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In this paper, we investigate a determinantal point process on the interval (−s, s), as-

sociated with the confluent hypergeometric kernel. Let K
(α,β)
s denote the trace class

integral operator acting on L2(−s, s) with the confluent hypergeometric kernel. Our fo-

cus is on deriving the asymptotics of the Fredholm determinant det(I − γK
(α,β)
s ) as

s → +∞, while simultaneously γ → 1− in a super-exponential region. In this regime of
double scaling limit, our asymptotic result also gives us asymptotics of the eigenvalues

λ
(α,β)
k

(s) of the integral operator K
(α,β)
s as s → +∞. Based on the integrable structure

of the confluent hypergeometric kernel, we derive our asymptotic results by applying the
Deift-Zhou nonlinear steepest descent method to analyze the related Riemann-Hilbert
problem.

Keywords: Transition asymptotics; confluent hypergeometric kernel; Riemann-Hilbert
problem.
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1. Introduction

Determinantal point processes have attracted significant research interest over the

past few decades due to their connections with various topics in both mathematics

and physics. These processes are associated with random unitary matrices [1,21],

∗Corresponding author.
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Dyson Brownian motion [15], free fermionic theory [20], quantum gravity [24], and

many other fields. For more properties and applications of determinantal point

processes, one can refer to the comprehensive surveys by Soshnikov [23], Johansson

[17], Borodin [3], and references therein.

Let X be a configuration such that #(X ∩ J) is finite for any bounded interval

J ⊂ R. A determinantal point process P is a probability measure on the space of

all the configurations, where the k-point correlation function ρk(x1, . . . , xk) can be

expressed in a determinantal form as follows:

ρk(x1, . . . , xk) = det[K(xi, xj)]
k
i,j=1. (1.1)

In the above formula, K(·, ·) is the so-called correlation kernel. One of the central

problems in the study of determinantal point processes is about the spacing of the

random particles within the process. One well-studied case is the sine point process,

characterized by the correlation kernel:

Ksin(x, y) =
sin(x− y)

π(x − y)
. (1.2)

The gap probability, i.e. the probability that there is no particle in the interval

(−s, s), can be expressed in terms of the following Fredholm determinant:

det(I −Ksin
s ), (1.3)

where Ksin
s is the trace class integral operator acting on L2(−s, s) with the sine

kernel in (1.2). The large gap asymptotics as s → +∞ has been extensively studied

in the literature. In [2,8,13,16,18], it has been shown that:

det(I −Ksin
s ) = e−

s2

2 s−
1
4 e3ζ

′(−1)2
1
12

(

1 +O(s−1)
)

, (1.4)

det(I − γKsin
s ) = e−

2ν
π

s(4s)
ν2

2π2 G2(1 +
iν

2π
)G2(1− iν

2π
)

[

1 +O

(

1

s

)]

, 0 ≤ γ < 1.

(1.5)

Here, ν = − ln(1 − γ), and ζ(·) and G(·) represent the Riemann zeta-function and

Barnes G-function, respectively. The above asymptotic results indicate a significant

difference: the super-exponential rate e−
s2

2 when γ = 1 and the exponential rate

e−
2ν
π
s when 0 ≤ γ < 1. As γ → 1−, there is a nontrivial transition from the

super-exponential region to the exponential region. More precisely, when γ belongs

to the super-exponential region and approaches 1 rapidly enough, the large gap

asymptotics is still dominated by the super-exponential factor e−
s2

2 . However, when

γ moves to the exponential region, approaching 1 but at a slower rate, the large

gap asymptotics will be governed by the exponential factor e−
2ν
π

s. In the literature,

the whole transition picture for the sine point process has been completed in [6]

and references therein. For the Airy and Bessel point processes, some insights have

been provided [4,5].
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In this paper, we wish to consider a similar problem for the determinantal point

process associated with another important kernel, namely the confluent hypergeo-

metric kernel. It is defined as

K(α,β)(x, y) =
1

2πi

Γ(1 + α+ β)Γ(1 + α− β)

Γ(1 + 2α)2
A(x)B(y) − A(y)B(x)

x− y
, (1.6)

where α > − 1
2 , β ∈ iR and

A(x) = χβ(x)
1
2 |2x|αe−ixφ(1 + α+ β, 1 + 2α, 2ix), B(x) = A(x), (1.7)

with

χβ(x) =

{

eπiβ , x < 0

e−πiβ , x > 0
(1.8)

and φ(a, b, z) being the confluent hypergeometric function (cf. [22, Chap. 13])

φ(a, b, z) = 1 +

∞
∑

k=1

a(a+ 1) · · · (a+ k − 1)zk

b(b+ 1) · · · (b+ k − 1)k!
. (1.9)

It is straightforward to check that, when α = β = 0, the kernel K(0,0)(x, y) reduces

to the sine kernel in (1.2). While, when β = 0, the kernel (1.6) becomes the type-I

Bessel kernel considered in [19]:

K(α,0)(x, y) = KBess,1(x, y) =
|x|α|y|α
xαyα

√
xy

2

Jα+ 1
2
(x)Jα− 1

2
(y)− Jα− 1

2
(x)Jα+ 1

2
(y)

x− y
(1.10)

Similar to (1.4) and (1.5), we are also interested in large gap asymptotics of

det(I − γK(α,β)
s ), γ ∈ [0, 1], (1.11)

where K(α,β)
s is the trace class integral operator acting on L2(−s, s) with the con-

fluent hypergeometric kernel given in (1.6). When γ = 1, the large gap asymptotics

has been obtained by Deift, Krasovsky and Vasilevska in [14], as s → +∞,

det(I −K(α,β)
s )

= e−
s2

2 +2αss−
1
4−α2+β2

√
πG2(1/2)G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)

[

1 +O

(

1

s

)]

, (1.12)

where G(x) is the Barnes G-function; see also [25]. When γ is a fixed constant in

[0, 1), (1.11) can be referred to as the deformed Fredholm determinant, which gives

the gap probability that each eigenvalue is independently removed with probability

1 − γ. The large gap asymptotics for this deformed Fredholm determinant have

recently been derived in [12], as s → +∞,

det(I − γK(α,β)
s ) = e−

2ν
π
s(4s)

ν2

2π2 eανG2(1 +
iν

2π
)G2(1− iν

2π
)

[

1 +O

(

1

s

)]

, (1.13)
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with ν = − ln (1− γ). It is worthwhile mentioning that similar large gap asymp-

totics for undeformed and deformed Fredholm determinants associated with more

general kernels have also been derived in the literature, for example, see [9,10,11,26].

In this paper, we will deepen our understanding about the confluent hyperge-

ometric process by deriving the large gap probability of (1.11) as s → +∞ and

γ → 1− in the super-exponential region. This asymptotic result will also provide

valuable information about asymptotics of the eigenvalues λ
(α,β)
k (s) of the integral

operator K(α,β)
s as s → +∞.

The rest of this paper is organized as follows. In Section 2, we state our main

results for the large gap asymptotics, along with the asymptotics for eigenvalues

λ
(α,β)
k (s). In Section 3, we establish a connection between the deformed Fredholm

determinant (1.11) and a model Riemann-Hilbert (RH) problem. Then, in Section

4, we perform the Deift-Zhou steepest descent analysis to study asymptotics of this

RH problem. Finally, we present the proof of our main theorem in Section 5.

Notations Throughout this paper, the following notations are frequently used.

• The constants hk are given by

∫

R

πk(x)πn(x)w(x)dx =

{

0, k 6= n,

hk, k = n,
(1.14)

where

w(x) := w(x;α, β) =

{

(−x)2αe−x2

, x < 0,

e−2πiβx2αe−x2

, x > 0,
(1.15)

with α > − 1
2 , β ∈ iR, and πk(x) = xk + · · · is the corresponding k-th

monic orthogonal polynomial.

• The constants γk are defined as

γk = − hk

2πi
. (1.16)

• The parameter t is related to s through t = −4is.

• µ is a real number with µ ∈ [− 1
2 ,

1
2 ).

2. Statement of results

Our main result for the large gap asymptotics is given in the following theorem.

Theorem 2.1. Define p := p(χ) for χ ∈ R as an integer-valued function such

that p = 1 for χ < 1
2 and p = ⌊χ + 3

2⌋ for χ ≥ 1
2 . Assume that, as s → +∞,

ν = − ln(1− γ) → +∞ in such a way that

ν ≥ 2s− (χ+ α) ln(4s), (2.1)
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then we have

det(I − γK(α,β)
s ) = e−

s2

2 +2αss−
1
4−α2+β2

√
πG2(12 )G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)

×
p−1
∏

k=0

(

1 +
hke

πiβ

2π
(4s)−

1
2−k−αe2s−ν

)

(

1 +O(s−
1
2 ln s)

)

, (2.2)

where α > − 1
2 , β ∈ iR and hk is defined in (1.14).

