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Abstract

We consider a random connection model (RCM) on a general space driven by a Poisson process whose
intensity measure is scaled by a parameter t ≥ 0. We say that the infinite clusters are deletion stable
if the removal of a Poisson point cannot split a cluster in two or more infinite clusters. We prove
that this stability together with a natural irreducibility assumption implies uniqueness of the infinite
cluster. Conversely, if the infinite cluster is unique then this stability property holds. Several criteria
for irreducibility will be established. We also study the analytic properties of expectations of functions
of clusters as a function of t. In particular we show that the position dependent cluster density is
differentiable. A significant part of this paper is devoted to the important case of a stationary marked
RCM (in Euclidean space), containing the Boolean model with general compact grains and the so-called
weighted RCM as special cases. In this case we establish differentiability and a convexity property of
the cluster density κ(t). These properties are crucial for our proof of deletion stability of the infinite
clusters but are also of interest in their own right. It then follows that an irreducible stationary marked
RCM can have at most one infinite cluster. This extends and unifies several results in the literature.

Keywords: Random connection model, Poisson process, percolation, Margulis–Russo formula, cluster
density, uniqueness of infinite cluster.
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1 Introduction

Let X be a complete separable metric space, denote its Borel-σ-field by X , and let λ be a locally finite
and diffuse measure on X. Let t ∈ R+ := [0,∞) be an intensity parameter and let η be a Poisson process
on X with intensity measure tλ, defined over a probability space (Ω,F ,P). We often write Pt instead of
P and Et for the associated expectation operator.

Let ϕ : X2 → [0, 1] be a measurable and symmetric function satisfying

Dϕ(x) :=

∫

ϕ(x, y)λ(dy) <∞, λ-a.e. x ∈ X. (1.1)

We refer to ϕ as connection function. The random connection model (RCM) is the random graph ξ whose
vertices are the points of η and where a pair of distinct points x, y ∈ η forms an edge with probability
ϕ(x, y), independently for different pairs. In an Euclidean setting the RCM was introduced in [34]; see [31]
for a textbook treatment. It can be defined on point processes other than Poisson. The general Poisson
version was studied in [24]. The RCM is a fundamental and versatile example of a spatial random graph.
Of particular interest is the stationary marked case. In this case we have X = Rd × M for some mark
space M and λ is proportional to the product of Lebesgue measure and a given mark distribution. Then
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the RCM becomes stationary and ergodic under shifts in the spatial coordinate. This model contains the
Boolean model (see [25, 38]) with general compact grains and the so-called weighted RCM as special cases
and keeps attracting a lot of attention; see e.g. [5, 10, 12, 18, 20, 27, 35].

Following common terminology of percolation theory we refer to a component of ξ as cluster. The
RCM ξ percolates, if it has an infinite cluster, that is a component with infinitely many vertices. We say
that the infinite clusters of ξ are deletion stable if the removal of a point cannot split a cluster in two or
more infinite clusters. If the infinite cluster is unique, then Theorem 6.4 shows deletion stability. In fact,
ξ is then almost surely even 2-indivisible in the sense of [32]. Our first main result (Theorem 6.1) says that
deletion stability together with irreducibility implies (almost sure) uniqueness of the infinite cluster. We
prove this by a peculiar addition and removal procedure, which seems to be new. Our method crucially
relies on the properties of the underlying Poisson process. Irreducibility is a very natural assumption for
uniqueness (see Remark 5.8) and will be discussed in Section 5. Theorem 11.1 shows that the infinite
clusters of the stationary marked RCM are deletion stable. This is the second main result of this paper.
Our proof transfers some of the beautiful ideas from the seminal paper [1] by Aizenman, Kesten and
Newman to the continuum. To this end we significantly extend and complement the arguments in [23],
where the methods from [1] were used to treat the Gilbert graph with deterministic balls. Taken together,
Theorems 6.1 and 11.1 yield uniqueness of the infinite cluster of an irreducible stationary marked RCM; see
Theorem 12.1. This extends and unifies several results in the literature. The stationary (unmarked) RCM
was treated in [31] for an isotropic and norm-decreasing connection function; see also [4]. A special case of
the marked RCM was treated in [21]. The uniqueness of the infinite cluster of the spherical Boolean model
was proved in [30, 31]. As a consequence of Theorem 6.4 we also obtain that an irreducible stationary
marked RCM is 2-indivisible.

We also establish several analytic properties of cluster expectations, first in the general and then in the
stationary marked case. Since clusters are not locally determined, the proof of these results requires some
efforts. In particular we show that the position dependent cluster density (given by (8.6)) is, as a function
of t, continuously differentiable; see Theorem 8.8. In the stationary marked case this is true for the cluster
density κ(t), defined by (4.6); see Theorem 10.1. Our proofs partially follow [6], where the Boolean model
with deterministic balls was considered. We also prove that tκ(t)+dϕt

2/2 is a convex function of t, where
dϕ is the expected degree of a typical vertex, given by (4.2). This remarkable property was established
in [1, 13] for discrete percolation models and in [23] for the Boolean model with deterministic balls. This
convexity is crucial for proving deletion stability of the infinite clusters in the stationary marked case and
its proof heavily depends on the (amenability) properties of Euclidean space; see Remark 11.4.

With the exception of [23], all previous uniqueness proofs in continuum percolation seem to use the
approach in [9]; see also [15]. It is often argued that this approach is more elegant than the one in [1].
However, our paper shows that the methods from [1] can be conveniently extended to the continuum, at
least in the case of a Poisson driven RCM. Moreover, this approach provides a lot of additional information
on the clusters, which are valid for all values of the intensity parameter t. And last but not least our
general uniqueness theorem applies to a general state space X, without any structural assumptions.

The paper is organized as follows. In Section 2 we give the formal definition of the RCM ξ, while
Section 3 presents the RCM version of the multivariate Mecke equation and the Margulis–Russo formula.
In Section 4 we discuss the stationary marked RCM, an important special case of the general RCM.
In Section 5 we define a RCM to be irreducible if, roughly speaking, every pair of Poisson points has
a positive probability of being in the same cluster. Without such a property one cannot expect the
infinite cluster (if it exists) to be unique. For a stationary marked RCM with an atom in the mark space,
Theorem 5.6 characterises irreducibility in terms of the symmetric function

∫

ϕ((0, p), (x, q)) dx, which is
the expected number of neighbours of (0, p) with mark q. In the general case we provide with our Theorems
5.9 and 5.13 sufficient conditions for irreducibility, which, together with Theorem 5.6, seem to cover all
interesting examples. In Section 6 we prove that deletion stability of infinite clusters and irreducibility
together imply uniqueness of the infinite cluster; see Theorem 6.1. Section 7 presents a spatial Markov
property. In Section 8 we establish differentiability of certain cluster expectation, while Section 9 rewrites
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the derivatives as Margulis–Russo type formulas. In Section 10 we show that the position dependent
cluster density is continuously differentiable. In Section 11 we prove that the infinite clusters of the
stationary marked RCM are deletion stable; see Theorem 11.1. The final Section 12 provides several
examples of irreducible stationary marked RCMs.

For the reader’s convenience, we list below our main results separately for the general and the sta-
tionary marked cases.

Main results for the general RCM:

• Theorem 6.1 shows that an irreducible RCM with deletion stable infinite clusters can have at most
one infinite cluster, while Theorem 6.4 shows that deletion stability is necessary for uniqueness.

• Theorem 8.8 shows continuous differentiability of certain cluster expectation, while Theorem 9.4
and Remark 9.5 rewrite the derivative as a Margulis-Russo type formula.

• Theorem 10.1 shows continuous differentiability of the position dependent cluster density, while
Theorem 10.7 shows that this remains true after some additional integration.

Main results for the stationary marked RCM:

• Theorem 5.6 characterises irreducibility in the case of an atom in the mark space, while Theorems
5.9 and 5.13 provide sufficient conditions for a general mark space.

• Theorem 11.1 shows that the infinite clusters of a stationary marked RCM are deletion stable.

• Theorem 11.7 shows that the cluster density κ(t) is continuously differentiable and that tκ(t)+dϕt
2/2

is convex.

2 Formal definition of the RCM

It is convenient to model a RCM as a suitable point process. Let N denote the space of all simple locally
finite counting measures on X, equipped with the standard σ-field, see e.g. [25]. A measure ν ∈ N is
identified with its support {x ∈ X : ν({x}) = 1} and describes the set of vertices of a (deterministic)
graph. If ν({x}) = 1 we write x ∈ ν. Using the Dirac measure δx at point x ∈ X, any ν ∈ N can be
written as a finite or infinite sum ν = δx1 + δx2 + · · · , where the xi are pairwise distinct and do not
accumulate in bounded sets. The space of (undirected) graphs with vertices from X (and no loops) is
described by the set G of all counting measures µ on X × N with the following properties. First we
assume that the measure V (µ) := µ(· ×N) is locally finite and simple, that is, an element of N. Hence,
if x ∈ V (µ) (that is µ({x} ×N) = 1), then there is a unique ψx ∈ N such that (x, ψx) ∈ µ. We assume
that x /∈ ψx. Finally, if x ∈ V (µ) and y ∈ ψx then we assume that (y, ψy) ∈ µ and x ∈ ψy. Also G is
equipped with the standard σ-field. There is an edge between x, y ∈ V (µ) if y ∈ ψx (and hence x ∈ ψy).
If ψx = 0, then x is isolated.

We write |µ| := µ(X ×N) for the cardinality of µ ∈ G and similarly for ν ∈ N. Hence |µ| = |V (µ)|.
For x, y ∈ V (µ) we write x ∼ y (in µ) if there is an edge between x and y and x ↔ y (in µ) if there is a
path in µ leading from x to y. For A ⊂ X we write x ∼ A (in µ) if there exists y ∈ A ∩ V (µ) such that
x ∼ y.

Let µ, µ′ ∈ G. Then µ is a subgraph of µ′ if V (µ) ≤ V (µ′) (as measures) and if (x, ψ) ∈ µ and
(x, ψ′) ∈ µ′ together imply that ψ ≤ ψ′. Note that this is not the same as µ ≤ µ′.

Let χ be a simple point process on X, that is a random element of N. The reader should think of a
Poisson process possibly augmented by additional (deterministic) points. By [25, Proposition 6.2] there
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exist random elements X1,X2, . . . of X such that

χ =

|χ|
∑

n=1

δXn , (2.1)

where Xm 6= Xn whenever m 6= n and m,n ≤ |χ|. Let (Zm,n)m,n∈N be a double sequence of random
elements uniformly distributed on [0, 1] such that Zm,n = Zn,m for all m,n ∈ N and such that the Zm,n,
m < n, are independent. Then the RCM (based on χ) is the point process

ξ :=

|χ|
∑

m=1

δ(Xm,Ψm), (2.2)

where

Ψm :=

|χ|
∑

n=1

1{n 6= m,Zm,n ≤ ϕ(Xm,Xn)}δXn .

In this notation we suppress the dependence on the Zm,n. While the definition of ξ depends on the
ordering of the points of χ, its distribution does not.

We now introduce some notation used throughout the paper. For µ, µ′ ∈ G we often interpret µ+ µ′

as the measure in G with the same support as µ + µ′. A similar convention applies to ν, ν ′ ∈ N. Let
µ ∈ G. For B ∈ X we write µ(B) := µ(B ×N). More generally, given a measurable function f : X → R

we write
∫

f(x)µ(dx) :=
∫

f(x)µ(dx ×N). Similarly, given x ∈ X, we write x ∈ µ instead of x ∈ V (µ)
(=µ(·×N)). In the same spirit we write g(µ) := g(V (µ)), whenever g is a mapping on N. These (slightly
abusing) conventions lighten the notation and should not cause any confusion. For B ∈ X we denote by
µ[B] ∈ G the restriction of µ to B, that is the graph with vertex set V (µ) ∩ B which keeps only those
edges from µ with both end points from B. In the same way we use the notation µ[ν] for ν ∈ N. Similarly
for a measure ν on X (for instance for ν ∈ N) we denote by νB := ν(B ∩ ·) the restriction of ν to a set
B ∈ X . Assume now that v ∈ V (µ). For n ∈ N0 let Cvn(µ) ∈ G denote the graph restricted to the set
of vertices x ∈ V (µ) with dµ(v, x) = n, where dµ denotes distance within the graph µ. Note that Cv0 (µ)
is just the isolated vertex v. Slightly abusing our notation we write Cv0 (µ) = δv. For v /∈ V (µ) we set
Cv(µ) := 0, interpreted as an empty graph (a graph with no vertices). The cluster Cv(µ) of v in µ is the
graph µ restricted to

∞
∑

n=0

V (Cvn(µ)),

while Cv≤n(µ), n ∈ N0, is the graph µ restricted to V (Cv0 (µ)) + · · ·+ V (Cvn(µ)). For later purposes it will
be convenient to define Cv≤−1(µ) = Cv−1(µ) := 0 as the zero measure. For µ ∈ G and x ∈ X we denote by
µ− δx := µ[V (µ)− δx] the graph resulting from µ by removing the point x. If x /∈ V (µ) then µ− δx = µ.

3 Basic properties of the RCM

Let ξ be a RCM based on a Poisson process η on X with diffuse intensity measure λ. Our first crucial tool
is a version of the Mecke equation (see [25, Chapter 4]) for ξ. Given n ∈ N and x1, . . . , xn ∈ X we denote
ηx1,...,xn := η + δx1 + · · ·+ δxn (removing possible multiplicities) and let ξx1,...,xn denote a RCM based on
ηx1,...,xn . It is useful to construct ξx1,...,xn in a specific way as follows. We connect x1 with the points in η
using independent connection decisions which are independent of ξ. We then proceed inductively finally
connecting xn to η + δx1 + · · · + δxn−1

. For n ∈ N and a measurable function f : Xn × G → [0,∞] the
Mecke equation for ξ states that

E

∫

f(x1, . . . , xn, ξ) η
(n)(d(x1, . . . , xn)) = E

∫

f(x1, . . . , xn, ξ
x1,...,xn)λn(d(x1, . . . , xn)), (3.1)
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where integration with respect to the factorial measure η(n) of η means summation over all n-tuples of
pairwise distinct points from η. A convenient way to prove this and related formulas is to introduce a
probability kernel Γ from N to G, satisfying

P((η, ξ) ∈ ·) = E

∫

1{(η, µ) ∈ ·}Γ(η, dµ). (3.2)

The kernel Γ is just a regular version of the conditional distribution of ξ given η and can be defined
explicitly; see Section 2. A crucial property of this kernel is

EΓ(ηx1,...,xn, ·) = P(ξx1,...,xn ∈ ·), λn-a.e. (x1, . . . , xn) ∈ Xn. (3.3)

It follows from [25, Theorem 4.4] that the left-hand side of (3.1) is given by

E

∫∫

f(x1, . . . , xn, µ) Γ(η
x1,...,xn, dµ)λn(d(x1, . . . , xn)).

Therefore (3.1) follows from (3.3).
Given v ∈ X we sometimes use (3.1) in the form

E

∫

f(x1, . . . , xn, ξ
v) η(n)(d(x1, . . . , xn)) = E

∫

f(x1, . . . , xn, ξ
v,x1,...,xn)λn(d(x1, . . . , xn)). (3.4)

This can be derived from (3.1) as follows. We can write ξv = h(ξ, v, U), where U is a random element
of [0, 1]∞ with independent and uniformly distributed components, independent of ξ; see the proof of
Lemma 6.2 for more detail. It remains to note that h(ξx1,...,xn , v, U) has the same distribution as ξv,x1,...,xn ,
provided that v, x1, . . . , xn are pairwise distinct.

