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Abstract

We address the self-stabilizing bit-dissemination problem, designed
to capture the challenges of spreading information and reaching consen-
sus among entities with minimal cognitive and communication capacities.
Specifically, a group of n agents is required to adopt the correct opinion,
initially held by a single informed individual, choosing from two possible
opinions. In order to make decisions, agents are restricted to observing
the opinions of a few randomly sampled agents, and lack the ability to
communicate further and to identify the informed individual. Addition-
ally, agents cannot retain any information from one round to the next.
According to a recent publication in SODA (2024), a logarithmic conver-
gence time without memory is achievable in the parallel setting (where
agents are updated simultaneously), as long as the number of samples is
at least Ω(

√
n logn). However, determining the minimal sample size for

an efficient protocol to exist remains a challenging open question. As a
preliminary step towards an answer, we establish the first lower bound
for this problem in the parallel setting. Specifically, we demonstrate that
it is impossible for any memory-less protocol with constant sample size,
to converge with high probability in less than an almost-linear number
of rounds. This lower bound holds even when agents are aware of both
the exact value of n and their own opinion, and encompasses various
simple existing dynamics designed to achieve consensus. Beyond the bit-
dissemination problem, our result sheds light on the convergence time of
the “minority” dynamics, the counterpart of the well-known majority rule,
whose chaotic behavior is yet to be fully understood despite the apparent
simplicity of the algorithm.
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1 Introduction

Exploring the computational power and limits of well-chosen models – ones
that are simple enough for analytical tractability, and yet relevant to specific
biological scenarios – can lead to insightful conclusion about the functioning
of biological distributed systems [1, 2, 3, 4, 5]. In line with this approach, we
consider the bit-dissemination problem, introduced in [6] in order to evaluate the
possibility to solve two fundamental problems concurrently: reaching agreement
efficiently, while ensuring that an information possessed initially by a single
individual is propagated to the whole group. In order to fit biological scenarios,
the problem features extremely constrained communications. Agents engage
in random interactions with just a few individuals at a time, as in the PULL
model. Furthermore, they can only disclose their current decision and no other
information, following an assumption introduced in [7] to model situations in
which individuals do not actively communicate [8].

In this paper, we further restrict attention to memory-less entities lacking
the ability to perform computations over extended periods of time; or at least
not in a sufficiently reliable manner. In particular, this assumption precludes
the possibility to maintain clocks and counters, or to estimate the tendency
of the dynamics. It is likely to be relevant in several biological ensembles,
such as ant colonies [9], slime molds, cells and bacteria [10] or even plants [11].
We acknowledge that it is always hard to rule out the possibility that species
make use of memory, especially in the case of social insects. Yet, this modeling
choice remains applicable even without presupposing specific cognitive abilities,
as many species often stick to simple behavioral rules when attempting to reach
a consensus, such as quorum sensing [12] or alignment rules [13].

Description of the problem. More precisely, we consider a group of n agents
holding binary opinions. One of the agents, referred to as the source, knows
what opinion is “correct” and remains with it at all times. Execution proceeds
in discrete rounds. We assume that agents have no memory of what happened
in previous rounds, besides their current opinion. In the parallel setting, all
non-source agents are activated simultaneously in every round, while in the
sequential setting, only one non-source agent, selected uniformly at random, is
activated. Upon activation, a non-source agent i samples a set S consisting of ℓ
other agents drawn uniformly at random (with replacement). Then, based only
on the opinions of the agents in S and on its own opinion, Agent i may choose
to adopt a new opinion. In particular, Agent i does not know whether or not S
contains the source. A protocol is successful if every non-source agent eventually
adopts the correct opinion and remains with it forever. Finally, a protocol must
converge independently of the initial opinions of the agents (including the correct
opinion), which can be thought of as being chosen by an adversary.

Previous works. The main parameters of the problems are the activation
pattern (which may be parallel or sequential) and the sample size ℓ. To compare
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protocols across various settings, we are typically interested in their convergence
time, i.e., the total number of activations required to reach consensus w.r.t. the
correct opinion. Here, we will express the convergence time in terms of parallel
rounds: one parallel round corresponds to n activations, which is equivalent to
1 round in the parallel setting, and n rounds in the sequential setting.

The bit-dissemination problem without memory was first studied in [14],
in the sequential setting, where nearly matching lower and upper bounds are
given. On the one hand, the authors show that no protocol can converge in less
than Ω(n) parallel rounds in expectation, regardless of the sample size. On the
other hand, they show that the well-known Voter dynamics (see Protocol 1 in
Section 1.1) achieves consensus in O(n log2 n) parallel rounds with high proba-
bility. Since the Voter dynamics only needs the sample size to be 1, these results
imply that ℓ is not a critical parameter in the sequential setting.

Later, the authors of [15] show that the aforementioned lower bound does
not hold in the parallel setting. In fact, they show that the minority dynamics
(see Protocol 2 in Section 1.1) converges in O(log2 n) parallel rounds w.h.p., as
long as the sample size is at least Ω(

√
n log n). This finding reveals that the best

convergence times achievable in the sequential versus parallel settings differ by
an exponential factor. The bit-dissemination problem is all the more interesting
to study as it is one of the most natural ones exhibiting this property.

Part of the explanation behind this curious phenomenon is that the stochas-
tic processes involved are of different mathematical natures, in one setting com-
pared to the other. In the sequential setting, the number of agents with opinion 1
may only vary by at most one unit in every round, since only one agent is acti-
vated at a time. Therefore, independently of the protocol being operated, the
evolution of the system can always be described by a “birth-death” chain, i.e.,
a Markov chain whose underlying graph is a path of size n. In fact, all proofs
in [14] heavily rely on this observation. In contrast, in the parallel setting, the
process may jump from any configuration to any other – albeit with extremely
small probability. On the one hand, this characteristic allows for fast conver-
gence. For instance, qualitatively speaking, the minority dynamics succeeds by
first reaching a configuration in which an appropriate proportion of the agents
hold the wrong opinion; after what all non-source agents, perceiving the same
minority, simultaneously adopt the correct opinion. On the other hand, it com-
plicates the analysis of any protocol in the parallel setting, and even more so the
task of deriving lower bounds. Following on from these works, we are ultimately
interested in the following question:

Is there any protocol achieving a poly-logarithmic convergence time in the
parallel setting,

when the sample size is o(
√
n)?

Following the work of [15], the minority dynamics is a natural candidate for
this task. We also believe that the interest of this dynamic is not limited to
the bit-dissemination problem. Indeed, it is a suitable protocol for solving more
traditional consensus problems (without a source), for which its convergence
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time may only be smaller than for the bit-dissemination problem. In this regard,
it is significantly faster that the Voter dynamics, provided that ℓ is large enough.
While it is probably no more effective than majority-like dynamics [16], the
latter lack sensitivity towards an informed individual, and in fact, fail in general
to solve the bit-dissemination problem. However, despite its extreme simplicity,
the conditions under which the minority dynamics is able to converge quickly
have not been identified. While the analysis in [15] relies on a sample size of at
least Ω(

√
n log n), the authors do not provide a lower bound for this parameter,

nor do they justify informally why this quantity is necessary. Therefore, we also
consider the following independent question.