Remark 2.1. One can compare the asymptotics in (2.2) with that in (1.12). When

γ = 1, we have ν = +∞. Consequently, (2.2) reduces to (1.12). When γ → 1− within

the region defined by (2.1), only a finite number of additional terms contribute to

the asymptotics. However, the primary asymptotic behavior is still dominated by

the super-exponential factor e−
s2

2 . When γ → 1− at a slower rate, the product

in (2.2) becomes an infinite product. Consequently, the asymptotics change to an

exponential type, which is similar to (1.13). Describing this transition requires del-

icate uniform asymptotics, which is beyond the scope of this paper. To the best of

my knowledge, the rigorous analysis of this transition has only been established for

the sine point process; for more details, refer to [6].

Remark 2.2. It is interesting to note that the constants hk appearing in the prod-

uct in (2.2) are related to the weight function (1.15). The weight function possesses

both an algebraic and jump singularity at x = 0, which is known as a Fisher-Hartwig

singularity. Notably, in one of the earliest papers, the confluent hypergeometric ker-

nel (1.6) was originally studied in the context of a circular unitary ensemble with

a Fisher-Hartwig singularity [14]. It is intriguing to observe that this singularity

resurges in the current context.

Recalling the relation (1.10) among the confluent hypergeometric kernel, the

type-I Bessel kernel, and the sine kernel, one immediately obtain the following

large gap asymptotics.

Corollary 2.1. Under the same condition as in Theorem 2.1, we have

det(I − γKBess,1
s ) = e−

s2

2 +2αss−α2− 1
4

√
πG(12 )G(1 + 2α)

22α2G(1 + α)2

×
p−1
∏

k=0

(

1 +
h̃k

2π
(4s)−

1
2−k−αe2s−ν

)

(

1 +O(s−
1
2 ln s)

)

, (2.3)

where α > − 1
2 and h̃k is defined in (1.14) with the weight function replaced by

w̃(x) = w(x;α, 0).
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Corollary 2.2. Under the same condition as in Theorem 2.1, we have

det(I − γKsin
s ) = e−

s2

2 s−
1
4 e2ζ

′(−1)2
1
12

p−1
∏

k=0

(

1 +
k!2−3k−2

√
π

s−
1
2−ke2s−ν

)

×
(

1 +O(s−
1
2 ln s)

)

,

(2.4)

where ζ(·) is the Riemann zeta-function.

The result in Corollary 2.2 agrees with that in [7, Theorem 1.12].

Application

The asymptotics of the deformed Fredholm determinant also give us information

about the eigenvalues {λ(α,β)
k (s)}∞k=0 of the integral operator K(α,β)

s . Let us order

them as λ
(α,β)
0 (s) > λ

(α,β)
1 (s) > · · · . Using standard operator theory techniques

(for example, see [4]), we know that 0 < λ
(α,β)
k (s) < 1 and λ

(α,β)
k (s) → 1 as

s → +∞. With Theorem 2.1, we are able to derive more detailed asymptotics for

these eigenvalues.

Corollary 2.3. For any fixed k ∈ Z≥0, we have, as s → +∞,

1− λ
(α,β)
k (s) =

2π

hkeπiβ
(4s)

1
2+k+αe−2s(1 + o(1)), (2.5)

where hk is defined in (1.14).

Proof. First, as 0 < λ
(α,β)
k (s) < 1 , we have

1 + e−ν λ
(α,β)
p

1− λ
(α,β)
p

≥ 1 =
det(I − γK(α,β)

s )

det(I − γK(α,β)
s )

, ∀p ∈ Z≥0. (2.6)

Now, let us make use of the main expansion (2.2) in Theorem 2.1 to replace the

numerator and the denominator on the right hand side of the above formula. We

choose different final index in the product
∏p−1

k=1(· · · ), that is, p′ = p + 1 in the

numerator and p′′ = p in the denominator. After canceling out the terms from k = 0

to p−1 in the product of the numerator and denominator, the only remaining term

in the numerator would be the one corresponding to k = p. This gives us

1 + e−ν λ
(α,β)
p

1− λ
(α,β)
p

≥
(

1 +
hpe

πiβ

2π
(4s)−

1
2−p−αe2s−ν

)

(1 + o(1)), s → +∞.

(2.7)

Hence, as s → +∞, we have

λ
(α,β)
p

1− λ
(α,β)
p

≥ hpe
πiβ

2π
(4s)−

1
2−p−αe2s(1 + o(1)), p ∈ Z≥0. (2.8)
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Next, according to Lidskii’s Theorem, we have for l ∈ Z≥0

det(I − γK(α,β)
s )

det(I −K(α,β)
s )

= det(I + e−νK(α,β)
s (I −K(α,β)

s ))−1)

=
l−1
∏

k=0

(

1 + e−ν λ
(α,β)
k

1− λ
(α,β)
k

)

det(I + e−νKl(I −Kl)
−1),

(2.9)

where Kl = K(α,β)
s · Pl and Pl is the projection operator that projects on the

space of eigenvectors of K(α,β)
s with the corresponding eigenvalues {λ(α,β)

j : j ≥ l}.
Substituting (2.2) into the above identity, we have

p−1
∏

k=0

(

1 +
hke

πiβ

2π
(4s)−

1
2−k−αe2s−ν

)

(

1 +O(s−
1
2 ln s)

)

=

l−1
∏

k=0

(

1 + e−ν λ
(α,β)
k

1− λ
(α,β)
k

)

det(I + e−νKl(I −Kl)
−1).

(2.10)

Then, we begin by selecting χ = 1
2 , which is equivalent to setting p = 2, and taking

l = 1. Employing the established fact that det(I + e−νKl(I −Kl)
−1) ≥ 1, we derive

(

1 + e−ν λ
(α,β)
0

1− λ
(α,β)
0

)

≤
(

1 +
h0e

πiβ

2π
(4s)−

1
2−αe2s−ν

)

(1 + o(1)), (2.11)

which gives us

λ
(α,β)
0

1− λ
(α,β)
0

≤ h0e
πiβ

2π
(4s)−

1
2−αe2s(1 + o(1)). (2.12)

Combined with (2.8), we have

λ
(α,β)
0

1− λ
(α,β)
0

=
h0e

πiβ

2π
(4s)−

1
2−αe2s(1 + o(1)), s → +∞. (2.13)

Next, we select χ = 3
2 , i.e. we take p = 3 and l = 2 in (2.10), we have

(

1 +
h0e

πiβ

2π
(4s)−

1
2−αe2s−ν

)(

1 +
h1e

πiβ

2π
(4s)−

3
2−αe2s−ν

)

(

1 +O(s−
1
2 ln s)

)

=

(

1 + e−ν λ
(α,β)
0

1− λ
(α,β)
0

)(

1 + e−ν λ
(α,β)
1

1− λ
(α,β)
1

)

det(I + e−νK2(I −K2)
−1).

(2.14)

Applying (2.13) and the fact that det(I + e−νKl(I −Kl)
−1) ≥ 1 gives us

λ
(α,β)
1

1− λ
(α,β)
1

=
h1e

πiβ

2π
(4s)−

3
2−αe2s(1 + o(1)), s → +∞. (2.15)

Then, iterating this approach for general k > 0, we have

λ
(α,β)
k

1− λ
(α,β)
k

=
hke

πiβ

2π
(4s)−

1
2−k−αe2s(1 + o(1)), s → +∞. (2.16)



8 Dan Dai, Luming Yao & Yu Zhai

0 1−1

Σ1Σ2

Σ3 Σ4 Σ5

Σ6Σ7

Ω1

Ω2

Ω3 Ω4

Ω5

Fig. 1: Contours for the model RH problem. Regions Ωi, i = 1, · · · , 5, are also

depicted.

This completes our proof.

Following a similar derivation, we have the asymptotics for the individual eigen-

values of the trace class operators with respect to the type-I Bessel kernel and the

sine kernel immediately.

Corollary 2.4. Let {λBess,1
k (s)}∞k=0 and {λsin

k (s)}∞k=0 denote the eigenvalues of the

integral operator associated with the type-I Bessel kernel and the sine kernel, re-

spectively. Then, as s → +∞, we have

1− λBess,1
k (s) =

2π

h̃k

(4s)
1
2+k+αe−2s(1 + o(1)), (2.17)

1− λsin
k (s) =

√
π23k+2

k!
s

1
2+ke−2s(1 + o(1)), (2.18)

where h̃k is defined in (1.14) with the weight function replaced by w̃(x) = w(x;α, 0).

3. Model RH problem

Previous work in [12,25] revealed the importance of the model RH problem in the

analysis of the Fredholm determinant. In this section, we reconstruct a model RH

problem for Ψ(z) = Ψ(z; t) with t ∈ −i(0,+∞) as follows.

RH problem 3.1.

