
Offline Training of Language Model Agents with Functions as Learnable Weights

Shaokun Zhang * 1 Jieyu Zhang * 2 Jiale Liu 1 Linxin Song 3 Chi Wang 4 Ranjay Krishna 2 Qingyun Wu 1

Abstract

Researchers and practitioners have recently re-
framed powerful Large Language Models (LLMs)
as agents, enabling them to automate complex
tasks largely via the use of specialized functions.
To facilitate the development of LLM agents, we
present a novel paradigm of training LLM agents
without modifying the LLM weights, which is
particularly useful when the LLMs are difficult or
inaccessible for modifications. Inspired by how
humans continuously forge tools to adapt to real-
world tasks, rather than change our biological
structure to fit a static set of tools, we propose
to progressively forge agent’s functions to better
solve the downstream tasks instead of modifying
the LLM weights. By treating the functions as
learnable ‘agent parameters’ and leveraging the
fundamental idea of model training in artificial
intelligence, we develop AgentOptimizer that em-
ploys the LLM to update agents’ functions and
devise an agent training algorithm with two strate-
gies, roll-back, and early-stop, to streamline the
training process. With extensive experiments, we
showcase that the agent training paradigm could
significantly improve the performance of represen-
tative LLM agents in various downstream tasks.
We also study the behavior of the agent train-
ing regarding aspects like the learning curve and
domain transferability. We have integrated our
method into AutoGen library.

1. Introduction
Reframing Large Language Models (LLMs) as agents has
ushered in a new paradigm of automation—one where

*Equal contribution 1Pennsylvania State University
2University of Washington 3University of Southern Califor-
nia 4Microsoft Research. Correspondence to: Qingyun Wu
<qingyun.wu@psu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Model Training

Agent Training

Numerical
Optimizer

Loss

ML Model

Training set
Update

Parameters

AgentOptimizer

History

LLM Agent
Update

Functions

Training set

Figure 1. The comparison between model training and agent train-
ing. In model training, numerical optimizers (Ruder, 2016) such as
SGD and Adam optimize the model weights according to the loss
on the training set. In contrast, agent training iteratively updates
the agents’ functions according to the execution history using the
proposed AgentOptimizer.

LLMs can utilize existing functions 1 to accomplish complex
tasks (Xi et al., 2023; Wang et al., 2023b; Yao et al., 2023;
Wang et al., 2023a; Humphreys et al., 2022; Shridhar et al.,
2021). For example, LLM agents, armed with a function to
‘search over Wikipedia’ can answer knowledge questions;
agents with the ability to ‘issue SQL queries’ can search
large databases. Functions allow LLMs to access external
knowledge sources (Peng et al., 2023), offload numerical
computation (Wu et al., 2023b), search the internet (Shi
et al., 2017), and much more (Qin et al., 2023).

To enable LLM agents with useful functions, users need to
first manually create functions that would be helpful for spe-
cific downstream tasks. This curation process may require
many iterations and, therefore, be time-consuming. Since
LLMs are black boxes, researchers have found that LLMs
unexpectedly fail to utilize certain kinds of functions (Qin
et al., 2023). In response, researchers have tried to improve
the underlying LLM’s capability of using existing functions
by finetuning the LLM with ground truth function calls (Qin
et al., 2024; Zeng et al., 2023a). This finetuning process
requires large computing resources. Worse, it limits which
LLMs can be used since many LLM models are proprietary.

Inspired by the fact that human-made tools become an ex-

1Note that the literature has used the term ‘functions’ to some-
times refer to tools or other actions.

1

ar
X

iv
:2

40
2.

11
35

9v
2

 [
cs

.A
I]

 3
 M

ay
 2

02
4

https://github.com/microsoft/autogen/blob/main/notebook/agentchat_agentoptimizer.ipynb

Training Language Model Agents without Modifying Language Models

tension of the human user (Botvinick & Cohen, 1998) and
how humans forge tools to best adapt to real-world tasks,
rather than change the biological structure of the human
to fit a static set of tools, we propose a new agent training
paradigm that ‘forge’ the functions for the LLM agent to
use to best adapt to the training tasks. It addresses both
aforementioned challenges at the same time since it does
not require finetuning the underlying LLM and could start
with an empty set of functions. While the LLM’s parameters
are never updated, its functions are optimized to maximize
the agent’s ability to solve tasks.

In specific, we draw an analogy between traditional model
training and our agent training (Figure 1). (1) Instead of
updating model parameters, our training process updates
the functions for LLM agents, viewing them as the agent’s
‘trainable parameters’. (2) Instead of a loss calculated over a
training set, our training process uses the agent’s execution
history and performance on training tasks as the basis for up-
dating the agent’s functions. Since we operate in the space
of functions, numeric optimizers such as SGD or Adam
are not applicable. Instead, we develop AgentOptimizer,
which leverages the LLM to update the agent’s functions
based on the execution history and the agent-generated /
ground truth answer from the current epoch. In particular,
the AgentOptimizer is instructed to progressively update
the current function set by performing one of the predefined
function manipulation actions (add, revise, and remove),
rather than regenerate the whole function set at each opti-
mization step.

With AgentOptimizer, the overall workflow of LLM agent
training is as follows: given a training set and an empty
function set, at each epoch, we first evaluate the agent sys-
tem against the training set and collect the execution history
as well as the agent-generated / ground truth answers, then
we feed this information to the AgentOptimizer to perform
an optimization step to update the current function set. To
avoid potential performance degradation caused by function
updates, we introduce two simple strategies: roll-back and
early-stop. The former is to withdraw the current function
updates if the performance over the training set is degraded
and roll back to the previous status, while the latter is to
early terminate the optimization process when a certain num-
ber of consecutive optimization steps do not introduce any
performance boost over the training set.

We conducted extensive empirical evaluations on three dis-
tinct tasks: mathematical reasoning (MATH) (Hendrycks
et al., 2021), tabular processing (TabMWP) (Lu et al., 2023),
and general real-world problems (GAIA) (Mialon et al.,
2023). We trained two typical agent systems, GPT-4+
agent (OpenAI, 2023) and ReAct agent (Yao et al., 2023),
using the agent training method. For the MATH dataset,
agent training resulted in an obvious performance improve-

ment in almost all cases. For more realistic and complex
tasks GAIA and TabMWP, agent training led to an average
performance improvement of 6% and 8.5% in GPT-4+ agent
and ReAct agents, respectively. We also perform ablation
to demonstrate the efficacy of different components of the
agent training method. In addition to ablation, we analyzed
its extension to large-scale training and its transferability
across different domains.

Our contributions are summarized below:

• (Paradigm) Inspired by the fundamental idea of model
training in machine learning, we introduce a tailored
paradigm for training LLM agents without modify-
ing the LLMs to build specialized LLM agents for a
given application: we establish analogies between the
learnable parameters inherent in traditional models and
the operational functions of LLM agents, as well as
between the models’ loss functions and the agents’ ex-
ecution history over the training set, to craft a training
regime that enhances the LLM agents’ capabilities;

• (Methodology) To realize this paradigm, we propose
the AgentOptimizer as an alternative to numeric opti-
mizers used in traditional model training. It is designed
to operate in the space of the operational functions of
LLM agents via the exceptional capabilities of LLMs.
Based on the AgentOptimizer, we develop a training
algorithm with two additional techniques (roll-back
and early-stop) that streamline the training process;

• (Experiments) We conduct extensive experiments on
three distinct tasks in training two typical agent sys-
tems, the GPT-4+ agent and the ReAct agent, to show-
case the advantage of the proposed paradigm. We also
provide ablation studies and detailed analysis to under-
stand the behavior of the agent training.

2. Methodology
We begin by defining notations and setting up the research
problem. We use SF to denote any LLM agent system with
function set F = {f1, ..., fn|∀i ∈ [n], fi ∈ V}. fi denotes
the ith function that can be used by agent system SF in the
function space V .

Throughout this work, we assume black-box LLMs such as
ChatGPT (OpenAI, 2022) in the form of LLM as services.
Given any task with training data Dtrain and test data Dtest,
the goal of this study is to find a set of functions F∗ that
could improve the LLM agent’s expected performance on
unseen test data Dtest. To put it more formally,

F∗ = argmin
F⊂V

E[Loss(SF ,Dtest)], (1)

2

Training Language Model Agents without Modifying Language Models

where Loss(SF ,Dtest) measures the average loss of the
agent SF on test data Dtest. In the context of agent training
throughout this paper, loss is defined as the rate of failed
problem-solving attempts using agent systems.

However, the test set and its distribution are not available. In
traditional machine learning model training, it is a common
practice to assume that the distribution of the training and
test data are the same or similar. While this assumption
doesn’t always hold, in machine learning practice, training
loss is used ubiquitously as the primary metric for parameter
selection as a compromise solution.

Following the same spirit, we also employ training data
as a proxy for test data. Then optimizing the functions of
the language agent in function space by minimizing the
loss of training data. This approach allows us to approxi-
mate the performance of the language agent on unseen test
data, i.e., F̂ = argminF⊂V Loss(SF ,Dtrain), where F̂ is
approximation of F∗.

2.1. The AgentOptimizer

To obtain F̂ , it is critical to develop an optimizer tailored for
agent training: it should be capable of updating current func-
tions according to the agent system’s performance on the
training set. In contrast to traditional model training where
the optimization is conducted over a numeric model param-
eter space and derivative-based optimizers can be applied
with a loss of choice, agent training aims to search for the
optimal set of functions for the agent system and therefore
existing numeric model optimizers are not applicable.

Considering these, we propose the AgentOptimizer which
leverages LLMs’ exceptional capability of understanding
and generating language to iteratively update the current
set of functions as an optimizer. Specifically, at each op-
timization step, we prompt the AgentOptimizer with the
current status of the agent system and its execution history
and performance on the training set and instruct it to up-
date the functions of the agent system. Intuitively speaking,
this iterative optimization paradigm could lead to the iden-
tification of optimal functions in a large language space,
analogous to iteratively performing gradient descent when
training traditional machine learning models.

