro ory 8@ awj Iy aro
T ‘ - 0 — Wj - . (325
+ 7o (&”ﬂzm K Dz wj + Dt To Dt r1 ) f1 + 72 (ko — wjry) D21 ro D1 r1) fa. (325)
From (T60), it is straightforward to compute
93 9B3 93 B3
T = = == 326
0x; 0 3 0x; 1 2 0x; 2 1 O3 %05 (326)

and

0ps 03 0f3 03

dzjo  Oxjn  Oxje  Oujy

=0. (327)



Substituting equations (T76)-(T77), (I86)-(187), and (326)-(327) into (323) yields the following expressions for 9B22/az, ,,.

oB z

895'2(2) =- ;3 + (B3 (niro — par1) + (a1 — 2re (piro + mir1)) (K570 — wjir1)) fi
+ 1o (pik; — mw; + zoro — 2171) f1 + 72 (K70 — wjry) (Mo — par1) fa,

oB z

69&2? =— ;2 + (B3 (kiro — wir1) + (B1 — 212 (wiro + K1) (Ko — wjr1)) fa

“+ 79 (wmj — RiWj; — 21T — ZQTl) f1 —+ 79 (KJJ‘TO — wJ"I“1) (Iﬂ’l"o — wirl) fg,

oB
2 :% + &1 (kjro —wjrt) fi,

61‘1'72
8822 Z0
Dss = + C1 (kjro — wjT1) fi,
oB
8:522 = (B (njro — pjr1) + (a3 — 2r2 (pjro +nyr1)) (Km0 — wyrt) +12) fi
7,
+ 72 (Km0 — wjir1) (Mjro — pyr1) fo, (328)
oB
a;j =2 (B — 72 (wjro + K;71)) (K570 — wyr1) fi + 72 (510 — wir1)? fo,
7,
0Ba;
a.’I}j’Q :Iij (ero — wjrl) fl,
0Ba3
days W (kjr0 — wjr1) f1,

where we have again used (313) to simplify (328). To compute derivatives of Bys from (194)), we follow the derivation of (209)
to derive the general form

0K
8323 amlj 67”1 8’/‘0
9528 _ Poim o (9T . 329
a‘:Ul,m, vy * & a:L'l,n*b "o axl,m " fl ( )
Substituting equations (T76)-(T77) and 228)-(229) into (329) yields the following expressions for 9B23/dz, ,,.

oB 2

(%22 = 70 + 55 (miro — pir1) f1,

oB

8:312? = 7%1 + K; (kiro — wir1) f1,

O0Bas  0Baz 0

895,-72 o (9551'73 -

0Ba3

drye (niro — pyr1) f1,

0Ba3

aij = Hj (I{jT‘Q — w]"f‘l) f17

O0B23  0Bas

= =0.
8%‘]‘72 8mj,3

Derivatives of Bys from (I93) again follow the derivation of (209), allowing us to derive the general form

on;
0Baa ATt m or1 oro
=— -1 r1 ] fi.

To
ath Y

a:Ul,m 8zl,m



Substituting equations (T76)-(T77) and GII)-(312) into (329) yields the following expressions for 9B24/az, ,,.

884 z
= = ;1 = n; (miro — pir1) f1,

81‘@0

15)5} Z

81:1-2;1 = ;O —nj (kiro —wir1) f1,
0Bay  0Bay 0

Oxi 2 B Oxi3 -

0By

92,10 = —n; (njro — pir1) f1,
oB

ami = —n; (K70 —w;r1) f1,
0Byy 0By

(91'j72 8xj73

Since Bs; from (203) matches the structure of A;1, its general form is given by

9p3
OBs1  Bzim ory Org Ors drg ory ) )
D + (53 <3$z,mro athﬁ) + (83317,” 2r3 (31‘1,er + 3$l,mrl)> (njro Mﬂ’l)) fi
Oro ory on; o or or
+ 73 (8wl,m nj — D21 pj + (%lin ro — 8@; r1 ) fi+73(niro — pyr1) 78931; To — 783:;2,,“ fa. (330)

Substituting equations (I76)-(I77), (197)-(198), GII)-@GI3), and (326)-(BZ7) into (B30) yields the following expressions for

6831/83”17”'

oB Z
) e + (B3 (niro — pir1) + (a2 — 273 (im0 + n3i711)) (77j7“0 - ,ujﬁ)) fi
0 v
+ 73 (im; — nipy — 21m0 — 20m1) f1 + 73 (Mro — pyr1) (niro — pir1) fo,
oB Z
8:1:31 = —?2 + (B3 (kiro — wjr1) + (B2 — 2r3 (wjre + Kir1)) (njro — pir1)) fi
2
+ 73 (win; — Kipy — zoro + 2171) fi + 73 (njr0 — piT1) (KiTo — w;r1) fa,
0Bs1 =
Dso = 5 ¢ (njro — pir) fi,
0B31 20
D5 = + &1 (njro — pyr) f1,
0B31 )
0.0 2(B3 — 13 (o +n571)) (im0 — pyra) fr + 73 (njro — pir1)” fa,
Js
971 = (B3 (kjro —wjr1) — (g + 213 (wire + K71)) (Mjro — yr1) —73) fi
Js
+ 13 (njro — pir1) (Km0 — wir1) f2, (331)
0Bs1
oz, =nj (njro — pyr1) fi,
0B31
oz (njro — mjr1) fr,

where we have again used (313) to simplify (331). Bs2 from (204) also matches the structure of A1, so its general form is
given by

dag
0Bs2 OTL.m orq drg ors org or1
- _ 9% _ _ _9 e — w0
axl,m Y * s 6xl,m o 8(Elm’br1 * axl,m " axl,m rot 6J;l,m E (KJJTO wjrl) fl
org ory OK; Ow; ory org
“+ 73 (axl’m Kj — &nl,m wj + a.%’l,Jm ro — axljn ’I"1> fl “+ 73 (Hj’/’o — (.Uj’l“1) (axl,m ro — axl’m 71 fQ. (332)



