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The existence and dynamics of stable quantized vortices is an important subject of quantum many-
body physics. Spin-orbital-angular-momentum coupling (SOAMC), a special type of spin-orbit
coupling, has been experimentally achieved to create vortices in atomic Bose-Einstein condensates
(BEC). Here, we generalize the concept of SOAMC to a two-component polariton BEC and analyze
the emergence and configuration of vortices under a finite-size circular pumping beam. We find that
the regular configuration of vortex lattices induced by a finite-size circular pump is significantly
distorted by the spatially dependent Raman coupling of SOAMC, even in the presence of a repulsive
polariton interaction which can assist the forming of stable vortex configuration. Meanwhile, a pair
of vortices induced by SOAMC located at the center of polariton cloud remains stable. When the
Raman coupling is sufficiently strong and interaction is weak, the vortices spiraling in from the edge
of polariton cloud will disrupt the polariton BEC.

I. INTRODUCTION

Quantized vortices, as a type of topological defects,
have been observed and extensively studied in many
physical systems such as superconductors1, superfluid
liquid helium2,3, cold atoms4,5, photon fields6,7, and
exciton-polariton Bose-Einstein condensates (BEC)8,9.
In many of these notable examples, quantized phase
winding and/or rotational superflow have been witnessed
as a key evidence of superfluidity/superconductivity.
Formed by strongly coupled cavity photon and quantum-
well exciton in a semiconductor microcavity, exciton-
polariton BEC, or polariton BEC for short, has the ad-
vantage of high transition temperature and versatile op-
tical control/probe owing to its photonic component10,11.
It is also conceptually interesting as polariton BEC is a
non-equilibrium quantum system with macroscopic co-
herence, where the polariton continuously decays and
simultaneously replenishes via stimulated scattering of
reservoir-exciton excited by the optical pump12,13. The
non-equilibrium nature and photonic component of po-
lariton BEC provide a unique opportunity for investigat-
ing the dynamics of vortices8,14,15, which can be created
by various experimental techniques such as resonant ex-
citation by Laguerre-Gaussian (LG) beams16–18, optical
parametric oscillation19, and pumping with a circular ex-
citation beam20,21.

Another stark characteristic of polariton BEC is the
existence of a pseudo-spin degree of freedom inherited
from the angular momentum coupling between exciton
and photon components. Heavy-hole excitons with dif-
ferent magnetic quantum numbers can couple to pho-
tons with different circular polarizations, leading to a
splitting of energy between the two composite exciton-
polariton states, which can be looked at as two pseudo-

spin states with S = 1/222. This so-called transverse-
electric-transverse-magnetic (TE-TM) splitting depends
on the in-plane wave vector23,24, and takes the role of
Zeeman energy in the pseudo-spin space. Notable ef-
fects are discussed therein, including the optical spin-
Hall effect23,25,26, spin vortices27, magnetic-monopole-
like half solitons28, half-quantum circulation29, ferromag-
netic phase transition30, and transition from a highly co-
herent to a super-thermal state31.

Recently, one special type of spin-orbit cou-
pling, known as spin-orbital-angular-momentum cou-
pling (SOAMC), has been achieved in quantum gases
of neutral atoms by using two copropagating LG laser
beams to couple different atomic hyperfine states via a
two-photon Raman process32,33. Exotic quantum phases
have been proposed and investigated for bosonic and
fermionic systems, including the stripe phase, vortex-
antivortex-pair phase, and half-skyrmion phase34–37.

In this work, we propose a scheme to implement
SOAMC in two-component polariton BEC in a two-
dimensional heterostructure hosting two photonic modes,
and study the steady-state solutions and vortex dynamics
under a finite-size circular pumping beam. We adopt an
open-dissipation Gross-Pitaevskii theory to describe the
dynamical evolution of the polariton BEC and examine
the stability of steady-state solutions under the balance
of gain and loss. We find that the presence of SOAMC
can stabilize a pair of vortices located at the center of
the polariton clouds in the stable state. Furthermore,
by analyzing the density and phase distributions in the
dynamical evolution, we investigate the effects of Raman
coupling of SOAMC and interaction on vortex lattices
in the polariton BEC subjected to a finite-size circular
pump. We find that while the spatially inhomogeneous
Raman coupling tends to break the vortex lattice, a re-
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pulsive interaction helps to build a stable edge of polari-
ton cloud and thus hold the pattern of vortices.