The input to the AgentOptimizer. We use H to denote
the information used to prompt LLMs, which mainly com-
prises the following two parts: 1) The execution history
of the agents in solving each problem of the training set,
including the details of how the agent uses current functions
and 2) the final performance over the training data. In addi-
tion, we include the current set of functions associated with
the agent system as input. This information is necessary for
the AgentOptimizer to be aware of the current state of the
agent system and accordingly suggest function updates.

Algorithm 1 Progressive Function Update
(AgentOptimizer.step)

Input: Functions to be optimized F0, historical information H
Output: Updated agent functions F̃

1 Initialization: F̃ ← F0, t← 0
2 while t < MAX NUM do
3 Action← LLM(F t, H)
4 if Action = TERMINATE then
5 break
6 else
7 // add/revise/remove function
8 F t+1 = Action(F t)

F̃ ← F t+1

9 t← t+ 1

10 Return F̃

Progressive function update. Given the inputted infor-
mation H , a naive way of updating the current functions
is to instruct the LLM to regenerate the whole function set
to replace the existing one. However, such an aggressive
optimization step is unwise since it overwrites all existing
functions, discards useful functions already established, and
requires the LLM to generate multiple functions in a single
shot. In contrast, we propose to progressively update the
functions via predefined actions within each optimization
step. In particular, we adopt four actions: 1) add function:
add one new function that may be useful; 2) revise function:
revise one existing function; 3) remove function: remove
one existing function; and 4) TERMINATE: terminate the
function update process. Except for the TERMINATE ac-
tion, all the actions require certain action arguments as input;
For example, to perform the add function action, the LLM
needs to generate the name, description, code, etc. of the
function as the action arguments so that when executed, this
action will add the new function to the function set. More
details are presented in Appendix D.3. At each time step,
the AgentOptimizer is prompted to choose one action until
the maximum number of actions is reached or the AgentOp-
timizer chooses TERMINATE, and the resulting function
set will be returned. The overall procedure of progressive
function update is shown in Algorithm 1.

2.2. Agent Training

With the AgentOptimizer, we then present the overall agent
training procedure. In practice, the function updates sug-
gested by the AgentOptimizer may cause performance
degradation, since the LLM is not the oracle for updating
the functions. Therefore, we propose two simple strategies
for the training procedure to avoid performance degradation.

Roll-back. To avoid performance degradation after func-
tion updating, we employ a simple yet effective strategy
named roll-back. Specifically, at each optimization step, if
the latest function update leads to a performance drop on

3

Training Language Model Agents without Modifying Language Models

the training set, the AgentOptimizer will withdraw this up-
date. Moreover, considering the fact that LLMs are shown
to be able to recognize patterns from in-context demonstra-
tions (Wei et al., 2022), we also record the failed updated
function and the corresponding performance in a list (Line
11 of Algorithm 2). This list will be used as the prompt for
the next function generations from AgentOptimizer. We ex-
pect that LLMs could use the historical failure information
to generate better functions. The list will be cleared after
achieving performance improvement.

Early-stop. In extreme situations, the optimization pro-
cess may stuck, and rollback repeats without improving the
performance. In this case, it is wise to terminate the op-
timization process, and we employ an early-stop strategy:
the optimization process will be automatically terminated
after C consecutive optimization steps without performance
improvement over the training set.

Overall agent training algorithm. The pseudocode of
the agent training is shown in Algorithm 2. The agent train-
ing process takes as input the following parameters: training
data Dtrain, agent system S, maximum training epoch E,
and the early-stop threshold C. After an initialization step,
which sets the initial functions list F0 and initial historical
information H0 to empty sets, the algorithm proceeds as
follows: at each iteration i, the AgentOptimizer optimizes
the functions list Fi to obtain Fi+1 based on historical in-
formation Hi. The updated function set is then evaluated on
the training set to obtain evaluation information for the next
epoch of training. The training procedure terminates when
the maximum epoch or early-stop threshold is reached.

Algorithm 2 Agent Training
Input: Training Data Dtrain, agent system S, max training epoch

E, early-stop threshold C
Output: Enhanced agent system SF̂

11 Initialization: i← 0, r ← 0, H0 ← ∅,F0 ← ∅.
12 while i < E do
13 if Hi ̸= ∅ then
14 Fi+1 = AgentOptimizer.step(Fi, Hi)
15 else
16 Fi+1 ← Fi

17 Hi+1 = Eval(SFi+1 , Dtrain)
18 if Hi+1.loss < Hi.loss then
19 Hi.fail record← ∅,

F̂ ← Fi+1, i← i+ 1, r← 0
20 else
21 Hi.failure record← (Fi+1, Hi+1.loss)

r← r +1
22 if r > C then

// Early stop
23 Break
24 Return SF̂

3. Experiments
We conduct experiments to prove the superiority of the pro-
posed method. We begin by providing the experimental
settings in Section 3.1. We then evaluate the agent training
method on three datasets to verify its effectiveness in Sec-
tion 3.2. Finally, we perform in-depth investigations in the
last three sections to provide a better understanding of the
proposed agent training method.

3.1. Experimental Setup

Evaluation tasks and metrics. To evaluate the effective-
ness of the proposed agent training, we conducted exper-
iments on three distinct tasks: Mathematical Reasoning,
Tabular Processing, and General Real-World Tasks. Due to
the high cost of OpenAI models, it is impractical to evalu-
ate the method on the complete datasets and therefore we
subsample data from these datasets for training and testing,
following the same settings as previous works (Yuan et al.,
2024; Wu et al., 2023b). The number of training examples
is set according to the LLM’s context limit.

(1) Mathematical reasoning: Following a similar set-
ting with (Yuan et al., 2024), we use a subset of MATH
datasets (Hendrycks et al., 2021) to evaluate the LLM
agent’s performance in addressing mathematical problems.
For each data type (7 in total), we randomly choose 20 test
examples and 80 training examples, and report the accuracy
of each data type respectively.

(2) Tabular processing: The TabMWP (Lu et al., 2023)
dataset evaluates agents in processing structured data in
tables, where each data sample contains one table and one
question in natural language. We randomly sampled 10
test examples and 100 training examples. We measured
the model performance using accuracy based on the exact
match.

(3) General real-world tasks: The GAIA dataset (Mialon
et al., 2023) is dedicated to evaluating the LLM agents in
solving unambiguous real-world questions. From its public
subset, we randomly select 10 questions for training and 100
questions for testing and report the correct rate as suggested
in the original paper.

Agent systems employed. We employ the proposed agent
training method to train two typical LLM agent systems:

(1) GPT-4+ agent: GPT-4+ agent essentially is GPT-4 with
function call and code interpreter. The GPT-4 plays the role
of making reasoning decisions, while the code interpreter
executes code and function calls suggested by the GPT-4.

(2) ReAct agent: The ReAct agent (Yao et al., 2023) gen-
erates both reasoning traces and task-specific actions in an
interleaved manner to solve tasks. In our evaluations, we

4

Training Language Model Agents without Modifying Language Models

Data types
P.Algebra Algebra I.Algebra Geometry C.Probability Precalculus N.Theory

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

GPT-4+ Agent w/o Agent Training 60.0% 78.8% 55.0% 66.3% 30.0% 30.0% 30.0% 40.0% 65.0% 72.5% 5.0% 32.5% 70.0% 56.3%

GPT-4+ Agent w/ Agent Training 65.0% 82.6% 65.0% 65.0% 40.0% 38.8% 40.0% 42.5% 65.0% 76.3% 10.0% 35.0% 80.0% 67.5%
ReAct Agent w/o Agent Training 55.0% 87.5% 55.0% 83.8% 25.0% 50.0% 5.0% 53.8% 45.0% 73.8% 5.0% 53.8% 75.0% 68.8%

ReAct Agent w/ Agent Training 55.0% 87.5% 60.0% 82.5% 35.0% 51.3% 15.0% 58.8% 50.0% 78.8% 10.0% 62.5% 75.0% 72.5%

Table 1. Train/Test accuracy of GPT-4+/ReAct agents with/without agent training on MATH datasets. We show the accuracy of each data
type. We can observe that agent training could lead to an obviously better performance for both two agent systems in most cases.

Method GAIA TabMWP

Train Test Train Test
GPT-4+ Agent w/o Agent Training 10.0% 16.0% 30.0% 51.0%
GPT-4+ Agent w/ Agent Training 30.0% 23.0% 66.7% 56.0%
ReAct Agent w/o Agent Training 20.0% 12.0% 63.3% 59.0%
ReAct Agent w/ Agent Training 40.0% 18.0% 73.3% 70.0%

Table 2. Train/Test accuracy of GPT-4+/ReAct agents with/without agent training on the GAIA and TabMWP datasets. We can observe
that agent training can lead to greater performance for both GPT-4+ and ReAct agents on both two datasets.

Method Number Theory Intermediate Algebra Counting and probability
No Agent Training 56.3% 30.0% 72.5%

Agent Training w/o Roll-back & Early-stop 63.8% 36.3% 72.5%
Agent Training w/o Progressive Function Update 60.0% 28.8% 70.0%

Agent Training (Ours) 67.5% 38.8% 76.3%

Table 3. We take the training of the GPT-4+ agent as an example and perform ablation to investigate the effect of different components of
the agent training method on three data types of the MATH dataset.

optimized the ReAct agent to improve its actions that may
be taken at each action step after a reasoning process.