What is the minimal sample size for which the minority dynamics
converges in poly-logarithmic time?

As a first step towards answering these questions, we focus on the case that
the sample size is constant, or in other words, independent from n. Beyond
analytical tractability, several reasons motivate this assumption. First, many
existing opinion dynamics that have been traditionally studied in the context
of consensus are defined with a small (fixed) number of samples [17]. This
is the case for the Voter dynamics and majority dynamics, but also for the
undecided states dynamics, as well as all population protocols [18], in which
agents interact by pairs. In addition, protocols relying on a sample size that
increases with n implicitly require the agents to have some knowledge about the
size of the population, which is often undesirable or unrealistic in distributed
systems. Finally, real biological entities are most likely interacting with few of
their conspecifics even when they are part of a larger group. As an illustration,
it has been shown empirically that the movement of any bird in a flock depends
mostly on its 6 or 7 closest neighbors, regardless of how many individuals are
present in the vicinity [19, 20], while other works point at a similar phenomenon
in fishes [21].

1.1 Problem definition

We consider a finite set I = {1, . . . , n} of agents. Let X
(i)
t ∈ {0, 1} be the

opinion of Agent i in round t. We assume that Agent 1 is the source and holds
the correct opinion throughout the execution. Denoting the sample size by ℓ
(independent from n), a protocol P is defined as a family of functions

g[b]n : {0, . . . , ℓ} 7→ [0, 1].

Informally, g
[b]
n (k) represents the probability that an agent observing k ’1’ out

of its ℓ samples adopts opinion 1 in the next round, provided that the total
number of agents is n, and that this agent has opinion b in the current round.
More formally, in round t, for every agent i simultaneously:

1. A vector S
(i)
t ∈ Iℓ of size ℓ is sampled uniformly at random (u.a.r.) (the

same agent may appear several times in S
(i)
t ).
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2. Writing k
(i)
t to denote the number of agents with opinion 1 in S

(i)
t , Agent i

updates its opinion according to

X
(i)
t+1 ← 1 with probability g

[
X

(i)
t

]
n (k

(i)
t ), 0 otherwise.

For the sake of clarity, let us note a few important consequences of this definition.

• Non-source agents do not know where the opinions that they observe come

from. In particular, they do not know if S
(i)
t contains the source.

• Non-source agents do not have identifiers, or in other words, all of them
must run exactly the same update rule. They are also not aware of the
round number (indices are used for analysis purposes only).

• However, non-source agents are aware of their current opinion, as well as
the exact value of n.

• Besides their opinion, non-source agents have no memory, in the sense that
their behavior cannot depend on any information from previous rounds.

Since the agents have no memory and no identifiers, the configuration of the
system in round t can be described simply by a pair (z,Xt), where z ∈ {0, 1}
denotes the correct opinion, and Xt ∈ {0, . . . , n} denotes the number of agents
with opinion 1. For a given n ∈ N, and an initial configuration C = (z,X0), we
define the convergence time of protocol P as the first round for which all agents
have adopted the correct opinion and remain with it forever, that is:

τn(P, C) := inf{t ≥ 0, for every s ≥ t,Xs = n · z}.

We say that a protocol P solves the bit-dissemination problem in time T (n)
if for any sequence of initial configurations {Cn}, τn(P, Cn) ≤ T (n) w.h.p.1

Consequently, non-source agents are facing a “self-stabilizing” problem, since
they are required to reach a unique legal configuration (the consensus compatible
with the opinion of the source) from any possible initial configuration, and
remain in it forever. We note, however, that the source must be considered
as part of the environment (and not as a corruptible agent) in order to fit the
traditional definition of self-stabilization.

We conclude this section by defining two important dynamics.

1Given a sequence of events {An}n∈N, we say that “An happens with high probability
(w.h.p.)” if P(An) = 1− 1/nΩ(1).
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Protocol 1: The Voter dy-
namics
Input: An opinion sample S

of size ℓ.
X

(i)
t+1 ← a random opinion

in S

(Since S is sampled u.a.r.,
this protocol does not depend
on the value of ℓ, which can
be assumed to be 1 w.l.o.g.)

Protocol 2: The Minority
dynamics [15]

Input: An opinion sample S
of size ℓ.

if all opinions in S are equal
to x then

X
(i)
t+1 ← x

else

X
(i)
t+1 ← minority opinion

in S

In terms of our definition, the Voter dynamics writes

g[0]n (k) = g[1]n (k) =: gvoter(k) =
k

ℓ
, for every k ∈ {0, . . . , ℓ}. (1)

Similarly, assuming ties to be broken u.a.r., the Minority dynamics is given
by

g[0]n (k) = g[1]n (k) =: gminority(k) =


1 if k = ℓ or 0 < k < ℓ

2 ,
1
2 if k = ℓ

2 ,

0 if k = 0 or ℓ
2 < k < ℓ.

(2)

1.2 Our Results

We show that, when the sample size is bounded, any protocol that does not
have access to memory needs almost-linear time to solve the bit-dissemination
problem.

Theorem 1. Assume that the sample size ℓ is constant. If there exists a func-
tion T : N 7→ N and a protocol P solving the bit-dissemination problem in
time T (n), then for every ε > 0, T (n) = Ω(n1−ε).

To the best of our knowledge, this is the first non-trivial lower-bound for this
problem in the parallel setting. Note that it also holds when agents can choose
from more than 2 opinions, provided that they may not adopt an opinion that
they have never seen or adopted2. Indeed, in that case, a lower bound could be
obtained by assuming a binary initial configuration and reducing to Theorem 1.

The proof of Theorem 1 is presented in Section 4, and uses a general result
on Markov chains, described in Section 3, as a black box. Among other classical
arguments, it relies on an original idea which can be summarized as follows. For
every protocol P, we define

Fn(p) := −p +

ℓ∑
k=0

(
ℓ

k

)
pk(1− p)ℓ−k

(
p g[1]n (k) + (1− p) g[0]n (k)

)
. (3)

2This is an arguably natural assumption, without which increasing the number of opinions
directly increases the amount of information communicated at each interaction.
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The sum in Eq. (3) corresponds to the probability that a non-source agent,
taken uniformly at random, adopts opinion 1, given that the current proportion
of agents with opinion 1 is p. Informally, Fn(p) measures the bias of P towards
opinion 1, or in other words:

IE

(
Xt+1

n
| Xt = xt

)
≈ xt

n
+ Fn

(xt

n

)
(see Proposition 5 for a more accurate statement). The fact that ℓ is constant
w.r.t. n directly implies that Fn, as a polynomial in p, has a constant degree,
and therefore a constant number of roots within the interval [0, 1]. We are able
to exploit this property by considering a well-chosen interval of constant length
between two roots of Fn. If Fn is negative on this interval, i.e., P tends to make
the proportion of 1-opinions decrease, we show that the process will be slow to
reach consensus every time the correct opinion is 1. Conversely, if it is positive,
we show that fast convergence fails whenever the correct opinion is 0.

