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This paper discusses the error and cost aspects of ill-posed integral equations when given discrete noisy

point evaluations on a fine grid. Standard solution methods usually employ discretization schemes that

are directly induced by the measurement points. Thus, they may scale unfavorably with the number of

evaluation points, which can result in computational inefficiency. To address this issue, we propose an

algorithm that achieves the same level of accuracy while significantly reducing computational costs. Our

approach involves an initial averaging procedure to sparsify the underlying grid. To keep the exposition

simple, we focus only on one-dimensional ill-posed integral equations that have sufficient smoothness.

However, the approach can be generalized to more complicated two- and three-dimensional problems

with appropriate modifications.

Keywords: integral equations; random noise; complexity; error estimates.

1. Introduction

This article discusses integral equations, which have numerous applications. Examples include various

types of tomography, such as x-ray, electrical impedance, or magnetic resonance tomography in medical

contexts. In geophysical applications and the oil industry, seismic waves are used to detect underground

structures, resulting in an inverse problem. Additional examples are the determination of the implicit

volatility that drives stock prices in financial mathematics or the identification of the atmospheric state

required for weather predictions. In many cases, the desired object of determination is the distribution

of a physical parameter, such as density, conductivity, or volatility, for spatially extended objects that

are described by numerous parameters. Therefore, the discretization of the integral equation often

results in a high number of measured data and degrees of freedom, making the cost of approximative

solution algorithms a significant factor. The integral equation must be solved for a function that is

not directly accessible but is measured in some way. The measurement model distinguishes between

linear information, where Fourier modes or similar functionals of the data are accessible, and point-

wise (standard) information, where only point evaluations of the data are available. This article focuses

on point-wise information. Finding an appropriate discretization scheme can be challenging and often

requires additional a priori information about the problem and the unknown solution. If the required

information is unavailable, a common approach is to use the measurement grid as the discretization

grid. The main idea of this article is to decrease the size of the initially given fine discretization by
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averaging. Averaging data is a common engineering practice with many applications, see [21]. It has

been successfully applied in the closely related field of numerical differentiation by finite differences,

as shown in [1]. Numerical differentiation is often a good starting point for understanding new

approaches to inverse problems, as it captures essential features and challenges while being analytically

simple, see [11]. Here, we first introduce our new numerical method for such a model differentiation

problem. Unlike [1], we address the problem directly within the framework of regularization theory,

which enables the use of various regularization schemes and generalizes to other integral equations.

Additionally, we focus solely on the one-dimensional case in this article This approach allows us to

present the fundamental concepts and specific properties of our method in a clear and concise manner,

without the complications that arise from a higher-dimensional setting. However, as we will discuss in

the final section of this article, our approach can be applied to a wider range of problems.

The paper is structured as follows: Section 2 describes the general problem, while Section 3

introduces our novel approach and presents the main results. Specifically, we demonstrate that the

optimal error rate can be achieved with significantly reduced cost complexity. We first illustrate this

property using a simple example, for which we explicitly know the singular value decomposition of

the discretized integral operator. The method is extended to more general settings where additionally

quadrature methods are needed to derive approximative decompositions. The subject of adaptive

regularization is also discussed. Section 4 presents numerical experiments, while Section 5 provides

an outlook on how to generalize the results in various ways. The proofs of the findings are presented in

detail in the appendix.

2. Our setting

We will first formulate and analyze our approach for the following exemplary integral equation

K f = g, (2.1)

where

g(x) = (K f )(x) =

∫ 1

0
κ(x,y) f (y)dx, (2.2)

with the integral kernel

κ(x,y) := min(x(1− y),y(1− x)) . (2.3)

The rule (2.2) defines a compact operator K : L2(0,1) → L2(0,1). Obviously, this operator K is not

surjective, since g = K f is differentiable for any f ∈ L2(0,1). We assume that the exact g is corrupted

by (irregular) measurement noise. More precisely, we deal with the associated inverse problem of

reconstructing f ∈ L2 from noisy point evaluations of g = K f . These m ∈ N evaluations are taken

on a set of points ξlm ∈ (0,1), l = 1, ...,m and are given by

(

gδ
m

)m

l=1
:=
(

g(ξlm)+δZ j

)m

l=1
∈ R

m, (2.4)

where g = K f is the exact (unknown) data, δ > 0 is the noise level and Z j are i.i.d random variables

that are unbiased (E[Zl ] = 0) with finite variance E[Z2
l ] = 1. Moreover, the continuity of κ implies that

K f is continuous for all f ∈ L2[0,1], which justifies the use of point evaluations. For simplicity, we

assume that the points are uniformly distributed for this example, i.e., ξlm := l/(m+1), and thus form
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a uniform grid. The central task is to solve the equation (1) from the noisy point evaluations of g. This

can be formulated as follows:

Given noisy measurements gδ
m ∈ R

m, find (approximate) f .

This is a classic example of an inverse problem. A characteristic challenge of inverse problems is that

they are often ill-posed in the Hadamard sense. A problem is said to be well-posed when it admits a

unique solution that is continuously dependent on the input data, and it is said to be ill-posed when it

is not well-posed. The above infinite dimensional equation (2.1) is ill-posed. While it can be shown

that K is injective, the domain of its inverse K−1 is strictly less than L2(0,1) (since K is not surjective),

which implies that K−1 is not continuous on its domain. Since we have to solve (1) from noisy data,

this non-continuity of K−1 implies that standard inversion methods are not feasible here, and we have to

use regularization. Furthermore, since we have only partial data, we need to discretize. To construct an

approximation for f , we proceed as follows: The measurement grid naturally induces a semi-discrete

model of K, which we will denote by Km. It is defined as

Km : L2(0,1)→ R
m (2.5)

f 7→ ((K f )(ξlm))
m
l=1 =

(

∫

κ(ξlm,y) f (y)dy

)m

l=1

. (2.6)

This gives us the semi-discrete equation (with noisy measurements)

gδ
m = Km f (2.7)

which we have to solve. Obviously, even though K is injective, the semi-discrete operator Km is not,

i.e. solving (2.7) in all of L2 is not enough to uniquely specify the solution. A natural further choice is

to pick from the set of solutions of (2.7) the element of minimal norm. This is equivalent to restricting

the solution space to N (Km)
⊥ =R(K∗

m)⊂ L2(0,1). Note that for this specific setting, Km has full rank

and thus dim(N (Km)
⊥) = m. Now the ill-posedness of the infinite-dimensional operator K is inherited

by the semi-discrete operator Km in the sense that it is highly ill-conditioned. Thus, one has to resort

to regularization methods, such as Tikhonov regularization, Landweber iteration, or spectral cut-off

techniques. There is a large body of literature devoted to the treatment of the semi-discrete equation

(2.7), see [3, 4, 19, 24, 25], where various a priori and adaptive regularization methods are discussed.

As a new contribution, we establish data compression as a means to reduce complexity, where we

exploit the random cancellation of the averaged initial data. We also propose a different analysis of

the discretization error, which is shown to be an improvement in certain cases, see Remark 1 below.

Finally, we give rigorous error bounds for an approach based on a design matrix containing only point

evaluations instead of integrals of the kernel κ . In this article we concentrate on spectral cut-off, but our

results can be generalized to other methods as well, see Section 5.

Spectral cut-off is based on the singular value decomposition of Km, which we denote by

(v jm,u jm,σ jm) j≤m. The singular values (σ jm) j≤m form a positive decreasing sequence σ1m ≥ ... ≥
σmm > 0 and the singular functions (ṽ jm) j≤m and vectors (u jm) j≤m are orthonormal bases in N (Km)

⊥ ⊂
L2(0,1) and R

m, respectively. In addition, the following two relations hold:

Kmv jm = σ jmu jm and K∗
mu jm = σ jmv jm,

for all j = 1, ...,m, where K∗
m : Rm → L2(0,1) is the adjoint operator implicitly given by the relation

( f ,K∗λ )L2(0,1) = (K f ,λ )Rm , for f ∈ L2(0,1) and λ ∈R
m. We emphasize here that while every compact
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operator between Hilbert spaces has a singular value decomposition, the concrete singular values

and vectors (or functions) for a particular setting are rarely known explicitly and usually have to be

approximated numerically somehow. The specific setting we consider here is exceptional in the sense

that we can derive the singular value decomposition explicitly. In the second part of the manuscript we

study more general integral equations where we have to rely on numerical approximation methods.

Based on the singular value decomposition we now define an approximation to the unknown f via

spectral cut-off by

f δ
k,m :=

k

∑
j=1

(

gδ
m,u jm

)

Rm

σ jm

v jm, (2.8)

where k = 0, ...,m is the truncation index which has to be chosen depending on the measurement gδ
m

and the noise level δ > 0. To determine the singular value decomposition needed for f δ
k,m we rely on a

result from [17]. There it is shown that the singular value decomposition of the semi-discrete operator

Km : L2(0,1) → R
m is closely related to the eigenvalue decomposition of a representation matrix. In

fact, recall that we restricted the search space for the solution of (2.7) to N (Km)
⊥. This space is

finite-dimensional and has the form

N (Km)
⊥ :=

{

m

∑
l=1

αlκ(ξlm, ·) : αl ∈ R, l = 1, ...,m

}

.