(a) Ψ(z; t) is analytic for z ∈ C \ {∪7
i=1Σi}, where the oriented contours are

defined as

Σ1 = 1 + e
πi
4 R

+, Σ2 = −1 + e
3πi
4 R

+, Σ3 = −1 + e−
3πi
4 R

+,

Σ4 = e−
πi
2 R

+, Σ5 = 1 + e−
πi
4 R

+, Σ6 = (0, 1), Σ7 = (−1, 0);

see Figure 1.
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(b) Ψ has limiting values Ψ±(z; t) for z ∈ ∪7
i=1Σi, where Ψ+ and Ψ− denote the

values of Ψ taken from the left and right side of Σi, respectively. Moreover,

they satisfy the following jump conditions

Ψ+(z; t) = Ψ−(z; t)















































































































(

1 0

e−πi(α−β) 1

)

, z ∈ Σ1,

(

1 0

eπi(α−β) 1

)

, z ∈ Σ2,

(

1 −e−πi(α−β)

0 1

)

, z ∈ Σ3,

e2πiβσ3 , z ∈ Σ4,
(

1 −eπi(α−β)

0 1

)

, z ∈ Σ5,

(

0 −eπi(α−β)

e−πi(α−β) 1− γ

)

, z ∈ Σ6,

(

0 −e−πi(α−β)

eπi(α−β) 1− γ

)

, z ∈ Σ7.

(3.1)

For convenience, we denote the jump matrices on Σi as Ji.

(c) As z → ∞, we have

Ψ(z; t) =

(

I +
Ψ1(t)

z
+

Ψ2(t)

z2
+O

(

1

z3

))

z−βσ3e
tz
4 σ3 , (3.2)

where the branch cut of zβ is taken along the negative imaginary axis such

that arg z ∈ (−π
2 ,

3π
2 ) and σ3 is the third Pauli matrix

(

1 0

0 −1

)

.

(d) As z → 0 and z ∈ Ωi, i = 1, 3, 4, we have

Ψ(z; t) = Ψ(0)(z; t)zασ3



























(

1 (1− γ) sin(α+β)π
sin 2απ )

0 1

)

C
(0)
i , if 2α /∈ N,

(

1 (−1)2α(1−γ)
π

sin(α+ β)π ln z

0 1

)

C
(0)
i , if 2α ∈ N,

(3.3)

where both zα and ln z take the principal branch with arg z ∈ (−π, π), and

the constant matrices C
(0)
i are given by

C
(0)
1 = I, C

(0)
3 = J−1

6 J−1
4 , C

(0)
4 = J−1

6 (3.4)

with jump ma-

trices Ji given in (3.1). Here, Ψ(0)(z; t) = Ψ
(0)
0 (t)

(

I +Ψ
(0)
1 (t)z +O(z2)

)

is analytic at z = 0.
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(e) As z → 1 and z ∈ Ωi, i = 1, 4, 5, we have

Ψ(z; t) = Ψ(1)(z; t)

(

1 − γeπi(α−β)

2πi ln(z − 1)

0 1

)

C
(1)
i , (3.5)

where ln(z − 1) takes the principal branch with arg(z − 1) ∈ (−π, π), and

the constant matrices C
(1)
i are given by

C
(1)
1 = I, C

(1)
4 = J−1

1 J−1
5 , C

(1)
5 = J−1

1 (3.6)

Here, Ψ(1)(z; t) = Ψ
(1)
0 (t)

(

I +Ψ
(1)
1 (t)(z − 1) +O(z − 1)2)

)

is analytic at

z = 1.

(f) As z → −1 and z ∈ Ωi, i = 1, 2, 3, we have

Ψ(z; t) = Ψ(−1)(z; t)

(

1 γe−πi(α−β)

2πi ln(z + 1)

0 1

)

C
(−1)
i , (3.7)

where the branch cut of ln(z+1) is taken along (−1,∞) such that arg(z+

1) ∈ (0, 2π), and the constant matrices C
(−1)
i are given by

C
(−1)
1 = I, C

(−1)
2 = J−1

2 , C
(−1)
3 = J−1

2 J−1
3 . (3.8)

Here, Ψ(−1)(z; t) = Ψ
(−1)
0 (t)

(

I +Ψ
(−1)
1 (t)(z + 1) +O(z + 1)2)

)

is analytic

at z = −1.

The following proposition has already been demonstrated in [12], which gives

the existence and uniqueness of the solution to the model RH problem for Ψ(z; t).

Proposition 3.1. For α > − 1
2 , β ∈ iR and t ∈ −i(0,+∞), there exists a unique

solution to the RH problem 3.1 for Ψ(z; t). Moreover, the (1, 1)-entry of Ψ1(t) in

(3.2) is pole-free for t ∈ −i(0,+∞).

Recalling the Lemma 8.1 obtained in [12], we have the following representation

of the Fredholm determinant in terms of the model RH problem:

ln det
(

I − γK(α,β)
s

)

=

∫ t

0

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ. (3.9)

4. Asymptotic analysis of the model RH problem as it → +∞

From the integral representation of the Fredholm determinant in (3.9), both large-t

and small-t asymptotics of Ψ1(t) are required to derive the deformed gap proba-

bility. In the present work, we intend to derive the large-t asymptotics since the

small-t asymptotics is already obtained in [12]. In this section, we perform a Deift-

Zhou nonlinear steepest descent method to analyze the model RH problem for Ψ

as it → +∞. The main idea is to covert the original RH problem into a small-norm

one via a series of explicit and invertible transformations.
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Precisely, we set it → +∞ and γ → 1 such that

ν = − ln(1− γ) > 0,
ν

|t| =
1

2
− (χ+ α)

ln |t|
|t| , (4.1)

where

χ = k + µ ≥ 0, k ∈ N≥0, µ ∈ [−1

2
,
1

2
). (4.2)

4.1. Normalization

To normalize Ψ(z; t) at infinity, we first need to define a g-function. Comparing

with the one used in [25, Eq. (4.2)], we make a modification to reveal the influence

of γ tending to 1,

g(z) =
1

4

√

z2 − 1− χ

t
lnD(z), z ∈ C \ [−1, 1], (4.3)

where

D(z) =
z

1 + i
√
z2 − 1

, (4.4)

and the principal branch of
√
z2 − 1 is taken. After a simple verification, we have

the following propositions for D(z).

Proposition 4.1.

(i) For z ∈ (−1, 1), we have

D+(z)D−(z) = 1. (4.5)

(ii) As z → 0, we have

D(z) =











2

z
− z

2
+O(z3), Im z > 0,

z

2
+O(z3), Im z < 0.

(4.6)

(iii) As z → ∞, we have

D(z) = −i+
1

z
+O

(

1

z2

)

. (4.7)

With the aid of g(z), we introduce the normalization transformation as

A(z) = e
πi
2 χσ3Ψ(z; t)e−tg(z)σ3 . (4.8)

Then it is readily seen that A(z) satisfies the following RH problem.

RH problem 4.1.

(a) A(z) is analytic on z ∈ C \ {∪7
i=1Σi}, as illustrated in Figure 1.
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(b) A(z) satisfies the following jump condition

A+(z) = A−(z)JA(z), z ∈ ∪7
i=1Σi, (4.9)

where

JA(z) =



















































































































(

1 0

e−πi(α−β)e−2tg(z) 1

)

, z ∈ Σ1,

(

1 0

eπi(α−β)e−2tg(z) 1

)

, z ∈ Σ2,

(

1 −e−πi(α−β)e2tg(z)

0 1

)

, z ∈ Σ3,

e2πiβσ3 , z ∈ Σ4,
(

1 −eπi(α−β)e2tg(z)

0 1

)

, z ∈ Σ5,

(

0 −eπi(α−β)

e−πi(α−β) (1− γ)et(g+(z)−g−(z))

)

, z ∈ Σ6,

(

0 −e−πi(α−β)

eπi(α−β) (1− γ)et(g+(z)−g−(z))

)

, z ∈ Σ7.

(4.10)

(c) As z → ∞, we have

A(z) =

(

I +
1

z

(

e
πi
2 χσ3Ψ1e

−πi
2 χσ3 + (

t

8
+ iχ)σ3

)

+O

(

1

z2

))

z−βσ3 .

(4.11)

(d) As z → 0,±1,
(

e−
πi
2 χσ3A(z)etgσ3

)

satisfies the same local behaviors as

Ψ(z); see (3.3), (3.5) and (3.7).

4.2. Global parametrix

Note that as it → +∞, the jump matrices on Σ1,Σ2,Σ3,Σ5 tend to the identity

matrix exponentially fast. Then let us take a close look at the (2, 2)-entries of jump

matrices on Σ6,Σ7. With (4.1) and (4.3), we have for z ∈ (−1, 1)

(1−γ)et(g+(z)−g−(z)) = exp

(

−|t|
2
(1−

√

1− z2) + (χ+ α) ln |t| − χ ln

(

D+(z)

D−(z)

))

.

(4.12)

Apparently, when |z| > δ, these entries tend to 0 exponentially fast. Therefore, we

consider the following RH problem for P (∞)(z).

RH problem 4.2.

(a) P (∞)(z) is defined and analytic in C \ {Σ4 ∪ Σ6 ∪ Σ7}.
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(b) P (∞)(z) satisfies the following jump conditions

P
(∞)
+ (z) = P

(∞)
− (z)



































(

0 −eπi(α−β)

e−πi(α−β) 0

)

, z ∈ Σ6,

(

0 −e−πi(α−β)

eπi(α−β) 0

)

, z ∈ Σ7.

e2πiβσ3 , z ∈ Σ4.

(4.13)

(c) As z → ∞, we have

P (∞)(z) =

(

I +O

(

1

z

))

z−βσ3 , (4.14)

where the branch of zβ is taken along the negative imaginary axis such

that arg z ∈ (−π
2 ,

3π
2 ).