The remainder of this paper is organized as follows.
In Sec. II, we propose a scheme to realize SOAMC
in polariton BEC and derive a dimensionless form of
the open-dissipative Gross-Pitaevskii equation from a
single-particle Hamiltonian. In Sec. III, we analyze the
steady-state solutions under adiabatic approximation.
The dynamical evolutions with different Raman coupling
strengths and interactions are simulated in Sec. IV. Fi-
nally, we summarize in Sec. V.

II. POLARITON BEC WITH SOAMC

We propose to realize polariton BEC with SOAMC
in a two-dimensional heterostructure consisting of CdTe
quantum well (QW) layers sandwiched by two distributed
Bragg reflectors (DBRs) as shown in Fig. 1(a). QW
excitons, which are bound states of electron-hole pairs,
can be excited by an external pumping laser, and bind
with the photons of the semiconductor microcavity by
the strong exciton-photon coupling to create quasiparti-
cles of exciton-polariton pairs. In comparison to GaAs-
based microcavities, the CdTe-based system features
two heavy-hole exciton modes [X1s and X2s shown in
Fig. 1(c)] with much higher binding energy (∼ 25 MeV)
when the temperature is kept at 4.5 K. By coupling to
the cavity photon mode, the two exciton modes lead to
three exciton-polariton branches, including the lower po-
laritons (LP), the middle polaritons (MP), and the upper
polaritons (UP), as illustrated in Fig. 1(c). At zero mo-
mentum k = 0, the minimal Rabi splitting is around 13
MeV between the LP and MP branches, and around 3.5
MeV between the MP and UP branches38.
By applying a linearly polarized non-resonant pumping

laser with a tilt angle from the normal-axis (z-axis)23,25,
heavy-holes of the X1s mode with different magnetic
quantum numbers can absorb either left or right cir-
cularly polarized photons and split into TE and TM
modes39. The two modes are considered as two pseudo-
spin states with S = 1/2. The effective Hamiltonian asso-
ciated with the TE and TM modes takes the form ℏσ ·Ωk

in the pseudo-spin basis40,41, where σ = (σx, σy) is the
Pauli vector, and Ωk is the effective pseudo-spin preces-
sion frequency given by Ωk = (∆T /ℏ)(k2x − k2y, 2kxky)
with the TE-TM coupling strength ∆T . Notice that the
TE-TM splitting energy is dependent on the incident mo-
mentum of the pumping beam and can be tuned precisely
by controlling the incident angle22,23,42, and it can even
be tuned to zero43–46. Furthermore, since the actual an-
gular momentum difference between the two modes is two
quanta39, the two states can be coupled by a Raman pro-
cess with a pair of copropagating longitudinal optical LG
beams with left and right circular polarizations17,18,33.
The Raman scheme is mediated by the upper MP branch,
as schematically depicted in Fig. 1(b). Since the two LG
beams also carry orbital angular momenta (OAM) l1ℏ

Figure 1. (Color online) A schematic of the exciton-polariton
BEC with SOAMC. (a) The QWs are sandwiched by two
DBRs. The pumping laser incidents in the direction of an
angle with the z-axis, and the LG beams are applied along
the z-axis. (b) Schematic illustration of the Raman process
between the two LP modes. (c) Spectrum of exciton-polariton
dispersion. Exciton modes X1s and X2s are represented by
grey and blue dashed lines, respectively, while photon modes
P are represented by red dashed line. The three branches of
quasiparticle mode, such as LP, MP, and UP, are depicted by
black, blue, and red solid lines, respectively.

and l2ℏ, the Raman transition will cause a change of an-
gular momentum of the polariton motional degree of free-
dom in the amount of l ≡ (l1 − l2)/2. By adiabatically
eliminating the MP state, as explained in detail in the
Supplement material, we can obtain an effective model
of a single polariton, whose OAM in coordinate space and
spin in pseudo-spin space (with the basis {|TE⟩, |TM⟩})
are coupled

H0 =

[
− ℏ2

2M∇2
r − ℏ2

2Mr2 ∂
2
θ + δ

2 ΩR(r)e
−i2lθ

ΩR(r)e
i2lθ − ℏ2

2M∇2
r − ℏ2

2Mr2 ∂θ − δ
2

]
.