The basis functions κ(ξlm, ·) are exactly the Riesz representers of the bounded linear functionals

f 7→ (K f )(ξlm), since (K f )(ξlm) = ( f ,κ(ξlm, ·)). Now, expressing the action of Km in the basis

{κ(ξlm, ·), l = 1, ...,m} yields

Km

(

m

∑
l=1

αlκ(ξlm, ·)
)

=
m

∑
l=1

αl





∫

κ(ξ1m,y)κ(ξlm,y)dy

...
∫

κ(ξmm,y)κ(ξlm,y)dy



= Tmα ,

with the matrix

Tm :=

(

∫

κ(ξim,y)κ(ξ jm,y)dy

)

i j

∈ R
m×m (2.9)

and the vector α =
(

α1 ... αm

)T
. Note that due to the special form of the kernel κ we can explicitly

evaluate the entries of the matrix Tm. Furthermore, Tm is symmetric by construction. The following

relationship between the eigenvalue decomposition of Tm and the singular value decomposition of Km

is shown in [17]:

Proposition 1 Let (λ jm,w jm)
m
j=1 denote the eigenvalue decomposition of Tm, i.e. Tm = WmΛmW T

m ,

where w jm indicates the j-th column of Wm and Λm is diagonal with the j-th diagonal entry λ jm. Then,

for the singular value decomposition of Km it holds that

σ jm =
√

λ jm, u jm = w jm, v jm(·) =
1

σ jm

m

∑
l=1

(w jm)lκ(ξlm, ·),

where (w jm)l is the l-th component of the vector w jm.
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Consequently, expressing the estimator f δ
k,m in the basis {κ(ξlm, ·), l = 1, . . . ,m} and using

Proposition 1, we get

f δ
k,m =

m

∑
l=1

αlκ(ξlm, ·) with αl :=
k

∑
j=1

(gδ
m,w jm)Rm

λ jm

(w jm)l. (2.10)

We note that Proposition 1 actually holds for any continuous kernel κ and not just for our specific

choice of (2.3). The first main contribution of this article is the derivation of a precise bound for the

error ‖ f δ
k,m − f‖, in particular regarding its dependence on the initial measurement grid. This analysis

relies critically on the fact that for our setting we have explicit representations of the singular value

decompositions of both K and Km.

Thus we deduce that the regularized approximation (2.8) to the solution of the continuous integral

equation (2.1) from noisy point evaluations (2.4) can be constructed as follows: Determine the k leading

eigenvalues and vectors of the matrix Tm from (2.9) and use them to compute the coefficients of f δ
k,m in

the basis {κ(ξlm, ·), l = 1, . . . ,m} via (2.10). The concrete choice and the effect of the truncation index

k will be discussed below. First, we will analyze the accuracy of f δ
k,m according to (2.8). Then, in the

next section, we will present our new modified approach based on averaging, which achieves the same

order of accuracy. The main advantage of our new modified approach is that it is based on the matrix

Tmo in (2.9) for mo less than m. This is important when we consider more general settings in Section 3.2,

where the matrix Tm and its eigenvalue decomposition must be approximated numerically. We discuss

the computational cost there and show that our modified approach achieves the same error rate at a

much lower cost.

We will now look at the accuracy of f δ
k,m in more detail. First, our preliminary example with the

kernel (2.3) is particularly simple. Here we can not only compute the eigenvalue decomposition of

the continuous operator K∗K (see [5], p.371/373), but also explicitly determine Tm and the eigenvalue

decomposition of K∗
mKm, which allows us to compute the error ‖ f δ

k,m− f‖ exactly. We take the following

result from [17]:

Lemma 2 The singular values and left singular vectors of K from (2.1) are

σ j = (π j)−2, v j(x) =
√

2sin( jπx), j ∈ N.

The singular values and left singular vectors of Km are

σ jm =
1

4(m+1)3/2 sin2
(

jπ
2(m+1)

)

√

1− 2

3
sin2

(

jπ

2(m+1)

)

and

v jm(x) =

√

2

(m+1)σ2
jm

m

∑
l=1

sin ( jπξlm)κ(ξlm,x)

with j = 1, ...,m.1

1 In general, however, the situation is not so simple: For most practical integral kernels, we can no longer determine Tm exactly.

In Section 3.2 below, we therefore consider the setting of a general integral kernel for which Tm is approximated by a quadrature

rule. The computational cost of this approximation will also be discussed there.
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In order to derive explicit error bounds for f δ
k,m for the given kernel (2.3), one must impose certain

smoothness conditions on f . Usually one assumes that f belongs to some unknown source set Xs,ρ of

the form

Xs,ρ : =
{

ϕs (K
∗K)h : h ∈ L2(0,1), ‖h‖ ≤ ρ

}

=

{

∞

∑
i=1

ϕs

(

σ2
i

)

(h,vi)L2 vi : h ∈ L2, ‖h‖ ≤ ρ

}

and ϕs(t) := t
s
2 , where s,ρ > 0 are unknown parameters. For functions in Xs,ρ we can indeed give

quantitative estimates for the approximation error. We discuss their relation to Sobolev smoothness at

the beginning of the next section. To determine the estimator f δ
k,m, we must first choose the truncation

index k ≤ m. The optimal choice for k minimizes the expected distance to f ∈ Xs,ρ and gives the error

err(δ ,m,s,ρ) := min
k=1,...,m

sup
f∈Xs,ρ

E‖ f δ
k,m − f‖2 ≍

(

δ 2

m

)
4s

5+4s

(ρ2)
5

5+4s +∆m, (2.11)

where ∆m denotes the discretization error ‖PN (Km) f‖, where PN (Km) denotes the projection onto the

null space of Km in (2.5). This result will be specified and proved below. The k that minimizes (2.11)

depends on the smoothness parameters s and ρ , which are usually unknown. In Section 3.3 we discuss

an adaptive choice for determining the optimal k using only the noisy point evaluations and the noise

level δ . Finally, note that the first term in (2.11) is a universal optimal error bound. This means that

no reconstruction method can yield a smaller error over Xs,ρ uniformly, at least if one ignores the

multiplicative constant. This was proved for example in [23], where an asymptotically statistically

equivalent functional white noise model (with variance δ 2/m) is considered. In this model one starts

from noisy linear functionals of the exact data instead of noisy point evaluations, which allows a

discretization-free analysis.

3. Main results

In this section we introduce our modification and state the main error bounds. We first consider the

special case given in (2.3) in the introduction and then extend to general Fredholm equations.

3.1. Results for the kernel with known spectral decomposition

For the kernel given in (2.3), we have the following simple relation between the abstract smoothness

defined by the source set Xs,ρ and the classical smoothness, see Proposition 3.9 in [17]. For f ∈ Xs,ρ ,

if s > 3
4
, then f is differentiable and if s > 5

4
, then f is twice differentiable. Thus, to derive our main

error estimates, we assume in this section that

f ∈ Xs,ρ with s > 3/4. (3.1)

Note at this point that this is a substantial smoothness assumption for f , which allows us to derive

simple bounds on the discretization error, which measure how well the unknown f can be approximated

in N (Km)
⊥. In the next section we will omit it for the treatment of general Fredholm integral equations.

The main idea of our method is that the initial discretization given by the m noisy point evaluations

may be unnecessarily fine relative to the data noise δ and the unknown solution f . More precisely,



EFFICIENT SOLUTION OF ILL-POSED INTEGRAL EQUATIONS THROUGH AVERAGING 7

E‖ f δ
k,m − f‖2 is split into three terms, first a data propagation error coming from the noise on the point

evaluations, then an approximation error of the projected unknown solution, and finally a discretization

error. While the first two terms depend, among other things, on the level of truncation k, the last

term depends only on the parameter of the discretization dimension m. Roughly speaking, if for the

minimizing k the first two terms dominate the last term, then we see that the initial discretization

based on the design matrix of size m × m was unnecessarily large. Let us be precise: With fm :=

∑m
j=1( f ,v jm)v jm denoting the projection of f onto N (Km)

⊥, the error decomposition is

f δ
k,m − f : =

k

∑
j=1

(

gδ
m,u jm

)

σ jm

v jm −
k

∑
j=1

( f ,v jm)v jm −
m

∑
j=k+1

( f ,v jm)v jm + fm − f

=
k

∑
j=1

(

gδ
m −Km f ,u jm

)

σ jm

v jm −
m

∑
j=k+1

( f ,v jm)v jm + fm − f .

From orthogonality we get

E[‖ f δ
k,m − f‖2] = δ 2

k

∑
j=1

1

σ2
jm

+
m

∑
j=k+1

( f ,v jm)
2 +‖ fm − f‖2, (3.2)

and with the source condition (3.1) and Lemma 2 we get the explicit upper bound

E[‖ f δ
k,m − f‖2]≤C

(

k5

m
δ 2 + k−4sρ2 +

‖ f ′‖2

m2

)

(3.3)

for the error, where C > 0 is a constant. This will be shown in the proof of Theorem 3 below. It will also

be shown there that the right-hand side is also a lower bound in many cases, up to a constant factor.

Remark 1 Note that if f is twice differentiable, which is the case for example when s > 5
4
, we can

replace
‖ f ′‖2

m2 by
‖ f ′′‖2

m4 , see [17]. An often used alternative decomposition of the error, applicable in

general situations, see e.g. [24], is based on operator monotone functions [22]. Due to the Lipschitz

continuity of κ , one can show that ‖(m+ 1)−1(K∗
mKm)−K∗K‖ ≤ m−1. Then, for f = (K∗K)

s
2 h, with

h ∈ L2(0,1) and ‖h‖ ≤ ρ , s ≤ 2, the terms −∑m
j=k+1( f ,v jm)v jm + fm − f are replaced by

−
m

∑
j=k+1

(

(

K∗
mKm

m+1

) s
2

h,v jm

)

v jm +(I−Pspan(v1m,...,vkm))

(

(

K∗
mKm

m+1

) s
2

h− (K∗K)
s
2 h

)

,

with the corresponding (quadratic) upper bound 2k−4sρ2 + 2
(

‖(m+1)−1K∗
mKm −K∗K‖

)s ‖h‖2 ≤
2k−4sρ2 +m−sρ2. In our case, the discretization error is of order ‖ f ′‖2m−2 for 3

4
< s < 1, and of

order m−4‖ f ′′‖2 for 3
4
< s ≤ 2, which is clearly an emprovement.

In our error bound (3.3) we identify the variance, also called the data propagation error, and the

bias part, consisting of an approximation error and a discretization error. As k increases, the first term

increases while the second term decreases. As m increases, the first and third terms decrease.

As explained above, our approach is based on the observation that k only affects the first two terms

in the error decomposition. It is easy to see that the minimizing k roughly balances the first two terms
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(and thus satisfies k5+8s ≍ mρ2

δ 2 ). If the contribution of the third term (the discretization error) is much

smaller, then the initial discretization dimension m (for the design matrix), i.e. the number of point

evaluations, was unnecessarily high. Thus, there is hope to somehow reduce m without spoiling the

overall error rate. But directly reducing the parameter m (which would mean simply discarding some

of the measurements) increases the first and third terms (with the effect being more pronounced for the

third term).