The solution to the above RH problem is given explicitly as

P (∞)(z) = 2βσ3e
πi
2 (µ−β)σ3

1√
2

(

1 −i

−i 1

)(

z − 1

z + 1

)
1
4σ3 1√

2

(

1 i

i 1

)

× (z +
√

z2 − 1)−βσ3e
πi
2 βσ3

(

−i+
√
z2 − 1

z

)ασ3

D(z)µσ3 ,

(4.15)

where the principal branches are taken for
√
z2 − 1,

(

z−1
z+1

)
1
4

, (·)α and (·)µ such

that arg(z±1) ∈ (−π, π) and arg z ∈ (−π, π), while the branch of zβ is taken along

the negative imaginary axis such that arg z ∈ (−π
2 ,

3π
2 ).

Remark 4.1. Comparing our global parametrix with the one in the undeformed

case [25, Eq. (4.7)], the only difference is the factor D(z)µσ3 , which is caused by the

different choices of g-functions. Since we do not impose conditions at the endpoints

0 and ±1, the solution to the above RH problem is not unique. It is worth noting

that the factor D(z)µσ3 does not change the jump conditions or the asymptotic

behavior of P (∞)(z) as z → ∞; see properties of D(z) in (4.5) and (4.7). This

factor is introduced in order to align with the construction of local parametrix near

the origin in Section 4.5.

The convergence of the global parametrix and A(z) is not uniform near the

endpoints ±1, 0, thus we need to further construct the local parametrix near ±1, 0

in the subsequent three subsections. The local parametrices near ±1 are given in

terms of the well-known Bessel parametrix, whereas the one near 0 is given in terms

of an orthogonal polynomial parametrix with respect to a weight function which

contains a Fisher-Hartwig singularity.
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4.3. Local parametrix near −1

Let U(z0, δ) denote the circle centering at z0 with radius δ. First, we intend to look

for a local parametrix P (−1)(z) satisfying the following RH problem.

RH problem 4.3.

(a) P (−1)(z) is defined and analytic in U(−1, δ) \ {Σ2 ∪ Σ3 ∪ Σ7}.
(b) P (−1)(z) satisfies the following jump condition

P
(−1)
+ (z) = P

(−1)
− (z)JA(z), z ∈ U(−1, δ) ∩ {Σ2 ∪Σ3 ∪ Σ7}, (4.16)

where JA(z) is given in (4.10).

(c) As it → +∞, we have the matching condition

P (−1)(z) =

(

I + O

(

1

t

))

P (∞)(z), z ∈ ∂U(−1, δ). (4.17)

Let us first introduce a conformal mapping near z = −1:

f (−1)(z) = −
(

1

4

√

z2 − 1− k

t
(lnD(z) + πi)

)2

, z ∈ U(−1, δ). (4.18)

It is directly seen

f (−1)(z) =
z + 1

8

(

1− 4k

|t|

)2
(

1 +O (z + 1)
1
2

)

, z → −1. (4.19)

This indicates that f (−1)(z) maps the neighborhood near −1 on z-plane to the

neighborhood of 0 on f (−1)-plane with no change of direction. Now we are ready

to construct the P (−1) with the classical Bessel parametrix.

Lemma 4.1. Let ΦB(ζ) be the Bessel parametrix given in Appendix A. Then, the

solution to the RH problem 4.3 for P (−1) is given by

P (−1)(z) = E(−1)(z)ΦB(|t|2f (−1)(z))

(

1 γ−1
2πi ln(z + 1)

0 1

)

K(−1)(z), (4.20)

where the branch cut of ln(z + 1) is taken along (−1,+∞) such that arg(z + 1) ∈
(0, 2π), ΦB is defined in (A.4), and K(−1)(z) is given as

K(−1)(z) =























































e
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (0, 2

3π),
(

1 0

−1 1

)

e
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (23π, π),

(

0 1

−1 1

)

e
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (−π,− 2

3π),

(

0 1

−1 0

)

e
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (− 2

3π, 0).

(4.21)
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Here E(−1)(z) is an analytic prefactor defined as

E(−1)(z) = P (∞)(z)e−
πi
2 (α−β)σ3D(z)−µσ3ekπiσ3

×























1√
2

(

1 −i

−i 1

)

|t|σ3
2 (f (−1)(z))

1
4σ3 , Im z > 0,

1√
2

(

i −1

1 −i

)

|t|σ3
2 (f (−1)(z))

1
4σ3 , Im z < 0,

(4.22)

where the principal branches are taken for (f (−1)(z))
1
4 and D(z)−µ such that arg(z±

1) ∈ (−π, π) and arg z ∈ (−π, π).

Proof. We first demonstrate the analyticity of E(−1)(z). According to the defini-

tion in (4.22), the possible jump contour is (−1− δ,−1 + δ). For z ∈ (−1,−1+ δ),

it follows from (4.4), (4.15) and (4.18) that

(

E
(1)
− (z)

)−1

E
(1)
+ (z) =

1

2
(f (−1)(z))−

1
4σ3

(

−i 1

−1 i

)(

0 −1

1 0

)(

1 −i

−i 1

)

(f (−1)(z))
1
4σ3

= I.
(4.23)

For z ∈ (−1 − δ,−1), the verification is similar. When z = −1, by (4.7), (4.15),

(4.22), it is easily seen that E(−1)(−1) = O(1). Therefore, z = −1 is a removable

singularity and E(−1)(z) is analytic in U(−1, δ).

The jump conditions for P (−1)(z) are straightforward to verify by applying (4.3),

(4.18) and (4.20). For z ∈ Σ7, we have

(

P
(−1)
− (z)

)−1

P
(−1)
+ (z)

= etg−(z)σ3e−
πi
2 (α−β)σ3

(

0 −1

1 0

)(

1 γ−1
2πi (ln(z + 1)+ − ln(z + 1)−)

0 1

)

e
πi
2 (α−β)σ3

× e−tg+(z)σ3

=

(

0 −e−πi(α−β)

eπi(α−β) (1 − γ)et(g+(z)−g−(z))

)

,

(4.24)

which matches with the jump of A(z) on Σ7. For z on the other jump contours, the

jump condition can be verified by the similar procedure.

Finally, let us check the matching condition. As it → +∞, considering arg(z +
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1) ∈ (0, 2
3π), it follows from (4.22) and (A.3) that

P (−1)(z)
(

P (∞)(z)
)−1

= P (∞)(z)e−
πi
2 (α−β)σ3D(z)−µσ3ekπiσ3

(

I +O

(

1

t

))

×
(

1 γ−1
2πi e

2|t|
√

f(−1)(z) ln(z + 1)

0 1

)

D(z)µσ3e−kπiσ3e
πi
2 (α−β)σ3

(

P (∞)(z)
)−1

= I +O

(

1

t

)

.

(4.25)

Here we apply the facts that γ tends to 1 exponentially fast and P (∞)(z)D(z)−µσ3

is independent of t. For z in other sectors, the matching condition can be verified

following the same procedure. This completes our proof.

4.4. Local parametrix near 1

Similar to the scenario near z = −1, we intend to find a local parametrix in U(1, δ)

solving the following RH problem for P (1)(z).

RH problem 4.4.

(a) P (1)(z) is defined and analytic in U(1, δ) \ {Σ1 ∪Σ5 ∪ Σ6}.
(b) P (1)(z) satisfies the following jump condition

P
(1)
+ (z) = P

(1)
− (z)JA(z), z ∈ U(1, δ) ∩ {Σ1 ∪ Σ5 ∪ Σ6}. (4.26)

where JA(z) is given in (4.10).

(c) As it → +∞, we have the matching condition

P (1)(z) =

(

I +O

(

1

t

))

P (∞)(z), z ∈ ∂U(1, δ). (4.27)

This parametrix construction is similar to that in U(−1, δ), which is also given

in terms of the Bessel functions. We introduce a conformal mapping near z = 1:

f (1)(z) = −
(

1

4

√

z2 − 1− k

t
lnD(z)

)2

, z ∈ U(−1, δ). (4.28)

Then we have

f (1)(z) = −z − 1

8

(

1− 4k

|t|

)2
(

1 +O (z − 1)
1
2

)

, z → 1. (4.29)

Apparently, f (1)(z) maps the neighborhood near 1 on z-plane to the neighborhood

near 0 on f (1)-plane with a rotation of π. Then, the solution to the above RH

problem is given in the following lemma.
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Lemma 4.2. Let ΦB(ζ) be the Bessel parametrix given in Appendix A. Then, the

solution to the above RH problem for P (1)(z) is given by

P (1)(z) = E(1)(z)σ3ΦB(|t|2f (1)(z))

(

1 γ−1
2πi ln(z − 1)

0 1

)

σ3K
(1)(z), (4.30)

where the principal branch of ln(z − 1) is taken, ΦB is given in (A.4), and K(1)(z)

is given as

K(1)(z) =























































(

1 0

−1 1

)

e−
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (0, π

3 ),

e−
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (π3 , π),

(

0 1

−1 0

)

e−
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (−π,−π

3 ),

(

0 1

−1 1

)

e−
πi
2 (α−β)σ3e−tg(z)σ3 , arg z ∈ (−π

3 , 0).