Substituting equations (T76)-(I77), (I97)-(198), GI7)-@GI9), and (322)-(B23) into (332) yields the following expressions for

6832/83:[,'m .

oB Z
B) 2 =22 4 (—as (miro — pary) + (a2 — 2r3 (paro + nir1)) (k50 — wjr1)) fi
Zi,0 Y
+ 13 (uiky — miw; + 20m0 — 2171) f1 + 73 (Kjro — wjiry) (iro — pir1) fo,
oB z
6:232 =— ;3 + (—ag (kiro — wjr1) + (B2 — 2rs (w;re + Kir1)) (k70 — wjr1)) fi
i1

—+r3 (w]‘,‘{j — RiWj — 2170 — 207“1) f1 “+ 73 (Kj?“o — (,«Jj’l“l) (KZZ"I“O — LUjTl) fg,

oB 2
= Z;O = C1 (Km0 —wjr1) fi,

6581‘,2

0Bsy 21

91 5 = + &1 (kim0 — wyr1) f1,

0Bs;

Fr (—as (njro — pjra) + (Bs — 2rs (uyro + mjr1)) (Kjro — wirt) +73) f1
7

+ 73 (kim0 — wirt) (Mo — pyr1) fa, (333)

oB

O 3? =—2 (043 “+ 73 (w]'?”o + Hj’l’1)) (Rj’r’o — w]'Tl) fl + 173 (l{jro — wjr1)2 f27
7,

0Bs

91,2 =nj ("ijro - Wjﬁ) f1,

0Bs3s

82,5 =rj (kjro — wjr1) f1,

where we have again used (313)) to simplify (333). Derivatives of B33 from (203) follow the derivation of (209), allowing us
to derive the general form

87]j

8833 oz 87’1 87”0

_ wm B . 334
axl,m v +77J axl,m o axl,m E fl ( )

Substituting equations (T76)-(T77) and G1I)-(312) into (334) yields the following expressions for 9Bss/az, ,,.

0B33 2

dre - 4 +m; (miro — pir1) f1,

0B3z  zo

8$i71 = ~ + 77] (F':'Lr(] OJZ’I"l) flv

O0Bss  0Bs3 0

8.%1'72 o 8:51-73 o

ay0 (mjro — pjr1) f1,

OB33

;1 =1; (Kjro —wjr1) fi,

0B33  0Ba3
813-,2 B aﬂjj73

=0.

Derivatives of Bs4 from (206) again follow the derivation of (209), yielding the general form
Ok

0B34 _ Ozim or1 Oro
8$17m = 5 + K (al'l’m 0 axl’m 1 fl- (335)




Substituting equations (T76)-(I77) and GI7)-(@I8) into (333) yields the following expressions for 98s4/oz, ...

oB Z
2= ;0 + kj (niro — pir1) fu,

0z

0B z

axi B _?1 + 5 (Riro — wirt) fi,
8634 _ 8634 -0

Or;2 Oz 7

oB

axj,4 = 5 (370 = pj71) fr,

oB

axi = #; (Ki70 = wjm) f,

OBsy  0Bsy

8%-,2 8:83'_’3 ’

; vati ; 9 A.. O A.. 9 . 9 B
concluding the derivation of Hessian tensors 5= Aij, 5-Aijs g, Bij» and 5= Bij.
APPENDIX J
DERIVATION OF EUCLIDEAN GRADIENT BOUNDS

In this appendix, we derive bounds for components of the Euclidean gradient that are necessary for the proof of Lipschitz
continuity of the Riemannian gradient in Appendix |G| Specifically, we show that ||e;;||2, ||.Asj|/7, and ||B;;||F are bounded
for all (i,7) € &£, given that X € K, where K is a compact subset of M"Y . We begin by providing preliminary derivations that
will serve as a reference for the subsequent analysis in this appendix as well as in Appendix [K]

A. Preliminaries

For reference, we first include definitions for the Frobenius norm and matrix 2-norm. Given a matrix A € R™*™ with entries
a;j, the Frobenius norm of A, denoted || Al| ., is computed as

Zi |ai;|>. (336)

i=1 j=1

1Al =

The matrix 2-norm of A, denoted || A||2, is given by

HAHQ Y, )\max(ATA)v (337)

where Apax(+) denotes the maximum eigenvalue of a matrix. We now define the notion of the Euclidean norm, denoted || - ||2,
on M and M¥. Following from the embedding of M in R* given by (39), we have, for x € M, |x|, = Vx ' x. Moreover,
from the embedding of M?” in R*" given by (@2), we have, for X € MY X l, = VX TX. Using these definitions, we
now derive a lemma on the boundedness of the translational components of poses and manifold residuals associated with pose
graphs whose poses are limited to compact subsets of M™Y.

Lemma 12. Let G = (V, &) be a pose graph, with associated poses X = vec((X;)icy) and relative edge measurements
Z = vec((zij) ; jyeg) with [V| = N and |E] = M. Now, let x; = (x| x/ 4" € Mand r;; = [I'Z.Tj’r,riTj’d]T € M, for all
i €V, and for all (i,j) € &, denote the poses and manifold residuals associated with G, respectively, represented in vector
form with explicit rotational and translational (dual) components. Then, given any compact subset IC C MY, it holds for all

X € K that for all i € V, and for all (i,j) € €, that |[x; 4|, < tx and |[rijall, < te, with

t 2T =N, and £, 2 (£2 +3) 2, (338)
where -
T4 sup {|| X, | X € K} (339)
and
Z é max {HZ”H2} . (340)

(i,9)€€



Proof: Because K is compact, it is valid to define T as in (339). It then follows that for all X € K, we have

1xl, = /> Ixill; < T (341)
i€V

Since x; = [x/,,x] 4], we have Ixi]|2 = 1+ ||xi.4]l,, and therefore
2 2
Do lxilla =N+ lxial,-
=y =y

Applying this to equation (341)) and simplifying yields

%iall, < VT = N 2, (342)

which gives the left side of (338). We now address the translational component of ri; = [r/; , rlTj 4 7. Applying (36) and (38)
to the definition of r;; given in (T2) yields

ri = Zi_jl Bx; 'EBx; =Qr(x;)Qr (x) Zl_jl
It then holds that
Irislly < NQRr (%), [|Q7~ xa)ll, 1251l (343)
where |Qr(-)||l2 and ||@7 " (+)||2 denote the matrix 2-norm given by (337). To simplify (343), we first derive a bound on

T T]

|Qr ()|l For any x = [x],x]| € M, applying the

1Qr ()l = |1+ 5 (nxdn% Il (el +4)).