For both the GPT-4+ agent and ReAct agent, we initialize
them with Python as the initial function that can execute the
Python code suggested by the LLMs

Models. For the more challenging tasks on the MATH
and GAIA datasets, we used GPT-4-1106-preview for both
AgentOptimizer and LLMs agents. For the easier task
TabMWP, we chose to use GPT-3.5-turbo-1106 to con-
struct LLMs agents and GPT-4-1106-preview to construct
the AgentOptimizer. This was done to better visualize the
improvement brought by the agent training and did not sac-
rifice the conclusions obtained from the experiments.

3.2. Main Results

Mathematical reasoning. We first evaluated the perfor-
mance of GPT-4+ agent and ReAct agent on the MATH
dataset, as well as their performance after agent training
on train/test splits, as shown in Table 1. Across seven data
types, we observed that agent training led to better perfor-
mance on the test set in most cases (11 out of 14). Addi-
tionally, training performance improved in almost all cases,
while in the remaining cases, it remained the same. Our

results indicate that agent training could produce functions
useful for unseen test tasks. Interestingly, for counting and
probability problems, when training GPT-4+ agent, the train-
ing performance remains the same while test performance
improves from 72.5% to 76.3%. This suggests that in spe-
cific situations, even if the generated functions do not lead
to performance improvement on the training set, they are
helpful for the unseen test data.

Tabular processing and general real-world tasks. We
then perform evaluations on Tabular Processing tasks
TabMWP (Lu et al., 2023) and general real-world tasks
GAIA (Mialon et al., 2023), as shown in Table 2. Our ob-
servations indicate that agent training led to performance
improvements for both two agent systems. Since these
two datasets are more realistic and complex than MATH,
our results demonstrate that agent training can generate
general and usable functions that increase agents’ realistic
task-solving capabilities, indicating that agent training is
practically useful to some extent

3.3. Ablation and Analysis

3.3.1. ABLATION

We conducted ablation experiments to evaluate the effec-
tiveness of two different components of the agent training

5

Training Language Model Agents without Modifying Language Models

method: (1) roll-back & early-stop, and (2) progressive
function updating. To achieve this goal, we chose three
data types of MATH that resulted in the largest performance
improvements in training GPT-4+ agent: number theory, in-
termediate algebra, and counting and probability 2. Specifi-
cally, to investigate (1), we removed roll-back and early-stop
and trained the agent until reaching the maximum epoch
number. The agent status will not roll-back when the train-
ing performance drops. For (2), we replaced the progressive
function update with a one-step function generation, which
directly prompted the GPT-4 in AgentOptimizer to generate
the functions at each epoch. We also showed the origin
GPT-4+ agent performance without agent training.

As shown in Table 3, the performance greatly dropped if
either one of them was removed. Another interesting ob-
servation is that agent training without progressive function
update even exhibited worse performance than the origin
GPT-4+ agent without agent training. This scenario proves
that prompting LLMs to generate functions is non-trivial. A
bad function generation method may even lead to a negative
effect. Therefore, a carefully designed function generation
algorithm is desirable.

3.3.2. LEARNING CURVE

0 1 2 3 4 5
Epoch

22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0

Ac
cu

ra
cy

 (%
)

Train
Test

(a) Positive - I.Algebra

0 1 2 3 4 5 6 7
Epoch

54
56
58
60
62
64
66

Ac
cu

ra
cy

 (%
)

(b) Negative - Algebra

Figure 2. On the MATH dataset, we visualize the changes in
train/test performance across epochs when training a GPT-4+ agent.
For analysis purposes, we select one data type where the training
does improve the test performance (Positive) and another that does
not (Negative).

For analysis purposes, we visualize the learning curve when
training GPT-4+ agent in solving mathematical problems in
Figure 2. According to the types of experiment results, i.e.,
whether test performance improves (positive) or not (nega-
tive), we choose two data types, the only data type that failed
to improve the test performance (Algebra) and one similar
data type with the failed one that successfully obtained test
performance improvement (Intermediate Algebra). Regard-
ing the positive results on Intermediate Algebra in Figure 2a,
we observe that when the optimization starts, the test perfor-

2Pre-Algebra was not selected due to its similarity to Interme-
diate Algebra, despite having the same performance improvements
as counting and probability.

mance is better than it was at the start time in most epochs,
and the test performance is positively correlated with the
training performance in general. These scenarios provide
evidence to demonstrate the effectiveness of agent training.
However, we also notice that the highest test performance
is not at the last epoch where the algorithm terminates. To
some extent, it represents GPT-4+ agents overfitting to the
training set and suffering from a test performance drop while
the training performance remains the same. Regarding the
negative results on Algebra in Figure 2b, we get a simi-
lar observation that the test performance drops while the
training performance remains the same. We also found the
scenario that the test performance remains the same while
training performance improves, indicating that sometimes
the generated tool may be not general enough to be useful
but would not harm the performance in solving tasks.

3.3.3. DOMAIN TRANSFERABILITY

Figure 3. To investigate the domain transferability of the agent
training method, we show test performances of three different data
types of the MATH dataset after training with different domains.

We then investigate the generalization and transferabil-
ity (Zhou et al., 2022) of the agent training method when
the test data and training data are not sampled from the
same domain. We use three data types in MATH: algebra,
intermediate algebra, and geometry. We intend to choose
two data types that have similar distributions (algebra and
intermediate algebra) and another data type that should have
the largest semantic distance with the algebra and interme-
diate algebra (geometry). We then train GPT-4+ agent on
these three datasets crossly using different train-test pairs
and show the test performance in Figure 3. We observe that
in most cases (2 out of 3), when the training and test data
come from the same domain, agent training leads to the
best test performance compared with training using other
domains, where the results are intuitive to us. However,
we observed an exception when testing on algebra. Using
intermediate algebra for training led to better performance
than using algebra (67.5% vs. 65.0%). This could be be-
cause intermediate algebra shares a similar distribution with
algebra, and the more harder problems in intermediate al-
gebra could be easier to learn basic and general functions
that works for basic problems. Another observation is that
using geometry as the training domain leads to the worst

6

Training Language Model Agents without Modifying Language Models

Method MATH - Train MATH - Test TabMWP - Train TabMWP - Test
CREATOR (Qian et al., 2023) N/A 75.0% N/A 30.0%

CRAFT (Yuan et al., 2024) 50.0% 73.8% 38.0% 38.5%
GPT-4+ Agent w/ Agent Training 60.0% 66.25% 66.6% 56.0%
ReAct Agent w/ Agent Training 60.0% 77.5% 73.3% 70.0%

Table 4. The comparisons between the trained agent systems with two typical tool-creation methods on MATH and TabMWP datasets.
CREATOR doesn’t involve a training stage so the training performance is unavailable. The results indicate that both GPT-4+ agent and
ReAct agent trained with our method outperform tool-creation methods in most cases.

test performance in algebra and intermediate algebra. This
is because its distribution is far from both of the other two
data types.

3.3.4. EXTEND TO LARGE SCALE TRAINING DATA -
BATCH TRAINING

The proposed agent training method has one obvious bot-
tleneck, which is that the training data size is limited to the
context limit of the LLM-backed optimizer. This limita-
tion prevents the full utilization of large-scale training data.
A similar bottleneck occurs in traditional model training,
where the constraint is from the GPU/CPU memory. To
resolve this problem, traditional machine learning uses the
concept of batch training (Masters & Luschi, 2018). This
method divides the dataset into smaller subsets (batches)
and trains the model iteratively on each batch to overcome
the memory limitation.

Building on this practice, we propose a straightforward
batch training method for our agent training flow. Specifi-
cally, we randomly sample one batch of training data within
the LLM context limit at each training iteration from large-
scale training data. Other procedures remain the same. We
evaluate the Intermediate algebra of the MATH dataset on
GPT-4+ agent system with 100 problems for training and
80 problems for testing where the test data is the same as it
is in previous sections. We tried four different batch sizes
(5, 10, 15, and 20), and set the epoch to 40, 20, 13, and 10,
respectively, to ensure that the number of examples used for
training is the same. We show the final test performance in
Figure 4. The results show that large training data does not
necessarily lead to test performance improvement in most
cases, and only one case achieved a mirror improvement.
Even when the batch size is set to 20, which is the same as
the training data size in Figure 4, the test performance drops
by 7.8%. This drop may be due to the frequent changing of
training examples at each epoch, which prevents the Agen-
tOptimizer from generating stable and effective functions.

3.4. Agent Training v.s. Tool-Creation

Tool-creation algorithms (Cai et al., 2024; Qian et al., 2023)
are to prompt LLMs to create tools that are tailored to spe-
cific tasks. Since the tool-creation procedure is a one-time
process that does not include subsequent optimization mech-
anisms based on training performance, the design philoso-

5 10 15 20
Batch Size

20
25
30
35
40
45
50

Ac
cu

ra
cy

 (%
) Regular Training

Batch Training

Figure 4. The comparisons between the ”regular training” of our
method and the extended ”batch training”. The batch training
with an enlarged training set doesn’t necessarily lead to better
performance in different batch settings.
phy emphasizes that the created tools can be used (without
error), but not used effectively (improve performance).

In this section, we compare the trained GPT-4+/ReAct
agents and two latest tool-creation methods, CRE-
ATOR (Qian et al., 2023) and CRAFT (Yuan et al., 2024),
on MATH and TabMWP datasets. For TabMWP, we follow
the same experimental setting as Section 3.2. We choose
these two datasets because the baseline codes on these two
datasets are available and we can make a rigorous com-
parison. To cover all data types of the MATH dataset, we
randomly sample 20 examples for training and 80 examples
for testing from all data types. As shown in Table 4, after
agent training, both the GPT-4+ agent and ReAct agent ex-
hibit better performance compared with the tool-creation
method, indicating agent training is a promising paradigm to
distill function/tool from advanced large language models.