(4.31)

Moreover, E(1)(z) is an analytic prefactor defined as

E(1)(z) = P (∞)(z)e
πi
2 (α−β)σ3D(z)−µσ3























1√
2

(

1 i

i 1

)

|t|σ3
2 (f (1)(z))

1
4σ3 , Im z > 0,

1√
2

(

−i −1

1 i

)

|t|σ3
2 (f (1)(z))

1
4σ3 , Im z < 0,

(4.32)

where (f (1)(z))
1
4 and D(z)−µ take the principal branches.

Proof. Let us verify the analyticity of E(1)(z) in U(1, δ). According to the defini-

tion in (4.32), the possible jump contour is (1 − δ, 1 + δ). For z ∈ (1, 1 + δ), (4.28)

and (4.32) yield

(

E
(1)
− (z)

)−1

E
(1)
+ (z) = (f (1)(z))

− 1
4σ3

−

(

i 0

0 −i

)

(f (1)(z))
1
4σ3

+ = I. (4.33)

For z ∈ (1−δ, 1), the verification is similar. Moreover, it is easily seen that E(1)(1) =

O(1) from (4.7), (4.15) and (4.32) . Therefore, z = 1 is a removable singularity and

E(1)(z) is indeed analytic. The rest of the proof is similar to that of Lemma 4.1,

we omit the details.

This completes our proof.

4.5. Local parametrix at 0

It remains to construct a local parametrix near the origin. This local parametrix

construction is vital in our analysis. We intend to find a function P (0)(z) satisfying

the following RH problem.

RH problem 4.5.
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(a) P (0)(z) is defined and analytic in U(0, δ) \ {Σ4 ∪Σ6 ∪ Σ7}.
(b) P (0)(z) satisfies the jump condition

P
(0)
+ (z) = P

(0)
− (z)JA(z), z ∈ U(0, δ) ∩ {Σ4 ∪ Σ6 ∪ Σ7}, (4.34)

where JA(z) is given in (4.10).

(c) As it → +∞, we have the matching condition

P (0)(z) =
(

I +O
(

t−
1
2+|µ|

))

P (∞)(z), z ∈ ∂U(0, δ). (4.35)

This local parametrix is constructed in terms of orthogonal polynomials; also

see [4]. We first define the 2× 2 orthogonal polynomial parametrix as

H(ζ) =

(

πk(ζ)
1

2πi

∫

R

πk(z)w(z)
z−ζ

dz

γk−1πk−1(ζ)
γk−1

2πi

∫

R

πk−1(z)w(z)
z−ζ

dz

)

e−
1
2 ζ

2σ3 , ζ ∈ C \R, k ∈ Z≥0,

(4.36)

where π−1(ζ) ≡ 0, and πk(ζ) are the monic orthogonal polynomials given in (1.14).

With the properties of orthogonal polynomials, it is easily seen that h
− 1

2
n is the

leading coefficient of the n-th orthonormal polynomial. It is well-known that the

above function satisfies a RH problem as follows.

RH problem 4.6. The 2 × 2 matrix-valued function defined in (4.36) satisfies the

following properties:

(a) H(ζ) is analytic for ζ ∈ C \ R.
(b) H(ζ) satisfies the jump condition

H+(ζ) = H−(ζ)

(

1 w(ζ) eζ
2

0 1

)

, ζ ∈ R, (4.37)

where w(ζ) is given in (1.15).

(c) As ζ → ∞, we have

H(ζ) =

(

I +
H1

ζ
+

H2

ζ2
+O

(

1

ζ3

))

ζkσ3e−
1
2 ζ

2σ3 . (4.38)

Here, H1, H2 are the coefficient matrices. According to the properties of

orthogonal polynomials, H1 admits the form as

H1 =

(

ak γ−1
k

γk−1 dk

)

, (4.39)

where γk are given by (1.16), while ak, dk are insignificant constants.

Then, we introduce a local conformal mapping in U(0, δ):

f (0)(z) =







(

i
2

√
z2 − 1 + 1

2

)

1
2 , Im z > 0,

(

− i
2

√
z2 − 1 + 1

2

)

1
2 , Im z < 0.

(4.40)
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It is easily seen that

f (0)(z) =
z

2
(1 +O(z)), z → 0. (4.41)

Apparently, f (0)(z) maps the neighborhood near the origin on z-plane to the neigh-

borhood near the origin on f (0)-plane, preserving the argument.

With the orthogonal polynomial parametrix and the conformal mapping, we are

able to construct the solution to the RH problem (4.5).

Lemma 4.3. Let H(ζ) be the parametrix given in (4.36). Then, the solution to the

RH problem 4.5 for P (0)(z) is given as

P (0)(z) = E(0)(z)|t|µ2 σ3H(|t| 12 f (0)(z))(1−γ)−
1
2σ3(f (0)(z))ασ3 |t|α2 σ3K(0)(z), (4.42)

where the branch of (·)α is taken along (0,+∞), and K(0)(z) is given as

K(0)(z) =



































e−
πi
2 (α+β)σ3e−tg(z)σ3 , arg z ∈ (0, π),

e−
πi
2 (3α−β)σ3

(

0 1

−1 0

)

e−tg(z)σ3 , arg z ∈ (−π,−π
2 ),

e−
3πi
2 (α+β)σ3

(

0 1

−1 0

)

e−tg(z)σ3 , arg z ∈ (−π
2 , 0).

(4.43)

Moreover, the analytic prefactor E(0)(z) is defined as

E(0)(z) = P (∞)(z)

×



































(f (0)(z))−(k+α)σ3D(z)−χσ3e
πi
2 (α+β)σ3 , arg z ∈ (0, π),

(

0 −1

1 0

)

(f (0)(z))−(k+α)σ3D(z)χσ3e
πi
2 (3α−β)σ3 , arg z ∈ (−π,−π

2 ),

(

0 −1

1 0

)

(f (0)(z))−(k+α)σ3D(z)χσ3e
3πi
2 (α+β)σ3 , arg z ∈ (−π

2 , 0),

(4.44)

where (·)χ takes the principal branch.

Proof. Again, we follow the same process to organize the proof. First we verify

the analyticity of E(0)(z). From the definition in (4.44), it is obvious that E(0)(z)

is analytic in U(0, δ) \ {Σ4 ∪ Σ6 ∪ Σ7}. For z ∈ (0, δ), recalling (4.13) and (4.40),

we have
(

E
(0)
− (z)

)−1

E
(0)
+ (z) = e−2πiασ3(f

(0)
− (z))(k+α)σ3 (f

(0)
+ (z))−(k+α)σ3 = I. (4.45)

For the other potential jump contours, the verification is similar. When z = 0, by

(4.6), (4.15) and (4.44), it is easily seen that E(0)(0) = O(1). Therefore, z = 0 is a

removable singularity, and E(0)(z) is indeed analytic in U(0, δ).

It is straightforward to verify that P (0)(z) satisfies the jump conditions with the

analyticity of the prefactor E(0)(z) in U(0, δ). For z ∈ [0, δ), it follows from (4.37)
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and (4.40) that
(

P
(0)
− (z)

)−1

P
(0)
+ (z)

= etg−(z)σ3

(

0 −1

1 0

)

e
πi
2 (α+3β)σ3(1− γ)

1
2σ3

(

e−2πiα e−2πiβ

0 e2πiα

)

(1 − γ)−
1
2σ3

× e
πi
2 (α−β)σ3e−tg+(z)σ3

=

(

0 −eπi(α−β)

e−πi(α−β) (1− γ)et(g+(z)−g−(z))

)

.

(4.46)

For z on the other contours, the jump condition can be verified by the same process.
It remains to verify the matching condition (4.35). With the analyticity of

E(0)(z) and the fact that f (0)(z) is t-independent, a combination of (4.15), (4.38),
(4.42) and (4.44) gives

P
(0)(z)

(

P
(∞)(z)

)−1

= E
(0)(z)t

|µ|
2 σ3

(

I +
1

|t|
1
2 f (0)(z)

(

∗ γ−1
k

γk−1 ∗

)

+O

(

1

t

)

)

t
− |µ|

2 σ3(E(0)(z))−1
.

(4.47)

According to (4.44), it is easily seen that E(0)(z) is t-independent. Hence, the

matching condition is verified. This completes our proof.

4.6. Ratio RH problem

With all of the local parametrices constructed, the ratio transformation is defined

as

R(z) = A(z)























(

P (0)(z)
)−1

, z ∈ U(0, δ),
(

P (1)(z)
)−1

, z ∈ U(1, δ),
(

P (−1)(z)
)−1

, z ∈ U(−1, δ),
(

P (∞)(z)
)−1

, otherwise.

(4.48)

It is straightforward to see R(z) satisfies the following RH problem.

RH problem 4.7.

(a) R(z) is analytic in C \ ΣR, where ΣR is illustrated in Figure 2.