(1)

Considering that polaritons formed by cavity photons
and two-dimensional (2D) semiconductor excitons have
a longer lifetime, only the in-plane motion of polariton
BEC is discussed here47. The 2D vector r = (r, θ) is
defined in the polar coordinate, ∇2

r = r−1∂rr∂r, and
M ∼ 10−4me is the effective mass of polariton com-
bined with QW exciton and microcavity photon with
me the mass of free electron. Besides, ΩR(r) and δ
denote the Rabi frequency and two-photon detuning of
the Raman process, respectively. Notice that by writing
down this single particle Hamiltonian, we do not con-
sider the pumping and decay of polariton, which will be
included later. Then, we apply a unitary transformation
H̃0 = U−1H0U with U = diag(e−ilθ, eilθ) to eliminate
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the phase of the off-diagonal elements32,33,37, and obtain

H̃0 =

[
− ℏ2

2M∇2
r +

(Lz−ℏl)2
2Mr2 + δ

2 ΩR(r)

ΩR(r) − ℏ2

2M∇2
r +

(Lz+ℏl)2
2Mr2 − δ

2

]
.

(2)

Here, Lz = −iℏ∂θ denotes the angular momentum op-
erator of polariton along the z-axis, which couples with
spin via the SOAMC term −ℏlLz⊗σz/Mr2. Notice that
under the unitary transformation, the basis {|ψ1⟩, |ψ2⟩}
of H̃0 essentially represents the rotations of TE and
TM modes and defined as |ψ1⟩ = eilθ|TE⟩ and |ψ2⟩ =
e−ilθ|TM⟩.

In atomic BEC, the two-photon Raman process is ex-
tensively utilized to investigate vortex dynamics. It can
be employed to generate vortices48, transfer photon angu-
lar momentum to the BEC49, and store vortex lattices50.
Moreover, some novel vortex geometries can be generated
by transferring angular momentum through LG beams51.
Here, to investigate the dynamics of a two-component
polariton BEC with SOAMC subjected to pumping and
decay, we employ the widely accepted open-dissipative
Gross-Pitaevskii equations (ODGPEs) approach, which
has been applied to describe the dynamical synchro-
nization45, elementary excitations52, dynamics of vor-
tex53 and dark soliton train44 of two-component polari-
ton BEC. The order parameters of the two components
|ψ1⟩ and |ψ2⟩ are represented by the time-dependent wave
functions Ψ1(r, t) and Ψ2(r, t) on the mean-field level.
Here, we assume the pumping and decay rates of TE and
TM modes are identical, hence can be simply applied to
the rotated modes. Furthermore, we consider that the
exciton reservoir relaxes quickly enough for both com-
ponents to ensure that the stimulated scattering to each
component is unaffected46. Under this adiabatic condi-
tion, a mean-field approach is sufficient to investigate the
dynamics of the polariton BEC54.
The wave functions Ψ1,2(r, t) and the density ne(r, t)

of exciton reservoir satisfy a coupled set of ODGPEs,

iℏ
∂Ψ1

∂t
=

[
− ℏ2

2M
∇2

r + V1(r, t) +
(Lz − ℏl)2

2Mr2
+
δ

2

]
Ψ1

+ ΩR(r)Ψ2 +
iℏ
2
(Rene − γp)Ψ1, (3)

iℏ
∂Ψ2

∂t
=

[
− ℏ2

2M
∇2

r + V2(r, t) +
(Lz + ℏl)2

2Mr2
− δ

2

]
Ψ2

+ ΩR(r)Ψ1 +
iℏ
2
(Rene − γp)Ψ2, (4)

∂ne
∂t

= P (r)−
[
γe +Re(|Ψ1|2 + |Ψ2|2)

]
ne. (5)

Here, Vj=1,2(r, t) =
1
2Mω2

⊥r
2+g|Ψj |2+g12|Ψ3−j |2+gene

denotes an induced effective potential from the mean-
field shift caused by the intra- (g1 = g2 = g) and inter-
component (g12) interactions, the polariton-exciton in-
teraction ge, and the external harmonic trapping po-
tential with oscillator frequency ω⊥