Our proposed strategy is based on averaging components of the measured data, which can keep the

size of the first two terms constant while decreasing m. The idea of averaging point evaluations from a

fine grid to obtain (approximations of) point evaluations on a coarser grid is borrowed from the recent

preprints [15, 18], where a combination of a data-driven regularization method and an adaptive choice

of the discretization dimension, called discretization-adaptive regularization [14, 16], was numerically

tested and performed well. In the present article we shed light on this observed phenomenon and give

a rigorous justification. The reasoning is that if not too many components are averaged, then due to the

smoothness of the uncorrupted data g, a reduction of the stochastic noise on the point evaluations is

obtained. Of course, this depends on the concrete relationship between δ ,m and the unknown data g.

We explore this approach explicitly. To do so, we define for o ∈ N, so that mo := m/o ∈ N, the

averaged data

gδ
mo

=
(

∑l
j=1(gδ

m)(i−1)l+ j

l

)

i=1,...,mo

∈ R
mo .

Similarly, we define our averaged spectral cut-off estimator as

f
δ
k,mo

:=
k

∑
j=1

(

gδ
mo
,u jmo

)

Rmo

σ jmo

v jmo =
mo

∑
l=1

α lκ(ξlmo
, ·) with α l :=

k

∑
j=1

(gδ
mo
,w jmo)Rmo

λ jmo

(w jmo)l.

We briefly mention here that the calculation of the averaged data gδ
mo

costs exactly m (regardless of the

value of l), since each entry of the initial data gδ
m is touched once. This is cheap compared to the cost

we face when we have to approximate Tm and its eigenvalue decomposition for general kernels in the

next section. We define the minimax error of the averaged estimator as

err(δ ,mo,s,ρ) := min
k=1,...,m

sup
f∈Xs,ρ

E‖ f
δ
k,mo

− f‖2.

The following theorem tells us how much data we can average without spoiling the overall error rate.

Theorem 3 For

om := min

{

o ∈ N : o ≤ max

(
√

mδ 2

ρ2
,1

)

,
m

o
∈ N

}

(3.4)

and mom = m/om there holds

c · err(δ ,m,x,ρ) ≤ err(δ ,mom ,s,ρ)≤C · err(δ ,m,s,ρ) (3.5)

with constants

c :=

16
5
+ 1

3π4(s+1)

3π4

5
+ 31+s

24s−1 +
1
2

and C :=
6π4 + 3s+1

24s−1

16
5
+ 1

3π4(s+1)

.
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Note that finding the number of components om to average is a problem in practice, since ρ is

typically unknown. As demonstrated and explained below in the numerical section, an alternative

reasonable choice for om would be to replace
√

mδ 2

ρ2 with
(

m2δ 2

‖g′‖2

) 1
3

in (3.4). Note that determining

‖g′‖ is itself an inverse problem, but a fairly simple one.

3.2. Extension to general Fredholm integral equations

We now explain how our approach can be applied to various Fredholm integral equations. Consider the

general integral equation

K f = g, (3.6)

where

g(x) = (K f )(x) =
∫ 1

0
κ(x,y) f (y)dy. (3.7)

The integral kernel κ is assumed to be 2-times differentiable. The adjoint of K is defined as (K∗g)(y) =
∫ 1

0 k(x,y)g(x)dx. Again, discretization on a grid given by the points ξ1m, ...,ξmm yields a semi-discrete

operator, which we normalize this time. We then have

Km : L2(0,1)→ R
m (3.8)

f 7→ ((K f )(ξ jm))
m
j=1

=
1√
m

(

∫

κ(ξ jm,y) f (y)dy

)m

j=1

.

We emphasize that, in general, we can no longer evaluate the integrals exactly. Instead, we use midpoint

collocation as a quadrature rule, i.e. we have weights q1m = ... = qmm = m−1 and knots ξ jm := 2 j−1
2m

,

j = 1, ...,m. We define Am ∈R
m by (Am)i j = q jmκ(ξim,ξ jm) =

1
m

κ(ξim,ξ jm). This method is taken from

the popular open source toolbox [12] and is used in the numerical examples in the following section.2

The midpoint collocation method has degree of exactness one, that is, for any h ∈C 2([0,1]), there holds
∣

∣

∣

∣

∣

∫

h(x)dx− 1

m

m

∑
i=1

h(ξim)

∣

∣

∣

∣

∣

≤ 1

24

‖h(2)‖∞

m2
.

Therefore, we make the following assumption about the smoothness of the integral kernel κ :

Assumption 1 Km has full rank and κ ∈ C 2([0,1]2) with

CK := sup
x,y

max
n,n′≤2
n+n′≤2

|∂ n
x ∂ n′

y k(x,y)|. (3.9)

Consequently, for Tm the design matrix as defined in (2.9) the previous section, but with a general

kernel κ satisfying the above assumption 1, there holds

(

AT
mAm

)

i j
− 1

m
(Tm)i j =

1

m

(

1

m

m

∑
l=1

κ(ξim,ξlm)κ(ξ jm,ξlm)−
∫

κ(ξim,y)κ(ξlm,y)dy

)

= O

(

1

m3

)

.

In light of the above results, we base our approximation on the discrete singular value decomposition

of Am ∈ R
m×m (which is effectively the eigenvalue decomposition of AT

mAm ≈ Tm), denoted by

2 Clearly, the results can be generalized, and we will discuss later the possible advantages of higher-order quadrature rules.
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(z̃ jm, w̃ jm, σ̃ jm). Note that unlike in the previous section, where we could give closed-form expressions

for the eigenvalues and eigenvectors of Tm, here we have to rely on numerical algorithms that

only approximate the singular value decomposition of Am. Since there are numerical algorithms that

approximate the singular value decomposition to machine precision, we will not distinguish between

the exact singular value decomposition of Am and its numerically approximated counterpart. However,

we will discuss the computational cost of the numerical approximation in detail below. We define

ṽ jm :=
1

σ̃ jm

√
m

m

∑
l=1

(w̃ jm)lκ(ξlm, ·) ∈ L2(0,1), (3.10)

which approximate the singular function v jm of (3.8) (for j small enough). We mention here that,

in contrast to the exact singular functions v jm, the functions ṽ jm form an orthonormal basis only

approximately and for j small, see Lemma 6 below. We now use (3.10) to denote our (discrete) spectral

cutoff estimator for the unknown f as

f̃ δ
k,m :=

k

∑
j=1

(gδ
m, w̃ jm)Rm√

mσ̃ jm

ṽ jm. (3.11)

Similar to the previous section, expressing the estimator f̃ δ
k,m in the basis {κ(ξlm, ·), l = 1, ...,m} yields

f̃ δ
k,m =

m

∑
l=1

α̃lκ(ξlm, ·) with α̃l =
k

∑
j=1

(gδ
m, w̃ jm)

mσ̃2
jm

(w̃ jm)l. (3.12)

Before analyzing the accuracy of the estimator f̃ δ
k,m, we discuss its computational cost. If the k leading

singular values and vectors of Am can be derived explicitly, the k quantities (gδ
m, w̃ jm)Rm/mσ̃2

jm cost 2m

operations each, and the m coefficients α̃l cost 2km operations altogether. Next, we discuss the cost

of computing the leading singular values and vectors of Am numerically. Highly stable and accurate

methods for doing this first transform the matrix Am into a tridiagonal matrix, then compute the full

singular value decomposition of this matrix, and finally keep only the leading k values and vectors,

see e.g. [6]. These algorithms typically require O(m3) operations and are therefore very expensive.

Since we are only interested in the k leading values and vectors, it is natural to consider methods that

determine them directly. Typically, these methods are much cheaper, but also less accurate. We discuss

some of them below.

If matrix-vector multiplications can be computed quickly, Krylov subspace methods such as the

Lanczos or Arnoldi algorithm are commonly used. However, summarizing the computational costs with

corresponding accuracy guarantees is challenging because these methods are inherently numerically

unstable. The specific costs depend heavily on the matrix properties and the effort spent to stabilize

the routines. For more information, refer to the survey article [10]. As a (usually overly optimistic)

rule of thumb, the typical cost of such methods is proportional to kCmult
m +mk2, where Cmult

m denotes

the cost of an exact or at least approximate matrix-vector multiplication with the initial matrix Am.

Apart from the setting with sparse matrix Am, fast multipole expansions [7] or H (and H2) matrix

arithmetic [9] can reduce Cmul
m to the order of log(m)m or even m. However, this requires the kernel

to be asymptotically smooth. Also, as mentioned above, additional work is required to stabilize the

resulting methods, and exact error guarantees are rare. Therefore, we focus our discussion on the use

of provably stable two-step procedures to determine the truncated spectral decomposition, see [10] and
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[20] for overviews. These procedures work as follows: First, an approximate basis of size n < m for

the range of Am is computed and used to determine a rank-n approximation of Am, which we call A
(n)
m .

Second, the full singular value decomposition of this approximation A
(n)
m is computed by established

methods [6] and the leading k values and vectors are used to approximate σ̃ jm and w̃ jm for j = 1, . . . ,k.