To state another useful version of (3.1) we recall the notation µ − δx = µ[V (µ) − δx] for µ ∈ G and
x ∈ X. Given n ∈ N and x1, . . . , xn ∈ X we define µ − δx1 − · · · − δxn inductively. The kernel Γ has the
property

∫

1{µ − δx1 − · · · − δxn ∈ ·}Γ(ν, dµ) = Γ(ν − δx1 − · · · − δxn , ·), ν ∈ N.

Therefore we obtain from [25, Theorem 4.5] for each measurable f : Xn ×G → [0,∞] that

E

∫

f(x1, . . . , xn, ξ − δx1 − · · · − δxn) η
(n)(d(x1, . . . , xn)) = E

∫

f(x1, . . . , xn, ξ)λ
n(d(x1, . . . , xn)). (3.5)

Given v ∈ X we also have

E

∫

f(x, ξv − δx) η(dx) = E

∫

f(x, ξv)λ(dx). (3.6)

This follows similarly as (3.4). Indeed, given η and x ∈ η the random graph h(ξ, v, U) − δx has the same
distribution as h(ξ − δx, v, U), provided that v 6= x.

We define ϕ̄ := 1− ϕ and for x ∈ X, ν ∈ N

ϕ̄(ν, x) :=
∏

y∈ν

ϕ̄(x, y), ϕ(ν, x) := 1− ϕ̄(ν, x), ϕλ(ν) :=

∫

ϕ(ν, x)λ(dx). (3.7)

We recall our general convention ϕ(µ, x) := ϕ(V (µ), x) and ϕλ(µ) := ϕλ(V (µ)) for µ ∈ G. Throughout
we often abbreviate Cv := Cv(ξv), Cvn := Cvn(ξ

v) and Cv≤n := Cv≤n(ξ
v). Moreover we write Cv! := Cv− δv.

We shall need the following consequence of (3.1).
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Lemma 3.1. Let v ∈ X and h : G → [0,∞) be measurable. Then

E

∫

h(ξv − δx)C
v!(dx) = Eh(ξv)ϕλ(C

v). (3.8)

Proof. Let I denote the left-hand side of the asserted formula. Then

I = E

∫

h(ξv − δx)1{x ∈ Cv(ξv)} η(dx) =
∫

Eh(ξv,x − δx)1{x ∈ Cv(ξv,x)}λ(dx),

where we have used the Mecke equation (3.4) to obtain the second identity. By definition we have that
ξv,x − δx = ξv for each x ∈ X. Hence we obtain that

I =

∫

Eh(ξv)1{x ∈ Cv(ξv,x)}λ(dx) =
∫

Eh(ξv)P(x ∈ Cv(ξv,x) | ξv)λ(dx).

By definition of ξv,x we have P(x ∈ Cv(ξv,x) | ξv) = ϕ(x,Cv), concluding the proof.

Next we turn to the Margulis–Russo formula. Let λ1 and λ2 be two measures on X, where λ1 is locally
finite and λ2 is finite. Given t ≥ 0 we consider a RCM driven by a Poisson process η with intensity
measure λ1 + tλ2. The associated expectation operator is denoted by Et. Let f : G → [−∞,∞] be a
measurable function and assume that Et0 |f(ξ)| < ∞ for some t0 > 0. From [25, Exercise 3.8] and (3.2)
we then obtain that Et|f(ξ)| <∞ for all t ≤ t0. We assert that

d

dt
Etf(ξ) =

∫

Et[f(ξ
x)− f(ξ)]λ2(dx), t ∈ [0, t0). (3.9)

Using the kernel Γ, this can be seen as follows. From [25, Theorem 19.3] we obtain that

d

dt
Etf(ξ) =

∫

Et[f̃(η
x)− f̃(η)]λ2(dx), t ∈ [0, t0),

where f̃(ν) :=
∫

f(µ) Γ(ν, dµ), ν ∈ N. Note that f̃(ξ) is Pt-a.s. well-defined.
Take t ∈ [0, t0). Theorem 19.3 in [25] shows that

∫

Et[|f̃(ηx) − f̃(η)|]λ2(dx) < ∞. Furthermore we
have

∫

Et[|f̃(η)|] λ2(dx) = λ2(X)Et[|f̃(η)|] ≤ λ2(X)Et[|f(ξ)|] <∞,

where we have used the triangle inequality and (3.2). Therefore we also have
∫

Et[|f̃(ηx)|]λ2(dx) < ∞.
It follows that

d

dt
Etf(ξ) =

∫

(

Etf̃(η
x)− Etf̃(η)

)

λ2(dx) =

∫

(

Etf(ξ
x)− Etf(ξ)

)

λ2(dx),

where we have used (3.3). Since the above right-hand side is finite we have |Etf(ξx)| <∞ and hence also
Et|f(ξx)| <∞ for λ2-a.e. x. This implies (3.9).

4 The stationary marked RCM

In this section we introduce an important special case of the general RCM. The setting is that of [10, 12].
Special cases were studied in [11, 17, 18].

Let M be a complete separable metric space equipped with a probability measure Q. This is our mark
space, while Q is said to be the mark distribution. In this section we consider the space X = Rd × M

equipped with the product of the Borel σ-field B(Rd) on Rd and the Borel σ-field on M. We assume that
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λ = tλd⊗Q, where t ∈ R+ and λd denotes Lebesgue measure on Rd. If (x, p) ∈ X then we call x location
of (x, p) and p the mark of x. Instead of N we consider the (smaller set) N(X) of all counting measures
χ on X such that χ(· × M) is locally finite (w.r.t. the Euclidean metric) and simple. The symmetric
connection function ϕ : Rd ×M → [0, 1] is assumed to satisfy

ϕ((x, p), (y, q)) = ϕ((0, p), (y − x, q)). (4.1)

This allows us to write ϕ(x, p, q) := ϕ((0, p), (x, q)), where 0 denotes the origin in Rd. We also assume
that

dϕ :=

∫∫

ϕ(x, p, q) dxQ2(d(p, q)) <∞, (4.2)

referring to Remark 4.2 for some comments. Let t > 0 and let η be a Poisson process on X with intensity
measure tλ. We can and will assume that η is a random element of N(X). We consider a RCM ξ based
on η and connection function ϕ.

The RCM ξ is stationary in the sense that Txξ
d
= ξ, x ∈ Rd, where for µ ∈ G, the measure Txµ is (as

usual) defined by

Txµ :=

∫

1{(y − x, q, ν) ∈ ·}µ(d(y, q, ν)).

To see this, it is convenient to define ξ in a slightly different way, without changing its distribution. As
at (2.1) we can write

η =
∞
∑

m=1

δ(Xm,Qm), (4.3)

where X1,X, . . . are pairwise distinct random elements of Rd and Q1, Q2, . . . are random elements of M.
Let Z ′

m,n, m,n ∈ N, be independent random variables uniformly distributed on [0, 1] and set Z ′
m :=

(Z ′
m,n)n∈N, m ∈ N. By the marking theorem (see [25, Theorem 5.6]),

η∗ :=
∞
∑

m=1

δ(Xm,Qm,Z′
m) (4.4)

is again a Poisson process. We then connect (Xm, Qm) with (Xn, Qn) if Xm is lexicographically smaller
than Xn and Z ′

m,τ ≤ ϕ(Xn − Xm, Qm, Qn), where the N-valued random variable τ is determined by
the fact that Xn is the τ -th nearest neighbour of Xm in the set {Xk : k 6= m}, where we can use the
lexicographic order to break ties. Then we have ξ = F (η∗) for a well-defined measurable mapping F .
Since the nearest neighbour relation is translation invariant it follows from (4.1) that F can be assumed

to satisfy Txξ = F (Txη
∗) for each x ∈ Rd. Since Txη

∗ d
= η∗ it follows that ξ is stationary. The same

argument combined with [25, Exercise 10.1] shows that ξ is ergodic, i.e. we have P(ξ ∈ A) ∈ {0, 1} for
each translation invariant measurable A ⊂ G. If M contains only one element, we identify X with Rd. In
this case ξ is said to be a stationary RCM.

The following consequence of the Mecke equation will be often used to treat cluster expectations.

Lemma 4.1. Let B ∈ B(Rd) and f : N → R+. Then

Et

∫

1{x ∈ B}f(|C(x,p)(ξ)|) η(d(x, p)) = tλd(B)Et

∫

f(|C(0,p)|)Q(dp). (4.5)

Proof. By the Mecke equation (3.1) the left-hand side of (4.5) equals

tEt

∫∫

1{x ∈ B}f(|C(x,p)(ξ(x,p))|) dxQ(dp) = tEt

∫∫

1{x ∈ B}f(|C(0,p)(Txξ
(x,p))|) dxQ(dp),

where we have used that |C(x,p)(µ)| = |C(0,p)(Txµ)| for all µ ∈ G. It follows from stationarity of ξ and

definition of ξ(x,p), that Txξ
(x,p) d

= ξ(0,p) for λd ⊗Q-a.e. (x, p) ∈ Rd ×M. Therefore the result follows.
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Let Q0 be a random element of M with distribution Q which is independent of η∗ given by (4.4). In
accordance with Palm theory we refer to C(0,Q0)(ξ(0,Q0)) as cluster of the typical vertex (of ξ).

Remark 4.2. Let p ∈ M. Then the degree Dp of (0, p) (the origin marked with p) in ξ(0,p) has a
Poisson distribution with parameter t

∫

ϕ(x, p, q) dxQ(dq). Our integrability assumption (4.2) means
that

∫

EDpQ(dp) < ∞. This means that the expected degree of the typical vertex is finite. Hence (4.2)
excludes Pareto type degree distributions but is still much weaker than the integrability assumption made
in [10].

The function

κ(t) :=

∫

Et|C(0,p)|−1 Q(dp) = Et|C(0,Q0)|−1, t ∈ R+, (4.6)

plays a crucial role in Section 11. To interpret it, we introduce a point process ηc ≤ η(· ×M) modeling
finite clusters as follows. Let (x, p) ∈ η. Then x ∈ ηc if |C(x,p)(ξ)| < ∞ and x is the lexicographically
smallest spatial coordinate of the points in C(x,p)(ξ). Since ξ is stationary, it is easy to see that ηc is a
stationary point process. The following result shows that tκ(t) is the intensity of ηc, that is the density of
finite clusters. With a slight abuse of language we refer to κ(t) as cluster density. In the unmarked case
this function is also called free energy; see [1, 6, 13].

Lemma 4.3. For each t ∈ R+ we have that tκ(t) = Etηc([0, 1]
d).

Proof. The result follows from [27, Proposition 3.1] upon taking there η as the projection of the point
process {(x, p) ∈ η : |C(x,p)(ξ)| <∞} onto Rd and ξ := ηc. A direct proof can start with

tκ(t) = Et

∫

1{x ∈ [0, 1]d}|C(x,p)(ξ)|−1 η(d(x, p)), (4.7)

a consequence of (4.5). The right-hand side can be written as

Et

∫∫

1{x ∈ [0, 1]d}|C(x,p)(ξ)|−11{τ(x, p) = y} η(d(x, p)) ηc(dy),

where τ(x, p) is the lexicographic minimum of the spatial coordinates of C(x,p)(ξ). The key step is then
the application of the refined Campbell theorem for ηc.

The cluster density can also be obtained as an ergodic limit:

Proposition 4.4. Let Bn ∈ B(Rd), n ∈ N, be an increasing sequence of compact convex sets whose
inradius diverges to ∞. Then

lim
n→∞

(λd(Bn))
−1

∫

1{x ∈ Bn}|C(x,p)(ξ)|−1 η(d(x, p)) = tκ(t), Pt-a.s.

Proof. For each µ ∈ G

Mµ :=

∫

1{x ∈ ·}|C(x,p)(µ)|−1 µ(d(x, p))

is a locally finite measure on Rd. For x, y ∈ Rd and µ ∈ G we have C(x,p)(Tyµ) = TyC
(x+y,p)(µ). Therefore,

we obtain for B ∈ B(Rd) and y ∈ Rd

MTyµ(B) :=

∫

1{x ∈ B}|C(x+y,p)(µ)|−1 Tyµ(d(x, p))

=

∫

1{x− y ∈ B}|C(x,p)(µ)|−1 µ(d(x, p)).

This means that MTyµ = TyMµ. Therefore Mξ is a stationary and ergodic random measure. By (4.7) it
has intensity tκ(t). Hence the result follows from [33, Satz 3]; see also [22, Theorem 30.10].
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We continue with a basic fact from percolation theory. Define

θ(t) := Pt
(∣

∣C(0,Q0)(ξ(0,Q0))
∣

∣ = ∞
)

=

∫

Pt
(

|C(0,p)| = ∞
)

Q(dp), t ≥ 0, (4.8)

as the probability that the cluster of a typical vertex has infinite size. Let C∞ denote the set of all µ ∈ G

such that µ has an infinite cluster.

Proposition 4.5. Let t > 0. Then θ(t) > 0 iff Pt(ξ ∈ C∞) = 1.

Proof. Let B ∈ B(Rd) be a Borel set with λd(B) ∈ (0,∞). By (4.5),

θ(t) = (tλd(B))−1Et

∫

1{x ∈ B}1{|C(x,p)(ξ)| = ∞} η(d(x, p)).

Hence, if θ(t) > 0, then the probability that there is some (x, p) ∈ η with |C(x,p)(ξ)| = ∞ must be positive.
Since ξ is ergodic and C∞ is translation invariant, we obtain Pt(ξ ∈ C∞) = 1. If, on the other hand,
θ(t) = 0, then the probability that |C(x,p)(ξ)| = ∞ for some (x, p) ∈ η with x ∈ B is zero. Letting B ↑ Rd

we obtain that Pt(ξ ∈ C∞) = 0.

The critical intensity (percolation threshold) is defined by

tc := inf{t > 0 : θ(t) > 0}. (4.9)

If t < tc then Pt(ξ ∈ C∞) = 0 and if t > tc then Pt(ξ ∈ C∞) = 1. Under a natural irreducibility
assumption our Theorem 12.1 will show that ξ can have at most one infinite cluster.

We finish this section with some examples.

Example 4.6. In the unmarked case the connection function ϕ is just a function on Rd. Under the
minimal assumption dϕ ∈ (0,∞) it was shown in [34] that tc ∈ (0,∞).

Example 4.7. Assume that M = R+ and ϕ(x, p, q) = 1{‖x‖ ≤ p+ q}, where ‖x‖ denotes the Euclidean
norm of x ∈ Rd. The RCM ξ is then said to be the Gilbert graph with radius distribution Q; see e.g. [25,
Chapter 16] for more detail. The integrability assumption (4.2) is then equivalent with

∫

rdQ(dr) < ∞,
which is the minimal assumption for having a reasonable model. Under the assumption Q{0} < 1 it was
proved in [16, 19] that tc ∈ (0,∞).