55. The polariton

BEC and exciton reservoir are lossy with decay rates
γp and γe, respectively. Furthermore, the exciton reser-
voir is excited by a non-resonant circular pumping beam
P (r) = ηPthΘ(Rp − r)56, where Θ(r) is the unit step
function, Rp is the cutoff radius, and η is a dimensionless
factor. The threshold pumping strength Pth ≡ γpγe/Re

corresponds to the exact balance of amplification and loss
of exciton-reservoir density. Re is the stimulated scatter-
ing rate from exciton reservoir to polariton BEC. In the
following, we consider a representative example where the
OAM of LG beams are l1 = −2 and l2 = 0, as used in
some experiments17,18,33. The spatial dependent Raman

coupling ΩR(r) = Ω̃R(r/w)
|l1|+|l2|e−2r2/w2

is character-

ized by the coupling strength Ω̃R and the waist w of
the Raman beam. We also focus on the special case of
δ = 0, which is both experimental feasible and physically
insightful since the SOAMC effect can be revealed more
transparently without complications induced by the Zee-
man field.
To derive a dimensionless form, we take the length

unit a =
√
ℏ/Mω⊥ and time unit τ = 2/ω⊥ to rewrite

Eqs. (3)-(5) as

i
∂Ψ1

∂t
=

[
−∇2

r + V1(r, t) +
(L′

z − l)2

r2

]
Ψ1

+ ΩR(r)Ψ2 +
i

2
(R′

ene − γ′p)Ψ1, (6)

i
∂Ψ2

∂t
=

[
−∇2

r + V2(r, t) +
(L′

z + l)2

r2

]
Ψ2

+ ΩR(r)Ψ1 +
i

2
(R′

ene − γ′p)Ψ2, (7)

∂ne
∂t

= P (r)−
[
γ′e +R′

e(|Ψ1|2 + |Ψ2|2)
]
ne. (8)

Notice that in the expressions above, coordinate r, time
t, wave function Ψj(r, t)(j = 1, 2), effective potential
Vj(r, t), density ne(r, t) of exciton reservoir, pumping
rate P (r), and Raman coupling ΩR(r) are all replaced
by their dimensionless counterparts, while other param-
eters are defined as g′ = 2g/ℏω⊥a

2, g′12 = 2g12/ℏω⊥a
2,

g′e = 2ge/ℏω⊥a
2, L′

z = −i∂θ, Ω̃′
R = 2Ω̃R/ℏω⊥, w

′ = w/a,
R′

e = 2Re/ω⊥a
2, γ′p = 2γp/ω⊥, γ

′
e = 2γe/ω⊥. In

realistic experiments57,58, typical parameters of polari-
ton BEC can be taken as g ∼ 1µeVµm2, ge = 2g,
Re = 0.01ps−1µm2, γp = 0.4ps−1, and γe = 0.6ps−1.

III. STEADY-STATE SOLUTIONS

We consider the steady-state solutions for polariton
BEC with SOAMC under a homogeneous pumping and
decay. By the definition of a steady state, the net gain
is vanishing, such that the density of the exciton reser-
voir is kept at nse(r) = γ′p/R

′, and the total density is

|Ψs
1(r)|2 + |Ψs

2(r)|2 = (η − 1)Pth/γ
′
p when η > 1. In

the absence of SOAMC, with ΩR(r) = 0 and l = 0
in Eqs. (6)-(7), particles will not exchange between the
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Figure 2. (Color online) (a): The azimuthal symmetric steady-state solutions n = n1 = n2 of Eqs. (13)-(14). (b)-(i): The
dynamical evolution of two-component polariton BEC are obtained by numerically solving Eqs. (6)-(8) with a Thomas-Fermi-
type initial distribution (12), (b)-(c) and (f)-(g): the density distributions |Ψ1,2|2, (d)-(e) and (h)-(i): the corresponding phase

distributions ϕ1,2. Other parameters are Ωv = 1, Ω̃′
R = 1, and g′ = 1.

two pseudo-spin states. The steady-state solution of the
ODGPEs without pump and decay is well approximated
by the stationary Thomas-Fermi solution, where the ve-
locity (phase gradient) of polariton BEC is zero. While
the pumping laser is a finite-size circular beam, the ap-
proximate Thomas-Fermi solution will become unstable
in a harmonic trap. Especially, when the radius of the
pumping beam is beyond the size of polariton cloud, the
net gain at the edge of polariton introduces an instability.
Vortices can spiral in from the edge into polariton cloud
and spontaneously form a vortex lattice. Thus, a vortex
solution can be achieved in polariton BEC pumped by
the finite-size circular pumping beam, similar to what is
observed in rotating BEC56,59.