Therefore, letting x = [xg, 71, T2, 73] ", we have

A

1 2
1Qn Gl < |1+ <||xd|§+ (Il +4) )

_Jiraia 344

Since ||x||5 = 22 + 22 + 1, equation (344) implies that

1Qr ®)l, < /I3 +2 < [Ix]l, + V2, (345)

which holds for all x € M. Noting that |Qr (x)||, = [|Qr (%), = |Qz~ (x)||2, we can apply (343) to (343) to write
Iriglly < (Ixills +v2) (Il + V2) 251l - (346)

Now, we apply (342) and the fact that |[r;]|2 = ||rs;all5 + 1 to (346) to obtain

Vlrigally +1 < (8 +3) 121, (347)

and applying (340) to yields, for all (i, j) € &,
Irijall, < (B2 +3)z = tu, (348)
with t, from (338)), completing the proof. [ ]
Using Lemma [T2] we now derive a set of preliminary bounds that will aid in the forthcoming analysis. Given a pose graph
g= (V,E) as defined in Lemma we denote x; = [.ﬁi)o, a?i’17.’1?i)2,$i,3]—r and X; = [$j70,$j71,l'j)2, a?j’g]—r, with 7,5 € V, to
be the poses corresponding to relative measurement Z;; = [20, 21, 22, 23] |, with (4,7) € &, and let r;; = [ro,1,72,73] " be
the manifold residual computed via (I2). Noting that x;,x;,%;;,r;; € M, we denote ¢; and ¢, to be the rotation half-angles

associated with x; and x; such that

w0 = cos (¢;), x4,1 =sin(¢;), xj0 = cos(¢;), x;1 =sin(¢;), (349)



and we denote ¢, and ¢, to be the rotation half-angles associated with z;; and r;; such that
zo =cos (¢,), z1 =sin(¢,), ro =cos(¢py), r1 = sin(¢,). (350)
From (349)-(350), we can immediately write
il |@ial, @50, |25 |20l [21] s [rol , [ra] < 1. (351)

We now define constants z,, zs3, and Zs3 such that

Zo = max |z, z3 2 max |z3|, Zoz = Zo + Z3. (352)
(i,5)€€ (i,5)€€
It then follows from (332) that
|z2| < Z2, |23] <23, |22+ |23] < Z23 (353)

for all (i,7) € . Furthermore, the function sinc(¢) is maximized at ¢ = 0, so (¢ (x)), as defined in (57), is bounded by

v (¢ (x))] <v(0)=1

for all x € M. Additionally, the reciprocal (sinc(¢))~" is maximized at ¢ = 7/2 over the domain ¢ € (—%, 5|. Applying this
fact to and (39) yields

™

‘ g (¢1(X))

<

1
v (7/2)

it holds that
|fi(@(x)] < [fi(7/2)] =1 (355)

for all x € M. Since [|-||; < v2 |||, it holds from (342) that
wiol,|mis| < lwiol + |as] = [xiall, < V21xiall, < 6V2

and
2] 258 < |jol + 28] = x4l < V2[1x54ll, < V2.
From (348), we have B
ral, |rs] < |ro| + |73 = [|rijall, < V2IIrijall, < tv2. (356)

We now bound entries of the matrix Q; from (144), which correspond to (T43)-(154). Substituting (331)) into (T43)-(148), (151)-

(T32) and applying angle sum and difference identities yields

Wi = 20%j,0 + 21751 = cos (¢.) cos (@) + sin (¢.) sin (¢;) = cos (¢; — ¢.), (357)
w; = —21Z5,0 + 20251 = —sin (@,) cos (¢;) + cos (@) sin (¢;) = sin (¢; — ¢2), (358)
M = —Tj021 + Tj120 = —cos (¢;) sin () + sin (¢;) cos (¢5) = sin(¢; — ¢.), (359)
Ki = —j 020 — Tj121 = — €08 (¢;) cos (¢.) — sin (¢;) sin (¢.) = —cos (¢p; — ¢.), (360)
€1 = —@50% + 5121 = — €08 (65) c0s () + sin (6) sin (6) = — cos (65 + 6) (361)
G = —xj0%1 — ;120 = —cos (¢;) sin (¢.) — sin (¢;) cos (¢,) = —sin (¢; + ¢.) . (362)
It then follows from (357)-(362) that
il lwsl s il [al s [62] 5 1G] < 1. (363)

Next, we apply the triangle inequality and (35I)) to the absolute value of (149) yields

|| = |=zj022 — w123 + w020 + wja2| < 2] + |23] + [wj2] + |258] (364)
and further applying (333) and (336) to (364), (130), and (153)-(154) yields
laa] s 181l laal s 1Ba| < 223 + Ex V2. (365)

We now bound entries of the matrix @; from (T44), which correspond to (T33)-(160). Substituting (351)) into (T53)-(I38) and



applying angle sum and difference identities yields

Wi = 20%;,0 — 21241 = €0S (@) cos (¢;) — sin (¢,) sin (¢;) = cos (¢; + ¢2) , (366)
wj = 21T5,0 + 20i,1 = sin (¢ ) cos (¢;) + cos (¢.) sin (¢;) = sin (¢; + ¢2) , (367)
Nj = —%i,021 — Ti,1z0 = — cos (¢;) sin (¢2) — sin (¢;) cos (¢.) = —sin(¢; + ¢2) (368)
Kj = Ti020 — Ti121 = cos (@) cos (¢.) — sin (¢;) sin (¢.) = cos (¢i + ¢2) . (369)
It then follows from (366)-(369) that
il s lwsl s sl s [R5] < 1 (370)
Furthermore, applying the derivation of (363) to (I59)-(T60) yields
|as], |Bs] < Zos + txV/2. (371)