In terms of the dependency on n, we show that our lower bound is nearly
tight (up to a sub-polynomial factor) by adapting a well-known result to our
setting. Its proof does not introduce any novel argument and is deferred to
Appendix B.

Theorem 2. The Voter dynamics (Protocol 1) solves the bit-dissemination
problem in O(n log n) rounds w.h.p.

However, when it comes to parameter ℓ, a gap remains between our lower
bound and the upper bound in [15], where it is shown that the minority dynamics
solves the problem in O(log2 n) rounds w.h.p. when ℓ is at least Ω(

√
n log n).

On the one hand, we believe that our techniques cannot be used to extend
the lower bound to a higher value of ℓ. Indeed, if ℓ = Ω(log n), it is already
possible for a protocol to converge in just one round w.h.p. from configurations
that are arbitrarily far away from the consensus. This observation destroys
any hope of restricting the analysis to a small interval of the configuration
space. In contrast, this phenomenon does not happen w.h.p. in our setting (see
Proposition 4).

On the other hand, to this day, there is no good reason to think that
Θ(
√
n log n) is the smallest value of ℓ allowing for an efficient protocol (such

as the minority dynamics). As previously mentioned, the authors of [15] do not
provide any argument supporting this claim, and simulations suggest that its
convergence might be fast even when the sample size is qualitatively small (al-
though in general, numerical results shed little light on asymptotic behaviours).
Yet, rigorously analysing its convergence time seems highly challenging, and is
left for future work.

1.3 Other Related Works

The bit-dissemination problem was also studied under the assumption that
agents can use a moderate amount of memory. An efficient protocol is iden-
tified in [7], and achieves consensus in O(polylog n) parallel rounds with high
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probability. It relies on agents being able to memorize log log n bits of informa-
tion from one round to the next and requires a sample size logarithmic in n.
Other candidates are mentioned in [6] but are not analysed. The authors of [22]
show that the problem can be solved in the context of population protocols with
a memory of only constant size. Importantly however, population protocols do
not fit the framework of passive communications. Specifically, interaction rules
in this model depend on the exact states of the agents, and not just on their
binary opinion.

The bit-dissemination problem is a specific case of the majority bit-dissemination
problem, introduced in [6] and also addressed in [22]. In this variant, the number
of source agents is arbitrarily large, and they may have conflicting preferences.
The opinions of sources must not necessarily be in line with their preferences,
and they can participate to the protocol in the same way as regular agents. The
correct opinion is defined as the most widespread preference among sources. On
the one hand, an efficient solution can be derived from the results in [22, 23], but
require active communications, and relies on memory. On the other hand, the
authors of [7] show that the majority bit-dissemination problem is impossible
with passive communications.

More generally, many works within the opinion dynamics literature inves-
tigate the influence of the presence of “stubborn” or “biased” agents on the
behaviour of the system. Typically, these works focus on a single arbitrary
process, mainly the Voter dynamics [24, 25, 26, 27, 28], and to the best of
our knowledge, do not establish general lower bounds. In contrast, our goal is
to better understand the difficulty of spreading information as an algorithmic
problem; therefore, we do not want to rule out any imaginable protocol within
the constraints of our setting. Furthermore, they often investigate different
questions, such as the impact of the number of sources or they position in the
network on the convergence time, or assume that sources may have conflicting
opinions.

2 Preliminaries

In this section, we make a few general observations that we will use later in our
analysis.

Conditioning on Agent i sampling exactly k times the opinion “1”, for ev-
ery k ∈ {0, . . . , ℓ}, we obtain that

P
(
X

(i)
t+1 = 1 | Xt = xt, X

(i)
t = b

)
=

ℓ∑
k=0

(
ℓ

k

)(xt

n

)k (
1− xt

n

)ℓ−k

g[b]n (k). (4)

After convergence has happened, i.e., Xt ∈ {0, n}, this probability must be
equal to 0 or 1 respectively so that a consensus is maintained. This imposes a
constraint on any protocol attempting to solve the bit-dissemination problem,
which can be formalized as follows (due to lack of space, the proof is deferred
to Appendix C).
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Proposition 3. Any protocol P solving the bit-dissemination problem must

satisfy g
[0]
n (0) = 0 and g

[1]
n (ℓ) = 1.

Accordingly, we will always assume that g
[0]
n (0) = 0 and g

[1]
n (ℓ) = 1. Using

this assumption, we can show a general upper bound on the fraction of agents
with opinion 0 that can change opinion in a single time step.

Proposition 4. Let c ∈ (0, 1) and consider a protocol P solving the bit-dissemination
problem. There is a constant y = y(c, ℓ) ∈ (c, 1) s.t. for every n large enough,
and xt ≤ c n,

P (Xt+1 ≤ y n | Xt = xt) ≥ 1− exp
(
−2n−1/2

)
.

Proof. Let t ∈ N, and xt ≤ cn. By Eq. (4), and since we assumed g
[0]
n (0) = 0,

P
(
X

(i)
t+1 = 0 | Xt = xt, X

(i)
t = 0

)
= 1−

ℓ∑
k=0

(
ℓ

k

)(xt

n

)k (
1− xt

n

)ℓ−k

g[0]n (k)

=

ℓ∑
k=0

(
ℓ

k

)(xt

n

)k (
1− xt

n

)ℓ−k (
1− g[0]n (k)

)
≥
(

1− xt

n

)ℓ
≥ (1− c)ℓ.

Let Y be the number of agents with opinion 0 in round t, that keep opinion 0
in round t + 1 (conditioned on Xt = xt). By assumption, n−Xt ≥ (1− c)n, so
the last equation implies the following domination3:

Y ⪰ Binomial
(
(1− c)n, (1− c)ℓ

)
:= Z.

Let a = a(c, ℓ) := (1 − c)ℓ+1, so that IE (Z) = an. Let a′ := a − n−1/4. For n
large enough, we have a′ > a/2. By Hoeffding’s bound, we have

P
(
Z ≤ an

2

)
≤ P (Z ≤ a′n) = P

(
Z ≤ IE(Z)− n3/4

)
≤ exp

(
−2n1/2

)
.