Example 4.8. Suppose that M equals the space Cd of all non-empty compact subsets of Rd, equipped
with the Hausdorff metric cf. [25, 38]. Let V : Cd ∪ {∅} → [0,∞] be measurable and translation invariant
with V (∅) = 0. For instance, V could be the volume or, if Q is concentrated on the convex bodies, a
linear combination of the intrinsic volumes; see [38]. Assume that the connection function is given by

ϕ((x,K), (y, L)) = 1− e−V ((K+x)∩(L+y)), (x,K), (y, L) ∈ Rd × Cd.
Then (4.1) follows from translation invariance of V . The case of the Gilbert graph arises if Q is concen-
trated on balls centered at the origin. A sufficient condition for (4.2) is

∫

D(K)dQ(dK) <∞,

where D(K) is the radius of the smallest ball centered at the origin and containing K. This easily follows
from

ϕ(x,K,L) ≤ 1{K ∩ (L+ x) 6= ∅} ≤ 1{‖x‖ ≤ D(K) +D(L)}.
The random closed set

⋃

(x,K)∈ηK + x is known as the Boolean model and a fundamental model of
stochastic geometry (see [25, 38]) and continuum percolation (see [31]). This model corresponds to the
choice V (K) = ∞·1{K 6= ∅}. In that case and under some additional assumptions on Q it was proved in
[19] that tc ∈ (0,∞). The present much more general model is taken from [5] and is partially motivated
by statistical physics.
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Example 4.9. Assume that M = (0, 1) equipped with Lebesgue measure Q. Assume that

ϕ((x, p), (y, q)) = ρ(g(p, q)‖x − y‖d),

for a decreasing function ρ : [0,∞) → [0, 1] and a function g : (0, 1) × (0, 1) → [0,∞) which is increasing
in both arguments. We assume that mρ :=

∫

ρ(‖x‖d) dx is positive and finite. This model was studied in
[18] under the name weigt-dependent random connection model. A simple calculation shows that

dϕ = mρ

∫∫

g(p, q)−1 dp dq.

To ensure (4.2) we have to assume that g−1 is integrable. This is the case in all examples studied in [18],
where it is also asserted that tc <∞. Sufficient conditions for tc ∈ (0,∞) can also be found in [10, 11].

5 Irreducibility

In this section, we first consider a general RCM ξ based on a Poisson process η on X with diffuse intensity
measure tλ. We fix the intensity parameter t > 0 and therefore drop the lower index t in Pt. To simplify
the notation, we take t = 1. We say that ξ is irreducible if

P(x1 ↔ x2 in ξx1,x2) > 0, λ2-a.e. (x1, x2) ∈ X2. (5.1)

Given k ∈ N and random elements Y1, . . . , Yk of X we let Ξ[Y1, . . . , Yk] be a RCM based on the point
process δY1 + · · · + δYk . Of course we can allow here some of the Y1, . . . , Yk to be deterministic. Further
we define for each n ∈ N a measurable function ϕ(n) : X2 → [0,∞) recursively by ϕ(1) := ϕ and

ϕ(n+1)(x1, x2) :=

∫

ϕ(n)(x1, z)ϕ(z, x2)λ(dz), x1, x2 ∈ X, n ∈ N.

These functions are symmetric. It follows straight from the Mecke equation (3.1) that

ϕ(n)(x1, x2) = E

∫ n
∏

i=1

1{yi−1 ∼ yi in ξ
x1,x2} η(n−1)(d(y1, . . . , yn−1)), (5.2)

where y0 := x1 and yn := x2. This is the expected number of paths of length n from x1 to x2 in ξx1,x2 .

Proposition 5.1. The following six statements are equivalent:

(i) ξ is irreducible.

(ii) There exist for λ2-a.e. (x1, x2) ∈ X2 a set B ∈ X with λ(B) ∈ (0,∞), an n ∈ N0 and independent
random variables Y1, . . . , Yn with distribution λB/λ(B) such that

P(x1 ↔ x2 in Ξ[x1, x2, Y1, . . . , Yn]) > 0. (5.3)

(iii) There exists for λ2-a.e. (x1, x2) ∈ X2 an n ∈ N0 such that

∫

P(x1 ↔ x2 in Ξ[x1, x2, y1, . . . , yn])λ
n(d(y1, . . . , yn)) > 0. (5.4)

(iv) For λ2-a.e. (x1, x2) ∈ X2 it holds that

sup
n≥1

ϕ(n)(x1, x2) > 0. (5.5)
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(v) For λ2-a.e. (x1, x2) ∈ X2 we have

sup
n≥k

ϕ(n)(x1, x2) > 0, k ∈ N. (5.6)

(vi) There exist for λ2-a.e. (x1, x2) ∈ X2 a set B ∈ X with λ(B) ∈ (0,∞), an n ∈ N and independent
random variables Y1, . . . , Yn with distribution λB/λ(B) such that

P(x1 ↔ x2 in Ξ′[x1, x2, Y1, . . . , Yn]) > 0, (5.7)

where Ξ′[x1, x2, Y1, . . . , Yn] is the graph obtained from Ξ[x1, x2, Y1, . . . , Yn] by removing the edge
between x1 and x2 (if there is one).

Proof. Assume that (i) holds, and take x1, x2 ∈ X be such that P(x1 ↔ x2 in ξx1,x2) > 0. Let (Bm) be
a sequence of measurable sets of finite λ-measure increasing towards X. By monotone convergence there
exists m ∈ N such that x1, x2 ∈ Bm and

P(x1 ↔ x2 in ξx1,x2 [Bm]) > 0. (5.8)

Let B := Bm. Since ξ
x1,x2 [B] is a RCM based on δx1 + δx2 + ηB we have ηB

d
=
∑η(B)

k=0 Yk, where Y1, Y2, . . .
are independent with distribution λB/λ(B). Splitting the event {x1 ↔ x2 in ξx1,x2 [B]} according to the
value of η(B) yields (ii).

Assume that (ii) holds, then

P(x1 ↔ x2 in Ξ[x1, x2, Y1, . . . , Yn]) = λ(B)−n
∫

P(x1 ↔ x2 in Ξ[x1, x2, y1, . . . , yn])λ
n
B(d(y1, . . . , yn)) > 0,

which implies (iii).
Assume that x1, x2 ∈ X satisfy (5.4). If x1 ↔ x2 in Ξ[x1, x2, y1, . . . , yn] then there exist k ∈ {0, . . . , n}

and pairwise distinct i1, . . . , ik ∈ {1, . . . , n} with x1 ∼ yi1 ∼ · · · ∼ yik ∼ x2 in Ξ[x1, x2, y1, . . . , yn].
Therefore and by the symmetry of λn

n
∑

k=0

∫ k+1
∏

i=1

ϕ(yi−1, yi)λ
k(d(y1, . . . , yk)) > 0,

where y0 := x1 and yk+1 := x2. Hence (iv) follows.
Assume that (iv) holds, then for λ2-a.e. (x1, x2) ∈ X2

0 <

∞
∑

m,n=1

ϕ(m+n)(x1, x2) =

∞
∑

m,n=1

∫

ϕ(m)(x1, z)ϕ
(n)(z, x2)λ(dz)

=

∫

(

∞
∑

m=1

ϕ(m)(x1, z)

)(

∞
∑

n=1

ϕ(n)(z, x2)

)

λ(dz).

Therefore sup
n≥2

ϕ(n)(x1, x2) > 0 for λ2-a.e. (x1, x2) ∈ X2. To obtain (5.6) for general k ∈ N one has to start

with a k-fold summation instead of a double summation.
Assume now that x1, x2 ∈ X satisfy (5.6), then there exists n ≥ 2 such that ϕ(n)(x1, x2) > 0. Therefore

there exists B ∈ X of finite λ-measure with

∫ n
∏

i=1

ϕ(yi−1, yi)λ
n−1
B (d(y1, . . . , yn−1)) > 0,

11



where y0 := x1 and yn := x2. This implies (vi).
Finally, note that for any n ∈ N

P(x1 ↔ x2 in Ξ′[x1, x2, Y1, . . . , Yn]) ≤ P(x1 ↔ x2 in Ξ[x1, x2, Y1, . . . , Yn])

= P(x1 ↔ x2 in ξx1,x2 [B] | η(B) = n).

Therefore (vi) implies (i).

Remark 5.2. Proposition 5.1 shows that irreducibility does not depend on the intensity parameter t as
long it is positive.

In the remainder of this section we consider the stationary marked RCM as discussed in Section 4.
Recall that without loss of generality, we can take t = 1. It is easy to see that for all n ∈ N and all
(x, p), (y, q) ∈ X

ϕ(n)((x, p), (y, q)) = ϕ(n)((0, p), (y − x, q)) = ϕ(n)((0, q), (x − y, p)) (5.9)

We write ϕ(n)(x, p, q) := ϕ(n)((0, p), (x, q)) and note that ϕ(n)(x, p, q) = ϕ(n)(−x, q, p). In the unmarked
case we can identify X with Rd. In this case ϕ(n) = ϕ∗n is the n-fold convolution of ϕ, where ϕ is
considered as function on Rd.

Proposition 5.3. The stationary (unmarked) RCM is irreducible.

The proof of Proposition 5.3 is a quick consequence of the first part of the following lemma.

Lemma 5.4. Assume that f : Rd → [0,∞) is a bounded measurable function with 0 <
∫

f(y) dy <∞ and
f(y) = f(−y) for all y ∈ Rd. Let R > 0.

(i) There exist n ∈ N and ε > 0 such that f∗n(x) ≥ ε whenever ‖x‖ ≤ R.

(ii) Let g : Rd → R+ be another bounded measurable function with
∫

g(y) dy > 0 and let x ∈ Rd. Then
there exists n ∈ N such that (f∗n ∗ g)(x) > 0.

Proof. (i) The convolution of an integrable and a bounded function is bounded and uniformly continuous;
see [14, Proposition 8.8]. It follows that f∗2 is bounded and uniformly continuous. Since

∫

f∗2(x) dx =
( ∫

f(x) dx
)2
> 0 there exist a ball B′ ⊂ Rd with positive radius and ε′ > 0 such that f∗2 ≥ ε′ on B′.

Since f is symmetric, f∗2 is symmetric as well. Hence we can find a ball B with center 0 and positive
radius and some ε > 0 such that f∗4 ≥ ε on B. Finally we find m ∈ N and ε > 0 such that f∗4m(x) ≥ ε
whenever ‖x‖ ≤ R.

(ii) By assumption
∫

g(x)1{g(x) ≥ ε0} dx > 0 for some ε0 > 0. Set C := {g ≥ ε0}. Then we have for
each n ∈ N that

(f∗n ∗ g)(x) ≥ ε0

∫

f∗n(x− z)1{z ∈ C} dz.

Choose R > 0 so large that
∫

1{‖x − z‖ ≤ R, z ∈ C} dz > 0.

By the first part of the lemma we can find n ∈ N and ε > 0 such that f∗n(y) ≥ ε whenever ‖y‖ ≤ R. It
follows that

(f∗n ∗ g)(x) ≥ ε0

∫

f∗n(x− z)1{‖x − z‖ ≤ R, z ∈ C} dz

≥ ε0ε

∫

1{‖x− z‖ ≤ R, z ∈ C} dz.

By the choice of R this is positive.
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Proof of Proposition 5.3. We can use Lemma 5.4 (i) and condition (5.5) from Proposition 5.1 to conclude
the proof. Indeed, given x1, x2 ∈ X we find an n ∈ N such that ϕ(n)(x1, x2) = ϕ∗n(x2 − x1) > 0.

It is natural to characterize irreducibility of the stationary marked RCM in terms of the functions

d
(n)
ϕ : M2 → [0,∞], n ∈ N, defined by

d(n)ϕ (p, q) :=

∫

ϕ(n)(x, p, q) dx, p, q ∈ M.

Similarly as at (5.2) we see that
∫

d
(n)
ϕ (p, q)1{q ∈ A}Q(dq) is the expected number of paths of length n

from (0, p) to some location with mark in a measurable set A ⊂ M. From the symmetry property of ϕ(n)

we obtain that d
(n)
ϕ is symmetric. Furthermore,

d(n)ϕ (p, q) =

∫ n
∏

i=1

dϕ(qi−1, qi)Q
n−1(d(q1, . . . , qn−1)),

where dϕ(·, ·) := d
(1)
ϕ (·, ·), q0 := p, qn := q. Therefore

d(m+n)
ϕ (p, q) =

∫

d(m)
ϕ (p, r)d(n)ϕ (r, q)Q(dr), p, q ∈ M, m, n ∈ N. (5.10)

Lemma 5.5. Let ξ be a stationary marked RCM and assume that ξ is irreducible. Then

sup
n≥1

d(n)ϕ (p, q) > 0, Q2-a.e. (p, q) ∈ M2. (5.11)

Proof. Assume on the contrary that there exists some measurable set B ⊂ M2 satisfying Q2(B) > 0, and

d
(n)
ϕ (p, q) = 0 for all (p, q) ∈ B and for each n ∈ N. But then ϕ(n−1)((0, p), (x, q)) = 0 for all (p, q) ∈ B,
n ∈ N and λd-a.e. x ∈ Rd. This contradicts Proposition 5.1 (iv).

We continue with the case where Q has an atom. This covers a discrete (that is finite or countably
infinite) mark space and generalizes Proposition 5.3.

Theorem 5.6. Let ξ be a stationary marked RCM and assume that there exists p0 ∈ M with Q{p0} > 0.
Then ξ is irreducible iff

sup
n≥1

d(n)ϕ (p0, q) > 0, Q-a.e. q ∈ M. (5.12)

Proof. By Q{p0} > 0 and (5.12) there exists n ∈ N such that d
(n)
ϕ (p0, p0) > 0. Then we have for each

x ∈ Rd

ϕ(2n)(x, p0, p0) =

∫∫

ϕ(n)(z, p0, q)ϕ
(n)(x− z, q, p0)Q(dq) dz

≥ Q{p0}
∫

ϕ(n)(z, p0, p0)ϕ
(n)(x− z, p0, p0) dz =: Q{p0}ψ0(x). (5.13)

By induction we obtain for all m ∈ N that

ϕ(2mn)(x, p0, p0) ≥ Q{p0}2m−1ψ∗m
0 (x), x ∈ Rd. (5.14)

The function ψ0 is symmetric and bounded. Moreover,
∫

ψ0(x) dx =
(

∫

ϕ(n)(z, p0, p0) dz
)2

= (d(n)ϕ (p0, p0))
2 > 0.
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Take p, q ∈ M. In view of the assertion and assumption (5.12) we can assume that there exist k, l ∈ N

such that d
(k)
ϕ (p0, p) > 0 and d

(l)
ϕ (p0, q) > 0. Then we obtain for each x ∈ Rd and each m ∈ N that

ϕ(2mn+k+l)(x, p, q) =

∫∫

ϕ(k)(z, p, r)ϕ(2mn)(w, r, s)ϕ(l)(x− z − w, s, q)Q2(d(r, s)) d(z, w)

≥ Q{p0}2
∫

ϕ(k)(z, p, p0)ϕ
(2mn)(w, p0, p0)ϕ

(l)(x− z − w, p0, q) d(z, w).

By (5.14) this means

ϕ(2mn+k+l)(x, p, q) ≥ Q{p0}2m+1

∫

ϕ(k)(z, p, p0)ψ
∗m
0 (w)ϕ(l)(x− z − w, p0, q) d(z, w)

= Q{p0}2m+1(g ∗ ψ∗m
0 ∗ h)(x) = Q{p0}2m+1(ψ∗m

0 ∗ g ∗ h)(x),

with the obvious definitions of the functions g and h. By the choice of k and l we have

∫

g ∗ h(x) dx =

∫

g(x) dx

∫

h(x) dx > 0.

Therefore we obtain from Lemma 5.4 that (ψ∗m
0 ∗ g ∗h)(x) is positive for some sufficiently large m. Hence

Proposition 5.1 (iv) yields the assertion.

Remark 5.7. If p0 is an atom of Q, then (5.11) and (5.12) are equivalent. Indeed, from (5.10) we have
for all m,n ∈ N and all p, q ∈ M that

d(m+n)
ϕ (p, q) ≥ Q{p0}d(m)

ϕ (p, p0)d
(n)
ϕ (p0, q).