We can also write derivatives of ¢, in trigonometric form by substituting (330), (357)-(360), and (B366)-(369) and applying
angle sum and difference identities, which yields

G =y = sin (05 = ) 05 (6) = 003 (8 — 02)sin (6) = sin (65 6. — 0), a7
;;jrl = Kiro —wiT1 = — 08 (¢; — @) cos (¢r) —sin (¢; — ¢2)sin (¢,) = —cos (¢; — ¢. — ¢y, (373)
;jjro =njro — pjr1 = —sin (¢ + @) cos (¢r) — cos (¢; + ¢2) sin (¢r) = —sin (¢ + ¢= + ¢r) , (374)
;;jrl = K;jTo — wjr1 = cos (¢; + ¢.) cos (@) — sin (¢, + ¢;) sin (¢,) = cos (¢; + ¢» + ¢r) . (375)
It then follows from (372)-(373) that
[niro — pira| s [kiro — wirt|, Injro — pyral, [Riro — wir| < 1, (376)

concluding our preliminary derivations for computing Euclidean gradient bounds.

B. Residual Bounds
We now compute a bound on ||e;;||2 for all (,7) € £. Applying the definition of || - ||2 to (TI) yields
1 - 1
————[r1,72,73] :"\/7“2—1—7“24—7“2. 377)
7 (¢ (ri5)) 2 7 (¢ (ri5)) P
Applying the bounds from (354) and the fact that 7? = sin(¢,)? < 1 to (B77) yields

s s
leigll, < 5 /1 +73+75 = 5/1+lIrijally: (378)

Finally, applying (348) to gives, for all (4,7) € &,

lewslly = Logy (i), = H

leijll, < 54/t2+1% 6, (379)

T
2
where we have defined the constant € such that |[e;;||, < e.
C. Jacobian Bounds

We now compute a bound on the Frobenius norm of \A;;, whose elements are included in equations (T78)-(I8T), (I88)-(191),

and (T99)-(202). First, applying the triangle inequality to |.4;| yields
[A11| = ‘Zj + 7y (miro — pir1) f1] < ‘771’ + |r] | miro — para | | fa] - (380)
Applying (363, (58, G5, (79, and (§53) o [80) yields
|A| < g 41 (381)

Because A;5 has similar structure, applying the same procedure yields

o
;l + 71 (Kito —wiT1) fi

|A12] =

< g 1. (382)



From (T79)-(180), we have
|A12] = |A3] = 0. (383)

For | A2;|, we can apply the triangle inequality to write

|A21| = ‘0;1 + 12 (niro — pir1) f1| < ||a71|| + [ra| |niro — pir1| | f1 (384)
We now define
p2 7 (72 + £0V2) +80V2 (385)
Then, applying equations (363), (354), (336), (376), and (353) to (384) yields
|A21| < g (223 + fx\/§> +t:.v2=p. (386)

Applying the same process to Aso from (T89) yields

|A22|‘i1+7"2(/€i7’0wﬂ"1)f1 <p. (387)

The remaining terms have similar structure to Aj1-Asz, so applying the derivations for (38T)-(383), (386)-(387) to (190),

(1), (19%. 200), @01, and 202) yields

T
|A2s|, [A2al, | Ass|, [Ass| < 5 (388)
and
| Az, [As2| < p. (389)
Now, we define
_— m 2 T 2
J 4 2(§+1) +4p2+4<§) . (390)
Then, substituting (381)-(383) and (386)-(389) into the definition of the Frobenius norm from (336) yields
= 2 2
Mullp <y2(5+1) +402+4(3) =7, (391)

which holds for all (¢, j) € &.

We now derive a bound on ||B;;||r. Because A;1-Asy4 and By1-Bsy share identical structure, we apply (331), (354), (353),

(356), (370)-(B71), and (B76) to the definitions of B;; entries in (T82)-(184), (192)-(193), and (203)-(206) to write

Vi
|Bi1],|Biz| < 3 +1, (392)
|Bi3| = [Bia] =0, (393)
|Bai|, |Bazl, |Bsi], | Bsz2| < p, (394)
and -
|Basl, |Baal , |Bssl , |Bsa| < 5 (395)

with p given by (383). Therefore, we can substitute (392)-(393) into the definition of the Frobenius norm from (336) to obtain
1Bijll < T, (396)
with J given by (390), which holds for all (i, j) € £.

D. Euclidean Gradient Bounds

The proof of Lipschitz continuity of the Riemannian gradient in Appendix [G] depends on the boundedness of the first two
entries of g;; from (@7) for all (¢,5) € £ and for all k& € V, which we now show. To accomodate the subsequent analysis,
we write .A;;Qijeij = [gi.0,9i1,0i2,9:3) | and B;;Qijeij = (950,951,952, 95,3 | in entry-wise vector form. It then suffices
to show that |g; 0|, |91/ |95,0/, and |g; 1| are bounded. First, we have

T . <[Qij]1 veij>
ALQie; = A | ([Qily,e5) |
[Q5]5 5 €ij



where (-, -) denotes the Euclidean inner product and [€;;], denotes the /th row of ;;. We then have

9,0 Ann [Q45]] eij + Aor [Q], eij + Asi [Qm]; eij
gin | _ | A2 Q] ey + Az Qi) ey + Ase [Qij]gr €ij (397)
9i,2 Ais [ng] €;; + Aas [ng]%_ € + Asa [ng]%_ €;j
9i.3 Ara [Qi5]) e + Az [Qijl,y €5 + Az [Qi5]5 ey
Extracting the first two terms from (397) and taking absolute values yields
lgiol = ‘«411 [ng]lT ei; + A2 [ng]; e + As1 [Q”]; €|, (398)

|gial = ’«412 [QU]I e;j + A2 [Qz]]; e;j + As2 [ng]j €j| -
Letting e;; = [eg, €1, e2] ", then applying the triangle inequality to (398) and simplifying yields