3.5. Analysis of the Learned Functions

We conducted an in-depth analysis of the generated func-
tions. First, we present a list of frequently used functions
generated for all datasets in Table 5. Then, we show the
number of successful function calls at the second and end
epochs (the functions may not be the same) during model
training in Table 6. We also present the widely adopted
cyclomatic complexity (McCabe, 1994) of the generated
functions. We calculate the complexity using the Lizard
Python library and present the average complexity of tools
for each task when optimizing both GPT-4+ agent and Re-
Act agent.

Our observations indicate that the number of successful func-
tion calls exhibits significant improvement in most datasets,
indicating that the optimized functions are becoming more
effective compared to the initial list. Considering function
complexity, a good function should have a complexity of
no more than 10. A less complex function is less prone to

7

Training Language Model Agents without Modifying Language Models

Tasks Top Used Functions

MATH evaluate expression, calculate polynomial roots, solve algebraic equation, calculate circumference
calculate polynomial roots, solve algebraic equation, calculate complex magnitude

GAIA scrape wikipedia table, extract pdf text, perform web search, fetch web content

TabMWP calculate total cost, analyze stem leaf plot, calculate basic statistics, perform table calculation
perform arithmetic operations, statistical analysis

Table 5. For illustration purposes, we list frequently used (during testing) functions generated by AgentOptimizer in different tasks.

Metrics MATH GAIA TabMWP
Second Epoch 11 8 19

Last Epoch 23 10 41
Avg. Complexity 1.2 3.7 5.0

Table 6. The number of successful function calls in the second
epoch and the last epoch (functions may not be the same) of the
agent training. We also show the cyclomatic complexity of the
generated functions in the last row.

trigger bugs. We observed that the created functions for the
three tasks exhibit relatively low complexity, indicating that
the functions are reliable.

4. Related Work
There has been a growing volume of research focusing
on employing LLMs to construct autonomous agents for
reasoning, planning, and adapting to new observations in
real-world tasks (Xi et al., 2023; Wang et al., 2023b; Hong
et al., 2024; Yao et al., 2023; Wu et al., 2023a; Li et al.,
2023; BabyAGI, 2023; Park et al., 2023). In such LLM
agents, functions/tools/actions that LLM can leverage to
interact with the environment or solve sub-tasks play a crit-
ical role, yet are often manually crafted (Yao et al., 2023).
Recent works have explored automatic tool creation (Cai
et al., 2024; Qian et al., 2023; Yuan et al., 2024). Specifi-
cally, Tool-maker (Cai et al., 2024) proposes to create tools
through three demonstrations and then validates the created
tool using three validation examples; CREATOR (Qian et al.,
2023) proposes to create tools exclusive for each query; And
CRAFT (Yuan et al., 2024) first creates customizable tools
tailored for specific problems and then retrieves relevant
tools for user query inference time. In this work, we propose
a conceptual framework that treats functions as learnable
parameters in traditional AI models and develop a generic
agent training paradigm to improve functions iteratively
across epochs. Different from prior works, our AgentOpti-
mizer updates the function set based on the LLM agent’s
execution history of the whole training set, rather than mak-
ing functions according to individual query-answer pair(s);
this approach not only includes the specific LLM agent’s
behavior into consideration for function creation (in contrast
to looking at the query-answer pair only), but also tends to
make generic functions that work for the whole training set.
By formulating an iterative optimization process, the Agen-
tOptimizer can continuously update the functions based on
the execution history of each epoch during training in a

trial-and-error manner.

Sharing a similar goal of improving LLM agents, another
line of work aims to enhance agent capability by modifying
the underlying LLMs (Patil et al., 2023; Qin et al., 2024;
Zeng et al., 2023a). For instance, ToolLLM (Qin et al.,
2024) collects a massive amount of APIs to construct in-
struction data to finetune LLaMA (Touvron et al., 2023) to
obtain a new LLM optimized for using the collected APIs;
AgentTune (Zeng et al., 2023a) proposes to enhance the
agent abilities through a hybrid instruction-tuning strategy
to tune the LLMs parameters. In contrast, we explore a new
paradigm of training LLM agents without modifying the un-
derlying LLM, which is particularly useful when the LLMs
are online services and not available for tuning like GPT-4
or when tuning and maintaining a new LLM are expensive
and time-consuming.

Besides, in this work, we leverage the exceptional capability
of the LLM to build an optimizer (the AgentOptimizer) for
training the agents, mimicking the numeric optimizers in
model training such as SGD and Adam. Such an idea of
using LLM as an optimizer has been proven effective by
prior work (Yang et al., 2024; Zhang et al., 2023). While
these prior works mainly leverage LLM as an optimizer
for optimization problems like prompt optimization (Yang
et al., 2024) and hyperparameter optimization (Zhang et al.,
2023), our AgentOptimizer is particularly designed for the
novel agent training paradigm and progressively update
LLM agent’s functions via multiple add, revise, and/or re-
move actions within each optimization step.

5. Conclusion
In this study, we propose a novel approach to train spe-
cialized LLM agents. The core idea is to draw an analogy
between LLM agent training and traditional model training,
where the learnable parameters in traditional models cor-
respond to the operational functions of LLM agents, and
the models’ loss functions correspond to the historical per-
formance metrics of the agents. Leveraging the impressive
optimization capability of LLMs, we enhance the agents by
updating the agent functions through the proposed Agen-
tOptimizer. We evaluate the proposed method on multi-
ple distinct tasks in training two typical agent systems and
demonstrate that the agent training exhibits obvious perfor-
mance improvement.

8

Training Language Model Agents without Modifying Language Models

Impact Statements
This paper presents research aimed at advancing the field of
language agents. Our work has several potential societal con-
sequences, both positive and negative, that we feel need to
be highlighted. On the positive side, language agents could
be the core of many real-life applications (Hosseini et al.,
2023; Cai et al., 2019), and our work could greatly benefit
these applications by enhancing the agents. For instance, it
could be the core of an industrial robot (Zeng et al., 2023b),
and our work could potentially enhance working efficiency.
On the negative side, the development of language agents
raises the possibility of negative use of enhanced agents,
such as using language agents to generate misinformation
or harmful content (Navigli et al., 2023) in social media
for illegal purposes. Another concern is allowing language
models to make changes in external environments (Tian
et al., 2023). For instance, allowing language models to per-
form code execution in the computer may lead to unintended
consequences (Liu et al., 2024).

References
BabyAGI. Github — babyagi. https://github.com/
yoheinakajima/babyagi, 2023.

Botvinick, M. and Cohen, J. Rubber hands ‘feel’touch that
eyes see. Nature, 391(6669):756–756, 1998.

Cai, C. J., Winter, S., Steiner, D., Wilcox, L., and Terry, M.
” hello ai”: uncovering the onboarding needs of medical
practitioners for human-ai collaborative decision-making.
Proceedings of the ACM on Human-computer Interaction,
3(CSCW):1–24, 2019.

Cai, T., Wang, X., Ma, T., Chen, X., and Zhou, D. Large
language models as tool makers. ICLR, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the MATH dataset.
In NeurIPS, 2021.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. In The collected works of Wassily
Hoeffding, pp. 409–426. Springer, 1994.

Hong, S., Zheng, X., Chen, J., Cheng, Y., Wang, J., Zhang,
C., Wang, Z., Yau, S. K. S., Lin, Z., Zhou, L., et al.
Metagpt: Meta programming for multi-agent collabora-
tive framework. 2024.

Hosseini, M., Gao, C. A., Liebovitz, D. M., Carvalho, A. M.,
Ahmad, F. S., Luo, Y., MacDonald, N., Holmes, K. L.,
and Kho, A. An exploratory survey about using chatgpt in
education, healthcare, and research. medRxiv, pp. 2023–
03, 2023.

Humphreys, P. C., Raposo, D., Pohlen, T., Thornton, G.,
Chhaparia, R., Muldal, A., Abramson, J., Georgiev, P.,
Santoro, A., and Lillicrap, T. A data-driven approach for
learning to control computers. In ICML, pp. 9466–9482.
PMLR, 2022.

Jayaseelan, N. Llama 2: The new open source language
model.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for” mind”
exploration of large language model society. In NeurIPS,
2023.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. JMLR, 2018.

Liu, M., Wang, J., Lin, T., Ma, Q., Fang, Z., and Wu, Y. An
empirical study of the code generation of safety-critical
software using llms. Applied Sciences, 2024.

Lu, P., Qiu, L., Chang, K.-W., Wu, Y. N., Zhu, S.-C., Ra-
jpurohit, T., Clark, P., and Kalyan, A. Dynamic prompt
learning via policy gradient for semi-structured mathe-
matical reasoning. In ICLR, 2023.

Masters, D. and Luschi, C. Revisiting small batch
training for deep neural networks. arXiv preprint
arXiv:1804.07612, 2018.

McCabe, T. J. Software complexity, crosstalk. Journal of
Defense Software Engineering, 1994.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., LeCun, Y., and
Scialom, T. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983, 2023.

Navigli, R., Conia, S., and Ross, B. Biases in large language
models: Origins, inventory and discussion. ACM Journal
of Data and Information Quality, 2023.

OpenAI. Introducing ChatGPT, 2022. URL https://
openai.com/blog/chatgpt. (Accessed on Jun 18,
2023).

OpenAI. Gpt-4 technical report, 2023.

9

https://github.com/yoheinakajima/babyagi
https://github.com/yoheinakajima/babyagi
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

Training Language Model Agents without Modifying Language Models

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In UIST, pp. 1–22, 2023.

Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. Gorilla:
Large language model connected with massive apis. arXiv
preprint arXiv:2305.15334, 2023.

Peng, B., Galley, M., He, P., Cheng, H., Xie, Y., Hu, Y.,
Huang, Q., Liden, L., Yu, Z., Chen, W., et al. Check your
facts and try again: Improving large language models
with external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813, 2023.