This is positive as soon as d
(m)
ϕ (p0, p)d

(n)
ϕ (p0, q) > 0.

The next remark shows the relevance of irreducibility for the uniqueness of the infinite cluster.

Remark 5.8. Assume that M is discrete and that Q{p} > 0 for each p ∈ M. Given p, q ∈ M we write

p ≃ q if either p = q or supn≥1 d
(n)
ϕ (p, q) > 0. It follows from (5.10) that ≃ is an equivalence relation.

Let [p] := {q ∈ M : p ≃ q} be the equivalence class of p ∈ M. Then η[p] := {(x, q) ∈ η : q ∈ [p]} are
for different equivalence classes independent Poisson processes with intensity measures λd ⊗ Q([p] ∩ ·).
Assume now that there exist some marks p, q ∈ M such that [p]∩ [q] = ∅. We assert that ξ[η[p]] and ξ[η[q]]
are vertex disjoint, that is, there is no edge in ξ between η[p] and η[q]. To see this, we take a bounded

Borel set B ⊂ Rd and let A denote the event that there exist x ∈ B and y ∈ Rd such that (x, p), (y, q) ∈ η
and (x, p) ↔ (y, q) in ξ. Similarly, as in previous calculations, we obtain

P(A) ≤
∞
∑

n=1

λd(B)Q{p}Q{q}d(n)ϕ (p, q)

which comes to zero. If ξ[η[p]] and ξ[η[q]] both percolate, then ξ has at least two infinite clusters.

We now turn to a general mark space. Under a suitable minorization assumption for the connection
function the proof of Theorem 5.6 still works.

Theorem 5.9. Assume that there exist a measurable set A ⊂ M with Q(A) > 0 and some p0 ∈ M

satisfying

ϕ(x, p, q) ≥ ϕ(x, p, p0), λd ⊗Q2-a.e. (x, p, q) ∈ Rd ×M×A. (5.15)

Assume also that (5.12) holds. Then the RCM ξ is irreducible.
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Proof. We first show that (5.12) implies

sup
n≥1

d(n)ϕ (p0, p0) > 0. (5.16)

By (5.10) we have

∞
∑

m,n=1

d(m+n)
ϕ (p0, p0) =

∞
∑

m,n=1

∫

d(m)
ϕ (p0, q)d

(n)
ϕ (q, p0)Q(dq)

=

∫
( ∞
∑

m=1

d(m)
ϕ (p0, q)

)( ∞
∑

n=1

d(n)ϕ (p0, q)

)

Q(dq).

By (5.12) the above integrand is positive for Q-a.e. q ∈ M. Hence the integral is positive and (5.16)
follows.

It follows from (5.15) and the recursive structure of ϕ(m) that

ϕ(m)(x, p, q) ≥ ϕ(m)(x, p, p0), λd ⊗Q2-a.e. (x, p, q) ∈ Rd ×M×A, m ∈ N. (5.17)

By (5.16) there exists n ∈ N such that d
(n)
ϕ (p0, p0) > 0. By (5.17) it follows as at (5.13) that

ϕ(2n)(x, p0, p0) ≥ Q(A)ψ0(x), λd-a.e. x ∈ Rd,

where the function ψ0 is defined as before. As at (5.14) it follows by induction that

ϕ(2mn)(x, p0, p0) ≥ Q(A)2m−1ψ∗m
0 (x), λd-a.e. x ∈ Rd, m ∈ N. (5.18)

Take p, q ∈ M and k, l ∈ N such that d
(k)
ϕ (p0, p)d

(l)
ϕ (p0, q) > 0. As in the proof of Theorem 5.6 we

obtain for λd-a.e. x ∈ Rd and each m ∈ N that

ϕ(2mn+k+l)(x, p, q) ≥ Q(A)2m+1(ψ∗m
0 ∗ g ∗ h)(x).

Hence we can finish the proof as before.

Remark 5.10. Let the assumptions of Theorem 5.9 be satisfied. Then we have for all m,n ∈ N that

d(m+n)
ϕ (p, q) ≥ Q(A)d(m)

ϕ (p, p0)d
(n)
ϕ (p0, q), p, q ∈ M.

Therefore (5.12) implies (5.11).

Remark 5.11. Natural candidates for the pair (A, p0) in (5.15) can be obtained as follows. Assume that
A ⊂ M is a measurable set such that Q(A) > 0 and ϕ(x, p, ·) is for all (x, p) ∈ Rd ×M increasing on A
w.r.t. some partial order. We can then take x0 as a minimal element of A, if it exists.

Remark 5.12. Remark 5.10 shows that the assumptions of Theorem 5.9 imply (5.11). We do not know
whether condition (5.11) alone implies that ξ is irreducible. This condition does not provide information
on the final space location of paths. In the proof of Theorem 5.9 we use (5.15) to decouple space locations
and marks. Condition (5.11) is much weaker than condition (D.2) in [10]. Condition (5.15) does not occur
in [10]. However, our examples in Section 12 indicate that either this condition or the assumptions of the
forthcoming Theorem 5.13 should cover all interesting examples.

A minimal assumption for irreducibility could be
∫

dϕ(p, q)Q(dq) > 0, Q-a.e. p ∈ M. (5.19)
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If
∫

dϕ(p, q)Q(dq) = 0 for some p ∈ M then (5.10) would imply that
∫

d
(n)
ϕ (p, q)Q(dq) = 0 for all n ∈ N.

By Lemma 5.5 an irreducible ξ cannot have this property for all p in a set of positive Q-measure. Under
suitable assumptions on Q and ϕ we shall show with Theorem 5.13 that (5.19) is also sufficient for
irreducibility.

In Theorem 5.13 we will consider a partial ordering � on M which is measurable, that is {(p, q) : p � q}
is a measurable subset ofM2. Slightly generalizing [28] we say thatM is POP space. A real-valued function
f on M is said to be non-decreasing if x � y implies f(x) ≤ f(y). The probability measure Q is called
(positively) associated if

∫

fg dQ ≥
∫

f dQ

∫

g dQ (5.20)

for all non-decreasing measurable f, g : M → R for which the integrals make sense. Our next result
provides assumptions on ϕ and Q, under which the minimal assumption (5.19) implies irreducibility.
Corollary 5.14 and Example 12.7 will demonstrate the usefulness of this result.

Theorem 5.13. Assume that M is a POP space and that Q is associated. Assume also that ϕ(x, p, ·) is
non-decreasing for all (x, p) ∈ Rd ×M. Then the RCM ξ is irreducible iff (5.19) holds.

Proof. As argued above, condition (5.19) is necessary for irreducibility.
In the remainder of the proof we assume that (5.19) holds. We aim at checking condition (iv) of

Proposition (5.1). By assumption on ϕ and the symmetry properties of ϕ we have that ϕ(x, ·, ·) is for
each x ∈ Rd non-decreasing in both arguments. By the recursive structure of ϕ(n) this property generalizes
to ϕ(n) for each n ∈ N. We define ψ(n) : Rd → [0,∞] for each n ∈ N by

ψ(n)(x) :=

∫

ϕ(n)(x, p, q)Q2(d(p, q)), x ∈ Rd.

The function ψ := ψ(1) is symmetric, bounded and integrable; see (4.2). For each n ∈ N we obtain from
(5.20) that

ψ(n+1)(x) =

∫

ϕ(n)(z, p, r)ϕ(x − z, r, q)Q3(d(p, q, r)) dz

≥
∫
[
∫

ϕ(n)(z, p, r)Q2(d(p, r))

∫

ϕ(x− z, r, q)Q2(d(r, q))

]

dz.

Therefore it follows by induction that

ψ(n)(x) ≥ ψ∗n(x), x ∈ Rd, n ∈ N. (5.21)

Take p, q ∈ M. In view of our goal and assumption (5.19) we can assume that
∫

dϕ(p, q)Q(dq) > 0
and

∫

dϕ(p, q)Q(dp) > 0. From (5.20) we obtain for each x ∈ Rd and each n ∈ N that

ϕ(n+2)(x, p, q) =

∫∫

ϕ(z, p, r)ϕ(n)(w, r, s)ϕ(x − z − w, s, q)Q2(d(r, s)) d(z, w),

≥
∫

g(z)ψ(n)(w)h(x − z − w) d(z, w),

where g(z) :=
∫

ϕ(z, p, r)Q(dr) and h(z) :=
∫

ϕ(z, r, q)Q(dr). Therefore we obtain from (5.21) that

ϕ(n+2)(x, p, q) ≥ (g ∗ ψ∗n ∗ h)(x) = (ψ∗n ∗ g ∗ h)(x).
By the choice of p, q we have

∫

g(x) dx > 0 and
∫

h(x) dx > 0. Hence we deduce from Lemma 5.4 that
(ψ∗m∗g∗h)(x) is positive for some sufficiently large m. Hence Proposition 5.1 (iv) yields the assertion.

Corollary 5.14. Assume that M ⊂ R is an interval and that ϕ(x, p, ·) is non-decreasing for all (x, p) ∈
Rd ×M. Then the RCM ξ is irreducible iff (5.19) holds.

Proof. Since any probability measure on M is associated (see e.g. [28]), the result follows from Theorem
5.13.

16



6 Deletion stability and uniqueness

In this section, we consider a general RCM ξ based on a Poisson process η on X with diffuse intensity
measure λ. Given (x, µ) ∈ X ×G we let N∞(x, µ) denote the number of infinite clusters in Cx(µ) − δx.
We say that the infinite clusters in ξ are deletion stable if

P(N∞(x, ξx) ≥ 2) = 0, λ-a.e. x ∈ X. (6.1)

Using the Mecke equation it is not difficult to see that the infinite clusters in ξ are deletion stable if
Nds = 0 a.s., where

Nds :=

∫

1{N∞(x, ξ) ≥ 2} η(dx). (6.2)

Theorem 6.1. Assume that ξ is irreducible and that the infinite clusters of ξ are deletion stable. Then
ξ has P-almost surely at most one infinite cluster.

We prove Theorem 6.1 in stages. Let Y1, . . . , Yn be random elements of X, which are a.s. pairwise
distinct. In accordance with Section 3 we define a random connection model ξY1,...,Yn based on the
point process η + δY1 + · · · + δYn as follows. We connect Y1 with the points in η using independent
connection decisions which are independent of ξ. We then proceed inductively finally connecting Yn to
η + δY1 + · · · + δYn−1

.

Lemma 6.2. Suppose that B ∈ X with λ(B) ∈ (0,∞) and let Y1, . . . , Yn be independent random variables
with distribution λB/λ(B), independent of ξ. Assume that the infinite clusters of ξ are deletion stable,
then

∫

P(N∞(Yn, ξ
x1,x2,Y1,...,Yn) ≥ 2)λ2(d(x1, x2)) = 0. (6.3)

Proof. It is useful to add a point x ∈ X to a graph µ ∈ G in the following explicit way. There are

measurable mappings πn : N → Rd such that µ(·×N) =
∑|µ|

n=1 δπn(µ), for each µ ∈ G. Let (µ, x) ∈ G×X

and u = (un)n≥1 ∈ [0, 1]∞. Define µxu ∈ G as the graph with vertex measure V (µ) + δx, edges from
µ and further edges between πn(µ) and x if ϕ(πn(µ), x) ≥ un. Define h(x, µ, u) := 1{N∞(x, µxu) ≥ 2}.
Assume that U is a random element of [0, 1]∞ with independent and uniformly distributed components,
independent of ξ. Then 1{N∞(x, ξx) ≥ 2} has the same distribution as h(x, ξ, U) and deletion stability
means that

∫∫∫

h(x, µ, u)P(ξ ∈ dµ)λ(dx)P(U ∈ du) = 0. (6.4)

Given x1, x2 ∈ X we also have

1{N∞(Yn, ξ
x1,x2,Y1,...,Yn) ≥ 2} d

= h(Yn, ξ
x1,x2,Y1,...,Yn−1 , Un),

where Un is independent of the pair (Yn, ξ
x1,x2,Y1,...,Yn−1) and has the same distribution as U . Therefore

∫∫

P(N∞(Yn, ξ
x1,x2,Y1,...,Yn) ≥ 2)λ2(d(x1, x2))

= (λ(B))−1

∫∫∫

Eh(yn, ξ
x1,x2,Y1,...,Yn−1 , u)λB(dyn)P(U ∈ du)λ2(d(x1, x2))

= (λ(B))−n
∫∫∫

Eh(yn, ξ
x1,x2,y1,...,yn−1 , u)P(U ∈ du)λnB(d(y1, . . . , yn))λ

2(d(x1, x2)),
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where we have used the definition of ξx1,x2,Y1,...,Yn−1 . From the Mecke equation we obtain that the above
equals

(λ(B))−nE

∫∫∫

h(yn, ξ, u)1{y1, . . . , yn−1 ∈ B}λB(dyn)P(U ∈ du) η(n+1)(d(x1, x2, y1, . . . , yn−1)).

By (6.4), the integral
∫∫

h(y, ξ, u)λB(dy)P(U ∈ du) does almost surely vanish. This concludes the
proof.

For given x1, x2 ∈ X let A(x1, x2) be the event that the clusters Cx1(ξx1,x2) and Cx2(ξx1,x2) are
infinite and not connected. Further, for n ∈ N0 let Bn(x1, x2) be the event that x1 and x2 are connected
in ξx1,x2,Y1,...,Yn , where Y1, . . . , Yn are defined in Lemma 6.2.

Lemma 6.3. Let the assumptions of Lemma 6.2 be in force. Then for a given n ∈ N0

∫

P(A(x1, x2) ∩Bn(x1, x2))λ2(d(x1, x2)) = 0. (6.5)

Proof. We can remove the points Yn, . . . , Y1 from ξx1,x2,Y1,...,Yn one by one. Each time we can apply
Lemma 6.2. Hence removing Yi (for i ≤ n) cannot split the cluster of Yi in ξ

x1,x2,Y1,...,Yi into more than
one infinite cluster. Take x1, x2 ∈ X and n ∈ N0 such that Bn(x1, x2) holds and assume for the sake of
contradiction that A(x1, x2) holds. In particular Cx1(ξx1,x2) and Cx2(ξx1,x2) are vertex disjoint, so that
there must be an i ∈ {1, . . . , n} such that x1, x2 are connected in ξx1,x2,Y1,...,Yi but not in ξx1,x2,Y1,...,Yi−1 .
Hence, the removal of Yi would split the cluster of Yi in ξ

x1,x2,Y1,...,Yi into two infinite clusters. This is a
contradiction, showing that almost surely Bn(x1, x2) ⊂ Ac(x1, x2) for λ

2-a.e. (x1, x2) ∈ X2.

Proof of Theorem 6.1. We need to show that almost surely two points of η cannot belong to two different
infinite clusters. By the Mecke equation (3.1) for n = 2 the latter is equivalent to

∫

P(A(x1, x2))λ
2(d(x1, x2)) = 0. (6.6)

The following arguments apply to λ2-a.e. (x1, x2) ∈ X2. By Proposition 5.1 (vi) there exist a set B ∈ X
with 0 < λ(B) < ∞, an n ∈ N and random variables Y1, . . . , Yn with distribution λB/λ(B) such that
P(B′

n(x1, x2)) > 0, where

B′
n(x1, x2) := {x1 ↔ x2 in Ξ′[x1, x2, Y1, . . . , Yn]}.