3 3 3
|9i0] = <Z|Al1| |Qu|> leo| + <Z|Al1| |Ql2|> lex] + <Z|Al1| |ng|> 2] (399)

=1 =1 =1

3 3
g£3 (@ +1) (Z w) +p (anm + |fzgz|>>> e, (400)
=1 =1

with p defined in (383) and e defined in (379). From (379), it follows that
leol s leal s ea] < [lessll < V2less]l2 < &V2. (401)

Applying @OT) and the bounds from (38T), (386), (389) into (399) yields |g; 0| < g, and applying the same procedure for
|9i1| yields |g; 1| < g. Furthermore, repeating the derivation for |g; 0|, and |g;,1| using the bounds from (392) and (393) yields

l9.01,195,1] < & Summarizing, we have

Now, we define

Ngialslgiol s 19l < 8, (402)
with g given by @00), which holds for all (i,5) € £. Moreover, we observe from g;;  in (©@7) that @02) holds for all k.

APPENDIX K
DERIVATION OF EUCLIDEAN HESSIAN BOUNDS

In this appendix, we derive bounds for the Euclidean Hessian tensors derived in Appendix [[] that are necessary for the proof
of Lipschitz continuity of the Riemannian gradient in Appendix [G] Specifically, we will show that

AL ||> ||0A; |7 | 0Bi; 0By ||?
89@?1 8xj,l 35Ej’l 8@-,1 F

2
,and‘
F

are bounded for k = 0...3 and for all (i,j) € &, given that X € K, where K is a compact subset of MY .. We begin by
providing preliminary derivations that will serve as a reference for the subsequent analysis in this appendix.

A. Preliminaries

s

The function f2 (¢) given by equation (2T4) takes on values within the range (—%, %] over the domain ¢ € (—%, 2], so it
holds that

(0 G < 1f2 (/)] = 5 (403)
for all x € M. Using the techniques from Appendix J-A] we now compute the following quantities in trigonometric form.
HiTo + 771 = COS (¢] - ¢z) Ccos ((br) + sin ((b] - ¢z) sin (¢r) = COs (¢J - ¢z - ¢r) ) (404)
wiro + Kir1 = sin (¢; — ¢.) cos (¢r) — cos( ¢)sin (¢,) = sin (¢, or) s (405)
p157o + mjr1 = cos (¢; + ¢-) cos (¢r) — sin (¢; + (bz) sin (¢r) = cos (¢i + ¢z + ¢r) , (406)
wjro + ki1 = sin (¢; + @) cos (@) + cos (¢; + ¢.) sin (¢,) = sin (¢; + ¢ + ¢y) . (407)

It follows from (@04)-@07) that

liro + miri], |wire + Kiri|, [gro +nr1l s lwire + Kjra| < 1. (408)



From equations (330), (339), and (@04)-(@07) we apply angle sum and difference identities to compute

ni — 1 (piro + mir1) = cos (¢ — @) sin (¢ — ¢, — b)),
i — 21 (piro +miry) = sin (¢ — ¢ — 2¢,) ,
(w

) =
=211 (wiro + Kir1) = cos (¢ — - — 2¢),
— 11 (pgro +njr1) = cos (¢r) sin (¢ + ¢ + ¢r)
_27"1 (M To +77J7"1) —sin <¢l+¢z +2¢T)’
'—27“1( w;ro + K;r1) = cos (¢; + ¢ + 2¢,),
from which it follows that
i — 1 (iro +mir1)| s [ni — 2r1 (aro + mir1)| s [ki = 21 (wire + Kiry)[ < 1 (409)
and
Inj =71 (o +m5ra)ls [ng — 2ry (yro +nyra)l s |55 — 2 (wiro + kyr)| < 1 (410)

We also compute
pini — M = cos (@i + ¢z) sin (¢ — ¢2) + sin (¢ + @=) cos (¢ — ¢2) = sin (&5 + ¢;) ,
ki — njw; = —cos (@i + ¢2) cos (¢j — ¢.) +sin (¢ + ¢2) sin(¢; — ¢.) = —cos (¢i + ¢;)

from which it follows that
| — sl s ke — njws| < 1. (411)

Furthermore, it holds that

—20To + 2171 = — COs (¢z) Ccos (¢7‘) + sin (¢z) sin (¢T) = — COs (¢)Z + ¢7‘) <1,
cos (¢, ) cos (¢r) + sin (¢, ) sin (¢.) = cos (¢, — @) < 1,

z170 + 2071

and, therefore,
|—2’07“0 + 2’17“1| R |21’I"0 + Zo’l“1| <1. 412)

Finally, we have the trigonometric bounds
ki (miro — par1) + (s — 21 (piro + mir1)) (Kiro — wiry) — 1| = [cos (¢y;) sin (2 (d; — ¢ — ¢ij))| < 1

and
ni (Riro — wir1) 4+ (ki — 2r1 (wiro + Kir1)) (Miro — pir1) + 71| = |—cos (¢4;) sin (2 (5 — ¢ — ¢i5))| < 1,

which concludes our derivation of preliminary bounds for the Euclidean Hessian Tensors.

B. A;; Tensor Bounds

We first derive bounds for H aA” for k=0...3, starting with H . Applying the triangle inequality to (220) yields
0A
‘ o == ’2 (m: — 1 (paro +mir1)) (miro — wirn) f1 + 11 (iro — pir1)” fo
00
< 2|(mi — 1 (miro + mir)| Imiro — para | [fu] + [l Imiro — pira | | fa (413)
Applying #09). (376). (355). (B5T). and [@#03) to @I3) and simplifying yields
6./411 e
= 414
‘ aJ}Z"O -2 ( )

Next, applying the triangle inequality to (231)) yields

0A12
aal‘i’o

= (ki (miro — pir1) + (M — 2r1 (Hiro + mi71)) (Kiro — wir1) — 1) f1 + 71 (KiTo — wir1) (Miro — i) fol

<|(ki (miro — par1) + (mi — 21 (paro + mir1)) (Kiro — wiry) — r1) fi
+ |r1]|kiro — wirt| [miro — piri] | fo] (415)



To simplify @I3), we observe that

ki (niro — par1) + (i — 2r1 (paro +mir1)) (Kiro — wir1) — 71| = |cos (¢i5) sin (2 (5 — ¢ — b)) < 1.