In the presence of SOAMC, we first discuss the scenario
of an infinitely large circular pump with Rp → ∞. The

steady-state wave functions Ψ1,2(r) =
√
n1,2(r)e

iϕ1,2(r)

are assumed to describe both the density n1,2(r) and
phase ϕ1,2(r) distributions. Upon substituting the wave
functions into Eqs. (6)-(7) and focusing on the imaginary
parts, we gain the following equations for phase gradients
under the Thomas-Fermi approximation,

∇ ·
[
n1

(
∇ϕ1 −

l

r2
× r

)]
= −ΩR(r)

√
n1n2 sin(ϕ1 − ϕ2),

(9)

∇ ·
[
n2

(
∇ϕ2 +

l

r2
× r

)]
= ΩR(r)

√
n1n2 sin(ϕ1 − ϕ2),

where l = lẑ, and ẑ is the unit vector along the z-axis.
If the Raman coupling ΩR(r) is negligible, the polar-

ization of two-component polariton BEC can be safely
ignored to give n1 = n2 = n. By adding the two equali-
ties of Eq. (9), we then obtain

∇ · [n (∇ϕ1 +∇ϕ2)] = 0. (10)

Thus, for a steady state, the phase gradients have to

satisfy ∇ϕ1 = −∇ϕ2, which implies that the two pseudo-
spin components acquire opposite velocities, and the to-
tal rotation of polariton BEC is zero. This solution is
consistent with the expectation that a weak Raman cou-
pling is insufficient to drive a rotation in polariton BEC.

When the Raman coupling strength Ω̃′
R is increased,

we must solve the coupled equations in Eq. (9) self-
consistently. A stable solution can be easily found when
ϕ1 − ϕ2 = kπ(k ∈ Z) is satisfied, and the velocities of
the two components are v1,2 = ∇ϕ1,2 = ±l × r/r2(r ̸=
0). This solution implies that the polariton BEC can
build a quantized circulation carrying a phase winding∮
∇ϕ1,2 · ds = ±2πl around the singularity in polari-

ton cloud, which are similar to that in a polariton BEC
pumped by a single LG beam17. When ϕ1 − ϕ2 ̸= kπ,
a steady state can also exist if the polariton density
vanishes [n1,2(r = 0) = 0] at the center of polariton
cloud where the velocities diverge, which corresponds
to the appearance of a vortex. The density far from
the center n1,2(r → ∞) can be finite because ΩR(r →
∞) = 0. Thus, a single quantized vortex with oppo-
site phase winding can be stable as a steady state in
a two-component polariton BEC with SOAMC and an
infinite-size circular pumping beam, which is similar to
the vortex-antivortex-pair phase discovered as a ground
state of the Bose gas with SOAMC36.

When the circular pumping beam is of a finite radius
with P (r) = ηPthΘ(Rp − r), the vortex instability in-
duced by SOAMC will also be affected by the finite-size
effect. To this aim, we replace the pumping terms on
the right-hand side of Eqs. (6)-(7) with an equivalently
external rotating term 2ΩvL

′
z to investigate the steady-

state solutions, where effective rotation frequency Ωv is
related to the radius Rp of the circular pump56. With
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Figure 3. (Color online) The density distributions |Ψ1,2|2 in (a)-(b) and (e)-(f), and corresponding phase distributions ϕ1,2

(c)-(d) and (g)-(h) of two-component polariton BEC obtained by numerically solving Eqs. (6)-(8) with the different Raman

coupling strength Ω̃′
R = 1 (first-second columns), 100 (third-fourth columns) at t = 20. Other parameters are Ωv = 1 and

g′ = 0.5.

that, we obtain

∇ ·
[
n1

(
∇ϕ1 −

l

r2
× r−Ωv × r

)]
= −ΩR(r)

√
n1n2 sin(ϕ1 − ϕ2),

(11)

∇ ·
[
n2

(
∇ϕ2 +

l

r2
× r−Ωv × r

)]
= ΩR(r)

√
n1n2 sin(ϕ1 − ϕ2),

where Ωv = Ωv ẑ.

If the phase condition ϕ1−ϕ2 = kπ (k ∈ Z) is satisfied,
a steady-state solution of vortex lattices can be obtained
with velocities v1,2 ≈ Ωv × r ± l × r/r2 (r ̸= 0). The
number of vortices in each component is ΩvR

2
p ± l. In

addition, a quantized vortex still appears at the center
with diverging velocities. When ϕ1 − ϕ2 ̸= kπ, vortices
can exist at the trap center r = 0 since the Raman cou-
pling ΩR(r = 0) = 0. However, at other positions with
non-zero ΩR(r), stable vortex solutions can only be found
with n1 = 0 or n2 = 0, i.e., the polariton BEC is fully
polarized with the other component completely depleted.
Furthermore, it is worth noting that the total OAM of
polariton BEC is conserved. Thus, when a polariton BEC
with SOAMC is subjected to a finite-size circular pump-
ing beam, the center vortex-antivortex pair induced by
SOAMC is still robust, while the vortex lattices steered
by the boundary effect of pumping beam can be dimin-
ished.