We can couple the random graphs ξx1,x2,Y1,...,Yn and Ξ′[x1, x2, Y1, . . . , Yn] in such a way that ξx1,x2 and
Ξ′[x1, x2, Y1, . . . , Yn] are independent and every edge in the latter graph is also present in the former.
Then B′

n(x1, x2) implies Bn(x1, x2) and we obtain from Lemma 6.3 that

P(A(x1, x2) ∩B′
n(x1, x2)) = 0.

By the above coupling the events A(x1, x2) and B
′
n(x1, x2) are independent. Hence P(A(x1, x2)) = 0, as

required.

In Theorem 6.4 below we will see that deletion stability of infinite clusters is in fact necessary for
uniqueness of the infinite cluster. In fact, uniqueness implies an even stronger property. Following [32]
we call a graph µ ∈ G 2-indivisible if the removal of a finite number of vertices results in at most one
infinite cluster. This means that the graph µ[V (µ)− ν] has at most one infinite component for each finite
ν ≤ V (µ). If ξ is almost surely 2-indivisible, then, in particular, there is at most one infinite cluster.

Theorem 6.4. Assume that ξ has almost surely at most one infinite cluster. Then ξ is almost surely
2-indivisible. In particular the infinite cluster of ξ is deletion stable.
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Proof. Let A∞ denote set of all µ ∈ G such that µ has at least two infinite clusters. Let n ∈ N. By the
uniqueness assumption and the Mecke equation (3.5) we have

0 =

∫

P(ξ ∈ A∞)λn(d(x1, . . . , xn)) = E

∫

1{ξ − δx1 − · · · − δxn ∈ A∞} η(n)(d(x1, . . . , xn)).

Since n ∈ N is arbitrary, this proves the first result.
If x ∈ η satisfies N∞(x, ξ) ≥ 2 then ξ − δx ∈ A∞. Therefore by the Mecke equation (3.1) we obtain

the second assertion.

Remark 6.5. In accordance with the physics literature (see e.g. [8]) we might call a point x ∈ η red, if
any doubly infinite path in ξ has to use x. If ξ has a unique infinite cluster Theorem 6.4 says in particular
that ξ cannot have red points. More generally, we may call a subset of η red, if any doubly infinite path
in ξ contains at least one point from this set. Theorem 6.4 says that ξ cannot have a finite red set.

Remark 6.6. The authors of [7] studied random connection models on finite point processes in an
asymptotic setting. Under a natural irreducibility assumption (similar to Proposition 5.1 (iv)) they
proved uniqueness of the giant component; see Theorem 3.6 and Example 4.9 in [7].

7 A spatial Markov property

We again consider a general RCM ξ based on a Poisson process η on X with diffuse intensity measure λ.
Let v ∈ X. In the next section we shall establish and exploit a useful explicit change of measure for the
distribution of Cv = Cv(ξv). This is possible since for n ∈ N0 the conditional distribution of Cvn+1 given
Cv≤n can be described in terms of a RCM driven by Poisson process with a thinned intensity measure. In
this section we derive a general version of this spatial Markov property.

Let ν be a locally finite and diffuse measure on X. Then we denote by Πν the distribution of a Poisson
process with this intensity measure. We define a kernel Kν from N×N to X, by

Kν(µ, µ
′, dx) := ϕ̄(µ, x)ϕ(µ′, x)ν(dx), (7.1)

where we recall the definitions (3.7). Proposition 7.2 will provide an interpretation of this kernel. Denoting
by 0 the zero measure, we note that

Kν(0, µ
′, dx) = ϕ(µ′, x)ν(dx), Kν(µ, 0, dx) = ϕ̄(µ, x)ν(dx). (7.2)

We write Kν(µ, µ
′) := Kν(µ, µ

′, ·). Note that Kλ(0, µ,X) = ϕλ(µ); see (3.7).
For n ∈ N0, µ ∈ G and v ∈ X let Γvn(λ, µ, ·) denote the distribution of a random graph ξn defined as

follows. Let ξ′n be a RCM based on ηn + Cvn(µ), where ηn is a Poisson process with intensity measure
Kλ(C

v
≤n−1(µ), 0), and where we recall that Cv≤−1 := 0. Remove in ξ′n all edges between vertices from

Cvn(µ) to obtain a random graph ξ′′n. Finally set ξn := Cv≤n(µ) ⊕ ξ′′n, with an obvious definition of the
operation ⊕. We set Cv≤0(µ) := δv, which is the graph with vertex set {v} and no edges.

Theorem 7.1. Let v ∈ X and n ∈ N0. Then,

P(ξv ∈ · | Cv≤n) = Γvn(λ,C
v
≤n, ·), P-a.s. (7.3)

Proof. This follows from the proof of [20, Lemma 3.3]; see also Proposition 2 in [29]. Essentially the
assertion is equivalent to equation (3.6) in this proof. The arguments given there apply to a RCM on a
general state space X and not only to Rd.

A quick consequence of Theorem 7.1 is that {(V (Cv≤n−1), V (Cvn))}n∈N0
is a Markov process.
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Proposition 7.2. The sequence {(V (Cv≤n−1), V (Cvn))}n∈N0
is a Markov process with transition kernel

(µ, µ′) 7→
∫

1{(µ + µ′, ψ) ∈ ·}ΠKλ(µ,µ′)(dψ).

We also note that

Kλ(µ, µ
′,X) ≤

∫

ϕ(µ′, x)λ(dx) ≤
∫∫

ϕ(y, x)µ′(dy)λ(dx),

where we have used the Bernoulli inequality. Hence

Kλ(µ, µ
′,X) ≤

∫

Dϕ(y)µ
′(dy). (7.4)

Corollary 7.3. Let n ∈ N0. Then we have for λ-a.e. v ∈ X that P(|Cvn| <∞) = 1.

Proof. We can proceed by induction. For n = 0 the assertion is trivial. Assume that P(|Cvn| < ∞) = 1
for some n ∈ N0. From Proposition 7.2 we know that the conditional distribution of V (Cvn+1) given
(V (Cv≤n−1), V (Cvn)) is that of a Poisson process with intensity measure Kλ(V (Cv≤n−1), V (Cvn)). By (7.4)
we obtain that

E[|Cvn+1| | (V (Cv≤n−1), V (Cvn))] ≤
∫

Dϕ(y)C
v
n(dy)

which is for λ-a.e. v ∈ X a.s. finite by our general assumption (1.1) and induction hypothesis.

The following useful property of the kernel Kλ can easily be proved by induction.

Lemma 7.4. Let n ∈ N and µ0, . . . , µn ∈ N. Then

Kλ(0, µ0) +Kλ(µ0, µ1) + · · ·+Kλ(µ0 + · · · + µn−1, µn) = Kλ(0, µ0 + · · ·+ µn).

8 Perturbation formulas

In the next sections we vary the intensity measure λ and consider tλ for t ∈ R+. We fix v ∈ X and let
Pt be a probability measure governing a RCM ξ based on η, where η is a Poisson process with intensity
measure tλ. The associated expectation is denoted by Et. Recall the definition (3.7).

Lemma 8.1. Let ξ̃ be a RCM based on a Poisson process η̃ with finite intensity measure ν. Let f : G →
[0,∞). Then

Etf(ξ̃) = E1f(ξ̃)t
|η̃|e(1−t)ν(X)

Proof. It is well-known that

Πtν =

∫

1{µ ∈ ·}t|µ|e(1−t)ν(X) Πν(dµ), t ≥ 0. (8.1)

This follows, for instance from [25, Exercise 3.7] and an easy calculation. The assertion then follows by
conditioning, using the kernel Γ in (3.2).

Proposition 8.2. Let v ∈ X, t ∈ R+, n ∈ N and t0 > 0. Then

Pt(C
v
≤n ∈ ·) = Et01{Cv≤n ∈ ·}(t/t0)

∣

∣Cv
≤n

∣

∣−1e(t0−t)ϕλ

(

Cv
≤n−1

)

.
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Proof. It is sufficient to consider the special case t0 = 1. The general case can be proved similarly or can
be derived from the special case. We omit the dependence on v in our notation by writing Cn := Cvn,
and C≤n := Cv≤n. Given µ ∈ G we let C+

n (µ) denote the graph µ[V (Cn−1(µ))+V (Cn(µ))] with the edges
between vertices of Cn−1(µ) removed.

Let f : G → [0,∞) be measurable. By Theorem 7.1,

Etf(C≤n) = Et

∫

f(C≤n−1 ⊕ C+
n (µ)) Γn−1(tλ,C≤n−1, dµ).

By (7.4) we have

Ktλ(C≤n−2, Cn−1,X) ≤ t

∫

Dϕ(y)Cn−1(dy)

which is almost surely finite by Corollary 7.3. By definition of Γn and the thinning properties of a Poisson
process, the distribution of C+

n (·) under Γn−1(tλ,C≤n−1, ·) is that of a RCM driven by a Poisson process
with intensity measure Ktλ(C≤n−2, Cn−1) with additional independent connections to V (Cn−1); see also
Proposition 7.2. Therefore we obtain from Lemma 8.1 that

Etf(C≤n) = Et

∫

f(C≤n−1 ⊕ C+
n (µ))e

(1−t)Kλ(C≤n−2,Cn−1,X)t|µ| Γn−1(λ,C≤n−1, dµ).

Iterating this identity yields that the above equals
∫

· · ·
∫

f(C+
1 (µ1)⊕ · · · ⊕ C+

n (µn))e
(1−t)Kλ(δv+µ1+···+µn−2,µn−1,X) · · · e(1−t)Kλ(δv,µ1,X)t|µn| · · · t|µ1|

Γn−1(λ,C
+
1 (µ1)⊕ · · · ⊕ C+

n−1(µn−1), dµn) · · ·Γ0(λ, δv , dµ1).

By Lemma 7.4 this equals
∫

· · ·
∫

f(C+
1 (µ1)⊕ · · · ⊕ C+

n (µn))e
(1−t)Kλ(0,δv+µ1+···+µn−1,X)t|µ1|+···+|µn|

Γn−1(λ,C
+
1 (µ1)⊕ · · · ⊕ C+

n−1(µn−1), dµn) · · ·Γ0(λ, [δv ], dµ1).

By Theorem 7.1 we obtain

Etf(C≤n) = E1f(C≤n)t
|C≤n|−1e(1−t)ϕλ(C≤n−1)

and hence the assertion.

Theorem 8.3. Let v ∈ X, t ∈ R+ and t0 > 0. Then

Pt(C
v ∈ ·, |Cv| <∞) = Et01{Cv ∈ ·, |Cv| <∞}(t/t0)|C

v|−1e(t0−t)ϕλ(C
v). (8.2)

Proof. Again it is sufficient to consider the special case t0 = 1. By Proposition 8.2 the distribu-
tion Pt(C

v
n ∈ ·) is absolutely continuous w.r.t. P1(C

v
n ∈ ·) with Radon–Nikodym derivative Mv

n :=

t|C
v
≤n

|−1e(1−t)ϕλ(C
v
≤n−1

). In particular {Mv
n}n∈N0

is a (non-negative) martingale with respect to {σ(Cv≤n)}n∈N0

and converges therefore a.s. towards Mv
∞ := lim supn→∞Mv

n . By [37, Theorem VII.6.1] we have

Pt(C
v ∈ ·) = E11{Cv ∈ ·}Mv

∞ + Et1{Cv ∈ ·,Mv
∞ = ∞}.

On the event {|Cv| <∞} we clearly have

Mv
∞ = t|C

v|−1e(1−t)ϕλ(C
v)

which is finite. This concludes the assertion.
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Let f : G → R be a measurable mapping. Define for v ∈ X, n ∈ N, and t ∈ R+

Fn(ξ
v) := f(Cv)1{|Cv | = n}, f vn(t) := EtFn(ξ

v), (8.3)

F≤n(ξ
v) := f(Cv)1{|Cv | ≤ n}, f v≤n(t) := EtF≤n(ξ

v), (8.4)

F (ξv) := f(Cv)1{|Cv | <∞}, f v(t) := EtF (ξ
v). (8.5)

We also write |f |v(t) := Et|F (ξv)| and define |f |vn(t) and |f |v≤n(t) similarly. We are interested in the
analytic properties of the function f v(t) under the assumption |f |v(t) <∞. A key example is the position
dependent cluster density

κv(t) := Et|Cv|−1, t ∈ R+. (8.6)

Our terminology is motivated by the stationary marked case (see Lemma 4.3) and also supported by the
Mecke equation, implying

∫

tκv(t)λB(dv) = Et

∫

|Cv(ξ)|−1 ηB(dv), B ∈ X .

Suppose that |f |vn(t0) <∞ for some t0 > 0 and n ∈ N, then by Theorem 8.3

f vn(t) =

(

t

t0

)n−1 ∫ ∞

0
e−tu νf,n,t0(du), (8.7)

where the signed measure νf,n,t0 is defined by

νf,n,t0(·) := Et01{ϕλ(Cv) ∈ ·}et0ϕλ(C
v)Fn(ξ

v). (8.8)

By Corollary 7.3 this is a locally finite signed measure on R+. It follows from Theorem 8.3 that the
function |f |vn(t)/tn−1 is monotone decreasing on (0,∞), so that

|f |vn(t) ≤
(

t

t0

)n−1

|f |vn(t0), t ≥ t0.

Lemma 8.4. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) <∞, then for t ≥ t0

f vn(t) =
tn

tn−1
0

∫ ∞

0
νf,n,t0 [0, u]e

−tu du.

Proof. We obtain from (8.7) that

f vn(t) =
tn

tn−1
0

∫∫

1{u ≤ s}e−ts ds νf,n,t0(du). (8.9)

Since νf,n,t0 is locally finite, we can apply Fubini’s theorem to obtain the assertion.

Lemma 8.5. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) < ∞, then the function f vn is analytic on (t0,∞)
and for t > t0

d

dt
f vn(t) =

ntn−1

tn−1
0

∫ ∞

0
νf,n,t0 [0, u]e

−tu du− tn

tn−1
0

∫ ∞

0
uνf,n,t0 [0, u]e

−tu du. (8.10)

Proof. Let Ωt0 := {z ∈ C : ℜ(z) > t0}, and extend f vn to Ωt0 by setting

f vn(z) :=
zn

tn−1
0

∫ ∞

0
νf,n,t0 [0, u]e

−zu du, z ∈ Ωt0 .
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By (8.8) we have

|νf,n,t0 [0, u]| ≤ et0u|f |vn(t0).

Since |f |vn(t0) < ∞ this implies that f vn is a complex analytic function on Ωt0 . Since (t0,∞) ⊂ Ωt0 ∩ R,
the restriction of this function to (t0,∞) is real analytic. The formula (8.10) follows from Lemma 8.4 the
product rule of calculus and the Leibniz rule for differentiating integrals. The latter can be applied since
for each ε > 0 and all u > 0

u|νf,n,t0 [0, u]|e−tu ≤ ue(t0−t)u|f |vn(t0) ≤ ue−εu|f |vn(t0)

uniformly for t ≥ t0 + ε.

To rewrite Lemma 8.5 in a different way, we define

Mv
t := |Cv| − 1− tϕλ(C

v), t ∈ R+, v ∈ X. (8.11)

Lemma 8.6. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) < ∞, then function f vn is analytic on (t0,∞) and
for t > t0

d

dt
f vn(t) = t−1Et

[

Mv
t Fn(ξ

v)
]

. (8.12)

Proof. By Theorem 8.3,

f vn(t) =

(

t

t0

)n−1

Et0
[

Fn(ξ
v)e(t0−t)ϕλ(C

v)
]

.

Hence the result follows from Lemma 8.5 and calculus, where the application of the Leibniz differentiation
rule can be justified as in the proof of Lemma 8.5.