(b) R(z) satisfies the jump condition

R+(z) = R−(z)JR(z), z ∈ ΣR, (4.49)

where

JR(z) =























P (1)(z)
(

P (∞)(z)
)−1

, z ∈ ∂U(1, δ),

P (−1)(z)
(

P (∞)(z)
)−1

, z ∈ ∂U(−1, δ),

P (0)(z)
(

P (∞)(z)
)−1

, z ∈ ∂U(0, δ),

P (∞)(z)JA(z)
(

P (∞)(z)
)−1

, otherwise.

(4.50)

Here the jump contours ∂U(j, δ), j = ±1, 0 are clockwise-oriented.
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0 1−1

Σ1Σ2

Σ3 Σ5

Fig. 2: Contours for R(z).

(c) As z → ∞, we have

R(z) = I +O(z−1). (4.51)

It is easily seen from (4.10) and (4.15) that P (∞)(z)JA(z)
(

P (∞)(z)
)−1

tends to

the identity matrix exponentially as it → +∞, uniformly for z ∈ ΣR \{∂U(−1, δ)∪
∂U(0, δ)∪∂U(1, δ)}. Hence, it follows from (4.17), (4.27) and (4.35) that as it → +∞

JR(z) = I +

(

1

t

)

, z ∈ ΣR \ ∂U(0, δ). (4.52)

When z ∈ ∂U(0, δ) a detailed form of JR(z) as it → +∞ is obtained via (4.47):

JR(z) = I+
|t|− 1

2

f (0)(z)
E(0)(z)

(

ak γ−1
k |t|µ

γk−1|t|−µ dk

)

(

E(0)(z)
)−1

+O(t−1+|µ|). (4.53)

Clearly, for µ ∈ [− 1
2 ,

1
2 ), the off-diagonal entries of JR(z) − I do not tend to 0

uniformly.

In order to resolve with this issue, we define the following t-independent matri-

ces.

R+
1 =

γ−1
k

f (0)(z)
E(0)(z)

(

0 1

0 0

)

(

E(0)(z)
)−1

, (4.54)

R−
1 =

γk−1

f (0)(z)
E(0)(z)

(

0 0

1 0

)

(

E(0)(z)
)−1

, (4.55)

R2 =
1

f (0)(z)
E(0)(z)

(

ak 0

0 dk

)

(

E(0)(z)
)−1

. (4.56)

Substituting the above matrices into (4.53), we have as it → +∞
JR(z)− I = R+

1 |t|−
1
2+µ +R−

1 |t|−
1
2−µ +R2|t|−

1
2 +O(t−1+|µ|). (4.57)

It is now clear to see that the first two terms of JR(z)−I do not tend to 0 uniformly

as it → +∞. To eliminate these factors, we define

E+(z) = I +R+
1 |t|−

1
2+µ, µ ∈ [0,

1

2
), (4.58)

E−(z) = I +R−
1 |t|−

1
2−µ, µ ∈ [−1

2
, 0). (4.59)



22 Dan Dai, Luming Yao & Yu Zhai

Directly, it follows that

(

E+(z)
)−1

= I −R+
1 |t|−

1
2+µ, µ ∈ [0,

1

2
), (4.60)

(

E−(z)
)−1

= I −R−
1 |t|−

1
2−µ, µ ∈ [−1

2
, 0). (4.61)

4.7. Singular RH problem

In this step, we define

Q(z) = R(z)















E+(z), |z| < δ, µ ∈ [0, 12 ),

E−(z), |z| < δ, µ ∈ [− 1
2 , 0),

I, otherwise.

(4.62)

Then, Q(z) leads us to a singular RH problem.

RH problem 4.8.

(a) Q(z) is analytic in C \ {ΣR ∪ {0}}, where ΣR denotes the jump contours

of R(z).

(b) Q(z) satisfies the jump conditions

Q+(z) = Q−(z)















(E+(z))
−1

JR(z), |z| = δ, µ ∈ [0, 1
2 ),

(E−(z))
−1

JR(z), |z| = δ, µ ∈ [− 1
2 , 0),

JR(z), otherwise.

(4.63)

(c) Q(z) has a first order pole at z = 0. More precisely, when z → 0, we have

Q(z) = Q̂(z)























(

I + σ+

z

(

−1 1

−1 1

)

+O(z)

)

T−1, µ ∈ [0, 12 ),

(

I + σ−

z

(

−1 −1

1 1

)

+O(z)

)

T−1, µ ∈ [− 1
2 , 0),

(4.64)

where Q̂(z) is analytic at z = 0, σ± are constants independent of z, and T

is a constant matrix defined as

T = 2βσ3e
πi
2 (α−β)σ3 . (4.65)

(d) As z → ∞, we have

Q(z) = I +O(z−1). (4.66)

Directly, with the fact that R(z) is actually analytic at z = 0, we have the

explicit expression for σ± in the following proposition.
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Proposition 4.2. The constants σ± in (4.64) are given as

σ+ =
γ−1
k eπiβ |t|− 1

2+µ

1− iγ−1
k eπiβ |t|− 1

2+µ
, µ ∈ [0,

1

2
), (4.67)

σ− =
γk−1e

−πiβ |t|− 1
2−µ

1 + iγk−1e−πiβ |t|− 1
2−µ

, µ ∈ [−1

2
, 0). (4.68)

Proof. When µ ∈ [0, 12 ) and z → 0, it follows from (4.54), (4.58) and (4.62) that

Q(z) = R(z)

(

I +
γ−1
k |t|− 1

2+µ

f (0)(z)
E(0)(z)

(

0 1

0 0

)

(

E(0)(z)
)−1

)

. (4.69)

With (4.15) and (4.44), we have the local behavior near z = 0 for the analytic factor

E(0)(z) as

E(0)(z) = T

(

1√
2

(

1 −1

1 1

)

+
iz

2
√
2

(

−1 −1

1 −1

)

+O(z2)

)

(

e
πi
2 β(1 + iβz +O(z2))

)σ3

.

(4.70)
Substituting into (4.69), we have

Q(z) = R(z)T

(

I +
2γ−1

k
eπiβ |t|−

1
2+µ

z
(1 + 2iβz +O(z2))

(

1

2

(

−1 1
−1 1

)

+
iz

2

(

0 −1
−1 0

)

+O(z2)
))

T
−1

= Q̂(z)

(

I +
γ−1
k

eπiβ |t|−
1
2+µ

1− iγ−1
k

eπiβ |t|−
1
2+µ

1

z

(

−1 1
−1 1

)

+O(z)

)

T
−1

.

(4.71)

Here, we make use of the fact that R(z) is actually analytic at z = 0. When

µ ∈ [− 1
2 , 0), a similar computation yields (4.64).

This completes our proof.

4.8. Final transformation

Now, all the jumps matrices of Q(z) tend to identity matrices, but there exists an

isolated singularity at z = 0. Therefore, we introduce the final transformation as

Q(z) = L(z) + B±L(z)
z

, z ∈ C \ ΣR. (4.72)

Here B± is a constant matrix with respect to z, and the choice of “ + ” or “ − ”

depends on the range of µ. Then, we obtain the following RH problem for L(z),

RH problem 4.9. L(z) defined in (4.72) satisfies the following properties.

(a) L(z) is defined and analytic for z ∈ C \ ΣR.

(b) L(z) satisfies the same jump conditions for Q(z).

(c) L(z) is analytic at z = 0.

(d) As z → ∞, we have L(z) = I +O(z−1).
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The explicit expression of B± can be obtained from condition (b):

B
+ = σ+L(0)T

(

−1 1
−1 1

)

T
−1
(

L(0)− σ+L′(0)T
(

−1 1
−1 1

)

T
−1
)−1

, µ ∈ [0,
1

2
),

(4.73)

B
− = σ−L(0)T

(

−1 −1
1 1

)

T
−1
(

L(0)− σ−L′(0)T
(

−1 −1
1 1

)

T
−1
)−1

, µ ∈ [−
1

2
, 0).

(4.74)

Moreover, since L(z) and Q(z) share the same jump conditions, applying (4.17),

(4.27), (4.35), (4.50), (4.58) and (4.59), we have

JL(z) =

{

I +O(t−
1
2 ), |z| = δ,

I +O(t−1), |z ± 1| = δ,
(4.75)

as it → +∞.

Therefore, a standard small norm analysis for L(z) leads us to

L(z) = I +
L1(z)

|t| 12
+ o(t−

1
2 ). (4.76)

For our work, the explicit expression of L1(z) is not needed. As it → +∞, substi-

tuting (4.76) into (4.73) and (4.74) gives

B+ = σ+T

(

−1 1

−1 1

)

T−1
(

I +O(t−
1
2 )
)

, µ ∈ [0,
1

2
), (4.77)

B− = σ−T

(

−1 −1

1 1

)

T−1
(

I +O(t−
1
2 )
)

, µ ∈ [−1

2
, 0). (4.78)

4.9. Asymptotics of Ψ as it → +∞

Recalling (3.9), we require (Ψ1(t))11 to derive the large t asymptotics of the Fred-

holm determinant.