To do this, the auxiliary parameter n must be chosen much larger than the target rank k to ensure that the

leading k singular values and vectors of A
(n)
m approximate the leading eigenvalues and vectors of Am with

sufficient accuracy, see (3.13) below3. Several methods are available to perform the first step, e.g. based

on rank-revealing QR decompositions [8], random projections [27], or cross/skeleton approximations

[2, 28]. Using rank-revealing QR-pivoting or random projections for the first step requires operations

on the order of nm2. In the case of the cross/skeleton approximation, this can go down to O(nm),
but it requires that the integral kernel be approximately smooth. The second step, the determination

of the full singular value decomposition of A
(n)
m , costs O(n2m) and thus the total cost is of the order

of O
(

nCm +mn2
)

, where Cm depends on the approximation approach and the regularity property of

the specific kernel. Overall, depending on the actual kernel κ , the computational cost for (2.10) is

somewhere between n2m and nm2. This brings us to the choice of n. Let w̃
approx
jm and σ̃

approx
jm denote the

j-th singular value and right singular vector of A
(n)
m , and let f̃

δ ,approx
k,m and α̃approx ∈ R

m be defined as in

(3.12). Theorem 4.2 from [13] shows that for k not too large
∥

∥

∥ f̃
δ ,approx
k,m − f̃ δ

k,m

∥

∥

∥

∥

∥

∥ f̃ δ
k,m

∥

∥

∥

= O

(

‖Am −A
(n)
m ‖

σ̃2
km

)

. (3.13)

Furthermore, for the two-step procedure, the total approximation error is usually about4

‖Am −A
(n)
m ‖= O

(√
nmσ̃n+1m

)

. (3.14)

So the value n must be chosen so that at least σ̃n+1m = o

(

σ̃2
km(mn)−

1
2

)

. For example, suppose5 σ̃2
jm ∼

j−q with q > 1, and thus approximating f̃ δ
k,m up to the relative error ε requires σ̃n+1m ∼ εσ̃2

km(nm)−
1
2 ,

which implies n ∼ k
2q

q−1 ε− 2
q−1 m

1
q−1 . Therefore, between k

4q
q−1 ε− 4

q−1 m
1+ 2

q−1 and k
2q

q−1 ε− 2
q−1 m

2+ 1
q−1

operations are necessary to determine f̃ δ
k,m up to the relative error ε . In the following, we derive the

optimal choice for k that minimizes the error ‖ f̃ δ
km − f‖. This choice depends on m, the noise level δ ,

and the regularity of the exact solution. 6

As a next main result, we compute the error of our estimator. Since we have explicitly taken into

account the discretization by a quadrature rule, it is natural that additional assumptions, somewhat

uncommon in the framework of classical infinite-dimensional regularization theory, have to be imposed

on the unknown f in order to perform a meaningful error analysis, see Assumption 1.

For this purpose, the following auxiliary lemma states that the first m singular values σ j of the

continuous operator K are close to the singular values σ̃ jm of the quadrature matrix Am.

3 We emphasize that this is in sharp contrast to many classical settings where the goal is simply to find a near-optimal rank-k

approximation of Am. Here typically n = k+ p where p is a small oversampling parameter.
4 Depending on the decay and gaps of the spectrum, in some cases the first factor can be reduced to logarithmic terms.
5 In contrast to the previous section, there should be no significant dependence on m, since Km and Am are normalized here.
6 We will then present a modified spectral cut-off estimator with drastically reduced computational cost. The cost reduction is

due to the fact that the modified estimator is based on Am̃ with m̃ < m.
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Lemma 4 Let (σ̃ jm) j≤m be the singular values of (Am)i j≤m = 1
m

κ(ξim,ξ jm). Then, it holds that

∣

∣σ2
j − σ̃2

jm

∣

∣≤ C2
K

3m2

for j = 1, ...,m.

Before formulating the main results of this paper, we introduce two important auxiliary lemmata.

The first relates approximate eigenvectors, i.e. vectors v satisfying ‖K∗Kv−λv‖ ≈ 0 for some λ > 0,

to exact ones.

Lemma 5 Let K : X →X be compact and positive semi-definite with orthonormal eigenbasis (vi)i∈N
and corresponding eigenvalues (λi)i∈N. Suppose there are v∈X and λ ,ε > 0 such that ‖Kv−λv‖≤ ε .

Then we have

min
i∈N

|λi −λ | ≤ ε

‖v‖ . (3.15)

Furthermore, let I := argmini∈N |λi −λ | and define c := mini6∈I |λi −λ |. Denote by Pv = Pspan{vi : i∈I}
the orthogonal projection of v onto the span of {vi : i ∈ I}. Then either c = 0 and Pv = v, or c > 0 and

we have

‖v‖2 ≥ (v,Pv)≥ ‖v‖2 − ε2

c2
. (3.16)

The next lemma shows that the constructed functions ṽ jm in (3.10), based on the (discrete)

eigenvectors of AT
mAm, are indeed approximate eigenfunctions of the continuous operator K∗K, if j

is not too large. We introduce the functions ψ± : N→ N defined as ψ−( j) = min{i ≥ 1 : σi = σ j} and

ψ+( j) = max{i ≥ 1 : σi = σ j} and define

c j := min
(

σ2
ψ−( j)−σ2

ψ+( j)+1,σ
2
ψ−( j)−1 −σ2

ψ−( j)

)

, (3.17)

with the convention that σ0 = ∞. We define

Mi := 1+max
j≤i

(ψ+( j)−ψ−( j)) (3.18)

as the maximal multiplicity of the singular values up to index i, and define

Jm := max

{

j ≥ 1 : 1 ≥ 10MiC
2
K

ciσim2
for all i ≤ j

}

, (3.19)

as the index up to which the approximation is valid. Note that Jm = ψ+( j′) for some j′. Since σ2
j > c j,

it is clear by Lemma 5 that for j ≤ Jm, we have

σ̃2
jm ≥ σ2

j −|σ̃2
jm −σ2

j | ≥ σ2
j −

C2
K

3m2
>

σ2
j

2
.

We also have the following result:
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Lemma 6 Recall that (Am)i j = 1
m

κ(ξim,ξ jm) and ṽ jm := 1
σ̃ jm

√
m ∑m

l=1(w̃ jm)lκ(ξlm, ·) where

(σ̃ jm, z̃ jm, w̃ jm) is the singular value decomposition of Am. Then, for all i, j ≤ Jm,

|(ṽ jm, ṽi,m)−δi j| ≤
C2

K

3σ jσim2
(3.20)

and, for Pṽ jm = Pspan{vψ−( j),...,vψ+( j)}ṽ jm, i.e. the projection of ṽ jm onto the span of vψ−( j), ...,vψ+( j), we

have

‖ṽ jm‖2 = (ṽ jm,Pṽ jm)≥ ‖ṽ jm‖2 − C6
K

c2
jσ

2
j m4

. (3.21)

We are now ready to give a bound on the total error.

Theorem 7 Under Assumption 1, for all k ≤ Jm it holds that

√

E‖ f̃ δ
k,m − f‖2 ≤ 2δ√

m

√

√

√

√

k

∑
j=1

1

σ2
j

+

√

√

√

√

∞

∑
j=ψ+(k)+1

( f ,v j)2 +2Mk

√

√

√

√

ψ+(k)

∑
j=ψ−(k)

( f ,v j)2

+
(1+

√
Mk)C

2
K‖ f‖

m2

√

√

√

√

k

∑
j=1

1

c2
jσ

2
j

+

√
2C3

K‖ f‖√
3m3

k

∑
j=1

1

c jσ2
j

+ max
i≤ψ+(k)

20M2
i C2

K‖ f‖
ciσim2

.

Let us comment on this result: We note that the structure of the error bound in Theorem 7 is different

from that in Theorem 3. In the latter case, by introducing a source condition on f (of sufficiently

high degree), the special setting allowed us to analyze the term ∑m
j=k+1( f ,v jm)v jm (since we explicitly

derived the singular functions of the semi-discrete operator), as well as the term ∑m
j=1( f ,v jm)v jm − f

(due to special properties of the approximation space spanned by the anchored kernel functions). In the

general setting of Theorem 7 this is not possible, and we base our analysis directly on the approximation

of the singular functions of the continuous operator by those of the semi-discrete operator. Since only

low-frequency singular vectors can be approximated with sufficient accuracy by the quadrature rule,

this gives the constraint k ≤ Jm. Note that the third term can be replaced with zero in case that there is

a spectral gap after σk, i.e. for ψ+(k) = k.

We now have the error for our computational estimator f̃ δ
k,m from (3.11) based on the m initial

measurements gδ
m and the quadrature matrix Am ∈ R

m×m. As in the previous section, we identify a

variance term, an approximation term, and several terms due to discretization. Compared to Theorem

3, however, the situation here is more delicate, since the discretization error now depends on the

truncation level k. This is due to the fact that we have taken the error from the quadrature rule into

account. Nevertheless, we may still encounter the situation where the initial discretization was too

fine, in the sense that if we consider the k, such that the (square root of the) variance 2δ√
m

√

∑k
j=1

1

σ2
j

is balanced by the approximation error
√

∑m
j=k+1( f ,v j)2, this k can lead to a discretization error

(1+
√

Mk)C
2
K‖ f‖

m2

√

∑k
j=1

1

c2
j σ2

j

+
√

2C3
K‖ f‖√

3m3 ∑k
j=1

1

c jσ
2
j

+
4M2

k C2
K‖ f‖

3σ2
k

m2 of smaller order. Therefore, we again
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average the m-th initial measurements to obtain mo new measurements, and base the estimator on the

singular value decomposition (σ̃ jmo , z̃ jmo , w̃ jmo) of Amo ∈ R
mo×mo and the ṽ j,mo from (3.10). So we

consider the estimator

f̃
δ

k,mo
:=

k

∑
j=1

(gδ
mo
, w̃ jmo)Rm

√
mσ̃ jmo

ṽ j,mo =
mo

∑
l=1

α̃ lκ(ξlmo
, ·) where α̃ l =

k

∑
j=1

(gδ
mo
, w̃ jmo)

moσ̃2
jmo

(w̃ jmo)l ,

(3.22)

with averaged data

gδ
mo

:=

(

1

o

o

∑
i=1

(

gδ
m

)

o( j−1)+i

)mo

j=1

∈ R
mo .

As will be seen in the proofs, the main difference in the error analysis compared to the unaveraged

estimator f̃k,m is the systematic data error introduced by averaging. In the special case with kernel (2.3)

treated in Section 3.1, this error was roughly ‖g′‖/m. Now we will obtain an even faster decay of this

systematic component due to the additional smoothness assumptions for the kernel κ and the special

geometry of the discretization grid.