Qian, C., Han, C., Fung, Y., Qin, Y., Liu, Z., and Ji, H.
Creator: Tool creation for disentangling abstract and con-
crete reasoning of large language models. In EMNLP, pp.
6922–6939, 2023.

Qin, Y., Hu, S., Lin, Y., Chen, W., Ding, N., Cui, G., Zeng,
Z., Huang, Y., Xiao, C., Han, C., et al. Tool learning with
foundation models. arXiv preprint arXiv:2304.08354,
2023.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y.,
Cong, X., Tang, X., Qian, B., et al. Toolllm: Facilitating
large language models to master 16000+ real-world apis.
ICLR, 2024.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Shi, T., Karpathy, A., Fan, L., Hernandez, J., and Liang, P.
World of bits: An open-domain platform for web-based
agents. In ICML. PMLR, 2017.

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning. In
ICLR, 2021.

Tian, Y., Yang, X., Zhang, J., Dong, Y., and Su, H. Evil
geniuses: Delving into the safety of llm-based agents.
arXiv preprint arXiv:2311.11855, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., et al. A survey on
large language model based autonomous agents. arXiv
preprint arXiv:2308.11432, 2023b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models. 35:
24824–24837, 2022.

Wu, Q., Wang, C., and Huang, S. Frugal optimization for
cost-related hyperparameters. In AAAI, 2021.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li,
B., Jiang, L., Zhang, X., and Wang, C. Autogen: Enabling
next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023a.

Wu, Y., Jia, F., Zhang, S., Wu, Q., Li, H., Zhu, E., Wang, Y.,
Lee, Y. T., Peng, R., and Wang, C. An empirical study
on challenging math problem solving with gpt-4. arXiv
preprint arXiv:2306.01337, 2023b.

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., et al. The rise and
potential of large language model based agents: A survey.
arXiv preprint arXiv:2309.07864, 2023.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. 2024.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. 2023.

Yuan, L., Chen, Y., Wang, X., Fung, Y. R., Peng, H., and
Ji, H. Craft: Customizing llms by creating and retrieving
from specialized toolsets. ICLR, 2024.

Zeng, A., Liu, M., Lu, R., Wang, B., Liu, X., Dong, Y., and
Tang, J. Agenttuning: Enabling generalized agent abili-
ties for llms. arXiv preprint arXiv:2310.12823, 2023a.

Zeng, F., Gan, W., Wang, Y., Liu, N., and Yu, P. S. Large
language models for robotics: A survey. arXiv preprint
arXiv:2311.07226, 2023b.

Zhang, M. R., Desai, N., Bae, J., Lorraine, J., and Ba, J.
Using large language models for hyperparameter opti-
mization. arXiv e-prints, pp. arXiv–2312, 2023.

Zhang, S., Jia, F., Wang, C., and Wu, Q. Targeted hyperpa-
rameter optimization with lexicographic preferences over
multiple objectives. In ICLR, 2022.

Zhou, K., Liu, Z., Qiao, Y., Xiang, T., and Loy, C. C. Do-
main generalization: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

10

Training Language Model Agents without Modifying Language Models

Appendix

A Supplementary Theoretical Analysis 12

B Supplementary Experimental Results 13

B.1 Evaluations on Other Language Models . 13

B.2 More Experimental Results after Removing Roll-back & Early-stop . 14

C Supplementary Analysis of Agent Training versus Model Training 14

D Implementations Details 14

D.1 Prompt Design for AgentOptimizer . 14

D.2 Prompt Design for ReAct . 16

D.3 Function calls of LLM backed AgentOptimizer . 16

E Generated Functions 17

E.1 Trained Functions in MATH . 17

E.2 Trained Functions in GAIA . 19

E.3 Trained Functions in TabMWP . 20

F Case Study 21

F.1 Case Study for MATH . 21

F.2 Case Study for GAIA . 21

F.3 Case Study for TabMWP . 22

G Hyperparameters Settings 22

H Limitations 22

11

Training Language Model Agents without Modifying Language Models

A. Supplementary Theoretical Analysis
In this section, we attempt to provide a theoretical analysis of the proposed agent training method. The objective is to
provide an upper bound for the expected test loss difference between the trained agent function and the global optimal
function. As an initial attempt, our analysis on the generalization bound of the agent training requires the following two
strong assumptions. We leave the relaxation of these two assumptions to future work.
Assumption A.1. In the agent training scenario, the training data Dtrain and test data Dtest come from the same distribution
P, i.e., Dtrain,Dtest ∈ P.

In classical machine learning model training, it is a common practice to assume that the distribution of the training and test
data are the same or similar, then use training loss as the primary metric for parameters selection.
Assumption A.2. Given training data Dtrain, the proposed agent training method could identify the function set F̂ which
achieves the smallest loss in Dtrain after agent training.

F̂ = argmin
F⊂V

Loss(SF ,Dtrain). (2)

Lemma A.3. Under Assumption A.1, for any agent system SF with function set F , with probability at least 1−δ (δ ∈ (0, 1)),
we have:

|Loss(SF ,Dtrain)− E[Loss(SF ,Dtest)]| ≤

√
β ln(1/δ)

2|Dtrain|
,

in which β represents the distance between the largest and the lowest loss value on any data instance. Specifically, for any
data instance d ∈ P, lSF (d) < β, where lSF denotes the loss function, which measures the loss of each data instance for
agent system SF .

Proof of Lemma A.3. For any training data set Dtrain and potential test data set Dtest from the data distribution P, we have

|Loss(SF ,Dtrain)− E[Loss(SF ,Dtest)]| = | 1

|Dtrain|

|Dtrain|∑
i=1

lSF (di)− Ed∼P[lSF (d)]|. (3)

According to Hoeffding’s inequality (Hoeffding, 1994), we have:

P (|Loss(SF ,Dtrain)− E[Loss(SF ,Dtest)]| > ϵ) = P (| 1

|Dtrain|

|Dtrain|∑
i=1

lSF (di)− Ed∼P[lSF (d)]| > ϵ) (4)

≤ 2 exp
−2|Dtrain|ϵ2
1

|Dtrain|
∑|Dtrain|

i=1 β
= 2 exp

−2|Dtrain|ϵ2

β
.

Then with probability at least 1− 2 exp −2|Dtrain|ϵ2
β , we have:

|Loss(SF ,Dtrain)− E[Loss(SF ,Dtest)]| ≤ ϵ. (5)

Taking δ = 2 exp −2|Dtrain|ϵ2
β , we have:

ϵ =

√
β ln(2/δ)

2|Dtrain|
(6)

Combining Equation 5 and Equation 6, with probability at least 1− δ, we have:

|Loss(SF ,Dtrain)− E[Loss(SF ,Dtest)]| ≤

√
β ln(2/δ)

2|Dtrain|
. (7)

Which completes the proof.

12

Training Language Model Agents without Modifying Language Models

Theorem A.4. Under Assumption A.1 and Assumption A.2, with probability at least 1− δ (δ ∈ (0, 1)), the trained agent
system SF̂ with trained functionl list F̂ satisfies:

E[Loss(SF̂ ,Dtest)]− E[Loss(SF∗ ,Dtest)] ≤ 2

√
β ln(2/δ)

2|Dtrain|
, (8)

where F∗ denotes the optimal function in the function space V , i.e., F∗ = argminF⊂V E[Loss(SF ,Dtest)].

Proof of Theorem A.4. Taking F̂ into Lemma A.3, with probability at least 1− δ (δ ∈ (0, 1)), we have:

|Loss(SF̂ ,Dtrain)− E[Loss(SF̂ ,Dtest)]| ≤

√
β ln(2/δ)

2|Dtrain|
. (9)

Considering F̂ = argminF⊂V Loss(SF ,Dtrain), we have:

Loss(SF̂ ,Dtrain) < Loss(SF∗ ,Dtrain). (10)

Combing Equation 9 and Equation 10, we have:

E[Loss(SF̂ ,Dtest)] ≤ Loss(SF∗ ,Dtrain) +

√
β ln(2/δ)

2|Dtrain|
. (11)

Taking SF∗ into Lemma A.3, we have:

|Loss(SF∗ ,Dtrain)− E[Loss(SF∗ ,Dtest)]| ≤

√
β ln(2/δ)

2|Dtrain|
. (12)

Combining Equation 11 and Equation 13, with probability at least 1− δ, we have:

E[Loss(SF̂ ,Dtest)]− E[Loss(SF∗ ,Dtest)] ≤ 2 ∗

√
β ln(2/δ)

2|Dtrain|
, (13)

which completes the proof.

Theorem A.4 provides an upper bound on the expected test loss difference between the trained agent function F̂ and the
global optimal function F∗. We observe from Equation 13 that a larger training set could lead to a narrower upper bound.
However, the training set is limited by the LLM’s context limit. This limitation inspires us to investigate a better way of
extending the training dataset, rather than relying on the straightforward batch training approach described in Section 3.3.4.

B. Supplementary Experimental Results
B.1. Evaluations on Other Language Models

Code-Llama-34B Mixtral-8x7B GPT-3.5-turbo-1106
Before Training 7.5% 23.8% 25.0%
After Training 11.3% 28.8% 28.8%

Table 7. The performance of agents backed by other language models is evaluated before and after agent training on the MATH dataset.
The results indicate that agent training still leads to significant performance improvements.

In this section, we conducted experiments to evaluate the performance of agents backed by various language models
after agent training, including GPT-3.5-turbo-1106 (OpenAI, 2022), and open-source models Mixtral-8x7B (Jiang et al.,
2024; 2023) and Code-Llama-34B (Roziere et al., 2023; Jayaseelan). The LLM that backed the AgentOptimizer was
GPT-4-1106-preview.

We performed experiments on the MATH dataset using the same settings as described in Section 3.4. The results are
presented in Table 7. Our findings indicate that agent training leads to better performance on all three models, demonstrating
that agent training is agnostic to the LLMs that backed the agent.