Now tracing back the transformations Ψ 7→ A 7→ R 7→ Q 7→ L in (4.8), (4.48),

(4.62) and (4.72), and letting z → ∞, we have

Ψ(z) = e−
πi
2 χσ3

(

L(z) + B±L(z)
z

)

· e πi
2 (µ−β)σ32βσ3

(

I +
1

z

(

−iα − i
2

i
2 iα

)

+O(z−2)

)

× 2−βσ3e
πi
2 βσ3z−βσ3D(z)µσ3D(z)−χσ3e

1
4 tzσ3

(

I − t

8z
σ3 +O(z−2)

)

.

(4.79)

As it → +∞, comparing the above equation with (3.2) gives us

(Ψ1(t))11 =

{

− t
8 − iα− ik − σ+ +O(t−

1
2 ), µ ∈ [0, 12 )

− t
8 − iα− ik − σ− +O(t−

1
2 ), µ ∈ [− 1

2 , 0),
(4.80)

where σ± are given in (4.67) and (4.68), respectively.
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5. Proof of the main results

In this section, we complete our proof of Theorem 2.1. First, we will introduce two

lemmas and one theorem that will assist us in deriving the final asymptotics.

5.1. Preliminary lemmas and theorem

Note that the large-t asymptotics of Ψ1(t) contains the terms related to the param-

eter k. Thus for χ ≥ 0, we introduce the following notations

|t′k| = 2 (ν + (α + k) ln |t|) , |tk| = 2

(

ν + (α+ k − 1

2
) ln |t|

)

, (5.1)

xk = −iγ−1
k eπiβ , yk = iγk−1e

−πiβ. (5.2)

Here t, t′k, tk are all negative pure imaginary numbers.

Now we introduce two lemmas.

Lemma 5.1. For |t| ∈ [|t′k|, |tk+1|], i.e. µ ∈ [0, 12 ], we have

∫ t

t′
k

(Ψ1(τ))11dτ =− t2 − t′2k
16

− iα(t− t′k)− 2k ln(|t|−k−αe
1
2 |t|−ν)

− 2 ln(1 + xk|t|−
1
2−k−αe

1
2 |t|−ν) + O(t−

1
2 ln t).

(5.3)

Proof. According to (4.67) and (4.80), a direct integration leads us to

∫ t

t′
k

(Ψ1(τ ))11dτ = −
t2 − t′2k

16
− iα(t− t

′
k)− ik(t− t

′
k)

− i

∫ t

t′
k

xk|τ |
− 1

2−k−αe
1
2 |τ |−ν

1 + xk|τ |
− 1

2−k−αe
1
2 |τ |−ν

dτ +O(t−
1
2 ln t). (5.4)

With (5.1), we have

t− t′k = −2i ln(|t|−k−αe
1
2 |t|−ν). (5.5)

For the integration term, a change of variable yields

∫ t

t′
k

xk|τ |−
1
2−k−αe

1
2 |τ |−ν

1 + xk|τ |−
1
2−k−αe

1
2 |τ |−ν

dτ

= −2i ln(1 + xkτ
− 1

2−k−αe
1
2 τ−ν)

∣

∣

∣

|t|

τ=|t′
k
|

− 2i(k + α− 1

2
)

∫ |t|

|t′
k
|

xkτ
− 1

2−k−αe
1
2 τ−ν

1 + xkτ−
1
2−k−αe

1
2 τ−ν

dτ

τ

= −2i ln(1 + xk|t|−
1
2−k−αe

1
2 |t|−ν) +O(t−1 ln t).

(5.6)

This completes the proof of this lemma.
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Similarly, following the same deviation, we have

Lemma 5.2. For |t| ∈ [|tk|, |t′k|], k ≥ 1, i.e. µ ∈ [− 1
2 , 0], we have

∫ t

tk

(Ψ1(τ))11dτ =− t2 − t2k
16

− iα(t− tk)− 2k ln(|t| 12−k−αe
1
2 |t|−ν)

− 2 ln(1 + yk|t|−
1
2+k+αe−

1
2 |t|+ν) + 2 ln(1 + yk) +O(t−

1
2 ln t).

(5.7)

To prove the main result, we also need the following theorem, which improves

the result obtained in [25, Theorem 4.].

Theorem 5.1. For α > − 1
2 , β ∈ iR, and γ → 1 together with it → +∞, we have

∫ t

0

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ =
t2

32
+

iαt

2
−
(

α2 − β2 +
1

4

)

ln
|t|
4

+ ln

√
πG(12 )G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)
+O(t−

1
2 ln t), (5.8)

uniformly for

− ln(1− γ) ≥ 1

2
|t| − α ln |t|. (5.9)

Here, G(·) is the Barnes G-function.

Proof. To see how the speed of γ tending to 1 affects our result more clearly, we

set

− ln(1 − γ) =
1

2
|t| − (α− ǫ) ln |t|, (5.10)

where ǫ ≥ 0 is a constant.

We perform a nonlinear steepest descent analysis to the model RH problem. The

procedure is similar to that in Section 4. Here we adjust all the steps in Section 4

by setting χ = k = µ = 0. Under this circumstance, the g-function is as simple as

g(z)|χ=0 =
1

4

√

z2 − 1, z ∈ C \ [−1, 1]. (5.11)

Hence the normalization transformation is defined as

A(z) = Ψ(z; s)e−t(g(z)|χ=0)σ3 . (5.12)

Following the analysis we carried out in Section 4, we construct the global

parametrix P (∞)(z) for A(z) to be (4.15) with χ = µ = k = 0, and the local

parametrices near z = ±1 to be (4.20) and (4.30) with χ = µ = k = 0, respectively.

The construction of the local parametrix near the origin is slightly different. More

precisely, we replace the H(ζ) in (4.42) with the following

H(ζ)|χ=0 =

(

1 1
2πi

∫

R

w(z)
z−ζ

dz

0 1

)

e−
t
2 ζ

2

, ζ ∈ C \ R. (5.13)
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Again, we set ζ = |t| 12 f (0)(z), where the conformal mapping f (0)(z) is still the same

as (4.40). As it → +∞, we have

H(|t| 12 f (0)(z))|χ=0 =

(

I +
γ−1
0

|t| 12 f (0)(z)

(

0 1

0 0

)

+O(t−1)

)

e−
|t|
2 (f(0)(z))2 . (5.14)

Now we are ready to introduce the final transformation as

R(z)|χ=0 = A(z)























(

P (0)(z)|χ=0

)−1
, z ∈ U(0, δ),

(

P (1)(z)|χ=0

)−1
, z ∈ U(1, δ),

(

P (−1)(z)|χ=0

)−1
, z ∈ U(−1, δ),

(

P (∞)(z)|χ=0

)−1
, otherwise.

(5.15)

It is straightforward to see that the jump matrix of R(z)|χ=0 is given as

JR(z)|χ=0 =























P (1)(z)|χ=0

(

P (∞)(z)|χ=0

)−1
, z ∈ ∂U(1, δ),

P (−1)(z)|χ=0

(

P (∞)(z)|χ=0

)−1
, z ∈ ∂U(−1, δ),

P (0)(z)|χ=0

(

P (∞)(z)|χ=0

)−1
, z ∈ ∂U(0, δ),

P (∞)(z)|χ=0JA(z)
(

P (∞)(z)|χ=0

)−1
, otherwise.

(5.16)

Here all the three small circles are clockwise-oriented.

According to the previous analysis, it is straightforward to see JR(z)|χ=0 =

I +O(t−1) on ΣR \ {∂U(0, δ)} as it → ∞. While z ∈ ∂U(0, δ), with (5.14) we have

P (0)(z)|χ=0

(

P (∞)(z)|χ=0

)−1

= I +
γ−1
0 |t|−1−ǫ

f (0)(z)
E(0)(z)|χ=0

(

0 1

0 0

)

(E(0)(z)|χ=0)
−1 +O(t−1−ǫ). (5.17)

Now one can conclude that JR(z) tends to identity matrix uniformly for z ∈ ΣR as

it → +∞. Thus, further transformations R(z) 7→ Q(z) 7→ L(z) in (4.62) and (4.72)

are not necessary.

As it → +∞, a small norm analysis of R(z)|χ=0 gives

R(z)|χ=0 = I +R1(z)|t|−
1
2−ǫ +R2(z)|t|−1 +R3(z)|t|−1−ǫ +O(|t|− 3

2 ). (5.18)

By a computation of residue of JR(z) near ±1, we have

R2(z) =
σ3

2z
+O(z−1), z → ∞. (5.19)

Therefore, tracing back to the transformations Ψ 7→ A(z) 7→ R(z)|χ=0, we have

(Ψ1(t))11 = − t

8
− iα+2(R̂1)11t

− 1
2−ǫ+

1

2t
+2(R̂3)11t

−1−ǫ+O(t−
3
2 ), it → +∞,

(5.20)

where (R̂1) and (R̂3) are the coefficients of large-z asymptotics of R1(z) and R3(z),

respectively. However, their exact expressions are not required to obtain our result.