Theorem 8 For o ∈ N and mo =
m
o
∈ N, under Assumption 1, for all k ≤ Jm it holds that

√

E

∥

∥

∥

∥

f̃
δ

k,mo
− f

∥

∥

∥

∥

2

≤ 2δ√
m

√

√

√

√

k

∑
j=1

1

σ2
j

+
‖g′′‖∞

12m2
oσk

+
CK‖g′′‖∞

6
√

6m3
o

√

√

√

√

k

∑
j=1

1

σ4
j

+

√

√

√

√

∞

∑
j=ψ+(k)+1

( f ,v j)2

+2Mk

√

√

√

√

ψ+(k)

∑
j=ψ−(k)

( f ,v j)2 +
(1+

√
Mk)C

2
K‖ f‖

m2
o

√

√

√

√

k

∑
j=1

1

c2
jσ

2
j

+

√
2C3

K‖ f‖√
3m3

o

k

∑
j=1

1

c jσ2
j

+max
i≤k′

20M2
i C2

K‖ f‖
ciσim2

o

.

As above, the fifth term can be omitted in case that ψ+(k) = k. We compare our upper bound in

Theorem 8 for the averaged estimator with the upper bound in Theorem 7 for the non-averaged one.

First, we observe that for mo,k → ∞ holds

‖g′′‖∞

12m2
oσk

+
CK‖g′′‖∞

6
√

6m3
o

√

√

√

√

k

∑
j=1

1

σ4
j

≪ 1

m2
o

√

√

√

√

k

∑
j=1

1

c2
jσ

2
j

.

Consequently, if the initial discretization was too fine, i.e,

2δ√
m

√

√

√

√

k

∑
j=1

1

σ2
j

+

√

√

√

√

∞

∑
j=ψ+(k)+1

( f ,v j)2 +2Mk

√

√

√

√

ψ+(k)

∑
j=ψ−(k)

( f ,v j)2

≫ (1+
√

Mk)C
2
K‖ f‖

m2

√

√

√

√

k

∑
j=1

1

c2
jσ

2
j

+

√
2C3

K‖ f‖√
3m3

k

∑
j=1

1

c jσ2
j

+max
i≤k′

20M2
i C2

K‖ f‖
ciσim2

,
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and if mo is not too small, we see that the upper bounds in Theorem 7 and Theorem 8 are asymptotically

the same. In principle, it should be possible to obtain a stronger result here, comparable to Theorem 3.

However, we leave this as future work, since clearly some additional restrictions are needed to obtain

an exact lower bound for terms like

sup
f∈Xs,ρ

‖ f (q)‖∞≤ρ ′

E‖ f δ
k,m − f‖2.

Looking again at the example where σ̃2
jm ∼ j−q, we see that approximating f̃ δ

k,m to a relative error of

ε > 0 is more expensive by a factor between o
1+ 2

q−1 and o
2+ 1

q−1 than approximating f̃
δ

k,mo
to the same

relative accuracy.

3.3. Adaptivity

Finally, we consider the question of adaptivity, which concerns the concrete choice of the truncation

level k and the discretization dimension mo. Since properties of the unknown solution f , such as the

particular smoothness ϕs or the norm of the source element ρ , are usually unknown, strategies are

needed that depend only on the measurements gδ
m and possibly on the noise level δ > 0. Obviously,

one is interested in adaptively finding k and mo such that the error ‖ f
δ
k,mo

− f‖ reaches the infeasible

optimal choice argmink ‖ f δ
k,m − f‖ by at least a multiplicative factor (for f̃

δ

k,mo
and f̃ δ

k,m, respectively).

A popular method to determine a regularization parameter in a data-driven manner is the discrepancy

principle. This principle follows the paradigm that the regularization parameter should be chosen such

that the residual norm of the candidate approximation is approximately the same size as the data

error. In contrast to classical settings where the discretization dimension is fixed and usually only one

regularization parameter has to be chosen, here we need a strategy to determine both the truncation

level k and the dimension mo. In the following, we propose a modified discrepancy principle, which can

be seen as a multiscale method. For simplicity, we restrict ourselves to the case where m = an for some

a,n ∈ N. The expected squared data error is

E

[

‖gδ
mo

−gmo‖2
Rmo

]

= E

[

∥

∥

∥gδ
mo

−gmo

∥

∥

∥

2

Rmo

]

+
∥

∥gmo
−gmo

∥

∥

2

Rmo = δ 2
E

∥

∥

∥

∥

∥

∥

∥







Z̄1

...

Z̄mo







∥

∥

∥

∥

∥

∥

∥

2

Rmo

+
∥

∥gmo
−gmo

∥

∥

2

Rmo

=
mo

o
δ 2 +

∥

∥

∥

∥

∥

∥

∥

∥









∑l
t=1 g(ξtm)

o
−g(ξ1mo)
...

∑l
t=1 g(ξ(m−1)o+t,m)

o
−g(ξmomo)









∥

∥

∥

∥

∥

∥

∥

∥

2

Rmo

, (3.23)

and the residual norm is ‖Km f k,mo
−gδ

mo
‖Rmo . First, note that for κ(x,y) = min(x(1− y),y(1− x)) and

a uniform grid, we can compute the residual norm exactly as

‖Km f
δ
k,mo

−gδ
mo
‖2
Rmo

=
mo

∑
j=k+1

(gδ
mo
,u jmo)

2
Rmo .
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It is monotonically decreasing in k and is zero for k = mo. The systematic error (the second term in

(3.23)) can be estimated as in (A.7) below, and we get

‖gmo
−gmo‖2

Rmo ≤
o

m
‖g′‖2.

Consequently, for κ(x,y) = min(x(1− y),y(1− x)), for a uniform grid, for a fixed dimension mo and

for the parameter τ > 1, we define the truncation level determined by the discrepancy principle as

kδ
dp(mo) := max







k ≥ 0 : ‖Km f
δ
k,mo

−gδ
mo
‖Rmo > τ

√

‖g′‖2

mo

+
mo

o
δ 2







. (3.24)

This choice is intended to balance the residual norm and the (expected) data error. In the case of a

general kernel κ (fulfilling assumption 1) and the discretization by midpoint collocation (we assume

that dim(R(Amo) = mo, which implies that (w̃ jmo) j forms an orthonormal basis of Rmo). Then we have

(

Km f̃
δ

k,mo

)

i

=
k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo√
mσ̃ jmo

(Kmṽ jmo)i

=
k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo√
mσ̃ jmo

1√
mσ̃ jmo

mo

∑
t=1

(w̃ jmo)t

∫

κ(ξtmo ,y)κ(ξimo ,y)dy

and if we also estimate the integral by the midpoint collocation quadrature, we get

k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo√
mσ̃ jmo

1√
mσ̃ jmo

mo

∑
t=1

(w̃ jmo)t

1

m

mo

∑
s=1

κ(ξtmo ,ξsmo)κ(ξimo ,ξsmo)

=
k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo

σ̃ jmo

1

m

mo

∑
s=1

(z̃ jmo)sκ(ξimo ,ξsmo) =
k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo (w̃ jmo)i,

with quadrature error

∣

∣

∣

∣

∣

(Kmo f̃
δ

k,mo
)i −

k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo (w̃ jmo)i,

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo

moσ̃2
jmo

mo

∑
t=1

(w̃ jmo)t

[

∫

κ(ξtmo ,y)κ(ξimo ,y)dy

− 1

m

mo

∑
s=1

κ(ξtmo ,ξsmo)κ(ξimo ,ξsmo)

]∣

∣

∣

∣

∣

≤ C2
K

6m2
o

∣

∣

∣

∣

∣

k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo

moσ̃2
jmo

mo

∑
t=1

(w̃ jmo)t

∣

∣

∣

∣

∣

≤ C2
K

6m3
oσ2

k,mo

∣

∣

∣

∣

∣

k

∑
j=1

(gmo
, w̃ jmo)Rmo

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

mo

∑
t=1

(w̃ jmo)t

∣

∣

∣

∣

∣

≤
C2

K‖gmo
‖Rmo

3m2
oσ2

k

.
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Now, since (w̃ jmo) j is an orthonormal basis in R
mo , we can estimate the residual norm as

∥

∥

∥

∥

Km f̃
δ

k,mo
−gδ

mo

∥

∥

∥

∥

Rmo

=

∥

∥

∥

∥

∥

k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo w̃ jmo −gmo

∥

∥

∥

∥

∥

Rmo

+

√

√

√

√

mo

∑
i=1

(

(Kmo f
δ
k,mo

)i −
k

∑
j=1

(gδ
mo
, w̃ jmo)Rmo (w̃ jmo)i

)2

≤

√

√

√

√

mo

∑
j=k+1

(gδ
mo
, w̃ jmo)

2
Rmo +

C2
K‖gδ

mo
‖Rmo

3σ2
k m

3
2
o

.

Finally, we define the discrepancy principle using

kδ
dp(mo) := max







k ≥ 0 :

√

√

√

√

mo

∑
j=k+1

(gδ
mo
, w̃ jmo)

2
Rmo > τ

√

err2
sys(mo)+

mo

o
δ 2







,

where we estimate the systematic error either as in Section 3.1 for the special kernel (2.3) by

err2
sys(mo) :=

‖g′‖2

mo

,

or as in Section 3.2 for the general kernel and the discretization grid ξ jm := 2 j−1
2m

, j = 1, ...,m by

err2
sys(mo) :=

‖g′′‖2
∞

9 ·64m3
o

,

which is usually a much better bound, see (A.18) below. In any case, we emphasize that knowledge of δ
and either ‖g′‖ or ‖g′′‖∞ is required here. Usually these two quantities can be estimated from the initial

data gδ
m. Note that the determination of ‖g′‖ or ‖g′′|‖∞ is itself an inverse problem, but a rather mild one.

Obviously, it would be of interest to derive a method that does not require this additional knowledge. We

will address this issue in Section 5. Our adaptive method iteratively applies the discrepancy principle on

a scale of different discretization levels ml0 ≤ ml1 ≤ ... ≤ m, starting with a very coarse discretization,

i.e. some ml0 = an0 ≤ m. For each discretization level mo the classical discrepancy principle (3.24) is

applied. The method stops when the truncation index determined by the discrepancy principle decreases

for the first time. See Algorithm 1 for the numerical implementation. In the following section, we will

apply Algorithm 1 to some examples and compare its performance to that of the infeasible optimal

choice kδ
opt(m) = argmink≤m ‖ f δ

k,m − f‖.