Finally, setting y = y(c, ℓ) := 1− a/2, we obtain

P (Xt+1 ≥ y n | Xt = xt) ≤ P
(
Y ≤ an

2

)
≤ P

(
Z ≤ an

2

)
≤ exp

(
−2n1/2

)
,

which concludes the proof of Proposition 4.

Finally, the following proposition justifies the informal claim made in Sec-
tion 1.2 according to which the function Fn, defined in Eq. (3), represents the
“bias” of the corresponding protocol towards opinion 1.

3Given two real-valued random variables X and Y , we say that X is stochastically domi-
nated by Y , and write X ⪯ Y , if for every x ∈ R, P(X > x) ≤ P(Y > x).
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Proposition 5. For every protocol P, and every xt ∈ [n],

IE (Xt+1 | Xt = xt) ≤ xt + nFn

(xt

n

)
+ 1, (5)

IE (Xt+1 | Xt = xt) ≥ xt + nFn

(xt

n

)
− 1. (6)

Proof. For a non-source agent i ∈ I \ {1}, an opinion b ∈ {0, 1}, and any
p ∈ [0, 1], let

Pb := P
(
X

(i)
t+1 = 1 | Xt = np, X

(i)
t = b

)
=

ℓ∑
k=0

(
ℓ

k

)
pk(1− p)ℓ−kg[b]n (k),

where the second equality is a restatement of Eq. (4). Note that by definition
of Fn,

Fn(p) = pP1 + (1− p)P0 − p. (7)

There are Xt−z non-source agents with opinion 1 in round t, and n−Xt−(1−z)
non-source agents with opinion 0. Hence,

IE (Xt+1 | Xt = np) = z + (np− z)P1 +
(
n− np− (1− z)

)
P0

= n
(
pP1 + (1− p)P0

)
+ z(1− P1)− (1− z)P0

= np + nF (p) + z(1− P1)− (1− z)P0. (by Eq. (7))

Note that for any z ∈ {0, 1}, since P0, P1 ∈ [0, 1], we have

−1 ≤ z(1− P1)− (1− z)P0 ≤ +1,

from which Eqs. (5) and (6) follow by taking p := xt/n.

3 An Intermediate Results on Markov Chains

In this section, we present a general result that we will use later as a black box.
Informally, the theorem says that if a Markov chain is a super-martingale over
an interval of values, and given that it cannot skip the interval entirely, then the
time required to cross the interval is at least the time needed by a martingale
to escape it.

Theorem 6. Let {Xt}t∈N be a Markov chain on Z and ε > 0. If there are
a1 < a2 < a3 ∈ R s.t.

(i) for every xt ∈ {⌈a1 n⌉, ..., ⌊a3 n⌋}, IE(Xt+1 | Xt = xt) ≤ xt + 1,

(ii) for every xt < a1 n, P(Xt+1 > a2 n | Xt = xt) = exp
(
−nΩ(1)

)
,

(iii) P(|Xt+1 − IE (Xt+1 | Xt) | > n1/2+ε/4) < 2 exp
(
−2nε/2

)
,

then for X0 = a2+a3

2 · n and n large enough, we have w.h.p.

inf{t ∈ N, Xt ≥ a3 n} ≥ n1−ε.
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Proof. Let T = n1−ϵ. Let Yt := Xt−t. We will consider the Doob decomposition
of Yt: for every t ≥ 1, let

A0 := 0 and for all t > 0, At :=

t∑
k=1

(IE (Yk | Yk−1)− Yk−1) ,

M0 := Y0 and for all t > 0, Mt := Y0 +

t∑
k=1

(Yk − IE (Yk | Yk−1)) .

With this definition, one can check that Yt = Mt + At, and that {Mt}t∈N is a
martingale. The main ideas of the proof are depicted on Figure 1.

Figure 1: Sketch of the proof of Theorem 6. (a) By assumption (ii), with high
probability, Yt cannot jump from below a1 n − t to above a2 n − t in a single
step, let alone a2 n. (b) In Claim 7, we use assumption (i) and the properties of
the Doob’s decomposition to show that, if a1 n − t ≤ Yt ≤ Mt, then Yt cannot
jump above Mt in a single step. (c) In Claim 8, we use the Azuma-Hoeffding
inequality to show that Mt remains in the interval [a2 n + T, a3 n − T ] for at
least T rounds w.h.p. Overall, (a) (b) and (c) implies that Yt must remain below
a3 n− T for at least T rounds w.h.p., yielding the desired conclusion.

First, we show that by construction and Assumption (i), Yt can never “jump
over” Mt in one round, as long as it starts from the interval {a1n−t, . . . , a3n−t}.

Claim 7. For every t ∈ N,

Mt ≥ Yt and Yt ∈ {a1n− t, . . . , a3n− t} =⇒ Mt+1 ≥ Yt+1.

Proof. Let yt ∈ {a1n− t, . . . , a3n− t} and mt ≥ yt, and consider the event

E :=
{
Yt = yt∩Mt = mt

}
.
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We have

IE (Yt+1 | Yt = yt) = IE (Xt+1 − (t + 1) | Xt = yt + t)

= IE (Xt+1 | Xt = yt + t)− (t + 1)

≤ (yt + t + 1)− (t + 1) (by (i))

= yt.

Therefore,

(At+1 −At | E) =

(
IE (Yt+1 | Yt)− Yt | E

)
= IE (Yt+1 | Yt = yt)− yt ≤ 0.

Since mt ≥ yt, this implies

(At+1 | E) ≤ (At | E) = (Yt −Mt | E) = yt −mt ≤ 0,

and thus,
(Yt+1 | E) = (Mt+1 + At+1 | E) ≤ (Mt+1 | E) ,

which concludes the proof of Claim 7.

Now, using Azuma’s inequality and Assumptions (ii) and (iii), we establish
high probability bounds on the martingale Mt.

Claim 8. With high probability, for every t ≤ T , a2 n + T < Mt < a3 n− T .

Proof. By construction, and since Xt and Yt only differ by a deterministic quan-
tity,

Mt+1 −Mt = Yt+1 − IE (Yt+1 | Yt) = Xt+1 − IE (Xt+1 | Xt) .

By assumption (iii) in the statement, this implies

P
(
|Mt+1 −Mt| > n

1
2+

ε
4

)
≤ 2 exp

(
−2n

ε
2

)
.

By the union bound,

P
(
∃s ≤ t, |Ms+1 −Ms| > n

1
2+

ε
4

)
≤ 2 t exp

(
−2n

ε
2

)
.

Let α = (a3 − a2)/4, so that

M0+αn = X0+αn =
a2 + a3

2
n+αn = a3 n−αn, and M0−αn = a2 n+αn.