Applying @16), (351), (376), and @O3) to @I5) yields

8A12 s
< —+1.
‘8251'70 -2 +
From (237) and (238), we have
OAwz|  |0Aw] 0
Oxio| |Omio|

From (242)), we have

0A
‘ 2= ‘2 (o — 7o (piro +mim1)) (Miro — pir1) f1 +ra (miro — uiT1)2 fo

8%‘1‘)0

< 2(Jeu| + [ro| [iro +miri|) [niro — pari| Lfa] + |ral miro — pari ) f!

and further simplifying with and (353) yields
0A2
8%1'70

< 2|+ ([f2] +2) Iraf -

We now define

) <223 + \/ifx) +V2 (g + 2) tr.
Applying (363), @03) and (336) to @I9) and simplifying yields
‘8“421 <2 <223 + \/ifx) + \/i(g + 2) t. = 7.

81‘2‘70

Applying the triangle inequality to (230) yields
‘&422

83:1'70

= |(B1 (miro — pir1) + (o1 — 272 (piro + mi11)) (Riro — wirt) — r2) fi + 12 (kiro — wir1) (niro — pir1) fol

(416)

417)

(418)

(419)

(420)

421)

< (181l Imiro — par1| + (leaa| + 2|ra| [piro + nir1|) [Kiro — wirt| + [ra]) [ f1] + |re| [Kiro — wir1| [niro — pira| | f2l,

and simplifying with (376) and (333) yields

3,0

<Al laa] + (I fal + 3) 72

Next, we define

22 <223 + ﬂfx) +V2 (g + 3) te.
Applying (363), @03) and (336) to [@22) and simplifying yields
‘8A22 <2 (223 + \/ifx) + \/ﬁ(g +3) ty = To.

8$i70
Applying the triangle inequality and (363), (376),and (333) to (260) and (269) yields
‘&423 0A24

81‘1'70 8xi,o

<1

b

Since Aj; and Asz; have similar structure, applying the derivation for @21) to 278) yields
‘aASI

833@0

< 71

Similarly, A3, and A3z have similar structure, so applying the derivation for @24) to (289) yields

< 7.

(422)

(423)

(424)

(425)

(426)

(427)



From (297), (304), and ([@23)), it holds that

0A3z3 0A24
— |- <1 428
‘ aLL'Z"O ‘ axi,o - ( )
0A34 0Ass3
= <1 429
‘ aLL'Z"O ‘ (91‘1"0 - ( )
Finally, substituting (@14), @17)-@18), @21), @24), and @23)-@29) into the Frobenius norm definition from (336) yields
8Aij 2 ) 9 T 2 m 2
Z7y < Z z
‘8%’,0 F_2(Tl+7—2)+<2> +(2+1) +4 (430)
which holds for all (7, ) € £. We now address H % o Applying the triangle inequality to (221) gives
0A1
B <|[(mi (Kiro — wir1) + (ks — 271 (wiro + Kir1)) (niro — par1) +71) f1 + 11 (miro — part) (Kiro — wir1) fa|

<|mi (kiro — wir1) + (ki — 2r1 (wiro + Kir1)) (niro — pir1) + 71 | f1]

+ [r1|[niro — pir1| |kiro — wirt| | f2| - (43D
Noting that
i (Kiro — wir1) + (ki — 21 (wiro + KiT1)) (Nt — par1) + 11| = |—cos (¢ij) sin (2(¢; — d= — ¢i5))| < 1,
we see that applying (353), (351), and (@03) to (31) yields
8A11 s
< —=+1. 432
‘5‘%71 -2 + ( )
Moreover, applying the triangle inequality, #09), (376), (333), (331), and @03) to 232) yields
0A s
‘ or 2= ‘2 (ki =71 (wiro + Kir1)) (Kito — wir1) f1 + 71 (KiTo — Wﬂ“l)2 fz‘ < 3 +2.
i1
From (237) and (238), we have
OAwz|  |0Aw] 0
31‘1'71 n 8:&71 e

Applying the derivation for {#24) to (243) yields
al”i,l
with 7 given by {@23), and applying the derivation for @21) to (243) gives
3%-71
with 7; given by @20). Applying the triangle inequality and (363), (376).and (333) to (261) and 270) yields
‘ A2 ’3«424

8%1 8.’&'71

<laa| +181] + ([ fe| +3) [ra] < 7o,

<2061+ (Ifol +2) [r2] <7,

<1, (433)

Now, applying the derivation for @24) to (279) yields
0A3
3%‘,1

with 72 given by ([@23), and applying the derivation for @21) to (279) gives

0A32
0x; 1

<Jag| +[Ba] + ([fo| +3)[rs] < T,

< 2|Ba| + ([fo| +2) r3| <7




with 71 given by (@20). Finally, from (298), (303), and (@33), we have

OAss| _ | _OAu|
8.131'71 833@1 -
OA34 0A23
= <1 434
’ 8.131'71 ‘ 8$i,1 - ( )
Finally, substituting (432)-(34) into (336) yields
8A¢j 2 _9 _92 i 2 s 2
GLi | <9 (f 1) (f 2) 4, 435
’axi,lF_ (FM+7)+(5+1) +(5+2) + (435)
which holds for all (7, j) € €. We now address Hgi - From 22). 233). @37, @38). {62). @T1). @) and (0G). we
have
OAw | |0A12| _ |OAws| _ |0Awa|  |0As|  |OAza|  |OAsz| | OAz4]| 0 436)
5'%‘,2 N 5%‘,2 B 3$i,2 B 8%,2 N 0x;2 B 0x;2 B axi,Q B 3%‘,2 B
Moreover, applying the triangle inequality and (363), (376), and (333) to (244), 251), (280), and 290) yields
o) ) %, o)
Az ’ Az 7 A3z , Aso <1, @37)
ail'i,z 3xi72 Baci,g 6:51-,2
Substituting @36)-@37) into (336) yields ,
OAi;
0l <y, (438)
31@,-72 Ia