4. Numerical Experiments

In this section we present the results of our numerical experiments. The initial number of point

evaluations is m = 46 = 4096 and for the reduced data we use mo ∈ {46, ...,42}. We perturb the

evaluations with i.i.d. Gaussian noise, but note that the results hold for any other centered i.i.d. white
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Algorithm 1 Discrepancy principle + dimension reduction

1: Given noisy point evalutations gδ
m ∈ R

m and o0 ∈ N.;

2: Initialisation

3: i = 0 and oi+1 = aoi

4: Determine kδ
dp(moi

) and kδ
dp(moi+1)

5: Check stopping criterion

6: while kδ
dp(moi+1

)≥ kδ
dp(moi

) do

7: i = i+1;

8: oi+1 = 2oi;

9: Determine kδ
dp(moi+1

)
10: end while

11: Final choice f
δ
kδ

dp
,moi

noise with finite variance. We choose the noise level δ implicitly via the signal-to-noise ratio (SNR),

which is defined as

SNR :=
‖g‖L2

√

E
[

‖gδ
m −g‖2

]

=
‖g‖L2√

mδ
.

We will calculate the following quantities:

• The optimal truncation level kopt := argmink≤m ‖ f
δ
k,mo

− f‖ with the corresponding optimal (relative)

error eopt := mink≤m ‖ f
δ
k,mo

− f‖/‖ f‖.

• The data-driven truncation level kdp determined by Algorithm 1 with the corresponding (relative)

error edp := ‖ f
δ
kdp,mo

− f‖/‖ f‖, with parameter τ = 1.5.

Here we take the average of 50 independent runs. We start with the integral equation (2.2) with kernel

κ(x,y) = min(x(1− y),y(1− x)), for which we know the exact singular value decomposition for both

the continuous and the discretized case. In the following we will denote it by deriv2 (because of its

relation to the Poisson equation). We define the exact unknown solution over the singular vectors and

set fi := ∑D
j=1 ϕsi

(σ2
j )v j with D = 5000 and smoothness parameter si =

1+2i
8

, i = 0,1,2. The noise is

varied by the signal-to-noise ratio SNR ∈ {83,82,8,1}. Note that here all errors are computed exactly,

for the formulas we refer to [17]. In view of Theorem 3 it would be interesting to determine momax , since

for this discretization level we expect roughly the same optimal error as for the initial dimension m.

However, even with simulated data, momax is difficult to obtain because the source element (and hence

its norm) for f is not unique. As an alternative, we compute here another reasonable a priori choice for

the optimal dimension, which arises naturally in particular when considering the discrepancy principle.

We define it implicitly by balancing the dimensions of the two contributions of the data error, i.e., the

variance due to random noise on the measurements and the bias due to averaging, in

E‖gδ
mo

−gmo‖2 =
‖g′‖2

mo

+
mo

o
δ 2.
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TABLE 1 deriv2 with rough solution (s = 1/8)

mo 46 45 44 43 42

SNR = 83 eopt 7.0e-1 7.3e-1 8.0e-1 8.5e-1 8.9e-1

edp 8.0e-1 8.3e-1 8.7e-1 9.1e-1 9.4e-1

kopt 65 56 23 10 4

kdp 15 9 5 2 1

SNR = 82 eopt 7.6e-1 7.7e-1 7.9e-1 8.5e-1 8.9e-1

edp 8.6e-1 8.5e-1 8.7e-1 9.1e-1 9.4e-1

kopt 29 29 22 10 4

kdp 5 7 5 2 1

SNR = 8 eopt 8.2e-1 8.2e-1 8.2e-1 8.5e-1 8.9e-1

edp 9.1e-1 9.0e-1 8.9e-1 9.1e-1 9.4e-1

kopt 13 13 13 9 4

kdp 2 3 3 2 1

SNR = 1 eopt 8.7e-1 8.8e-1 8.7e-1 8.8e-1 9.0e-1

edp 1.0e0 9.5e-1 9.4e-1 9.2e-1 9.4e-1

kopt 5 5 5 5 4

kdp 0 1 1 2 1

This way we get

o =
m2

oδ 2

||g′||2 =
m2δ 2

l2‖g′‖2
=⇒ o =

(

m2δ 2

‖g′‖2

)

1
3

.

In the following tables, we print the corresponding column number
[

1
3

log4

(

m2δ 2

‖g′‖2

)]

in bold. The results

are shown in Tables 1-3 below. Each table consists of four blocks corresponding to the four different

SNRs. The five columns are indexed by the decreasing discretization dimension mo. The four rows in

each block show the values of the optimal error, the discretization error, and the respective truncation

levels. In addition, the column corresponding to the a priori choice of mo mentioned above is shown

in bold. We observe that for small noise (i.e., large SNR), the optimal error grows as mo decreases

(i.e., as more and more measurements are averaged). However, for larger noise (smaller SNR), the

optimal error remains nearly constant for larger mo. Similarly, for larger noise, the optimal truncation

index remains almost constant for larger mo. This confirms that for larger noise, the reduced data gives

the same accuracy. Moreover, we observe that the dimension where the discretization error starts to

dominate (i.e., where the optimal error for further reducing mo grows) is close to the one determined

a priori. The error obtained by the discretization principle is larger, in some cases substantially, than

the optimal one. This is to be expected due to the rough upper bound on the data noise. Interestingly,

we observe that the a priori determined discretization level is similar to the one where the discrepancy

principle gives a maximum truncation level, which is mostly the level determined by Algorithm 1 (in

fact, they agree whenever the maximum is strict). These results hold regardless of the smoothness of

the solution f . For general integral equations we use the open source software package ReguTools

from [12]. Here we choose the two test problems gravity and heat. We use the default parameters

and example= 2 in gravity. These are discretizations of a gravity survey problem and the inverse

heat equation using midpoint quadrature collocation. For the dimension mo we get a system of linear

equations Amoxmo = bmo with (Amo)i j =
1

mo
k(ξimo ,ξ j,mo) and (xmo)i = f (ξimo) and bmo = Amoxmo , with
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TABLE 2 deriv2 with medium smooth solution (s= 3/8)

mo 46 45 44 43 42

SNR = 83 eopt 3.7e-2 5.6-2 1.0e-1 1.7e-1 2.6e-1

edp 9.9e-2 1.4e-1 1.8e-1 2.5e-1 4.1e-1

kopt 20 14 8 4 2

kdp 6 4 3 2 1

SNR = 82 eopt 6.6e-2 7.0-2 1.0e-1 1.7e-1 2.6e-1

edp 1.8e-1 1.8e-1 1.8e-1 2.5e-1 4.1e-1

kopt 11 11 8 4 2

kdp 3 3 3 2 1

SNR = 8 eopt 1.2e-1 1.2-1 1.3e-1 1.8e-1 2.6e-1

edp 4.1e-1 2.5e-1 2.5e-1 2.5e-1 4.1e-1

kopt 6 6 6 4 2

kdp 1 2 2 2 1

SNR = 1 eopt 2.1e-1 2.1-1 2.1e-1 2.1e-1 2.6e-1

edp 1e0 4.1e-1 4.1e-1 4.1e-1 4.1e-1

kopt 3 3 3 3 2

kdp 0 1 1 1 1

TABLE 3 deriv2 with smooth solution (s = 5/8)

mo 46 45 44 43 42

SNR = 83 eopt 6.0e-3 1.5-2 3.4e-2 7.4e-2 8.1e-2

edp 3.9e-2 3.9e-2 7.4e-2 1.9e-1 1.9e-1

kopt 10 6 4 2 2

kdp 3 3 2 1 1

SNR = 82 eopt 1.4e-2 1.8-2 3.4e-2 7.4e-2 8.1e-2

edp 7.4e-2 7.4e-2 7.4e-2 1.9e-1 1.9e-1

kopt 7 6 4 2 2

kdp 2 2 2 1 1

SNR = 8 eopt 3.3e-2 3.3-2 4.1e-2 7.5e-2 8.1e-2

edp 1.9e-1 1.9e-1 7.7e-2 1.9e-1 1.9e-1

kopt 4 4 4 2 2

kdp 1 1 2 1 1

SNR = 1 eopt 8.4e-2 8.3-2 8.3e-2 8.7e-2 9.6e-2

edp 1e0 1.9e-1 1.9e-1 1.9e-1 1.9e-1

kopt 2 2 2 2 2

kdp 0 1 1 1 1

the grid ξimo =
1+2i
2mo

, i, j = 1, ...,mo. We choose the same initial numbers of function evaluations and

discretization dimensions as for the previous test problem deriv2. However, unlike the example

above, we do not have explicit formulas for the singular value decompositions. Also, due to the fact that

the integral kernels are more complicated, we can no longer evaluate ‖ f̃ δ
k,m‖ exactly. Therefore, instead

of constructing f k,mo
in L2 using the formula (3.22), we now avoid the anchored kernel altogether
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TABLE 4 gravity