Lemma 8.7. Let v ∈ X, n ∈ N and t0 > 0. If |f |v≤n(t0) < ∞, then function f v≤n is analytic on (t0,∞)
and for t > t0

d

dt
f v≤n(t) = t−1Et

[

Mv
t F≤n(ξ

v)
]

. (8.13)

Proof. The result follows from the definition of f v≤n and Lemma 8.6, since |f |v≤n(t0) =
∑n

k=1 |f |vk(t0).

Theorem 8.8. Let 0 < t0 < t1 < ∞. Assume for each t ∈ [t0, t1] that |f |v(t) < ∞. Assume moreover
that for each ε > 0,

lim
n→∞

sup
t∈[t0+ε,t1]

∣

∣

∣

∣

∣

∑

k>n

d

dt
f vk (t)

∣

∣

∣

∣

∣

= 0. (8.14)

Then f v is continuously differentiable on (t0, t1] with derivative given by

d

dt
f v(t) = lim

n→∞
t−1 d

dt
f v≤n(t) = t−1

∞
∑

n=1

d

dt
f vn(t). (8.15)

Proof. Let n ∈ N. Since |f |v≤n(t0) ≤ |f |v(t0) < ∞, we can apply Lemma 8.7 to obtain that the function
f v≤n is analytic on (t0,∞), with derivative

d

dt
f v≤n(t) = t−1

n
∑

k=1

d

dt
f vn(t) = t−1Et

[

Mv
t F≤n(ξ

v)
]

, t > t0.
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By dominated convergence

lim
n→∞

f v≤n(t) = f v(t).

Furthermore we have

∣

∣

∣

∣

d

dt
f v(t)− d

dt
f v≤n(t)

∣

∣

∣

∣

= t−1

∣

∣

∣

∣

∣

∑

k>n

d

dt
f vk (t)

∣

∣

∣

∣

∣

.

By assumption (8.14) this tends to zero uniformly in t ∈ [t0 + ε, t1] for each ε > 0. A standard result of
analysis gives us that f v is continuously differentiable on (t0, t1] with derivative given by the right-hand
side of (8.15).

Theorem 8.9. Let 0 < t0 < t1 < ∞. Assume for each t ∈ [t0, t1] that |f |v(t) < ∞. Assume moreover
that for each ε > 0,

lim
n→∞

sup
t∈[t0+ε,t1]

∑

k>n

Et
∣

∣Mv
t Fk(ξ

v)
∣

∣ = 0. (8.16)

Then f v is continuously differentiable on (t0, t1] with derivative given by

d

dt
f v(t) = t−1Et

[

Mv
t F (ξ

v)
]

. (8.17)

Proof. Let n ∈ N. Since |f |vn(t0) ≤ |f |v≤n(t0) ≤ |f |v(t0) < ∞, then by Lemma 8.5 the function f vn is
analytic on (t0,∞), with derivative

∣

∣

∣

∣

d

dt
f vn(t)

∣

∣

∣

∣

= t−1
∣

∣Et
[

Mv
t Fn(ξ

v)
]
∣

∣ ≤ t−1Et
∣

∣Mv
t Fn(ξ

v)
∣

∣, t > t0.

Hence
∣

∣

∣

∣

∣

∑

k>n

d

dt
f vk (t)

∣

∣

∣

∣

∣

≤ t−1
∑

k>n

Et
∣

∣Mv
t Fn(ξ

v)
∣

∣.

By assumption (8.16) this tends to zero uniformly in t ∈ [t0 + ε, t1] for each ε > 0. Therefore by Theorem
8.8 the function f v(t) is continuously differentiable on (t0, t1] with derivative

d

dt
f v(t) = t−1

∞
∑

n=1

d

dt
f vn(t) = t−1Et

[

Mv
t F (ξ

v)
]

,

where the last equality we get from Fubini’s theorem, since by assumption (8.16) we have that for t ∈ (t0, t1]

Et
∣

∣Mv
t F (ξ

v)
∣

∣ =
∑

n≥1

Et
∣

∣Mv
t Fn(ξ

v)
∣

∣ <∞.

The following theorem provides a large class of functions satisfying the assumptions of Theorem 8.9,
covering the cluster density (8.6). We shall prove it in Section 10.

Theorem 8.10. Let f : G → R be a measurable mapping satisfying |f(µ)| ≤ |f̃(|V (µ)|)| for each µ ∈ G,
where f̃ : N → R satisfies

lim
n→∞

f̃(n)
√

n log n = 0. (8.18)

Then f v is for each v ∈ X continuously differentiable on (0,∞) with derivative given by (8.17).
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9 Difference operators

In this section we shall rewrite Theorem 8.8 and Theorem 8.9 in the form of a Margulis–Russo formula.
Recall that µ − δx := µ[V (µ) − δx] is the graph resulting from µ by removing the point x (if x ∈ V (µ))
along with all edges with vertex x for µ ∈ G and x ∈ X. Given a measurable function f : G → R and
x ∈ X we define ∇xf : G → R by

∇xf(µ) := f(µ)− f(µ− δx). (9.1)

Theorem 9.1. Let the assumptions of the Theorem 8.8 be satisfied. Then the function f v is continuously
differentiable on (t0, t1] with derivative given by

d

dt
f v(t) = lim

n→∞
t−1Et

∫

∇xF≤n(ξ
v)Cv!(dx) =

∑

n≥1

t−1Et

∫

∇xFn(ξ
v)Cv!(dx). (9.2)

We start the proof with the counterpart of Lemma 8.5 and Lemma 8.7.

Lemma 9.2. Let v ∈ X, n ∈ N and t0 > 0. If |f |vn(t0) < ∞, then function f vn is analytic on (t0,∞) and
for t > t0

d

dt
f vn(t) = t−1Et

∫

∇xFn(ξ
v)Cv!(dx).

Proof. Let t > t0. We wish to apply Lemma 8.6. By definition we have

Et|Fn(ξv)||Cv| = n|f |vn(t) ≤ n

(

t

t0

)n−1

|f |vn(t0)

which is finite by assumption. Therefore we obtain from Theorem 8.3, (8.8) (with |f | instead of f) and
Fubini’s theorem

Et|Fn(ξv)|ϕλ(Cv) =
(

t

t0

)n−1 ∫ ∞

0
ue−tu ν|f |,n,t0(du) =

(

t

t0

)n−1 ∫ ∞

0

∫ ∞

u
(ts− 1)e−ts ds ν|f |,n,t0(du)

=

(

t

t0

)n−1 ∫ ∞

0
ν|f |,n,t0 [0, s](ts − 1)e−ts ds

≤ |f |vn(t0)
tn

tn−1
0

∫ ∞

0
se(t0−t)s ds <∞,

where we have used that ν|f |,n,t0[0, s] ≤ et0s|f |vn(t0). Hence we obtain from Lemma 3.1 that

tEtFn(ξ
v)ϕλ(C

v) = Et

∫

Fn(ξ
v − δx)C

v!(dx).

Now the assertion follows from Lemma 8.6.

Lemma 9.3. Let v ∈ X, n ∈ N and t0 > 0. If |f |v≤n(t0) < ∞, then function f v≤n is analytic on (t0,∞)
and for t > t0

d

dt
f v≤n(t) = t−1Et

∫

∇xF≤n(ξ
v)Cv!(dx).

Proof. The result follows from the definition of f v≤n, Lemma 8.7 and Lemma 9.2.

Proof of Theorem 9.1. By Theorem 8.8 we have that f v is continuously differentiable on (t0, t1] with
derivative given by (8.15). Hence we can apply Lemma 9.2 and Lemma 9.3 to obtain the assertion.
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Theorem 9.4. Let the assumptions of the Theorem 8.9 be satisfied. Assume moreover that for each
t ∈ [t0, t1]

Et
[

|F (ξv)| (|Cv|+ ϕλ(C
v))
]

<∞. (9.3)

Then f v is continuously differentiable on (t0, t1] with derivative given by

d

dt
f v(t) = t−1Et

∫

∇xF (ξ
v)Cv!(dx). (9.4)

Proof. Let t > t0. Theorem 8.9 states that f v is continuously differentiable on (t0, t1] with derivative
given by (8.17). The assertion follows from (9.3) and Lemma 3.1, since splitting f into its negative and
positive part we can apply Lemma 3.1 to get

tEtF (ξ
v)ϕλ(C

v) = Et

∫

F (ξv − δx)C
v!(dx).

The result follows.

Remark 9.5. Let the assumptions of Theorem 9.4 be satisfied. By the Mecke equation (3.6) we have

Et

∫

∇xF (ξ
v)Cv!(dx) = tEt

∫

(F (ξv,x)− F (ξv))1{v ↔ x in ξv,x}λ(dx).

If v and x are not connected in ξv,x, then F (ξv,x) = F (ξv). Therefore we can rewrite (9.4) as

d

dt
f v(t) = Et

∫

(F (ξv,x)− F (ξv))λ(dx). (9.5)

10 Differentiability of the cluster density

In this section we prove in particular that the position dependent cluster density (given by (8.6)) is
continuously differentiable on (0,∞).

Theorem 10.1. Suppose that f : N → R is a function satisfying

lim
n→∞

f(n)
√

n log n = 0. (10.1)

Then t 7→ Etf(|Cv|) is for each v ∈ X continuously differentiable on (0,∞) with derivative given by (8.17).

We prove the theorem via some lemmas, partially following the proof of [6, (LP) (3.6)]. Let v ∈ X.
For t > 0 and n ∈ N we define

pvn(t) := Pt(|Cv| = n).

Specializing definition (8.8) in the case f ≡ 1 we set

νvn(·) := E11{ϕλ(Cv) ∈ ·}1{|Cv | = n}eϕλ(C
v). (10.2)

Then we obtain from (8.7) in the case t0 = 1 that

pvn(t) = tn−1

∫ ∞

0
e−tu νvn(du). (10.3)

Since pv1(t) = e−tDϕ(v) we have

νv1 = δDϕ(v), v ∈ X. (10.4)
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Lemma 10.2. Let v ∈ X, n ∈ N and u > 0. Then

νvn[0, u] ≤
(

eu

n− 1

)n−1

, (10.5)

where the right-hand side has to be interpreted as 1 if n = 1.

Proof. In view of (10.4) we can assume that n ≥ 2. Since pvn(t) ≤ 1 for t > 0, we have that

t−n+1 ≥
∫ u

0
e−tuνvn(du) ≥ e−tuνvn[0, u).

Optimizing over t ∈ (0,∞) yields the assertion.

Lemma 10.3. Let v ∈ X, n ∈ N and t > 0. Then

pvn(t) = tn
∫ ∞

0
νvn[0, u]e

−tu du.

Proof. The assertion follows from Lemma 8.4.

Lemma 10.4. Let v ∈ X, n ∈ N. Then t 7→ pvn(t) is analytic on (0,∞) with derivative given by

d

dt
pvn(t) = ntn−1

∫ ∞

0
νvn[0, u]e

−tu du− tn
∫ ∞

0
uνvn[0, u]e

−tu du (10.6)

Proof. The assertion follows from Lemma 8.5.

Lemma 10.4 implies
∣

∣

∣

d

dt
pvn(t)

∣

∣

∣
≤ n

t

∫ ∞

0
νvn[0, u]

∣

∣

∣

∣

1− ut

n

∣

∣

∣

∣

tne−tu du. (10.7)

The next lemma provides a bound for the above right-hand side.

Lemma 10.5. Let v ∈ X, n ≥ 2 and δ ∈ (0, 1). Then we have for all t > 0 that
∫ ∞

0
νvn[0, u]

∣

∣

∣

∣

1− ut

n

∣

∣

∣

∣

tne−tudu ≤ δpvn(t) + (1− δ)neδn + (1 + δ)ne−δn. (10.8)

Proof. By Lemma 10.3 we have
∫ ∞

0
νvn[0, u]

∣

∣

∣

∣

1− ut

n

∣

∣

∣

∣

tne−tudu ≤ δpvn(t) +

∫

|1− tu
n |>δ

νvn[0, u]t
ne−tu

∣

∣

∣

∣

1− tu

n

∣

∣

∣

∣

du

≤ δpvn(t) +

(

e

n− 1

)n−1 ∫

|1− tu
n |>δ

tnun−1e−tu
∣

∣

∣

∣

1− tu

n

∣

∣

∣

∣

du.

Changing variables yields that the above equals

δpvn(t) +

(

e

n− 1

)n−1 ∫

|1− u
n |>δ

un−1e−u
∣

∣

∣
1− u

n

∣

∣

∣
du.

Splitting the integral on the above right-hand side into two pieces corresponding to tu < n(1 − δ) and
tu > n(1 + δ) yields

∫ n(1−δ)

0
un−1e−u

(

1− u

n

)

du = nn−1(1− δ)ne−n(1−δ),

∫ ∞

n(1+δ)
un−1e−u

(u

n
− 1
)

du = nn−1(1 + δ)ne−n(1−δ).

Since (1 + 1/(n − 1))n−1 < e for all n ≥ 2, we obtain the assertion (10.8).
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Let f be as in Theorem 10.1 and v ∈ X. Then f is bounded and

Etf(|Cv|) = EtF (ξ
v) =

∞
∑

n=1

f(n)pvn(t).

In order to prove Theorem 10.1 we will check the condition (8.16) on [t0,∞) for each t0 > 0. This is
achieved by the previous and the following lemma.

Lemma 10.6. Suppose that f : N → R. Then

Et|Mv
t Fn(ξ

v)| ≤ |f(n)|
∫ ∞

0
νvn[0, u] |n− ut| tne−tudu. (10.9)

Proof. It is easy to see the following identities which follow from integration by parts

∫ (n−1)/t

u
(n− ts)e−tsds = −t−1(n− ts)e−ts

∣

∣

∣

(n−1)/t

u
−
∫ (n−1)/t

u
e−tsds

= t−1
(

(n− tu)e−tu − e−(n−1) + e−(n−1) − e−tu
)

= t−1(n− 1− tu)e−tu,
∫ ∞

u
(n− ts)e−tsds = t−1(n − tu)e−tu −

∫ ∞

u
e−tsds = t−1(n− 1− tu)e−tu.

Since νvn is locally finite, we can apply Fubini’s theorem to obtain that

Et|Mv
t Fn(ξ

v)| = |f(n)|Et
[

|n− 1− tϕλ(C
v)|1{|Cv | = n}

]

= |f(n)|tn−1

∫ ∞

0
|n− 1− tu|e−tuνvn(du)

= |f(n)|tn−1

(

∫ (n−1)/t

0
(n− 1− tu)e−tuνvn(du)−

∫ ∞

(n−1)/t
(n − 1− tu)e−tuνvn(du)

)

= |f(n)|tn
(

∫ (n−1)/t

0

∫ (n−1)/t

u
(n− ts)e−tsds νvn(du)−

∫ ∞

(n−1)/t

∫ ∞

u
(n− ts)e−tsds νvn(du)

)

= |f(n)|tn
(

∫ (n−1)/t

0
νvn[0, s](n − ts)e−tsds−

∫ ∞

(n−1)/t
νvn[0, s](n − ts)e−tsds

)

= |f(n)|
∫ ∞

0
νvn[0, s] |n− st| tne−ts ds− 2|f(n)|

∫ n/t

(n−1)/t
νvn[0, s](n − ts)tne−tsds.