which holds for all (i,j) € £. To address Hg:‘é

and (306) that

o We first observe from 222), 233). @37). (238). 262), 271). @99

0Aun| _|0An| _ |0As| _ |0Aw| _ |0Ass|  |0An|  |0Ass|  |0Asa| 439)
Ox;3| |0miz| |Omiz| |Omiz| |Owis| |Owis| |Owis| |Oxis|
Furthermore, applying the triangle inequality and (363), (376), and (353) to (243), (252), (281), and (291) gives
0 0 0 0
A2 7 Ao 7 Az 7 Aso <1 (440)
(9561‘,3 32172'73 8@,3 81‘1‘,3
Finally, substituting (@39)-(@40) into (336) yields ,
HaA” <4, (441)
81‘2‘73 Ia
B.Aij

2
which holds for all (4, j) € £. We now derive bounds for H - for k =0...3, starting with H%

triangle inequality to (223)) yields

9,0 o First, applying the

0A11 21
9% <=+ Unil Injro — pgril + |mj — 2r1 (wiro +nir)l niro — para| + [ra| ([gmi — mipal + |z1m0 — 20m1])) 1 f1
Js
+ |1l niro — para| Injro — pyra| | fo] - (442)
To simplify @42), we apply (51), (354), (363). (376), (@I0), @II), @I2), and (355) to obtain
0Au| rya (443)
81‘]'70

Similarly, applying the same process to (234) yields

‘ Ozl 1y (444)
8xj70
From and (238), we have
0A1s| _ |0Aw| _ (445)
8$j’0 o 8953»,0 N




Next, applying the triangle inequality to (246) yields

0A2 22
950 S| | T (Jealmjro — pjra| + (loz| + 2 2| [pugro +nyrl) [miro — par| + |r2| (|gms — njpl + [21m0 + 20m1])) | f1]
7,
+ |ro| [niro — par| [mymo — pyril | fol (446)
Now, we define .
7'3 522 +2 (ZQ?, + \/éfx) + \/5 (5 + 4) t.. 447)
Applying (353). (363). (408), (35€). (376). (11). E12). (355). and @03) to [@46) yields
0 _ _
Aol T b (223 + \/§tx) +V2 (E n 4) t. = 7. (448)
81‘j70 2 2
Applying the triangle inequality to 253) gives
6./422 z3
ar| S| |t (181l Injro — pyril + (loz| + 2 |r2| 1o + nyril) [kiro — wirt| + |r2] (|&ipy — wing| + |—2or0 + 21m1])) | f1]
7
+ |re| [riro — wirt| [njro — pyral | fol - (449)
By letting
T _ 7 _
=225 +2 (223 n \/itx) V2 (5 + 4) £, (450)
we see that applying (53, (63, @T8). (58), (79, @TD. @12, (53, and @ to () yields
0 _ _
Az < E234-2 (223+\/§tx) +\/§(E+4) tr = Ta. 451)
8xj70 2 2
Now, applying the triangle inequality and (331), (363), (376), and (333) to (263) and gives
0Aas3 8.424
Z 11 452
’(?l'j 0 6% ol — 2 + ( )
Applying the derivations for @51) and @43 to ( and (292) yields
0
At | <7, (453)
3%0
0
‘ Asz| 7 (454)
6(Ej70

Finally, from (300), (307), @52), and (263), we have

8./433 8./424 m
— |- <T 455
0z ’ Ozjo| ~ 2 +h (455)
OA34 OAz | _
—+1 456
‘8%-,0 ax]() - 2 + ( )
Finally, substituting (@43)-(@43), (@48), and @—@ into (336) yields
A |7 2
’ e} <2(T3+T4)+4(3+1) +2(m+4)%, (457)
SCJ 0 2
which holds for all (¢,j) € £. To address aA” o e apply the derivations for @43)-(@43), @48), and @31)-@56)
o €2, (). €37, @), €71, €39, 253, @93, GO, and (T8) to compute
‘8“4“ : ‘6“412 <4, (458)
896]-71 8£Uj 1
A3 0A14
=0, 459
‘ 837j71 ‘ 8.Z‘J 1 ( )




0A21| [0Asz _
- = < 460
‘81‘j71 ) ‘ amj,l = Ty, ( )
0Ax| |0A31] _ _
/2 =< 461
‘3:17]‘,1 ) ’ 3:Cj,1 = T3, ( )
d
an 8A23 8A24 8A33 8A34 < z + 1 (462)
83:]»,1 ’ 6l‘j71 ’ 8$j71 ’ 83:]-,1 -2 '
Substituting @38)-(@62) into (336) yields
6./41']' 2 92 ) i 2 2
7 < =
‘axj,l F_2(T3+T4)+4(2+1) +2(r+4)?, (463)