(8)
By the Azuma-Hoeffding inequality applied to {Mt}t∈N, we then have for ev-
ery t ≤ T ,

P (|Mt −M0| > αn) ≤ 2 exp

(
− α2n2

2 t n1+ ε
2

)
+ 2 t exp

(
−2n

ε
2

)
≤ 2 exp

(
− α2n2

2T n1+ ε
2

)
+ 2T exp

(
−2n

ε
2

)
(since t ≤ T )

= 2 exp

(
−α2

2
· n ε

2

)
+ 2T exp

(
−2n

ε
2

)
. (since T = n1−ε)
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By the union bound,

P (∃t ≤ T, |Mt −M0| > αn) ≤ 2T exp

(
−α2

2
· n ε

2

)
+2T 2 exp

(
−2n

ε
2

)
= o(n−2).

(9)
Finally, note that for n large enough, T = n1−ϵ < αn, and hence,

P (∃t ≤ T,Mt /∈ {a2 n + T, . . . , a3 n− T})
≤ P (∃t ≤ T,Mt /∈ {a2 n + αn, . . . , a3 n− αn})
= P (∃t ≤ T, |Mt −M0| > αn) (by Eq. (8))

= o(n−2), (by Eq. (9))

which concludes the proof of Claim 8.

Next, we use Claims 7 and 8 and Assumption (ii) of the theorem to show
that Yt can never jump over Mt, with high probability.

Claim 9. With high probability, for every t ≤ T , Mt ≥ Yt.

Proof. We will be conditioning on the two following events:

E1 := {∀t ≤ T, Yt < a1 n− t =⇒ Yt+1 ≤ a2 n− t} ,
E2 := {∀t ≤ T, a2 n + T < Mt < a3 n− T} .

Note that E2 happen w.h.p. as a consequence of Claim 8. Moreover,

P(E1) = 1− P

(
T⋃

t=0

{Yt ≤ a1 n− t}∩ {Yt+1 > a2 n− t}

)

= 1− P

(
T⋃

t=0

{Xt ≤ a1 n}∩ {Xt+1 > a2 n}

)

≥ 1−
T∑

t=0

P
(
Xt ≤ a1 n ∩ Xt+1 > a2 n

)
(by the union bound)

≥ 1−
T∑

t=0

P (Xt+1 > a2 n | Xt ≤ a1 n)

≥ 1− T exp
(
−nΩ(1)

)
(by assumption (ii))

≥ 1− o(n−2). (since T = n1−ε)

Hence, E1 also happens w.h.p., and so does E1∩E2. To conclude the proof, we
will show that

E1∩E2 =⇒ ∀t ≤ T,Mt ≥ Yt. (10)

We will proceed by induction on t. By definition, we have M0 = Y0. Now,
let t < T , and consider the case that E1 and E2 hold, and that Mt ≥ Yt.

13



• If Yt < a1 n− t, we have

Yt+1 ≤
(E1)

a2 n− t ≤ a2 n + T <
(E2)

Mt+1.

• Otherwise, by induction hypothesis and E2, we have a1 n− t ≤ Yt ≤Mt <
a3n− T < a3n− t. In this case, Mt+1 ≥ Yt+1 follows as a consequence of
Claim 7.

By induction, we deduce that Eq. (10) hold, which concludes the proof of
Claim 9.

Finally, we are ready to conclude. By Claim 9, with high probability, for
every t ≤ T , Xt ≤Mt + t. Therefore,

inf{t ∈ N, Xt > a3n} ≥ inf{t ∈ N,Mt > a3n− t} w.h.p.

Moreover, by Claim 8,

inf{t ∈ N,Mt > a3n− t} > T w.h.p.,

which gives the desired result.

By symmetry, the following result can be deduced directly from Theorem 6.

Corollary 10. Let {Xt} be a Markov chain on Z and ε > 0. If there are
a1 < a2 < a3 ∈ R s.t.

(i) for every xt ∈ {⌈a1 n⌉, ..., ⌊a3 n⌋}, IE(Xt+1 | Xt = xt) ≥ xt − 1,

(ii) for every xt > a3 n, P(Xt+1 < a2 n | Xt = xt) = exp(−nΩ(1)),

(iii) P(|Xt+1 − IE (Xt+1 | Xt) | > n1/2+ε/4) < 2 exp
(
−2nε/2

)
,

then for X0 = a1+a2

2 · n and for n large enough, we have w.h.p.

inf{t ∈ N, Xt ≤ a1 n} ≥ n1−ε.

Proof. It is easy to check that if the assumptions of Corollary 10 hold for
{Xt}t∈N and some constants a1 < a2 < a3, then the assumptions of Theo-
rem 6 hold w.r.t. {−Xt}t∈N and −a3 < −a2 < −a1 respectively – and the
conclusion follows.

4 The Main Proof

4.1 The Voter Dynamics

First, we focus on the Voter dynamics (Protocol 1) and show that it satisfies
the lower bound stated in Theorem 1, which we will prove in its full generality

14



in Section 4.2. We start by observing that for gvoter defined in Eq. (1), and by
definition in Eq. (3),

F voter
n (p) = −p +

ℓ∑
k=0

(
ℓ

k

)
pk(1− p)ℓ−k · k

ℓ
= −p + p = 0.

Then, we conclude by applying the following result.

Lemma 11. Consider a protocol P satisfying Fn = 0 for every n large enough.
There exists a sequence of configurations {Cn} such that for every ϵ > 0, with
high probability,

τn(P, Cn) > n1−ε.

Proof. We want to apply Theorem 6 with a1 = 1/4, a2 = 1/2, a3 = 3/4. If the
three hypotheses hold, we have for the initial configuration Cn := (z = 1, X0 =
a2 n+a3 n

2 ),

τn (P, Cn) ≥ inf{t ∈ N, Xt > a3n} ≥ n1−ε.

Now, let us show that the hypotheses hold:

(i) Since Fn = 0 for n large enough, we have by Proposition 5

IE(Xt+1 | Xt = xt) ≤ xt + 1.

(iii) We can apply Hoeffding’s bound; conditioning on Xt, Xt+1 is sum of n
Bernoulli random variables, then, choosing δ = n1/2+ε/4, for any ε > 0,

P(|Xt+1 − IE (Xt+1 | Xt) | > n1/2+ε/4) < 2 exp
(
−2nε/2

)
,

proving (iii).

(ii) If xt < a1 n and n large enough, (ii) follows again from Hoeffding’s bound,

P(Xt+1 > a2n | Xt = xt) ≤ P(Xt+1 > n1/2+1/4+IE (Xt+1 | Xt = xt) | Xt = xt) < 2 exp
(
−2n1/2

)
.

4.2 General Case

Our main result (Theorem 1) will follow as a consequence of Theorem 12 below.

Theorem 12. For every ε > 0 and every protocol P, there exists an infinite
set S ⊆ N and a sequence of configurations {Cn} such that for every n ∈ S,

P
(
τn(P, Cn) > n1−ε

)
≥ 1− 1

nΩ(1)
.