13

Training Language Model Agents without Modifying Language Models

B.2. More Experimental Results after Removing Roll-back & Early-stop

0 1 2 3 4 5 6 7 8 9
Epoch

20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Number Theory
Intermediate Algebra
Counting and Probability

(a) Training performance w/o roll-back & early-stop

I.Algebra N.Theory C.Probability
Problem Type

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

36.3%

63.8%
72.5%

38.8%

67.5%
76.3%

GPT-4+ Agent w/o Roll-back/Early-exit
GPT-4+ Agent w/ Roll-back/Early-exit

(b) Test performance w/o roll-back & early-stop

Figure 5. After removing the roll-back and early-exit mechanisms, the learning curve of the training performance and the final test
performance of GPT-4+ Agents.

We present additional experimental results in Figure 5 after removing roll-back and early-stop. Specifically, we further
illustrate the training performance curve in Figure 5a. We observe that the training performance fluctuated with the number
of training epochs, indicating that the learned functions are not stable and may not necessarily lead to improved training
performance at each epoch. This unstable function optimization leads to a drop in test performance, as shown in Figure 5b.

C. Supplementary Analysis of Agent Training versus Model Training

Optimizer Target Human Interpretable Access to Model/LLM Weights
Model Training SGD etc. Model Weights ✗ ✓

Agent Training LLMs Functions ✓ ✗

Table 8. Comparing Model Training and Agent Training: Model training relies on an optimizer such as SGD. It is not human-interpretable
and requires access to model parameters. In contrast, agent training uses LLMs as the optimizer, which is interpretable in natural language
and generated functions. Furthermore, agent training does not require access to model parameters.

Table 8 summarizes the differences between these two training paradigms. Although both paradigms have a similar workflow
of improving from training data leveraging their optimizers, they have different features. Specifically, the optimizers in
traditional model training are gradient descent optimization algorithms, which update the model parameters in the opposite
direction of the gradient of the loss function. However, the complex parameters updating logic is not interpretable to humans,
and model training requires accessible parameters. In contrast, the optimizers in agent training are LLMs, which prompt the
update of agent functions using natural language at each optimization step. The optimization is interpretable to humans
(functions and natural language), and it doesn’t require accessible parameters.

D. Implementations Details
D.1. Prompt Design for AgentOptimizer

You are a function optimizer. Your task is to maintain a list of functions for the assistant according to the existing function
set and conversation history that happens between the assistant and the user.

You can perform one of the following four actions to manipulate the function set using the functions you have:

1. Revise one existing function (using revise function). 2. Remove one existing function (using remove function). 3. Add
one new function (using add function). 4. Directly return ”TERMINATE” to me if no more actions are needed for the
current function set.

14

Training Language Model Agents without Modifying Language Models

Below are the principles that you need to follow for taking these four actions.

(1) Revise one existing function: 1. Pay more attention to the failed tasks and corresponding error information, and optimize
the function used in these tasks according to the conversation history if needed. 2. A failed function call can occur due to
incorrect input arguments (missing arguments) or an incorrect function code implementation. You should focus more on the
function code implementation and make it easy to get success function call. 3. Do not revise the function that you think
works well and plays a critical role in solving the problems according to the conversation history. Only making revisions if
needed. 4. Sometimes, a NameError may occur. To fix this error, you can either revise the name of the function in the code
implementation or revise the name of the function call to make these two names consistent.

(2) Remove one existing function: 1. Only remove the function that you think is not needed anymore in future tasks.

(3) Add one new function: 1. The added function should be general enough to be used in future tasks. For instance, if you
encounter a problem that this function can solve, or one step of it, you can use the generated function directly instead of
starting from scratch 2. The added new function should solve a higher-level question that encompasses the original query
and extend the code’s functionality to make it more versatile and widely applicable. 3. Replace specific strings or variable
names with general variables to enhance the tool’s applicability to various queries. All names used inside the function
should be passed in as arguments. Below is an example of a function that potentially deserves to be added, which can be
used to solve a higher-level question:
{{

"name": "evaluate_expression",
"description": "Evaluate arithmetic or mathematical expressions provided as strings.",
"arguments": {{

"expression": {{
"type": "string",
"description": "The mathematical expression to evaluate."

}}
}},
"packages": "sympy",
"code": "from sympy import sympify, SympifyError\n\n def evaluate_expression(expression):\n try:\n result = sympify(
expression)\n if result.is_number:\n result = float(result)\n else:\n result = str(result)\n

return result\n except SympifyError as e:\n return str(e)"
}}

(4) Directly return ”TERMINATE”: If you think there is no need to perform any other actions for the current function set
since the current list is optimal more actions will harm the performance in future tasks. Please directly reply to me with
”TERMINATE”.

One function signature includes the following five elements: 1. Function name 2. Function description 3. JSON schema of
arguments encoded as a string 4. A list of package names imported by the function packages 5. The code implementation

Below are the signatures of the current functions.

List A: {current function signature}

The success rate (performance) with this function set is {success rate}. The following list are the function signatures that
you have after taking {actions num} actions in our previous conversations.

List B: {updated function signature}.

We also provide more examples for different functions and their corresponding success rates. The following function
signatures are arranged in are arranged in ascending order based on their success rates, where higher success rates indicate
better quality.

{historical fail functions}

Here are {conversation num} conversation histories of solving {conversation num} tasks.

History: {history}

The following table shows the statistical information for solving each task in each conversation and indicates whether each
task was successfully solved. 1 represents correct. 0 represents wrong.

statistic: {statistic}

According to the information I provide, please take one of four actions to manipulate list B using the functions you know.
Instead of returning TERMINATE directly or taking no action, you should try your best to optimize the function set. Only

15

Training Language Model Agents without Modifying Language Models

take no action if you really think the current list is optimal, as more actions will harm performance in future tasks. Even
adding a general function that can substitute the assistant’s repeated suggestions of Python code with the same functionality
could also be helpful.

D.2. Prompt Design for ReAct

Answer the following question using your coding skills. Below is a list of the tools you can use and their detailed descriptions:

{tool descriptions}

You should always follow the below template, when you respond you should provide one (Thought, Action, Action Input)
triplet and wait for observation before proceeding to the next round, unless you have reached a FINAL ANSWER.

YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or
strings.

If you are asked for a number, don’t use comma to write your number neither use units such as $ or percent sign unless
specified otherwise. If you are asked for a string, don’t use articles, neither abbreviations (e.g. for cities), and write the
digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending
of whether the element to be put in the list is a number or a string.

TEMPLATE:

Question: the input question you must answer

Thought: your reasoning about the current situation

Action 1: the action to take, should be one of [{tool names}]

Action 1 Input: the arguments passed to action 1

Observation 1: the result of action 1

Action 2: the action to take, should be one of [{tool names}]

Action 2 Input: the input to action 2

... (this Thought/Action/Action Input/Observation can repeat N times)

Thought: I now know the final answer

FINAL ANSWER: the final answer to the original input question

D.3. Function calls of LLM backed AgentOptimizer

Add function: add a new function that may be used in future tasks.

ADD_FUNC = {
"type": "function",
"function": {

"name": "add_function",
"description": "Add a function in the context of the conversation. Necessary Python packages must be declared. The name of

the function MUST be the same with the function name in the code you generated.",
"parameters": {

"type": "object",
"properties": {

"name": {
"type": "string",
"description": "The name of the function in the code implementation."

},
"description": {

"type": "string",
"description": "A short description of the function."

},
"arguments": {

"type": "string",
"description": "JSON schema of arguments encoded as a string. Please note that the JSON schema only supports

specific types including string, integer, object, array, boolean. (do not have float type) For example: { \"url\": { \"type\": \"
string\", \"description\": \"The URL\", }}. Please avoid the error ’array schema missing items’ when using array type."

},
"packages": {

"type": "string",
"description": "A list of package names imported by the function, and that need to be installed with pip prior

to invoking the function. This solves ModuleNotFoundError. It should be string, not list."

16

Training Language Model Agents without Modifying Language Models

},
"code": {

"type": "string",
"description": "The implementation in Python. Do not include the function declaration."

}
},
"required": ["name", "description", "arguments", "packages", "code"]

}
}

}

Revise function: revise one existing function.
REVISE_FUNC = {

"type": "function",
"function": {

"name": "revise_function",
"description": "Revise a function in the context of the conversation. Necessary Python packages must be declared. The name

of the function MUST be the same with the function name in the code you generated.",
"parameters": {

"type": "object",
"properties": {

"name": {
"type": "string",
"description": "The name of the function in the code implementation."

},
"description": {

"type": "string",
"description": "A short description of the function."

},
"arguments": {

"type": "string",
"description": "JSON schema of arguments encoded as a string. Please note that the JSON schema only supports

specific types including string, integer, object, array, boolean. (do not have float type) For example: { \"url\": { \"type\": \"
string\", \"description\": \"The URL\", }}. Please avoid the error ’array schema missing items’ when using array type."

},
"packages": {

"type": "string",
"description": "A list of package names imported by the function, and that need to be installed with pip prior

to invoking the function. This solves ModuleNotFoundError. It should be string, not list."
},
"code": {

"type": "string",
"description": "The implementation in Python. Do not include the function declaration."

}
},
"required": ["name", "description", "arguments", "packages", "code"]

}
}

}

Remove function: remove one existing function.
REMOVE_FUNC = {

"type": "function",
"function": {

"name": "remove_function",
"description": "Remove one function in the context of the conversation. Once remove one function, the assistant will not

use this function in future conversation.",
"parameters": {

"type": "object",
"properties": {

"name": {
"type": "string",
"description": "The name of the function in the code implementation."