which holds for all (i, j) € €. We now address || 5242
observe that

- From 223), @236). @237). (238). (265). @74). (B02). and (309), we

0A 0A;2 0A;3 0A14 0 A3 0 A4 OAzz|  |0As4
_ _ _ _ _ _ —0. (464)
anQ 8Ij,2 6Ij72 8arj,2 3xj,2 anQ 3:17]‘72 695] 2
Furthermore, applying the triangle inequality and (351), (354), (370), (376), and (333) to (236), 233), 284), and (294) gives
) ) 0 )
Aay 7 Aso 7 Asi | |0As2 <7 (465)
0xjo|’|0xj2| |0z | |Oxjo 2
Substituting @#64)-([@63) into (336) yields ,
0A;; T 2
— | <4(=-+1) . 466
81‘]’72 P - (2 * ) ( )
which holds for all (i, j) € £. We now address Hgi - From @23). @39). @37). €38). 53). @TH). G0, and GWI). it
holds that
0A:3 0A1 0A:2 0A14 0A3 0 A4 O0As3| |0As4
_ _ _ - - = —0. (467)
8.’L‘j73 axj,g axj)g 8l‘j73 al‘j,3 8xj)3 8:53-72 81:] 2
Moreover, applying the triangle inequality and (331), (354), (370), (376). and (333) to (236), (236), (283), and (293) yields
8A21 G.Azg 8A31 8A32 ™
< —+1 468
63:]»,3 ’ ‘63?]‘73 ’ ‘81‘3‘,3 83:]-,3 -2 th (468)
and substituting @67)-@68) into (336) yields
6Aij 2 s 2
— | <4(=-+1 469
H (?xj’g P (2 + ) ’ ( )

which concludes our derivation of tensor bounds involving A;;.

H e

for these bounds are identical to those in Appendlx - so we omit them here and summarize our findings. First, following
from the derivations of #30) and (@33)), we have

C. B;; Tensor Bounds

for k =0...3. Due to symmetries between A4;; and B;;, the derivations

We now derive bounds for ’

681']' 2 _9 _92 i 2 Y 2
9B | <9 (f) (f 1) 4, 470
'axm = (7f+73) + 5) Tlg+t) + (470)
88@' 2 _9 _92 Y 2 s 2
Gl <o (5+1) +(5+2) +4 471
0xj1|lp (7 +7) + 2 * + 2 + + “471)
Next, following from the derivations of @38) and @#4T), we have
' 0Bi; 0By |” <y, (472)
8:cj,2 F ax]’$3 F




Furthermore, following from the derivations of @#57) and {#63), we have

88” 8[3”- 2 _9 _92 ™ 2 2
<2 1(Z+1) +2(r+ 4 473
Haxw 2wl s (75 +71) +4(5+1) +2(r+4) (473)
Finally, following from the derivations of @66) and (469), we have
0B;, 2B, ||” 2
H ; ’ L <a(Z4a) (474)
81‘,’72 Ia aCCZ‘,g Ia 2

which concludes our derivation of bounds for the Frobenius norms of Euclidean Hessian tensors.

D. Euclidean Hessian Bounds

We now utilize the bounds derived in Appendices K-B andto derive bounds for |[hy;|| 7, [[hyjl| 2 [y s
and ||h;;|| ., which appear in the Euclidean Hessian definition in . First, letting x; = [2,0, Z;1, Zi,2, x;3]" we apply the
definitions of Cy;-C;; given in Appendix [F-A] to compute

T -

0A;; T T T

_ j DA, DA, DA DA

Cii = ( 0% hjeij = oz, f,) Qijeq; 2] Qijeq; ) Qi e L) Qijei; |- (475)
T &

( (
T
= () o= | () e | (2
T
Cji = (%ij) Qijelj = |: ( (

9B\ " 0B\ | 0B,
ij = (axj ) Qijeij = |: (6%_7]0) Qijeij (895]‘,Jl
Next, taking the Frobenius norm of h;; from (T14), applying the triangle inequality, then simplifying, yields
2
Iiillp = [|Cis + AGQu5As5 || < NCiillp + |45 Q%5A55 || < Ciill o + 1925 1 15 1 (479)

We now take the Frobeinus norm of @73) and apply the triangle and Cauchy-Schwarz inequalities to obtain

OBU) Qe Qijei; | @7

(52) (52)
Qi (gv“w)TQijeij (gA'if)TQijeij . (@76
(5:2) (5:)
)

T T
Qij e ( 8813" ) Q” € . (478)

2 o4\ SNNVENTPYRIAL
leale < (3] (522 ) e S(Z e F) 19215 Nl (430
1=0 ’ P 1=0 ’
Substituting @80) into (@79) and simplifying yields
1
3 2\ 2
8AZ~ 2
||hms< 2 F) (el + 145112 125 - s1)
1=0 ’

Furthermore, applying the derivation of @8T) to ||hy;| -, [[hyi|| . and ||hy;| . using @76)-@T8) yields

\
0A;;

hj|l . < -
[ ]||F(Z 51

=0

3
0B;;
I[hyil| » < (Z aTJl
1=0 b

> (lleislly + 1151 2 1Bisll ) 1€ 1 »

F

2 2
) (llesslly + A1 R 1Bl =) 19251 2
F

* 0By 1P ¢ >
hjjnFs(E: o ) (el + 1B 13.) 1211 (482)
1=0 x]:l F
Now, from (@30). @35). (38). @1). and @TO)-ET2). we have
3 2 3 2
6Aij an i) ) T 2 ™ 2 m 2
<4 - 2(=+1 —+2 16 483
;85&‘,1 F’; gl p (71+T2)+<2)+ (2+>+(2+)+ ’ (483)




with 71 from @20) and 7> from @23). Similarly, @57), @63), @66), @73) and @74) give

3

2 3

>3

F =0

2

.. 2
OA;; <4(75 +77) +16 (E + 1) +4(n+4)°, (484)
F

a.’tj’l

861‘]‘
0x;

2

with 75 from (@47) and 74 from @30). To aid in formulating bounds for @8T1)-(@82), we define

and

=~ A 2 2 2 ™ 2 T 2 % —
hii=(4(7'1+7'2)+(2) +2(§+1> +(§+2> +16> (e+J7% (485)
2 3
h;; £ (4 (75 +71) + 16 (g +1) +4(7r+4)2> (e+J7%), (486)
with € from and J from (390). Finally, applying (379), (391), (396), ([@83) and ([@34) to [@S81)-ER2) yields
il s sl < s 1|51 (487)
0l [Pl 2 < g (1€ 5, (488)

with h;; from @R3) and h;; from @86), which hold for all X € K, where K C M® is compact. This concludes the derivation
of bounds for the Euclidean Hessian.
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