In other words, the convergence time of P restricted to S is greater than n1−ε

w.h.p.
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Proof. Recall the definition of Fn in Eq. (3). If there is N ∈ N s.t. for every n ≥
N , Fn = 0, then we can conclude by applying Lemma 11. Otherwise, there is
an infinite set S0 ⊆ N s.t. for every n ∈ S0, Fn ̸= 0, which we will assume from
now on.

By definition in Eq. (3), Fn is a polynomial of degree at most ℓ+ 1. For n ∈
S0, let dn be the number of roots of Fn in the interval [0, 1] (counted with

multiplicity). By Proposition 3, g
[0]
n (0) = 0 and g

[1]
n (ℓ) = 1, so Fn(0) = Fn(1) =

0, and thus dn ∈ {2, . . . , ℓ + 1}. Since dn can only adopt finitely many values,
there exists d ∈ {2, . . . , ℓ + 1} and an infinite set S1 ⊆ S0 s.t. for every n ∈ S1,
dn = d.

For n ∈ S1, let 0 = r
(1)
n ≤ . . . ≤ r

(d)
n = 1 be the roots of Fn within the inter-

val [0, 1], with multiplicity, in increasing order. The sequence
{

(r
(1)
n , . . . , r

(d)
n )
}
n∈S0

is bounded in Rd by definition. Hence, by the Bolzano-Weierstrass theorem,

there exists a converging sub-sequence of
{

(r
(1)
n , . . . , r

(d)
n )
}
n∈S0

; i.e., there are

0 = r
(1)
∞ ≤ . . . ≤ r

(d)
∞ = 1 together with an infinite set S2 ⊆ S1 s.t. for every

k ∈ [d],
lim

n→+∞
n∈S2

r(k)n = r(k)∞ . (11)

Let
k0 := min{k ∈ [ℓ], r(k)∞ = 1}.

Note that k0 ≥ 2 (since r
(1)
∞ = 0) and by definition, r

(k0−1)
∞ < 1 = r

(k0)
∞ . More-

over, for every n ∈ S2, Fn is non-zero and has constant sign on (r
(k0−1)
n , r

(k0)
n ).

Therefore, there exists an infinite set S3 ⊆ S2 s.t.

1. either ∀n ∈ S3, Fn < 0 on (r
(k0−1)
n , r

(k0)
n ),

2. or ∀n ∈ S3, Fn > 0 on (r
(k0−1)
n , r

(k0)
n ).

In the remainder of the proof, we will analyse these two cases separately. The
reader is strongly encouraged to consult Figures 2 and 3 respectively for a clearer
understanding of the argument.

Case 1. Let a1 ∈ (r
(k0−1)
∞ , 1). Let a2 = a2(a1, ℓ) ∈ (a1, 1) given by Proposi-

tion 4, s.t. for n large enough,

for every xt ≤ a1 n, P(Xt+1 ≤ a2 n | Xt = xt) ≥ 1− exp(−2n−1/2).

Let a3 ∈ (a2, 1). By Eq. (11), for n large enough, r
(k0−1)
n < a1 and r

(k0)
n > a3.

We now wish to use Theorem 6, with a1, a2, a3 as we just defined. Let us check
that every assumption holds:

• For every xt ∈ {a1 n, . . . , a3 n}, we have xt/n ∈ [a1, a3] ⊂ [r
(k0−1)
n , r

(k0)
n ],

and so Fn(xt/n) < 0 by assumption. Therefore, Eq. (5) gives

IE (Xt+1 | Xt = xt) ≤ xt + nFn

(xt

n

)
+ 1 < xt + 1, (12)

so assumption (i) in the statement of Theorem 6 holds.
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Figure 2: Illustration of the arguments for Case 1. We consider a con-
figuration in which the correct opinion is 1. Constant a1 is fixed arbitrarily in

the interval (r
(k0−1)
∞ , 1) Then, a2 is chosen according to Proposition 4 to ensure

that Xt cannot jump from below a1 n to above a2 n. Finally, a3 is set anywhere
in the interval (a2, 1]. By assumption, Fn < 0 on [a1, a3], and we can eventually
apply Theorem 6.

• Assumption (ii) holds by Proposition 4.

• Finally, assumption (iii) follows from Hoeffding’s bound: conditioning on
Xt, Xt+1 is the sum of n Bernoulli random variables, then the result follow
choosing δ = n1/2+ε/4.

Assuming that the source has opinion z = 1, we apply Theorem 6, which implies
the existence of an initial configuration Cn s.t. the convergence time is bounded
w.h.p.:

τn(g, Cn) = inf{t ∈ N, Xt = n} ≥ inf{t ∈ N, Xt ≥ a3 n} ≥ n1−ε.

Case 2. Let a1, a2, a3 ∈ (r
(k0−1)
∞ , 1), with r

(k0−1)
∞ < a1 < a2 < a3 < 1. First,

we show that by taking n large enough, we can have Fn be arbitrarily close to

0 on the interval [r
(k0)
n , 1].

Claim 13. For every δ > 0, for n large enough: r
(k0)
n > (1 + a3)/2, and for

every p ∈ [r
(k0)
n , 1], Fn(p) > −δ.

Proof. Let δ > 0 and n ∈ S2. Since Fn has bounded coefficients and degree d,

and since Fn(r
(k0)
n ) = Fn(1) = 0, by Claim 17 in Appendix C we obtain the

existence of C0 s.t.

for every p ∈ [r(k0)
n , 1], |Fn(p)| < C0 · (1− r(k0)

n ). (13)

By Eq. (11) and by definition of k0, r
(k0)
n tends to 1 as n goes to +∞. If n is

large enough,

r(k0)
n > max

{
1− δ

C0
,

1 + a3
2

}
. (14)
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Figure 3: Illustration of the arguments for Case 2. We consider a configu-
ration in which the correct opinion is 0. Constants a1, a2 and a3 are chosen arbi-

trarily in the interval (r
(k0−1)
∞ , 1). By assumption, Fn > 0 on [a1, a3]. Moreover,

once a2 and a3 are fixed, we give a lower-bound on Fn on the interval [r
(k0)
n , 1],

by letting r
(k0)
n be sufficiently close to 1, in order to ensure that Xt cannot jump

from above a3 n to below a2 n. Eventually, we are able to apply Corollary 10.

By Eq. (13), this implies that |Fn(p)| < δ on [r
(k0)
n , 1], which, together with

Eq. (14), concludes the proof of Claim 13.

Now, we use the previous result to establish a lower bound on p + Fn(p)
when p ≥ a1.

Claim 14. For n large enough,

• for every p ∈ [a1, a3], p + Fn(p) > p.

• for every p ∈ [a3, 1], p + Fn(p) > a3.