mo 46 45 44 43 42

SNR = 83 eopt 1.7e-2 1.7-2 2.0e-2 5.0e-2 1.9e-1

edp 6.1e-2 6.1e-2 6.2e-2 1.6e-1 2.8e-1

kopt 11 11 11 11 9

kdp 5 5 5 3 1

SNR = 82 eopt 3.3e-2 3.3-2 3.5e-2 5.7e-2 1.9e-1

edp 1.2e-1 8.3e-2 1.2e-1 1.6e-1 2.8e-1

kopt 9 9 9 9 8

kdp 4 5 4 3 1

SNR = 8 eopt 6.0e-2 6.0e-2 6.2e-2 7.7e-2 2.0e-1

edp 2.1e-1 2.1e-1 1.5e-1 1.6e-1 2.8e-1

kopt 6 6 6 6 6

kdp 1 1 3 3 1

SNR = 1 eopt 1.3e-1 1.3-1 1.3e-1 1.3e-1 2.2e-1

edp 1e0 2.1e-1 2.1e-1 2.2e-1 2.8e-1

kopt 4 4 4 4 4

kdp 0 1 1 1 1

TABLE 5 heat

mo 46 45 44 43 42

SNR = 83 eopt 2.2e-2 2.7-2 8.6e-2 3.4e-1 9.2e-1

edp 1.1e-1 1.8e-1 3.1e-1 6.5e-1 1.0e0

kopt 32 32 31 17 3

kdp 16 14 9 6 2

SNR = 82 eopt 5.7e-2 5.9e-2 1.0e-1 3.4e-1 9.2e-1

edp 3.0e-1 2.6e-1 3.1e-1 6.5e-1 1.0e0

kopt 24 24 24 17 3

kdp 9 10 9 6 2

SNR = 8 eopt 1.5e-1 1.5-1 1.6e-1 3.5e-1 9.2e-1

edp 6.8e-1 6.0e-1 4.0e-1 6.5e-1 1.0e0

kopt 16 16 17 16 3

kdp 3 6 8 6 2

SNR = 1 eopt 3.5e-1 3.5e-1 3.6e-1 4.3-1 9.2e0

edp 1.0e0 8.9e-1 7.5e-1 6.8e-1 1.0e0

kopt 10 10 10 10 3

kdp 0 1 2 3 2

and solve the linear equations directly, i.e, we set f̃ k,mo
:= ∑k

j=1

(gδ
mo ,w̃ jm)Rm

mσ̃ jm
z̃ jm ∈ R

mo (remember that

(σ̃ jmo , z̃ jmo , w̃ jmo) is the singular value decomposition of Amo). The total error is then computed as

follows: First, we have ek,mo
:= ‖ f̃

δ

k,mo
− x‖2

Rmo/mo, which gives the error (of the coefficients) of the

estimator on the projected solution. Then we set emo := ‖Pmo,Dxmo −xD‖2
D/D, where D= 2m= 4096 and
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Pmo,Dxmo interpolates and extrapolates xmo =
(

f (ξ1mo) ... f (ξmomo)
)T ∈ R

mo linearly to R
D (more

precisely to a piecewise linear function on the grid ξ1,D, ...ξD,D) and thus gives the error of the projected

solution to the exact one. Consequently, the total error ‖ f̃
δ

k,mo
− f‖L2 =

√

‖ f̃
δ

k,mo
− fm‖2 +‖ fm − f‖2 is

approximated by
√

ek,mo
+ emo . The choice of linear interpolation is reasonable since the integral kernels

are smooth. Note that we use err2
sys(mo) :=

‖g′‖2

mo
instead of the estimate err2

sys(mo) := ‖g′′‖2
∞/(9 ·64m3

o).
The reason is that in the implementation of the problems from the Toolbox, the right hand side

is computed as an application of the quadrature discretization to the coefficient vector of the exact

solution. The exact solution is continuous, but only piecewise smooth. Therefore, the latter estimate

err2
sys(mo) := ‖g′′‖2

∞/(9 ·64m3
o) falls below the modeling error and is replaced by the more conservative

choice err2
sys(mo) :=

‖g′‖2

mo
. The numerical results are shown in Tables 4 and 5. They are very similar to

the observations we made for deriv2.

Overall, our numerical results clearly confirm the potential to reduce the computational cost of

ill-posed integral equations, as long as the noise is not too small.

5. Concluding Remarks

In this paper, we introduced and analyzed a novel approach for solving ill-posed integral equations,

with a focus on reducing the necessary computational cost. We obtained rigorous error bounds, and

designed and implemented an adaptive method that performed promisingly and stably. Note that in

further experiments, where we tested the setup with an asymmetric heavy-tailed distribution instead of

a Gaussian one, we observed no significant differences and obtained similar results.

We point out three important issues for further research: First, the important task of constructing

adaptive data-driven methods has only been touched upon briefly. In particular, it would be

advantageous to have a method that does not require knowledge of the noise level δ and the norm

of g′. A possible candidate would be the (modified) heuristic discrepancy principle as introduced in

[18], for which good results have been demonstrated. We have already tested this method numerically.

While for fixed mo the achieved error was smaller than that of the discrepancy principle, it was not

possible to identify the optimal discretization dimension as the maximum. A possible reason could be

that the simple heuristic discrepancy principle is not suitable for the systematic error resulting from

the averaging of the true data, and further modification might be needed. Another promising approach

would be to integrate the averaging into the forward operator itself, as was already done in [15]. This

has the advantage that the data error of the averaged data no longer has a systematic error component,

since we now have to consider the error gδ
mo

− gmo
. Consequently, knowledge of ‖g′‖ or ‖g′′‖ is no

longer required. However, a rigorous analysis is more complicated, since the effect of the averaging

step on the approximation error must be treated carefully, i.e. the effect of the averaging of the operator

on the (discretized) singular value decomposition must be well controlled.

In this article, we deliberately focused on the one-dimensional situation only. This allowed us to

explain our new averaging method without too much technical detail, to derive precise error estimates,

and to demonstrate its superior numerical properties in a straightforward way. Of course, the next

step is to extend our method to the more practically relevant higher-dimensional problems that arise,

for example, in imaging science. Moreover, note that instead of spectral cut-off, other regularization

methods could be used, such as standard ones (Tikhonov regularization or Landweber iteration) and in

particular more advanced techniques such as conjugate gradient or stochastic gradient descent. While

the analysis is straightforward for the specific kernel (2.3), it is much more difficult for the general
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situation. The main problem is that semi-discrete singular functions belonging to high-frequency

components do not approximate the corresponding continuous ones. Here one has to consider the

analysis with bounds based on the explicit representations of the estimator. Another limitation of the

work is that we considered a fixed design for the measurement points. In important scenarios, e.g. in

the context of inverse learning [26], it may be more appropriate to assume that the locations of the

measurement points are sampled from a distribution. Then the projection of the measurements onto the

collocation grid is more challenging. Here, simple binning of the points may not be the best approach,

and weighted averages should be used instead. In this case, a trade-off must be made between the better

approximation of the systematic component and the increased variance (compared to the mean) of the

weighted mean. Also, it would be interesting to investigate higher order quadrature rules depending on

the smoothness of the kernel.

A. Appendix

In this section, we collect the proofs of our theoretical results.

A.1. Proofs of Section 3.1

We begin with the proofs for Section 3.1.

Proof of Theorem 3 Note that N (Km)
⊥ is spanned by linear splines on the grid defined by ξ1m, ...,ξmm.

As mentioned above, s > 3/4 implies that f is differentiable and we get the bound

∆m = ‖ fm − f‖ ≤ ‖ f ′‖√
2m

, (A.1)

see (3.12) in [17]. First, we can assume w.l.o.g. that om ≥ 2, since f
δ
k,mom

and f δ
k,m coincide for om = 1.

By definition this implies mδ 2 ≥ ρ2. Thus

‖ f ′‖2

m2
≤ ρ2

m2
≤ δ 2

m
≤ k5δ 2

m
(A.2)

for all k = 1, ...,m and we see that the discretization error ∆m is dominated by the other contributions.

We now make this precise. We start by showing that

c′
(

k5

m
δ 2 + k−8sρ2

)

≤ sup
f∈Xs,ρ

E‖ f δ
k,m − f‖2 ≤C′

(

k5

m
δ 2 + k−8sρ2

)

(A.3)

with

c′ : =
16

5
+

1

3π4(s+1)
C′ :=

3π4

5
+

31+s

24s−1
+

1

2
.

For the variance term δ 2

m+1 ∑k
j=1

1

σ̃2
jm

, Lemma 4 and the elementary estimate 2x/π ≤ sin(x) ≤ x for

x ≤ π/2 gives

16k5

5m
≤

k

∑
j=1

1

σ̃2
jm

≤ 3π4k5

5m
(A.4)
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For the approximation error ∑m
j=k+1( f ,v jm)

2 we have by (3.6) in [17] that

sup
f∈Xs,ρ

m

∑
j=k+1

( f ,v jm)
2 ≤ 3s+1

24s−1

ρ2

k4s
, (A.5)

which together with (A.1), (A.2) and (A.4) gives the upper bound in (A.3). For the lower bound we use

the specific instance f̃ := ϕ(σ2
k+1)ρvk+1. Since f − fm is orthogonal to the range of v1,m, ...,vm,m, we

have

sup
f∈Xs,ρ

E‖ f δ
k,m − f‖2 ≥ δ 2

k

∑
j=1

1

σ̃2
jm

+
m

∑
j=k+1

( f̃ ,v jm)
2. (A.6)

All that remains is to bound the second term from below. Due to the special choice of f̃ and position

3.8 from [17] we get

m

∑
j=k+1

( f̃ ,v jm)
2 = ϕs(σ

2
k+1)

2ρ2
(m+1)σ2

k+1

σ2
k+1,m

≥ ρ2

3π4(s+1)k4s

which shows the assertion (A.3).

Next, we trace the effect of modifying gδ
mo

from gδ
m, taking advantage of the fact that the components

of gδ
mo

are approximations of K f = g on the coarser grid with meshwidth 1/(mo+1) instead of 1/(m+
1). First, it holds that

(

gδ
mo

)

i
=

1

o

o

∑
j=1

(g
(

ξ(i−1)l+ j,m

)

+δZ(i−1)o+ j) =
1

o

o

∑
j=1

g

(

(i−1)o+ j

m+1
π

)

+
δ√
o

Zi,

where we defined Zi :=
∑o

j=1 Z(i−1)o+ j√
o

. Note that Zi

√
o and Z1 have the same distribution. Furthermore,

the Zi are independent and identically distributed. Consequently, the variance of the measurement is

reduced by a factor of 1/o. However, the bias has changed. Now, using the Cauchy-Schwartz inequality,

we obtain the upper bound

∣

∣

∣

∣

∑o
j=1 g(ξ(i−1)l+ j,m)

o
−g(ξimo)

∣

∣

∣

∣

≤ 1

o

∣

∣

∣

∣

∣

o

∑
j=1

g(ξ(i−1)o+ j,m)−g(ξimo)

∣

∣

∣

∣

∣

≤ sup
t∈(ξ(i−1)o,m ,ξi,m)

|g(t)−g(ξimo)|

≤
∣

∣

∣

∣

∣

∫ ξio,m

ξ(i−1)o,m

g′(t)dt

∣

∣

∣

∣

∣

≤
√

l

m

√

∫ ξio,m

ξ(i−1)o,m

(g′)2(t)dt. (A.7)
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Consequently,

k

∑
j=1

E

(

zδ
mo

−Kmo f ,u jmo

)2

=
k

∑
j=1

















∑o
s=1 g(ξs,m)

o
−g(ξ1mo)

...
∑o

s=1 g(ξ(m−1)o+s,m)

o
−g(ξmomo)









,u jmo









2

+
k

∑
j=1

δ 2
E





















Z̄1

...