Now we set

|t−1| = 2(ν + (α− 1) ln |t|), |t′0| = 2(ν + α ln |t|). (5.21)
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Apparently, when |t| ∈ (0, |t−1|], it is easily seen from (5.10) that ǫ ≥ 1. With

(5.20), we have

∫ t

0

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ

=
t2

32
+

iαt

2
−
(

α2 − β2 +
1

4

)

ln
|t|
4

+ d0(γ) + O(t−
1
2 ), it → +∞, γ → 1,

(5.22)

uniformly for

− ln(1− γ) ≥ |t|
2

− (α− 1) ln |t|, (5.23)

where d0(γ) is a constant may still depend on γ. Meanwhile, when |t| ∈ [|t−1|, |t′0|]
which indicates 0 ≤ ǫ ≤ 1, with (5.20), we have

∫ t

0

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ

=

∫ t−1

0

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ +

∫ t

t−1

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ

=
t2

32
+

iαt

2
−
(

α2 − β2 +
1

4

)

ln
|t|
4

+ d0(γ) +O(t−
1
2 ln t), it → +∞, γ → 1,

(5.24)

uniformly for

|t|
2

− α ln |t| ≤ − ln(1 − γ) ≤ |t|
2

− (α− 1) ln |t|. (5.25)

Here we take advantage of the length of the second integral interval is of O(ln t).

Furthermore, compared with [25, Eq. (7.23)], we conclude

d0(γ) = ln

√
πG(12 )G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)
(1 + o(1)), γ → 1. (5.26)

In order to give more details of the error term of d0(γ), let us consider the

derivative of (Ψ1(t))11 with respect to γ. With (5.20), we have

∂
(Ψ1(t))11

∂γ
= O(t−

1
2−ǫ), it → +∞. (5.27)

Then, with the same derivation, we have
∫ t

0

∂

∂γ

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ = O(t−
1
2 ln t), (5.28)

uniformly for − ln(1 − γ) ≥ |t|/2 − α ln |t|. Comparing this equation with (5.24)

gives us

d

dγ
d0(γ) = O(t−

1
2 ln t). (5.29)
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The above equation and (5.26) yield

d0(γ) = ln

√
πG(12 )G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)
(1 +O(t−

1
2 ln t)), γ → 1. (5.30)

Therefore, we complete the proof of Theorem 5.1.

5.2. Proof of Theorem 2.1

Combined the two lemmas and Theorem 5.1, we are ready to obtain our final result.

First, let us consider |t| ∈ [|t′q|, |tq+1|), where q ∈ N≥0. It follows from (5.3),

(5.7) and (5.8) that

∫ t

0

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ

=

(

∫ t′0

0

+

∫ t1

t′0

+

∫ t′1

t1

+ · · ·+
∫ t

t′q

)

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ

=
t2

32
+

iαt

2
−
(

α2 − β2 +
1

4

)

ln

( |t|
4

)

+ ln

( √
πG2(1/2)G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)

)

+

q−1
∑

k=0

k ln(|t| 12 ) +
q−1
∑

k=0

ln(1 + xk) +

q
∑

k=1

k ln(|t| 12 )−
q
∑

k=1

ln(1 + yk)

+ q ln(|t|−q−αe
1
2 |t|−ν) + ln(1 + xq|t|−

1
2−q−αe

1
2 |t|−ν) +O(t−

1
2 ln t).

(5.31)

In case when q = 0, we take all the sum
∑

(· · · ) ≡ 0. Hence,

q−1
∑

k=0

k ln(|t| 12 ) +
q−1
∑

k=0

ln(1 + xk) +

q
∑

k=1

k ln(|t| 12 )−
q
∑

k=1

ln(1 + yk)

+ q ln(|t|−q−αe
1
2 |t|−ν) + ln(1 + xq|t|−

1
2−q−αe

1
2 |t|−ν)

=

q−1
∑

k=0

ln
(

xk|t|
1
2+k−q−αe

1
2 |t|−ν

)

+ ln(1 + xq|t|−
1
2−q−αe

1
2 |t|−ν)

=

q
∑

k=0

ln
(

1 + xk|t|−
1
2−k−αe

1
2 |t|−ν

)

+O(t−
1
2 ).

(5.32)

Here we apply the fact that xkyk+1 = 1; see the definitions of xk and yk in (5.2).

Substituting above equation into (5.31), with (3.9), we complete the proof of (2.2)

for |t| ∈ [|t′q|, |tq+1|) with q ∈ N≥0.

Similarly, when |t| ∈ [|tq+1|, |t′q+1|], where q ∈ N≥0, with (5.3), (5.7) and (5.8),
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we have
∫ t

0

(

−1

2
(Ψ1(τ))11 −

α2 − β2

τ

)

dτ

=
t2

32
+

iαt

2
−
(

α2 − β2 +
1

4

)

ln

( |t|
4

)

+ ln

( √
πG2(1/2)G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)

)

+

q
∑

k=0

k ln(|t| 12 ) +
q
∑

k=0

ln(1 + xk) +

q
∑

k=1

k ln(|t| 12 )−
q
∑

k=1

ln(1 + yk)

+ (q + 1) ln(|t|− 1
2−q−αe

1
2 |t|−ν) + ln(1 + yq+1|t|

1
2+q+αe−

1
2 |t|+ν)

− ln(1 + yq+1) +O(t−
1
2 ln t).

(5.33)

Furthermore, we have

q
∑

k=0

k ln(|t| 12 ) +
q
∑

k=0

ln(1 + xk) +

q
∑

k=1

k ln(|t| 12 )−
q
∑

k=1

ln(1 + yk)

+ (q + 1) ln(|t|− 1
2−q−αe

1
2 |t|−ν) + ln(1 + yq+1|t|

1
2+q+αe−

1
2 |t|+ν)− ln(1 + yq+1)

=

q
∑

k=0

ln
(

xk|t|−
1
2+k−q−αe

1
2 |t|−ν

)

+ ln(1 + yq+1|t|
1
2+q+αe−

1
2 |t|+ν)

=

q
∑

k=0

ln
(

1 + xk|t|−
1
2−k−αe

1
2 |t|−ν

)

− ln

(

1 + xq|t|−
1
2−q−αe

1
2 |t|−ν

xq|t|−
1
2−q−αe

1
2 |t|−ν

)

+ ln(1 + yq+1|t|
1
2+q+αe−

1
2 |t|+ν) +O(t−

1
2 )

=

q
∑

k=0

ln
(

1 + xk|t|−
1
2−k−αe

1
2 |t|−ν

)

+O(t−
1
2 ).

(5.34)

Hence with (3.9), we complete the proof of (2.2) for |t| ∈ [|t′q|, |t′q+1|]. Note that,

the lower constraint on t is actually artificial. One can let |t| ∈ [0, |t′q+1|], then some

factors in the sum would move to the error term. After adjusting the error term,

we are still able to reproduce the same expression.

Then, with Theorem 5.1, we complete the proof of Theorem 2.1.
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Appendix A Bessel parametrix

In this appendix, we introduce the well-known Bessel parametrix ΦB(ζ). Consider

the following model RH problem.

RH problem A.1. We look for a 2×2 matrix-valued function ΦB(ζ) with properties:

(a) ΦB(ζ) is analytic for ζ ∈ C \ {Γ(B)
1 ∪ Γ

(B)
2 ∪ Γ

(B)
3 }, where

Γ
(B)
1 = e

2
3πiR+, Γ

(B)
2 = (−∞, 0], Γ

(B)
3 = e−

2
3πiR+. (A.1)

(b) ΦB(ζ) satisfies the jump conditions

ΦB
+(ζ) = ΦB

−(ζ)











































(

1 0

1 1

)

, ζ ∈ Γ
(B)
1 ,

(

0 1

−1 0

)

, ζ ∈ Γ
(B)
2 ,

(

1 0

1 1

)

, ζ ∈ Γ
(B)
3 .

(A.2)

(c) As ζ → ∞, we have

ΦB(ζ) = ζ−
1
4σ3

1√
2

(

1 i

i 1

)(

I +
1

8
√
ζ

(

−1 −2i

−2i 1

)

+O

(

1

ζ

))

e
√
ζσ3 .

(A.3)

Here the branches of the term ζ
1
4 and ζ

1
2 are taken along ζ ∈ (−∞, 0) such

that arg ζ ∈ (−π, π).

We first define a 2× 2 matrix function as

ΦB(ζ) = π
1
2σ3

(

I0(
√
ζ) i

π
K0(

√
ζ)

πi
√
ζI ′0(

√
ζ) −

√
ζK ′

0(
√
ζ)

)

, (A.4)

where I0,K0 are the modified Bessel functions with branch cut (−∞, 0] such that

arg ζ ∈ (−π, π). And it is easy to verify that

ΦB,+(ζ) = ΦB,−(ζ)

(

1 1

0 1

)

, ζ ∈ (−∞, 0). (A.5)

Then, the well-known solution to the RH problem A.1 is given explicitly as

ΦB(ζ) = ΦB(ζ)



































I, arg ζ ∈ (− 2π
3 , 2π

3 ),
(

1 0

−1 1

)

, arg ζ ∈ (2π3 , π),

(

1 0

1 1

)

arg ζ ∈ (− 2π
3 ,−π),

(A.6)

For the sake of convenience, let us also recall the following formula

dΦB(ζ)

dζ
ΦB(ζ)−1 =

(

0 − i
2ζ

i
2 0

)

. (A.7)
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