Proof of Theorem 10.1. Let v ∈ X, t0 > 0 and n ≥ 2. We need to check the condition (8.16). To do so,
we start with inequality (10.9). In (10.8) we choose δ ≡ δn by δn :=

√

9 log n/n. We use the inequalities

(1− r)er ≤ e−r
2/2 which holds for all r ≥ 0 and (1+ r)e−r ≤ e−r

2/3 which holds for all r ∈ [0, 1/3). Then
we obtain for all sufficiently large n ∈ N that (1 − δn)

ne−nδn ≤ n−9/2 and (1 − δn)
ne−nδn ≤ n−3. Hence

there exist n0 ∈ N such that for each t ≥ t0

∞
∑

n=n0

t−1|f(n)|
∫ ∞

0
νvn[0, u] |n− ut| tne−tudu ≤

√
9

t0

∞
∑

n=n0

|f(n)|
√

n log npvn(t) +
2

t0

∞
∑

n=n0

n−2. (10.10)

Let ε > 0 and choose n1 ≥ n0 such that |f(n)|√n log n ≤ ε for each n ≥ n1. Then

∞
∑

n=n1

|f(n)|
√

n log npvn(t) ≤ ε,

finishing the proof.
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Proof of Theorem 8.10. We check condition (8.16). By assumption (8.18) it suffices to show that

lim
n→∞

sup
t≥t0

∑

k>n

|f̃(k)|Et
∣

∣Mv
t

∣

∣1{|Cv| = k}) = 0,

for any t0 > 0. This follows from (10.9) and the proof of Theorem 10.1.

Later we shall need the following integrated version of Theorem 10.1

Theorem 10.7. Assume that X = Y × M is the product of two complete separable metric spaces and
let Q be a finite measure Q on M. Suppose that f : N → R is a function satisfying (10.1). Then t 7→
∫

Etf(|C(y,q)|)Q(dq) is for each y ∈ Y continuously differentiable on (0,∞).

Proof. Let y ∈ Y and t0 > 0. We know from Theorem 10.1 that t 7→ Etf(|C(y,q)|) is for each (y, q) ∈ Y×M

continuously differentiable. The assertion follows from the Leibniz differentiation rule once we can show
that

∞
∑

n=1

|f(n)|
∫ ∞

0
ν(y,q)n [0, u] |n− ut| tne−tudu ≤ c, t ≥ t0, q ∈ M, (10.11)

for some c > 0. Since f(n)
√
n log n is bounded, we see from (10.10) that the above series, starting from

n = n0 is bounded in q ∈ M and t ≥ t0. The remaining terms in the series can be bounded by (10.8).

Similarly as in the proof of Lemma 8.5 one can show that
∫

f
(y,q)
n (t)Q(dq) is an analytic function on (0,∞).

Therefore the continuity of the derivative follows from (10.10), since
∑

n≥n0

|f(n)|√n log n
∫

p
(y,q)
n (t)Q(dq) →

0 as n0 → ∞ uniformly in t ∈ R+.

Strengthening the assumption on the function f in Theorem 10.7, we can write the derivative as a
Margulis–Russo type formula.

Theorem 10.8. Suppose that f : N → R is a function satisfying

sup
n≥1

|f(n)|n <∞. (10.12)

Then t 7→ Etf(|Cv|) is for each v ∈ X continuously differentiable on (0,∞) with derivative given by (9.4).

Proof. It is enough to check condition (9.3) on [t0,∞) for each t0 > 0. Condition (10.12) implies that

Et|f(|Cv|)||Cv| <∞.

It follows from Fubini’s theorem and Lemma 10.2 that for n ≥ 2

Et|Fn(ξv)|ϕλ(Cv) = |f(n)|tn−1

∫ ∞

0
ue−tuνvn(du) = |f(n)|tn−1

∫ ∞

0

∫ ∞

u
(ts− 1)e−ts ds νvn(du)

= |f(n)|tn−1

∫ ∞

0
νvn[0, s](ts − 1)e−ts ds < |f(n)|tn

∫ ∞

0
νvn[0, s]se

−ts ds

≤ |f(n)|
(

2npvn(t) + tn
∫ ∞

2n
νvn[0, s]se

−ts ds

)

≤ |f(n)|
(

2npvn(t) + t−1

(

e

n− 1

)n−1 ∫ ∞

2n
une−u du

)

= |f(n)|2npvn(t) + t−1|f(n)|
(

e

n− 1

)n−1

n! P(Xn ≤ n),

where Xn has a Poisson distribution with parameter 2n. By assumption (10.12) the sum over the first
terms is converging. By a rather elementary concentration inequality we have P(Xn ≤ n) ≤ e−n for each
n ∈ N. Therefore the sum over the second terms is converging too.
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Remark 10.9. The position dependent cluster density satisfies the condition (10.12) and its derivative
can be represented by (9.4), i.e.

d

dt
κv(t) = t−1

(

Pt(|Cv| <∞)− κv(t)− Et

∫

|Cv − δx|−1Cv!(dx)

)

= Et

∫

(|Cv(ξv,x)|−1 − |Cv|−1)1{x ∈ Cv(ξv,x)}λ(dx).

11 Deletion stability of the stationary marked RCM

In this section we consider the stationary marked RCM as introduced in Section 4. Hence we take a
Poisson process η on Rd ×M with intensity measure tλ = tλd ⊗ Q and consider the random connection
model ξ based on η and a fixed connection function ϕ : (Rd ×M)2 → [0, 1] satisfying (4.1) and (4.2).

Theorem 11.1. The infinite clusters of a stationary marked random connection model are deletion stable.

Our proof of the theorem partially follows the seminal paper [1]. It requires a significant extension of
some of the arguments in [23] treating the Gilbert graph with deterministic radii; see Example 4.8.

We need to introduce some further notation. For µ ∈ G and (x, p) ∈ V (µ) we denote by N0(x, p, µ)
the number of clusters in C(x,p)(µ)− δ(x,p). Hence N

0(x, p, µ) is the number of clusters in µ− δ(x,p) which
are connected in µ with (x, p). We then define N+(x, p, µ) similarly to N0(x, p, µ), except that at most
one infinite cluster is counted, i.e.

N+(x, p, µ) := N0(x, p, µ) − 1{N∞(x, p, µ) ≥ 1}(N∞(x, p, µ)− 1).

Given B ∈ B(Rd) and a measure ν on Rd×M it will be convenient to write νB := νB×M for the restriction
of ν to B ×M.

We fix some arbitrary t0 > 0. It is then no restriction of generality to assume that t ∈ (0, t0]. Let
(Bn)n∈N be an increasing sequence of convex and compact sets with union Rd. Our proofs require a
specific coupling of the RCM ξ with two random graphs ξn,0 and ξn,+, n ∈ N, according two different
boundary conditions: free and wired. To this end we let ξ̃ be a RCM based on a Poisson process η̃ with
intensity measure t0λ. We can assume without loss of generality that η is t/t0-thinning of η̃ (see [25,
Corollary 5.9]) and that ξ is given as the restriction ξ̃[η] of ξ̃ to the vertices from η. Let us first set
ξn := ξ̃[ηBn + η̃Bc

n
]. This is a RCM driven by the Poisson process ηBn + η̃Bc

n
which has intensity measure

tλBn + t0λBc
n
. We define ξn,0 as the restriction ξ[ηBn ] = ξn[ηBn ] of ξ to Bn ×M. This is a RCM driven

by ηBn . We let ξn,+ be the random graph resulting from ξn by connecting all point from η̃Bc
n
. The reader

should keep in mind that ξn,+ is a very simple function of the RCM ξn. In fact, ξn,+ is also a RCM with
the connection function to be suitably modified. An important property of this coupling is that ξn,0 is a
subgraph of ξ, while ξ is a subgraph of ξn,+ (in fact of ξn).

For (x, p) ∈ ηBn we define C
(x,p)
n,0 := C(x,p)(ξn,0) and C

(x,p)
n,+ := C(x,p)(ξn,+) noting that

V (C
(x,p)
n,+ ) = V (C

(x,p)
n,0 ) + 1{(x, p) ↔ η̃Bc

n
in ξn}η̃Bc

n
.

Note also that if (x, p) /∈ ηBn , then C
(x,p)
n,0 = C

(x,p)
n,+ = 0. Note also that C

(x,p)
n,+ is infinite iff (x, p) is connected

(in ξn) to η̃Bc
n
. Otherwise it is finite and coincides (by the coupling construction) with C

(x,p)
n,0 = C(x,p)(ξ).

Lemma 11.2. Let (x, p) ∈ Rd × M. Then, almost surely, V (C
(x,p)
n,0 ) ↑ V (C(x,p)(ξ)) and V (C

(x,p)
n,+ ) ↓

V (C(x,p)(ξ)) as n→ ∞.

Proof. Let (x, p) ∈ η otherwise the statement is trivial. There exists m ∈ N such that x ∈ Bm. We shall

always take n ≥ m. The second assertion has to be interpreted this way. Clearly C
(x,p)
n,0 is a subgraph
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of C(x,p)(ξ). Assume that (y, q) ∈ C(x,p)(ξ). Then there exists n such that (x, p) is connected to (y, q)

within ξn,0. This proves the first assertion. Next we note that C(x,p)(ξ) is a subgraph of C
(x,p)
n+1,+ while

C
(x,p)
n+1,+ is a subgraph of C

(x,p)
n,+ . Assume that (y, q) ∈ C

(x,p)
n,+ for each n ≥ m. For large enough n we then

have y ∈ Bn and hence (y, q) ∈ C(x,p)(ξ).

For each n ∈ N we define

Mn,⋆ :=

∫

|C(x,p)
n,⋆ |−1 ηBn(d(x, p)),

where we use a star to denote either 0 or +. A simple counting argument shows that Mn,0 is the number
of clusters (finite) in ξn,0 while Mn,+ is the number of finite clusters in ξn,+. Moreover, we have that

Mn,+ ≤Mn ≤Mn,0, (11.1)

where (see also Proposition 4.4)

Mn :=

∫

|C(x,p)(ξ)|−1 ηBn(d(x, p)). (11.2)

Recalling the definition (4.6) of the cluster density κ(t), we have the following lemma.

Lemma 11.3. Let t ∈ [0, t0]. Then (λd(Bn))
−1EtMn,⋆ → tκ(t) as n→ ∞.

Proof. By Lemma 4.1,

EtMn = t

∫∫

1{x ∈ Bn}Et|C(x,p)|−1 dxQ(dp) = λd(Bn)tκ(t).

Almost surely Mn,0−Mn is less than the number of clusters with points from ηBn which are connected in
ξ with ηBc

n
, and therefore less than the number of points from ηBn which are directly connected in ξ with

ηBc
n
. Analogously, Mn −Mn,+ is less than number of clusters with points from ηBn which are connected

in ξn with η̃Bc
n
, and therefore less than the number of points from ηBn which are directly connected in ξn

with η̃Bc
n
. Then with probability one, we have

Mn,0 −
∫

1{(x, p) ∼ η̃Bc
n
in ξn}ηBn(d(x, p)) ≤Mn,0 −

∫

1{(x, p) ∼ ηBc
n
in ξ}ηBn(d(x, p))

≤Mn ≤Mn,+ +

∫

1{(x, p) ∼ η̃Bc
n
in ξn}ηBn(d(x, p)).

By the Mecke equation, we have

Et

∫

1{(x, p) ∼ η̃Bc
n
in ξn}ηBn(d(x, p)) = t

∫∫

1{x ∈ Bn}
(

1− e−t0
∫
1{y∈Bc

n}ϕ(y−x,p,q)dyQ(dq)
)

dxQ(dp)

≤ t0t

∫∫∫

1{x ∈ Bn, y ∈ Bc
n}ϕ(y − x, p, q) dx dyQ2(d(p, q))

= t0t

∫∫

1{x ∈ Bn, y ∈ Bc
n}ψ(y − x) dx dy,

where

ψ(x) :=

∫

ϕ(x, p, q) Q2(d(p, q)), x ∈ Rd. (11.3)

By assumption (4.2), ψ is integrable.
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Let ε > 0 and choose r > 0 so large that
∫

1{|z| > r}ψ(z) dz ≤ ε. Then

∫

1{x ∈ Bn, y ∈ Bc
n, |y − x| > r}ψ(y − x) dx dy ≤ ελd(Bn).

Further

1

λd(Bn)

∫

1{x ∈ Bn, y ∈ Bc
n, |y − x| ≤ r}ψ(y − x) dx dy ≤ dϕ

λd((Bn)⊖r)

λd(Bn)

n→∞−→ 0, (11.4)

where, for a bounded set B ⊂ Rd, B⊖r := {x ∈ B : d(x, ∂B) ≤ r} and ∂B denotes the boundary of B.
Therefore

lim sup
n→∞

EtMn,0

λd(Bn)
− εt0t ≤ tκ(t) ≤ lim inf

n→∞

EtMn,+

λd(Bn)
+ εt0t

Taking into account (11.1), this yields the assertion.

Remark 11.4. The convergence on the right-hand side of (11.4) is crucial for the proof of Lemma 11.3.
This amenability property of Euclidean space is also important for Lemma 11.8.

Let n ∈ N. We will now explore the derivatives of t 7→ EtMn,⋆. For (x, p) ∈ Bn × M we define

N⋆
n(x, p) := N0(x, p, ξ

(x,p)
n,⋆ ), the finite volume counterparts of N0(x, p, ξ(x,p)) and N+(x, p, ξ(x,p)). By this

definition N0
n(x, p) is the number of (finite) clusters in ξn,0 which are connected to (x, p) in ξ

(x,p)
n,0 , and

N+
n (x, p) is the number of clusters (with at most one infinite) in ξn,+ which are connected to (x, p) in

ξ
(x,p)
n,+ .

Lemma 11.5. For any n ∈ N and either choice of boundary conditions the function t 7→ EtMn,⋆ is
differentiable on [0, t0) and the derivative is given by

d

dt
EtMn,⋆ = λd(Bn)− Et

∫∫

1{x ∈ Bn}N⋆
n(x, p) dxQ(dp).

Proof. Since Mn,⋆ ≤ η(Bn) we have EtMn,⋆ <∞ for all t > 0. We now apply the Margulis-Russo formula
(3.9), where λ2 = (λd)Bn ⊗Q and λ1 = 0 for the free boundary condition (⋆ = 0) and λ1 = t0(λd)Bc

n
⊗Q

for the wired boundary condition (⋆ = +). Hence EtMn,⋆ is a differentiable function of t and

d

dt
EtMn,⋆ = Et

∫∫

1{x ∈ Bn}
(

Mn,⋆(ξ
(x,p)
n,⋆ )−Mn,⋆(ξn,⋆)

)

dxQ(dp).

Let (x, p) ∈ Bn × M. If N⋆
n(x, p) = 0, then with probability one Mn,⋆(ξ

(x,p)
n,⋆ ) − Mn,⋆(ξn,⋆) = 1.

Otherwise the removal of (x, p) from ξ
(x,p)
n,⋆ results in Mn,⋆(ξ

(x,p)
n,⋆ )−Mn,⋆(ξn,⋆) = 1−N⋆

n(x, p) a.s., proving
the result.

Lemma 11.6. For any n ∈ N and either choice of boundary conditions EtMn,⋆ + λd(Bn)dϕt
2/2 is a

convex function of t on [0, t0).