}
},
"required": ["name"]

}
}

}

E. Generated Functions
Here we provide a list of typical function examples generated by AgentOptimizer for all three datasets.

E.1. Trained Functions in MATH

GPT-4+ Agent

1. evaluate expression: evaluate arithmetic or mathematical expressions provided as strings.

17

Training Language Model Agents without Modifying Language Models

from sympy import sympify, SympifyError

def evaluate_expression(expression):
try:

result = sympify(expression)
if result.is_number:

result = float(result)
else:

result = str(result)
return result

except SympifyError as e:
return str(e)

2. calculate polynomial roots: find all real roots of a given polynomial.
from sympy import solve, sympify, SympifyError

def calculate_polynomial_roots(polynomial):
try:

Parse the polynomial and solve for its roots
roots = solve(sympify(polynomial), dict=True)
Convert roots to a standard list format
roots_list = [str(root) for root in roots]\n
return roots_list

except SympifyError as e:
return str(e)

3. solve algebraic equation: revises the existing function that solves a single variable algebraic equation to handle equations
more robustly with variable terms on both sides.
from sympy import symbols, Eq, solve, parse_expr

def solve_algebraic_equation(equation, variable):
Create a symbolic variable
symbol = symbols(variable)
Parse the equation string into a sympy expression
left_part, right_part = equation.split(’=’)
eq = Eq(parse_expr(left_part), parse_expr(right_part))
Solve the equation for the variable
solution = solve(eq, symbol)
Return the solution
return solution

ReAct Agent

1. convert decimal to fraction: convert a decimal number to its equivalent in the simplest fractional form.
from fractions import Fraction

def convert_decimal_to_fraction(decimal_number):
try:

Convert string to a floating point number
decimal_number = float(decimal_number)
Create a Fraction from the decimal number
fraction_result = Fraction(decimal_number).limit_denominator()
Return the fraction as a string in the form ’numerator/denominator’
return str(fraction_result)

except ValueError as e:
return str(e)

2. evaluate math expression: evaluate a wide range of mathematical expressions provided as strings, including basic
arithmetic, factorial, combinations, and permutations.
from sympy import sympify, factorial, binomial

def evaluate_math_expression(expression):
try:

Extend the namespace with factorial and binomial functions
local_dict = {’factorial’: factorial, ’comb’: binomial}
Evaluate the expression using sympy’s sympify function
result = sympify(expression, locals=local_dict)
if result.is_number:
return float(result)
else:
return str(result)

except Exception as e:
return str(e)

3. get polynomial degree: given a polynomial expression as a string, return the degree of the polynomial.
from sympy import Poly, SympifyError

def get_polynomial_degree(expression):

18

Training Language Model Agents without Modifying Language Models

try:
Convert the string expression into a polynomial
poly = Poly(expression)
Return the degree of the polynomial
return poly.degree()

except SympifyError as e:
return str(e)

E.2. Trained Functions in GAIA

GPT-4+ Agent

1. perform web search: performs a web search using Bing Search API and returns the top search results including URLs
and snippets.
import os
import requests

def perform_web_search(query):
subscription_key = os.environ[’BING_SEARCH_V7_SUBSCRIPTION_KEY’]
endpoint = os.environ[’BING_SEARCH_V7_ENDPOINT’] + ’/v7.0/search’
headers = {’Ocp-Apim-Subscription-Key’: subscription_key}
params = {’q’: query, ’textDecorations’: True, ’textFormat’: ’HTML’}
response = requests.get(endpoint, headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
top_results = [{’url’: result[’url’], ’snippet’: result[’snippet’]} for result in search_results.get(’webPages’, {}).get(’value’,
[])]

return top_results

2. scrape wikipedia table: scrapes data from a table on a Wikipedia page based on a header keyword.
import requests
from bs4 import BeautifulSoup

def scrape_wikipedia_table(url, header_keyword):
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content, ’html.parser’)
headers = soup.find_all([’h1’, ’h2’, ’h3’, ’h4’, ’h5’, ’h6’])
data = []
for header in headers:

if header_keyword.lower() in header.text.lower():
table = header.find_next_sibling(’table’, class_=’wikitable’)
if table:

rows = table.find_all(’tr’)
for row in rows:

cols = row.find_all([’th’, ’td’])
cols = [ele.text.strip() for ele in cols]
data.append([ele for ele in cols if ele])

break
return data

3. extract pdf text: extracts text from a PDF file.
import fitz # PyMuPDF

def extract_pdf_text(file_path):
Open the PDF file
with fitz.open(file_path) as pdf:

text = ’’
Iterate over each page
for page_num in range(len(pdf)):

page = pdf[page_num]
text += page.get_text()

return text

React Agent

1. fetch webpage content: retrieve the HTML content of a given webpage URL.
import requests

def fetch_webpage_content(url):
response = requests.get(url)
response.raise_for_status()
return response.text

2. fetch bing search results: retrieve search results from Bing Web Search API.
import os
import requests

19

Training Language Model Agents without Modifying Language Models

def fetch_bing_search_results(query):
subscription_key = os.environ[’BING_SEARCH_V7_SUBSCRIPTION_KEY’]
endpoint = os.environ[’BING_SEARCH_V7_ENDPOINT’] + "/v7.0/search"

headers = {’Ocp-Apim-Subscription-Key’: subscription_key}
params = {’q’: query, ’textDecorations’: True, ’textFormat’: ’HTML’}

response = requests.get(endpoint, headers=headers, params=params)
response.raise_for_status()
return response.json()

3. extract text from pdf: extracts all text from a given PDF file.

import fitz # PyMuPDF

def extract_text_from_pdf(file_path):
try:

Open the PDF file
with fitz.open(file_path) as pdf:

text = ’’
Extract text from each page in the PDF
for page in pdf:

text += page.get_text()
return text

except Exception as e:
return f’An error occurred: {str(e)}’

E.3. Trained Functions in TabMWP

GPT-4+ Agent

1. perform arithmetic operations: perform basic arithmetic operations such as sum, average, maximum, minimum, difference,
and rate of change on a given list of numbers.

def perform_arithmetic_operations(numbers, operation):
result = None
if operation == ’sum’:

result = sum(numbers)
elif operation == ’avg’:

result = sum(numbers) / len(numbers) if numbers else None
elif operation == ’max’:

result = max(numbers) if numbers else None
elif operation == ’min’:

result = min(numbers) if numbers else None
elif operation == ’diff’ and len(numbers) > 1:

result = numbers[0] - numbers[1]
elif operation == ’rate_of_change’ and len(numbers) > 1 and numbers[1] != 0:

result = ((numbers[0] - numbers[1]) / abs(numbers[1])) * 100
return result

2. analyze stem leaf plot Analyze a given stem-leaf plot to calculate the total count of values within a specified range.

def analyze_stem_leaf_plot(stem_leaf_data, min_value, max_value):
count = 0
for stem, leaves in stem_leaf_data.items():

for leaf in leaves:
value = int(stem) * 10 + leaf
if min_value <= value < max_value:

count += 1
return count

3. calculate range Calculate the range (difference between the maximum and minimum) of a list of numbers.

def calculate_range(numbers):
return max(numbers) - min(numbers)

React Agent

1. calculate total cost general: Calculate the total cost given a unit price and quantity, supporting both the quantity as a
string or an integer.

def calculate_total_cost_general(unit_price, quantity):
return float(unit_price) * (int(quantity) if isinstance(quantity, str) else quantity)

20

Training Language Model Agents without Modifying Language Models

F. Case Study
We present then three case studies for the trained GPT-4+ agent on three different datasets, to identify why the well-optimized
learned function leads to the correct result in each case study.

F.1. Case Study for MATH

Assistant: To determine the number of rectangles with an area of 3 square
units that can be formed in the given 6 by 6 grid, we should consider the possible
dimensions of such rectangles. Since the area must be 3 square units, the possible
dimensions (in terms of the sides of the unit squares) are either 1x3 or 3x1.
Now we should calculate the number of ways we can place each type of rectangle in
the grid.
1. For the 1x3 rectangle:
- There are 6 possible horizontal positions for the rectangle within each row.
- Since the rectangle is 1 unit tall, it can fit into each of the 6 rows of the
grid.
- Therefore, the total for this type is 6 horizontal positions * 6 rows.

2. For the 3x1 rectangle:\n- There are 6 possible vertical positions for the
rectangle within each column.
- Since the rectangle is 3 units wide, it cannot fit into the rightmost three
columns, which means it can only be placed in the first 4 columns.
- Therefore, the total for this type is 6 vertical positions * 4 columns.