Proof. For p ∈ [a1, r
(k0)
n ), Fn(p) > 0 by assumption. Therefore:

• for every p ∈ [a1, a3], p + Fn(p) > p.

• for every p ∈ [a3, r
(k0)
n ), p + Fn(p) > p ≥ a3.

All is left to prove is that p + Fn(p) > a3 on [r
(k0)
n , 1]. Let δ = (1− a3)/2, and

let n be large enough for Claim 13 to hold w.r.t. δ. For every p ∈ [r
(k0)
n , 1], we

have

p + Fn(p) > r(k0)
n − δ (by Claim 13 and definition of p)

= a3 +

(
1− a3

2
− δ

)
+

(
r(k0)
n − 1 + a3

2

)
> a3, (by Claim 13 and definition of δ)

which concludes the proof of Claim 14.
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Finally, similarly to the first case, we use Corollary 10 to conclude. Again, we
start by checking that all assumptions hold. Let n be large enough for Claim 14
to hold.

• For every xt ∈ {a1 n, . . . , a3 n}, we have xt/n + Fn(xt/n) > xt/n by
Claim 14. Therefore, Eq. (6) rewrites

IE (Xt+1 | Xt = xt) ≥ xt + nFn

(xt

n

)
− 1 ≥ xt − 1,

so assumption (i) in the statement of Corollary 10 holds.

• For every xt ∈ {a3 n, . . . , n}, we have xt/n + Fn(xt/n) > a3 by Claim 14.
Therefore, Eq. (6) rewrites

IE (Xt+1 | Xt = xt) ≥ xt + nFn

(xt

n

)
− 1 ≥ a3 n− 1.

Therefore, by Hoeffding’s bound,

P (Xt+1 < a2 n | Xt = xt) ≥ P

(
Xt+1 < IE (Xt+1)− a3 − a2

2
n | Xt = xt

)
≤ exp

(
−2

(
a3 − a2

2

)2

n

)
,

and so assumption (ii) holds.

• Finally, assumption (iii) follows from Hoeffding’s bound, as in the first
case.

Assuming that the source has opinion z = 0, we apply Corollary 10, which
implies the existence of an initial configuration Cn s.t. the convergence time is
bounded:

τn(g, Cn) = inf{t ∈ N, Xt = 0} ≥ inf{t ∈ N, Xt ≤ a1n} ≥ n1−ε.

5 Discussion and Future Works

In this paper, we explore the minimal requirements for simultaneously reaching
consensus and propagating information in a distributed system. We consider
memory-less and anonymous agents, which update their opinion synchronously
after observing the opinions of a few other agents sampled uniformly at ran-
dom, and whose goal is to converge on the correct opinion held by a single
“source” individual. In addition, we adopt the self-stabilizing framework, which
in a memory-less setting, means that convergence must happen for any possible
initialization of the opinions of the agents (including the source). Under this

19



model, we show that to obtain a convergence time better than n1−ϵ, the num-
ber ℓ of samples obtained by each agent in every round must necessarily tend
towards infinity as n increases. Our result extends the range of values of ℓ for
which the performance of the “minority” dynamics (Protocol 2) is characterized.
Our technique, which consists in translating the sample size into the degree of a
well-chosen polynomial, and then inspecting its roots, is simple yet quite novel
(to the best of our knowledge), and may be used to show similar results in other
settings.

The ultimate goal of our work is to fully characterize the complexity of the
bit-dissemination problem in the parallel setting and in the absence of memory,
as a function of the sample size. Regarding values of ℓ allowing poly-logarithmic
convergence time, there is still a large gap between our lower bound ℓ = Ω(1)
and the upper bound ℓ = O(

√
n log n) mentioned in [15]. Closing or narrowing

this gap, even specifically for the minority dynamics, would be of appreciable
interest in our opinion.

Another natural continuation would be to generalize our result to protocols
using a constant amount of memory. If feasible, the resulting lower bound would
still be compatible with the algorithm of [7], which requires Ω(log log n) bits of
memory.
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Natale. Search via parallel Lévy walks on z2. In Proceedings of the 2021
ACM Symposium on Principles of Distributed Computing, PODC’21, pages
81–91, New York, NY, USA, July 2021. Association for Computing Machin-
ery.

[6] Lucas Boczkowski, Amos Korman, and Emanuele Natale. Minimizing mes-
sage size in stochastic communication patterns: Fast self-stabilizing proto-
cols with 3 bits. In Proceedings of the 2017 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), Proceedings, pages 2540–2559. Society for
Industrial and Applied Mathematics, January 2017.

[7] Amos Korman and Robin Vacus. Early adapting to trends: Self-stabilizing
information spread using passive communication. In Proceedings of the
2022 ACM Symposium on Principles of Distributed Computing, PODC’22,
pages 235–245, New York, NY, USA, July 2022. Association for Computing
Machinery.

[8] Étienne Danchin, Luc-Alain Giraldeau, Thomas J. Valone, and Richard H.
Wagner. Public information: From nosy neighbors to cultural evolution.
Science, 305(5683):487–491, July 2004.

[9] Ofer Feinerman and Amos Korman. Individual versus collective cognition
in social insects. Journal of Experimental Biology, 220(1):73–82, January
2017.

[10] Melissa B. Miller and Bonnie L. Bassler. Quorum sensing in bacteria.
Annual Review of Microbiology, 55(1):165–199, 2001.

21



[11] Anthony Trewavas. Plant intelligence: Mindless mastery. Nature,
415(6874):841–841, February 2002.

[12] David J. T. Sumpter, Jens Krause, Richard James, Iain D. Couzin, and
Ashley J. W. Ward. Consensus decision making by fish. Current Biology,
18(22):1773–1777, November 2008.

[13] Tamás Vicsek and Anna Zafeiris. Collective motion. Physics Reports,
517(3):71–140, August 2012.

[14] Luca Becchetti, Andrea Clementi, Amos Korman, Francesco Pasquale,
Luca Trevisan, and Robin Vacus. On the role of memory in robust opin-
ion dynamics. In Edith Elkind, editor, Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, vol-
ume 1, pages 29–37, Macao, August 2023. International Joint Conferences
on Artificial Intelligence Organization.

[15] Luca Becchetti, Andrea Clementi, Francesco Pasquale, Luca Trevisan,
Robin Vacus, and Isabella Ziccardi. The minority dynamics and the power
of synchronicity. In Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), Proceedings, pages 4155–4176. Society for
Industrial and Applied Mathematics, Alexandria, Virginia, U.S., January
2024.

[16] Mohsen Ghaffari and Johannes Lengler. Nearly-tight analysis for 2-choice
and 3-majority consensus dynamics. In Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing, PODC ’18, pages 305–313,
New York, NY, USA, July 2018. Association for Computing Machinery.