Proof. For (x, p) ∈ Rd ×M we let Ψ(x, p) denote the point process of the Poisson neighbours of (x, p) in
ξ(x,p), that is the points in η which are directly connected to (x, p) in ξ(x,p). For a Borel set B ⊂ Rd we let
ΨB(x, p) denote the restriction of Ψ(x, p) to B ×M. We further denote dϕ(p) :=

∫

d(p, q)Q(dq) so that
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dϕ =
∫

dϕ(p)Q(dp). By Lemma 11.5,

d

dt

[

EtMn,⋆ + λd(Bn)dϕ
t2

2

]

= λd(Bn)− Et

∫∫

1{x ∈ Bn}N⋆
n(x, p) dxQ(dp) + tλd(Bn)dϕ

= λd(Bn) +

∫∫

1{x ∈ Bn}
(

tdϕ(p)− EtN
⋆
n(x, p)

)

dxQ(dp)

= λd(Bn) +

∫∫

1{x ∈ Bn}
(

Et|Ψ(x, p)| − EtN
⋆
n(x, p)

)

dxQ(dp)

= λd(Bn) +

∫∫

1{x ∈ Bn}
(

Et|ΨBc
n
(x, p)|+ Et

(

|ΨBn(x, p)| −N⋆
n(x, p)

))

dxQ(dp),

Clearly Et|ΨBc
n
(x, p)| is increasing in t. We shall now argue that Et

[

ΨBn(x, p)−N⋆
n(x, p)

]

is increasing in
t. Applying the Margulis-Russo formula (3.9) similarly as in the proof of Lemma 11.5, we see that it is
sufficient to check that ΨBn(x, p)−N⋆

n(x, p) cannot strictly decrease when adding a point (y, q) ∈ Bn×M

to η. Assume first that (y, q) is not directly connected to (x, p). Then ΨBn(x, p) does not change while
N⋆
n(x, p) can only decrease (namely by connecting some of the clusters in ξn,⋆ which are connected to

(x, p) in ξ
(x,p)
n,⋆ ). Assume now that (y, q) is directly connected to (x, p), so that ΨBn(x, p) increases by

one. In that case N⋆
n(x, p) can increase by at most 1, namely if some of the clusters in ξn,⋆ which are not

connected to (x, p) in ξ
(x,p)
n,⋆ get connected to the new point (y, q) while none of the clusters in ξn,⋆ which

are connected to (x, p) in ξ
(x,p)
n,⋆ are connected by (y, q). This proves the asserted monotonicity and hence

the convexity assertion.

Now we are in the position to prove the first main result in this section.

Theorem 11.7. The function t 7→ tκ(t) + dϕt
2/2 is continuously differentiable on (0,∞), convex on R+

and right differentiable at zero.

Proof. The first assertion follows from Theorem 10.7 while the second follows from Lemmas 11.3 and 11.6
and the (elementary) fact that the limit of a sequence of convex functions is convex. The function is right
differentiable at zero since κ is a monotone function.

In the final step of the proof of Theorem 11.1 we need to identify the limits of the derivatives in
Lemma 11.5.

Lemma 11.8. Let t ∈ [0, t0]. Then

lim inf
n→∞

(λd(Bn))
−1Et

∫∫

1{x ∈ Bn}N0
n(x, p) dxQ(dp) ≥

∫

EtN
0(0, p, ξ(0,p))Q(dp),

lim sup
n→∞

(λd(Bn))
−1Et

∫∫

1{x ∈ Bn}N+
n (x, p) dxQ(dp) ≤

∫

EtN
+(0, p, ξ(0,p))Q(dp).

Proof. Similarly as in the proof of Proposition 4.5 by stationarity, we have
∫

EtN
⋆(0, p, ξ(0,p))Q(dp) = (λd(Bn))

−1Et

∫∫

1{x ∈ Bn}N⋆(x, p, ξ(x,p)) dxQ(dp), n ∈ N.

Hence our task is to show that N⋆(x, p, ξ(x,p)) is well approximated by N⋆
n(x, p). For a given Borel set

B ⊂ Rd and (x, p) ∈ Rd × M we denote by N0
B(x, p) the number of clusters in ξ to which the Poisson

neighbors of (x, p) in B ×M belong. Note that a.s.

N0
B(x, p) +N0

Bc(x, p) ≥ N0(x, p, ξ(x,p)).

33



It is, moreover, easy to see that N0
n(x, p) ≥ N0

Bn
(x, p) a.s. for each n ∈ N. It follows that a.s.

N0
n(x, p) ≥ N0(x, p, ξ(x,p))−N0

Bc
n
(x, p). (11.5)

Obviously N0
Bc

n
(x, p) is dominated by the number of points from ηBc

n
which are directly connected to (x, p)

in ξ(x,p). Therefore

EtN
0
Bc

n
(x, p) ≤ t

∫∫

1{y ∈ Bc
n}ϕ(y − x, p, q) dyQ(dq).

It now follows from (11.5) and exactly as in the proof of Lemma 11.3 that for each ε > 0

lim inf
n→∞

(λd(Bn))
−1Et

∫∫

1{x ∈ Bn}N0
n(x, p) dxQ(dp) ≥

∫

EtN
0(0, p, ξ(0,p))Q(dp) − εt.

This implies the first asserted inequality. The second follows from N+
n (x, p) ≤ N+(x, p, ξ(x,p)) a.s..

Proof of Theorem 11.1. The convex function in Theorem 11.7 is differentiable and approximated by the
differentiable convex functions (λd(Bn))

−1EtMn,⋆ + dϕt
2/2; see Lemmas 11.3 and 11.5. A classical result

from convex analysis (see [36, Theorem 25.7]) implies that

lim
n→∞

(λd(Bn))
−1 d

dt
EtMn,⋆ =

d

dt
tκ(t).

Therefore we obtain from Lemma 11.5 that the limes inferior in Lemma 11.8 coincides with the limes
superior. Hence Lemma 11.8 yields

∫

EtN
0(0, p, ξ(0,p))Q(dp) ≤

∫

EtN
+(0, p, ξ(0,p))Q(dp),

or
∫

Et(N
0(0, p, ξ(0,p))−N+(0, p, ξ(0,p)))Q(dp) ≤ 0.

Since

N0(0, p, ξ(0,p))−N+(0, p, ξ(0,p)) = 1{N∞(0, p, ξ(0,p)) ≥ 1}(N∞(0, p, ξ(0,p))− 1),

we obtain
∫

Pt(N
∞(0, p, ξ(0,p)) ≥ 2)Q(dp) = 0. (11.6)

Using stationarity as in the proof of Lemma 4.1 we see, that this is equivalent to the assertion.

The preceding proof yields the following corollary.

Corollary 11.9. The cluster density is continuously differentiable function and

d

dt
(tκ(t)) = 1−

∫

EtN
0(0, p, ξ(0,p))Q(dp).

Remark 11.10. Assume that ϕ(x, p, q) = ϕ̃(‖x‖, p, q) and t = 1, for a measurable function ϕ̃ : [0,∞) ×
M × M → [0, 1] which is decreasing and right-continuous in the first coordinate. Using the notation at
(2.2) and (4.3) we define

Wm,n :=
‖Xm −Xn‖

ϕ̃−1(Zm,n, Qm, Qn)
, m, n ∈ N, (11.7)
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where ϕ̃−1(s, p, q) := inf{r ≥ 0 : ϕ(r, p, q) ≤ s}, (s, p, q) ∈ [0, 1] ×M×M. Given r > 0 we define a RCM
ξr with vertex set η by connecting Xm with Xn if Wm,n ≤ r. Note that Wm,n ≤ r iff

Zm,n ≤ ϕ̃(r−1‖Xm −Xn‖, Qm, Qn).

Since
∑∞

n=1 δ(r−1Xn,Qn) is under P1 a Poisson process with intensity measure rdλd ⊗Q, we hence have

P1(ξr ∈ ·) = Prd(ξ ∈ ·), r > 0, (11.8)

i.e. a joint coupling of the RCMs with different intensity parameters. In the unmarked case this construc-
tion can be found in [4, Example 1.3].

Remark 11.11. Consider the setting of Remark 11.10 and the complete graph with vertex set η. We can
interpret the random variable (11.7) as weight of the edge between (Xm, Qm) and (Xn, Qn). As in [3] we
define the associated minimal spanning forest T as the forest (a graph without cycles) with vertex set η
and an edge between (Xm, Qm) and (Xn, Qn) if there is no path between these points with weights strictly
less than Wm,n. In special cases it was observed in [2, 3, 4, 6] that there is a close relationship between
the RCM ξr and T . For instance it was proved in [3] that the trees (clusters) of T are all infinite and
can only have one or two ends. Two-ended trees T can only occur if r equals the percolation threshold
in which case T contains all points of the infinite clusters (should they exist). It would be interesting to
explore the consequences of deletion stability of ξr for T .

12 The stationary marked RCM: irreducibility and uniqueness

In this section we consider a stationary marked RCM ξ as introduced in Section 4. When combined with
Theorem 11.1, Theorem 6.1 immediately yields the following result.

Theorem 12.1. An irreducible stationary marked random connection model can almost surely have at
most one infinite cluster.

Remark 12.2. Theorems 12.1 and 6.4 show that an irreducible stationary marked RCM is 2-indivisible.
In particular this holds at the critical intensity tc. This provides some evidence for the absence of doubly-
infinite paths at criticality. In fact, it is a common belief that in Euclidean space there is no infinite
cluster in the critical phase.

We now present several examples, starting with the classical stationary RCM; see Example 4.6.

Example 12.3. By Theorem 12.1 and Proposition 5.3 the (unmarked) stationary RCM can have at most
one infinite component. This generalizes [31, Theorem 6.3], where it is assumed that ϕ(x) = ϕ̃(‖x‖),
x ∈ Rd, for a decreasing function ϕ̃ : [0,∞) → [0, 1]. The proof there is based on an extension of the
approach from [9] to the continuum and is very different from ours.

Next we treat the simple case, where the connection factorizes; see also [10, Section 1.2].

Example 12.4. Let ψ : Rd → [0, 1] be a symmetric function with 0 < mψ :=
∫

ψ(x) dx < ∞ and let
K : M2 → [0, 1] be measurable and symmetric. Assume that ϕ(x, p, q) = ψ(x)K(p, q), (x, p, q) ∈ Rd×M2.
Then

ϕ(n)(x, p, q) = ψ∗n(x)Kn(p, q), (x, p, q) ∈ Rd ×M2, (12.1)

where K1 = K and Kn(p, q) =
∫

Kn−1(p, r)K(r, q)Q(dr), n ≥ 2. By Proposition 5.1 (iv) and Lemma 5.4
(i) ξ is irreducible iff

sup
n≥1

Kn(p, q) > 0, Q2-a.e. (p, q) ∈ M2.
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We continue with the examples from Section 4.

Example 12.5. Let us consider Example 4.8. Assume that there exists x0 ∈ Rd (for instance x0 = 0) such
for Q-a.e. K ∈ Cd there exists ε > 0 such that B(x0, ε) ⊂ K, where B(x0, ε) denotes the ball with center
x0 and radius ε. Assume also that the function V is increasing w.r.t. set inclusion and that V (K) > 0
if K 6= ∅. Under these assumptions the model is irreducible. As point p0 in (5.15) we can take the ball
B(x0, ε0), where ε0 > 0 is chosen such that Q({K : B(x0, ε0) ⊂ K}) > 0. To check (5.12) we take K ∈ Cd
such that B(x0, ε) ⊂ K for some ε ∈ (0, ε0]. We have

dϕ(B(x0, ε0),K) =

∫

(

1− e−V (B(x0,ε0)∩(K+x))
)

dx ≥
∫

(

1− e−V (B(x0,ε0)∩(B(x0+x,ε))
)

dx.

By assumption on V this is positive, since
∫

1{B(x0, ε0) ∩B(x0 + x, ε) 6= ∅} dx =

∫

1{B(0, ε0) ∩B(x, ε) 6= ∅} dx > 0.

We can now apply Theorem 12.1 to conclude that the infinite cluster is unique. For the spherical Boolean
model this result can be found as Theorem 3.6 in [31]. For general Boolean models (i.e. ϕ(x,K,L) =
1{K ∩ (L+ x) 6= ∅}) the result seems to be new.

Example 12.6. The weighted RCM from Example 4.9 is irreducible. Indeed we can take any p0 ∈ (0, 1)
and A = [p0, 1). Furthermore we have for all p, q ∈ (0, 1) that dϕ(p, q) = mρg(p, q)

−1, which is positive.
By Theorem 12.1 the infinite cluster is unique. This was asserted in [18] without providing details of a
proof. A more detailed proof in a special case (based on the approach in [9]) was given in [21].

Example 12.7. Consider a stationary marked RCM with M as the space of all locally finite simple
counting measures on Rd. Let Q be a distribution of a simple stationary point process χ satisfying
Q{0} = 0. For x ∈ Rd and p ∈ M let d(x, p) be the distance between x and p. Similarly as in Example
12.6 we consider a connection function of the form

ϕ(x, p, q) = ρ(d(−x, p)−αd(x, q)−α‖x‖d)

for a decreasing function ρ : [0,∞) → [0, 1] such that mρ :=
∫

ρ(‖x‖d) dx is positive and finite and where
α > 0 is a fixed parameter. By stationarity,

∫∫

ϕ(x, p, q)Q2(d(p, q)) dx =

∫∫

ρ(d(0, p)−αd(0, q)−α‖x‖d) dxQ2(d(p, q))

= mρ

∫

1{d(0, p) <∞, d(0, q) <∞}d(0, p)αd(0, q)αQ2(d(p, q))

= mρ

(
∫

d(0, p)αQ(dp)

)2

.

To ensure (4.2) we assume that
∫

d(0, p)αQ(dp) < ∞, which is a rather weak assumption. Since mρ > 0
it is clear that dϕ(p) is positive whenever p 6= 0.

The function ϕ(x, p, ·) is for all (x, p) ∈ Rd × M non-decreasing with respect to the natural partial
ordering on M. Therefore, if Q is associated, then Theorem 5.13 implies that ξ is irreducible. For instance
we might take Q as the distribution of a Poisson process; see e.g. [26]. Hence Theorem 12.1 applies.

Remark 12.8. Here we provide an example where Theorem 5.13 applies but not Theorem 5.9. Consider
Example 12.7 in the special case d = 1. We assume that ρ is strictly decreasing. Take some p0 ∈ M. We
assert that P(C) = 0, where

C := {ϕ(x, p, χ) ≥ ϕ(x, p, p0) for λ1 ⊗Q-a.e. (x, p) ∈ R×M}.
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Since ρ is strictly decreasing and P(χ = 0) = 0 the equation P(C) = 0 is equivalent with P(C ′) = 0, where

C ′ := {d(x, χ) ≥ d(x, p0) for λ1-a.e. x ∈ R}.

Let us first assume that p0[a,∞) = 0 for some a ∈ R. Then we have for each c > 0 that

C ′ ⊂ {d(x, χ) > c for λ1-a.e. x > a+ c} = {χ[x− c, x+ c] = 0 for λ1-a.e. x > a+ c}.

This event is contained in {χ(a, a + 2c) = 0}, whose probability does not depend on a and tends to 0 as
c→ ∞; see [22, Lemma 30.9 (i)]. Similarly we can treat the case p0(−∞, a] = 0 for some a ∈ R.

Let us assume now that p0 has atoms · · · < x−1 < x0 < x1 < · · · with limn→−∞ xn = −∞ and
limn→∞ xn = ∞. Take n ∈ Z and assume that χ(xn, xn+1] ≥ 1. Then d(x, χ) ≥ d(x, p0) cannot hold for
λ1-a.e. x ∈ [xn, xn+1]. Hence C ′ ⊂ ⋂

n∈Z

{χ(xn, xn+1] = 0} = {χ(R) = 0}. Therefore P(C ′) = 0 so that the

assumptions of Theorem 5.9 are not satisfied.
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