IV. DYNAMICAL EVOLUTION

To examine whether the steady-state solutions can ac-
tually be established in the dynamical evolution, in this
section we investigate the stability and dynamical evolu-
tion of vortices by the time-dependent Eqs. (6)-(8). As
presented in the Supplemental material, we use the split-
step Fourier method60 for Eqs. (6)-(7) and the Runge-
Kutta method for Eq. (8). Due to the presence of pump-
ing and decay, the formation of a dynamical steady state
usually takes long time for our present model within an
inhomogeneous trapping potential. Thus, we adopt the
conventional treatment of introducing an equivalently
weak rotation term −2ΩvL

′
z on the right-hand side of

Eqs. (6)-(7) to reduce evolution time required for a dy-
namical steady state56. The initial state is chosen in the
form of a Thomas-Fermi distribution,

Ψ1,2(t = 0) =


√

3αg′−2βr2

2βg′ , r < RTF ,

0 , r ≥ RTF ,

(12)

where RTF =
√
3g′α/2β is the Thomas-Fermi radius56

with the effective pumping rate α = P (r)R′
e/2γ

′
e − γ′p/2,

and the effective rate of saturation loss β = P (r)R′2
e /2γ

′2
e .

In order to get closer to the steady-state solutions within
a finite evolution time, we choose appropriate parameters
to satisfy the adiabatic approximation conditions γ′e ≫
γ′p and γ′e ≫ P (r)R′

e/2γ
′
p. In the following numerical

calculation, we use the dimensionless parameters g′12 =
0.5g′, g′e = 2g′, γ′p = 110, γ′e = 100γ′p, R

′
e = 0.51γ′p,

η = 1.08, ω′ = 7, and RP = 5, which are of typical
values in semiconductor microcavities58.
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Figure 4. (Color online) The density distributions |Ψ1,2|2 in (a)-(b) and (e)-(f), and corresponding phase distributions ϕ1,2

(c)-(d) and (g)-(h) of two-component polariton BEC obtained by numerically solving Eqs. (6)-(8) with same parameter as
Fig. 3, except for g′ = 0.1

.

In Fig. 2, we present the results of evolution for a long
enough time for the case of weak SOAMC with Raman
coupling strength Ω̃′

R = 1 and interaction g′ = 1. Vortex
configurations at different moments of time are depicted
in both the density and phase distributions with the ini-
tial condition Ψ0

1,2 of Eq. (12). The location and number
of vortices in the two components are clearly different and
vary with time, without showing any steady structure for
the longest time we have achieved.

In atomic BEC, the loss of particles may cause vortices
to spiral towards regions where they vanish61,62. Spiral-
ing vortices have also been observed in non-equilibrium
polariton BECs, such as those pumped by a broad
super-Gaussian beam with a flat-top63, as well as for
continuous-wave pump64. In the present case of a cir-
cular beam P (r) = ηPthΘ(Rp − r), spiraling vortices are
discovered from the spiraling phase distributions. More-
over, two phase singularities with opposite winding lo-
cated respectively at the center of two-component po-
lariton clouds, as depicted by red rings in Figs. 2(b)-2(c)
and directional rings in Figs. 2(d)-2(e), in consistence
with the expectation of Eqs. (11). In summary, when

the Raman coupling strength Ω̃′
R = 1 is weak, the effec-

tive rotation −2ΩvL
′
z dominates the dynamical evolution

of vortices in polariton BEC, while the angular momen-
tum exchange induced by SOAMC facilitates the stable
lattice structure and destabilizes vortices.

For comparison, we also show the steady-state density
profiles of two components in Fig. 2(a), which are ob-
tained by introducing a chemical potential µ and substi-
tuting i∂tΨ = µΨ into Eqs. (6)-(7), where Ψ = (Ψ1,Ψ2).