[17] Luca Becchetti, Andrea Clementi, and Emanuele Natale. Consensus dy-
namics: An overview. ACM SIGACT News, 51(1):58–104, March 2020.

[18] James Aspnes and Eric Ruppert. An introduction to population proto-
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A Probabilistic Tools

Theorem 15 (Hoeffding’s bound). Let X1, . . . , Xn be i.i.d. random variables
taking values in {0, 1}, let X =

∑n
i=1 Xi and µ = IE(X) = nP(X1 = 1). Then

it holds for all δ > 0 that

P (X ≤ µ− δ) ,P (X ≥ µ + δ) ≤ exp

(
−2δ2

n

)
.

The following version of Azuma’s inequality, which accounts for the possi-
bility that the martingale makes a large jump with a small probability, appears
in [29, Section 8, p.34].

Theorem 16 (Azuma-Hoeffding inequality). Let (Xt)t∈N be a martingale, and
let T ∈ N. If there is p > 0 and c1, . . . , cT such that

P (∃t ≤ T,Xt −Xt−1 > ct) ≤ p,

then for every δ > 0,

P (|XT −X0| > δ) ≤ 2 exp

(
− δ2

2
∑T

t=1 c
2
t

)
+ p.

B Upper Bound for the Voter Dynamics

The following proof involves only classical arguments (see, for instance, [25] and
[30, Section 2.4]). We nonetheless present it here for the sake of completeness.

Proof of Theorem 2. The reader who is not already familiar with the idea is
strongly encouraged to refer to Figure 4 for an illustration.

Without loss of generality, we consider the Voter dynamics with ℓ = 1. In

this case, the sample S
(i)
t of a non-source agent i ̸= 1 in round t is simply an

element of the set I = {1, . . . , n} of all agents, drawn uniformly at random.

In the case of the source, for the sake of the argument, we let S
(1)
t = 1 for

every t ∈ N, i.e., we consider that the source agent applies the Voter rule but
always samples itself.

Now, let us fix an horizon T . We will proceed by examining n random

walks {W (i)
T−t}t≤T , defined on the same randomness, but for which the time

flows backward. Specifically, for every i ∈ I, let W
(i)
T = i, i.e., every random

walk “starts” at a different position. Moreover, for t < T , let

W
(i)
t := S

(
W

(i)
t+1

)
t .

In other words, if a random walk is in position j in round t + 1, and if Agent j
samples i in round t, then the random walk “moves” to i in round t. Note that
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by definition, if a random walk moves to position 1 in round t, it will remain in
position 1 for all remaining rounds:

W
(i)
t = 1 =⇒ ∀s ∈ {1, . . . , t},W (i)

s = 1. (15)

Moreover, if the random walk indexed by i ends up in position 1 (in round 1),

it implies that the agent of index W
(i)
t holds the correct opinion in round t:

W
(i)
1 = 1 =⇒ X

(
W

(i)
t

)
t = z. (16)

To show that, we can simply proceed by induction on t, using the definition of
the random walks. Eqs. (15) and (16) together implies that if the random walks
indexed by i ever moves to position 1, then Agent i has the correct opinion in
round T :

∃t ≤ T,W
(i)
t = 1 =⇒ X

(i)
T = z. (17)

Therefore, for every i ̸= 1,

P
(
X

(i)
T ̸= z

)
≤ P

(
∀t ≤ T,W

(i)
t ̸= 1

)
(by Eq. (17))

≤
T−1∏
t=0

P

(
S

(
W

(i)
t+1

)
t ̸= 1 |W (i)

t+1 ̸= 1

)
(by the chain rule)

=

(
1− 1

n

)T

. (since samples are uniform and independent)

Note that this bound holds trivially for i = 1. Therefore, by the union bound,

P
(
∀i ∈ I,X

(i)
T = z

)
= 1−P

(
∃i ∈ I,X

(i)
T ̸= z

)
≥ 1−

∑
i∈I

P
(
X

(i)
T ̸= z

)
≥ 1−n

(
1− 1

n

)T

.

Taking T = 2n log n, for n large enough,(
1− 1

n

)2n logn

= exp (2n log n log (1− 1/n)) ≤ exp (−2 log n) =
1

n2
,

which concludes the proof of Theorem 2.

C Missing Proofs

Proof of Proposition 3. The main idea is that a protocol failing to satisfy these
conditions cannot enforce consensus. Assume, for the sake of contradiction,

that g
[0]
n (0) > 0. Consider the starting configuration C := (z = 0, X0) for any

value of X0, and recall the definition of the convergence time of a protocol P:

τn(P, C) := inf{t ≥ 0, for every s ≥ t,Xs = n · z}.
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Figure 4: Depiction of the dual process behind the proof of Theorem 2.
The color of the circle in row t, column i, corresponds to the opinion of Agent i

in round t: it is black if X
(i)
t = 1, and white otherwise. An arrow is drawn

from (i, t + 1) to (j, t) if S
(i)
t = j, i.e., if Agent i observes Agent j in round t

(and thus adopts their opinion in round t + 1). Red circles depict the locations
of n coalescing random walks going backward in time, and initially present at
every location. Random walks at a location i > 1 make a move using the same
randomness as the samples, while the source acts like a sink. If all random walks
have coalesced in less than T rounds, it implies that the opinion of each agent
in round T comes from the source, and thus that the dynamics has reached
consensus on the correct opinion.
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If for some t, Xt = 0, we have

P(∩s≥t{Xs = 0}) =
∏
s≥t

P(∩t+j
s=t{Xs = 0}) · P(∩s≥t{Xs = 0} | ∩t+j

s=t{Xs = 0}))

≤
∏
s≥t

P(∩t+j
s=t{X(2)

s = 0}) (for every j ∈ N)

=
(

1− g[0]n (0)
)j

,

which tends to 0 as j tends to +∞. We conclude that τn(P, C) = +∞ almost
surely, and hence, the protocol does not solve the bit-dissemination problem.

By symmetry, we obtain the other statement about g
[1]
n (ℓ).

Claim 17. For every M,d, there exists C0 = C0(M,d) > 0 s.t. for every
polynomial P of degree d and coefficients bounded by M , every a, b ∈ [0, 1] with
P (a) = P (b) = 0, and every x ∈ [a, b], P (x) < C0 · (b− a).

Proof. Since P has degree d and coefficients bounded by M , there exists C =
C(M,d) s.t. |P ′(x)| < C on [0, 1]. Therefore, for every x ∈ [a, (a + b)/2], we
have

|P (x)| = |P (x)− P (a)| < C · (x− a) < C · b− a

2
.

Similarly, for every x ∈ [(a + b)/2, b], we have

|P (x)| = |P (b)− P (x)| < C · (b− x) < C · b− a

2
.

Taking C0 = C/2 concludes the proof of Claim 17.
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