Let's calculate the total number of rectangles using the above logic:
```python\n# calculation for 1x3 rectangles\nhorizontal_positions = 
6\nrows_for_1x3 = 6\ntotal_1x3_rectangles = horizontal_positions * 
rows_for_1x3\n\n# calculation for 3x1 rectangles\nvertical_positions = 
6\ncolumns_for_3x1 = 4\ntotal_3x1_rectangles = vertical_positions * 
columns_for_3x1\n\n# total rectangles of area 3 square units\ntotal_rectangles = 
total_1x3_rectangles + total_3x1_rectangles\nprint(total_rectangles)\n```

Please execute the above code and provide the output.

UserProxy: 60

Assistant: The output you provided indicates that there are 60 
rectangles of area 3 square units that can be formed using only the 
line segments of the grid as the sides of the 
rectangles.\n\nTherefore, the answer to the given problem is 
\\boxed{60}.

MATH Problem

Consider the six by six grid of unit squares below. How many rectangles of area 3 square units can be formed using only the line segments of the grid as the sides of 
the rectangles? [asy]unitsize(0.1inch);\ndraw((0,0)--(6,0)--(6,6)--(0,6)--cycle);\ndraw((1,0)--(1,6));\ndraw((2,0)--(2,6));\ndraw((3,0)--(3,6));\ndraw((4,0)--
(4,6));\ndraw((5,0)--(5,6));\ndraw((0,1)--(6,1));\ndraw((0,2)--(6,2));\ndraw((0,3)--(6,3));\ndraw((0,4)--(6,4));\ndraw((0,5)--(6,5));\n\n[/asy]

(a) Before Agent Training (b) After Agent Training

Assistant: First, we need to figure out which possible side lengths can 
form rectangles with an area of 3 square units. Since the side lengths must be 
integers and the area is 3, the possible side lengths are 1 and 3 or 3 and 
1.\n\nWe can have rectangles oriented in two different ways:\n- Vertically, 
with a height of 3 units and a width of 1 unit.\n- Horizontally, with a height 
of 1 unit and a width of 3 units.\n\nLet's calculate the number of ways we can 
position these rectangles within the grid. Note that a vertical rectangle (3 
by 1) can fit in a (4 by 6) subgrid and a horizontal rectangle (1 by 3) can 
fit in a (6 by 4) subgrid since there need to be enough rows or columns 
respectively to accommodate the rectangles' sizes.\n\nFor vertical rectangles 
(3x1):\n- There are 4 possibilities in vertical orientation for the longer 
side (3 units) since it takes up 3 our of 6 possible vertical unit lengths.\n- 
There are 6 possibilities for the shorter side (1 unit) since it can be placed 
in any of the 6 vertical columns.\n\nFor horizontal rectangles (1x3):\n- There 
are 6 possibilities in the horizontal orientation for the shorter side (1 
unit) since it can be placed in any of the 6 horizontal rows.\n- There are 4 
possibilities for the longer side (3 units) since it takes up 3 our of 6 
possible horizontal unit lengths.\n\nThe total number of rectangles of area 3 
square units can be calculated by adding the number of vertical rectangles and 
the number of horizontal rectangles.\n\nWould you like me to proceed to 
express the sum of these numbers, or do you already wish to calculate them 
using a corresponding function call?

UserProxy: Continue. Please keep solving the problem until you 
need to query. (If you get to the answer, put it in \\boxed{}.

Assistant:
"function_call": {

"arguments": "{\"expression\":\"(4 * 6) + (4 * 6)\"}",
"name": "evaluate_expression"

}

UserProxy: 48

Figure 6. Comparisons of GPT-4+ Agent agents before and after agent training. After the training, the well-optimized learned function
leads to correct result compared to real-time generated python code.

F.2. Case Study for GAIA

Assistant: To determine the country with the least number of athletes at 
the 1928 Summer Olympics and provide the IOC country code, I will perform these 
steps: 1. Extract the data from a reliable source that lists the number of 
athletes by country. 2. Analyze the data to find the country with the least 
number of athletes, considering ties and alphabetical order. 3. Output the IOC 
country code of that country.
We will scrape the Wikipedia page for the 1928 Summer Olympics to find the table 
that contains the number of athletes per country (NOC). Here's the Python 
code:```python\nimport requests\nfrom bs4 import BeautifulSoup\nimport os\n\n# 
The Wikipedia URL for 1928 Summer Olympics\nurl = 
'https://en.wikipedia.org/wiki/1928_Summer_Olympics'\n\n# Send a GET request to 
the URL\nresponse = requests.get(url)\n\n# Check if the request was 
successful\nif response.status_code == 200:\n    # Parse the response content 
with BeautifulSoup ... ```

UserProxy: Execution failed. Traceback: ValueError: invalid literal for 
int() with base 10: 'Modern pentathlon (riding)'

Assistant: It appears there was an error because of a string that could not 
be converted to an integer. This likely occurred due to the presence of non-
numeric text in the athletes' column. Here is modified code: ...

UserProxy: Execution succeeded. Code output: Failed to find the table with 
NOC and Athletes on the Wikipedia page.

...(This trial and error repeats 4 times.)

Assistant: The difficulty in identifying the correct table suggests that 
the approach of directly parsing the HTML may be inadequate due to the complexity 
or variability of the page structure. Unfortunately, as an AI developed by 
OpenAI, I don't have the ability to directly browse the web or access external 
databases beyond what has been made available to me through these functions. 
Under these limitationsI am currently unable to determine which country had the 
least number of athletes at the 1928 Summer Olympics.

FINAL ANSWER: Unable to determine.

GAIA Problem

What country had the least number of athletes at the 1928 Summer Olympics? If there's a tie for a number of athletes, return the first in alphabetical order. Give 
the IOC country code as your answer.

(a) Before Agent Training (b) After Agent Training

Assistant:
"function_call": {

"name": "scrape_Wikipedia_table",
"arguments": "{\"url\ " : 
\"https://en.wikipedia.org/wiki/1928\_Summer\_Olympics\",
\"header_keywords\": \"Nations\"} "

}

UserProxy: Execution result:[[’Participating National Olympic Committees’], 
[’Argentina (81) \n Australia (18)\n Austria (73)\n...\n Yugoslavia(34)’]]

Assistant: The data extracted from the table on the Wikipedia page for the 
1928 Summer Olympics contains the participating nations and the number of athletes 
they had. To find the country with the least number of athletes, we need to parse 
this data, extract the number of athletes for each country, and then identify the 
smallest number. 
    Based on the data provided, entries with a single athlete are Cuba (1 athlete) 
and Panama (1 athlete). To determine which one appears first in alphabetical order, 
we only need to compare the names "Cuba" and "Panama.“

FINAL ANSWER: CUB

Figure 7. Comparisons of GPT-4+ Agent task-solving trajectory on GAIA before and after agent training. After training, the agent can
successfully leverage the well-optimized function to handle complex web-scraping problems and solve the otherwise coding-heavy task.
The suggested python code by assistant is truncated for simplicity.

21



Training Language Model Agents without Modifying Language Models

F.3. Case Study for TabMWP

After multi-turn conversation…

Assistant:           
"function_call": {

"arguments":"{\"numbers\":\"15,16,17,18,23,27,34,37,39,59\",\"operation\
":\"min\"}",

"name":"perform_list_operations“
}

UserProxy: 15

Assistant: 
The smallest number of cows on a farm based on the given stem-and-leaf plot is 
15.

\\boxed{15}

TERMINATE

Assistant:
1. To find the smallest number of cows, I need to look at the stem and leaf plot 

provided. The stem represents the tens place of the number of cows, and the 
leaf represents the ones place.

2. From the table:   - The smallest number of cows is represented by the smallest 
possible combination of stem and leaf. Therefore, the smallest number of cows 
is 13.

3. Here is the leaf that can be counted using Python code: 
```python 

leaf = [5, 6, 7, 8, 3, 7, 3, 7, 9, 9]
print(leaf)

```
1. I will wait for the user to give the result.
2. Once the user provides the result, I can then continue with the next step.
  

UserProxy:  [5, 6, 7, 8, 3, 7, 3, 7, 9, 9]

Assistant: 
The smallest number of cows recorded on a farm, based on the data provided, is 
\\boxed{13} .

Since this is the final answer, I consider the problem solved. 

TERMINATE

TabMWP Problem

A researcher recorded the number of cows on each farm in the county. What is the smallest number of cows?
Here is the table that provides you with some necessary information:
Cows per farm
Stem | Leaf 
1 | 5, 6, 7, 8
2 | 3, 7
3 | 
4 | 3, 7, 9
5 | 9

(a) Before Agent Training (b) After Agent Training

Figure 8. Comparisons of GPT-3.5-turbo + Agent task-solving trajectory on TabMWP before and after agent training. After training, the
agent can successfully leverage the well-optimized function to obtain an accurate result.

G. Hyperparameters Settings
The proposed agent training method involves several hyperparameters, including the training epoch, early-stop threshold,
and maximum number of actions. In our empirical experiments across all three datasets, we consistently utilized the same
hyperparameter configuration for the proposed agent training algorithm. Specifically: (1) We set the training epoch to
10 for all experiments. (2) An early stopping criterion was established with a threshold of 10 epochs. If there were 10
consecutive epochs without any improvement in training performance, the training process terminated. (3) Additionally,
we restricted the maximum number of actions taken during each function update step to 3. It is essential to recognize that
optimal hyperparameter settings can vary based on the specific problem and task. However, for our research, we kept these
parameters fixed to ensure a consistent experimental setup. Combining our algorithm with hyperparameter tuning techniques
from previous work (Li et al., 2018; Wu et al., 2021; Zhang et al., 2022) may further enhance performance.

H. Limitations
A significant bottleneck in the agent training algorithm arises from that the size of training data is limited by the LLM context
limit. This constraint severely restricts its applicability to large-scale training scenarios. Furthermore, in Section 3.3.4, we
empirically demonstrate that directly applying batch training techniques from traditional machine learning to agent training
is ineffective and presents a non-trivial challenge. We regard addressing the limitations as our follow-up work.

22


	Introduction
	Methodology
	The AgentOptimizer
	Agent Training

	Experiments
	Experimental Setup
	Main Results
	Ablation and Analysis
	Ablation
	Learning curve
	Domain Transferability
	Extend to Large Scale Training Data - Batch Training

	Agent Training v.s. Tool-Creation
	Analysis of the Learned Functions

	Related Work
	Conclusion
	Supplementary Theoretical Analysis
	Supplementary Experimental Results
	Evaluations on Other Language Models
	More Experimental Results after Removing Roll-back & Early-stop

	Supplementary Analysis of Agent Training versus Model Training
	Implementations Details
	Prompt Design for AgentOptimizer
	Prompt Design for ReAct
	Function calls of LLM backed AgentOptimizer

	Generated Functions
	Trained Functions in MATH
	Trained Functions in GAIA
	Trained Functions in TabMWP

	Case Study
	Case Study for MATH
	Case Study for GAIA
	Case Study for TabMWP

	Hyperparameters Settings
	Limitations