Under the adiabatic approximation, we get

µΨ1 =

[
−∇2

r + Ṽ1(r, t) +
(L′

z − l)2

r2

]
Ψ1

+ΩR(r)Ψ2, (13)

µΨ2 =

[
−∇2

r + Ṽ2(r, t) +
(L′

z + l)2

r2

]
Ψ2

+ΩR(r)Ψ1, (14)

where the effective potential Ṽj(r, t) = r2 + g′|Ψj |2 +
g′12|Ψ3−j |2+i(α−β(|Ψ1|2+ |Ψ2|2)) (j = 1, 2). The chem-
ical potential µ is determined by the balance of gain and
loss56. Based on the analysis of the previous section, we
can safely assume that Ψ has azimuthal symmetry and
that ϕ1 = ϕ2 = 0. Then we use the Newton-Raphson
method to calculate Eqs. (13)-(14) and scan various µ to
obtain a steady-state solution. The results show that
polariton BEC can be stabilized within the regime of
r < Rp. When the SOAMC strength is enhanced, as

shown the dashed line in Fig. 2(a) with Ω̃′
R = 100, steady-

state solution of condensate can still be found, where po-
lariton cloud has a smaller size compared to the case of
Ω̃′

R = 1.
In Fig. 3, we present the vortex configuration in the

dynamical evolution of polariton BEC with weak interac-
tion g′ = 0.5. For the weak Raman coupling of SOAMC
(first and second columns in Fig. 3), comparing with
vortices distribution in Figs. 2(b)-2(i) with g′ = 1, the
boundary instability effect induced by the finite-size cir-
cular pump is more prominent. More vortices can spiral
from the edge into polariton clouds with weak repulsive
interaction. When the Raman coupling of SOAMC is in-
creased, we find that individual vortices can no longer be
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clearly recognized from density distributions [Figs. 3(e)-
(f)]. The existence of vortices can only be witnessed
from the spiraling singularities in phase distributions
of Fig. 3(g)-(h). This observation can be understood
by noticing that the spatially dependent Raman cou-
pling ΩR(r) destroys the translational symmetry and has
the tendency to compromise any approximately uniform
background density in a polariton cloud. In addition,
strong Raman coupling shrinks the size of polariton dis-
tribution, which further destroys the stability of vortex
lattices, allowing vortices to move freely into the conden-
sate, except for the pair located at the center.

Finally, we discuss the effect of polariton interaction on
vortex configuration. As shown in the Supplement mate-
rial, in the absence of SOAMC the vortex configuration
is regular and presents rotation symmetry in the case of
weak repulsive interaction. A stronger interaction tends
to disrupt the inherent symmetry of the vortex lattices.
On the other hand, strong interaction helps to build a
stable edge of the polariton cloud, preventing the emer-
gence of vortices from the edge and resulting in fewer vor-
tices. In the presence of SOAMC, however, the Raman
coupling of SOAMC and boundary instability effect dom-
inate the vortices distribution of polariton BEC, where
the dynamical evolution of vortices is completely chaotic
as vortices constantly spiral in the polariton clouds, as
depicted in Fig. 4 with g′ = 0.1. Consequently, the vor-
tices tend to disrupt the polariton BEC, which can be
observed in both the density and phase distributions.

V. CONCLUSION

We propose to realize synthetic spin-orbital-angular-
momentum coupling (SOAMC) in a two-component po-

lariton BEC within a heterostructure of quantum well
layers sandwiched by reflectors. By applying a pair of
Laguerre-Gaussian beams to induce a Raman transition
between different polariton branches, a pseudo-spin flip
can be realized between the TE and TM modes of the
lower polariton branch, accompanied by a change in or-
bital angular momentum. We derive the time-dependent
open-dissipative Gross-Pitaevskii equation from single
particle Hamiltonian, and investigate the stabilities of
vortices and vortex lattices in the presence of a finite-
size circular pump. We find that the presence of SOAMC
can induce a pair of vortices located at the center of the
polariton clouds, which remain stable as long as the po-
lariton BEC exists. However, for the lattice configuration
of other vortices, we conclude that while a repulsive in-
teraction tends to stabilize vortex configuration in the
competition between pump and decay of polariton BEC,
the Raman coupling of SOAMC usually plays a dominant
role by breaking the translational symmetry and causing
disorder of vortices configuration. As a result, the vor-
tex configurations are only stable with weak Raman cou-
pling and strong interaction. When the Raman coupling
strength increases and interaction decreases, the vortices
spiraling in from the edge tend to disrupt polariton BEC.
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