Z̄mo






,u jmo







2








≤

∥

∥

∥

∥

∥

∥

∥

∥









∑o
s=1 g(ξs,m)

o
−g(ξ1mo)

...
∑o

s=1 g(ξ(m−1)o+s,m)

o
−g(ξmomo)









∥

∥

∥

∥

∥

∥

∥

∥

2

+ k
δ 2

o
≤ l

m

mo

∑
i=1

∫ ξio,m

ξ(i−1)o+1,m

|g′(x)|2dx+ k
δ 2

o

≤ l

m
‖g′‖2 + k

δ 2

o
.

From [17] we know that

sup
f∈Xs,ρ

‖ fm − f‖2 ≤ ‖ f ′‖2

2m2
≤ ρ2

2m2

and

sup
f∈Xs,ρ

m

∑
j=k+1

( f ,v jm)
2 ≤Csk

−4sρ2

with Cs =
3s+1

24s−1 . Moreover, we have sup f∈Xs,ρ
‖g′‖ ≤ ρ . Thus, the error gets

sup
f∈Xs,ρ

E‖ f
δ
k,mo

− f‖2

≤ sup
f∈Xs,ρ

k

∑
j=1

E
(

zδ
mo

−Kmo f ,u jmo

)2

σ̃2
jmo

+ sup
f∈Xs,ρ

m

∑
j=k+1

( f ,v jmo )
2 + sup

f∈Xs,ρ

‖ fmo − f‖2

≤ σ−2
k,m sup

f∈Xs,ρ

k

∑
j=1

E(zδ
mo

−Kmo f ,u jmo)
2 +Cs

ρ2

k4s
+

ρ2

2m2
o

≤ 3π4k4

mo

(

sup
f∈Xs,ρ

o

m
‖g′‖2 + k

δ 2

o

)

+C2

ρ2

k4s
+

ρ2

2m2
o

≤ 3π4k4

(

o2

m2
ρ2 + k

δ 2

m

)

+C2

ρ2

k4s
+

ρ2

2m2
o

≤ 3π4k4

(

3o2

2m2
ρ2 + k

δ 2

m

)

+Cs

ρ2

k4s
.

For om ≥ o ≥ 2, it holds that o2

m2 ρ2 ≤ δ 2

m
. Consequently,

sup
f∈Xs,ρ

E‖ f
δ
k,mo

− f‖2 ≤ 6π4k5 δ 2

m
+Cs

ρ2

k4s
≤C sup

f∈Xs,ρ

E‖ f δ
k,m − f‖2
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with C = 6π4+Cs

c′ , where we used (A.3). Setting o = om, this gives us the upper bound in (3.5). For the

lower bound we have

sup
f∈Xs,ρ

E‖ f
δ
k,mo

− f‖2

=
δ 2

o

k

∑
j=1

1

σ̃2
jmo

+ sup
f∈Xs,ρ

(

k

∑
j=1

(gmo
−gmo ,u jmo)

2

σ̃2
jmo

+
mo

∑
j=k+1

( f ,v jmo )
2 +‖ f − fmo‖2

)

≥ δ 2

o

k

∑
j=1

1

σ̃2
jmo

+ sup
f∈Xs,ρ

mo

∑
j=k+1

( f ,v jmo )
2 ≥ 16

5

k5

omo

+ρ2 k−4s

3π4(s+1)

≥ c′
(

k5 δ 2

m
+ρ2k−4s

)

≥ c′

C′ sup
f∈Xs,ρ

E‖ f δ
k,m − f‖2 = c sup

f∈Xs,ρ

E‖ f δ
k,m − f‖2.

After taking the minimum over k = 1, ...,m on both sides, and with o = om the lower bound in (3.5) is

obtained and Theorem 3 is finally proved. �

A.2. Proofs of Section 3.2

To prove the main theorems, we need some auxiliary results. The corresponding lemmata were given

above, and we now give the proof here.

Proof of the Lemma 4 The proof is based on the Courant-Fischer principle, which states that for self-

adjoint compact positive semi-definite operators S,T in Hilbert spaces there holds |λi(S)− λi(T )| ≤
‖S−T‖, where λi(·) is the i-th largest eigenvalue. We first apply this bound to K∗K and K∗

mKm, where

Km is from (3.8). It is well-known from [24] that

‖K∗K −K∗
mKm‖= sup

h∈L2(0,1)
‖h‖=1

‖K∗Kh−K∗
mKmh‖ ≤ CK

6m2
. (A.8)

For the readers convenience we give a short proof of this assertion. Let h ∈ L2(0,1), then we have

K∗Kh−K∗
mKmh =

∫

h(y)

(

∫

κ(z, ·)κ(z,y)dz− 1

m

m

∑
l=1

κ(ξlm, ·)κ(ξlm,y)

)

dy

and thus taking the L2 norm and using the Cauchy-Schwartz inequality yields

‖K∗Kh−K∗
mKmh‖2 =

∫

(

∫

h(y)

(

∫

κ(z,x)κ(z,y)dz− 1

m

m

∑
l=1

κ(ξlm,x)κ(ξlm,y)

)

dy

)2

dx

≤ ‖h‖2

∫

(

∫

κ(z,x)κ(z,y)dz− 1

m

m

∑
l=1

κ(ξlm,x)κ(ξlm,y)

)2

dydx

≤ ‖h‖2

242m4
sup
x,y

∥

∥

∥
∂ 2

z2 (κ(z,x)κ(z,y))
∥

∥

∥

∞
≤ ‖h‖242C2

K

242m4
,
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and the assertion (A.8) is proved. Now recall the design matrix

(Tm)i j≤m :=
1

m

(

∫

κ(x,ξim)κ(x,ξ jm)dx

)

i j≤m

∈ R
m,

from (2.9), but now with the kernel κ satisfying the assumption 1. For w ∈ R
m we have

(

Tmw−AT
mAmw

)

i

=
1

m

m

∑
j=1

∫

κ(x,ξim)κ(x,ξ jm)w j −
1

m2

m

∑
j=1

m

∑
l=1

κ(ξlm,ξim)κ(ξlm,ξ jm)w j

=
1

m

m

∑
j=1

w j

(

∫

κ(x,ξim)κ(x,ξ jm)dx− 1

m

m

∑
l=1

κ(ξlm,ξim)κ(ξlm,ξ jm)

)

and thus

‖Tm −AT
mAm‖= sup

w∈Rm‖w‖=1

‖Tmw−AT
mAmw‖ (A.9)

= sup
w∈Rm‖w‖=1

√

√

√

√

m

∑
i=1

(

1

m

m

∑
j=1

w j

(

∫

κ(x,ξim)κ(x,ξ jm)dx− 1

m

m

∑
l=1

κ(ξlm,ξim)κ(ξlm,ξ jm)

))2

≤ sup
w∈Rm‖w‖=1

√

√

√

√

m

∑
i=1

(

1

m

m

∑
j=1

|w j|
‖∂ 2

x (κ(x,ξim)κ(x,ξ jm))‖∞

24m2

)2

≤ sup
w∈Rm‖w‖=1

C2
K

6m2

1√
m

m

∑
j=1

|w j| ≤
C2

K

6m2
.

Now recall Proposition 1. Thus, the singular values of the semi-discrete operator Km are the square root

of the eigenvalues of the matrix Tm, which we denote by η jm. Therefore, using the Courant-Fischer

principle and (A.9), we deduce that

∣

∣η jm − σ̃2
jm

∣

∣≤ ‖Tm −AT
mAm‖ ≤

C2
K

6m2
for all j = 1, ...,m.

Furthermore, by (A.8) we also infer

∣

∣σ2
j −η jm

∣

∣≤ ‖K∗K −K∗
mKm‖ ≤

C2
K

6m2
for all j = 1, ...,m.

With the triangle inequality we get
∣

∣σ2
j − σ̃2

jm

∣

∣≤ C2
K

3m2
,

and the proof of Lemma 4 is finished. �
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Proof of Lemma 5 The proof of (3.15) is straightforward: We have

ε2 ≥ ‖Kv−λv‖2 = ‖∑
i∈N

λi(v,vi)vi −λ ∑
i∈N

(v,vi)vi‖2 = ∑
i∈N

(λi −λ )2(v,vi)
2

≥ min
i∈N

|λi −λ |2 ∑
i∈N

(v,vi)
2 = ‖v‖2 min

i∈N
|λi −λ‖2.

For (3.16), it holds that

(v,Pv) =

(

v,∑
i∈I

(v,vi)vi

)

= ∑
i∈I

(v,vi)
2 = ‖v‖2 −∑

i6∈I

(v,vi)
2 = ‖v‖2 −∑

i6∈I

(λi −λ )2

(λi −λ )2
(v,vi)

2

≥ ‖v‖2 − 1

c2 ∑
i6∈I

(λi −λ )2(v,vi)
2

≥ ‖v‖2 − 1

c2 ∑
i∈N

(λi −λ )2(v,vi)
2 = ‖v‖2 − 1

c2
‖Kv−λv‖2 ≥ ‖v‖2 − ε2

c2
.

�

Proof of Lemma 6 We start with the proof of (3.20). First,

(ṽ jm, ṽim) =
1

σ̃ jmσ̃imm

m

∑
l,l′=1

(w̃ jm)l(w̃im)l′

∫

κ(ξlm,y)κ(ξl′m,y)dy

=
1

σ̃ jmσ̃imm

m

∑
l,l′=1

(w̃ jm)l(w̃im)l′

(

1

m

m

∑
t=1

κ(ξlm,ξtm)κ(ξl′m,ξtm)+O

(

1

m2

)

)

=
1

σ̃ jmσ̃im

m

∑
t=1

(

1

m

m

∑
l=1

κ(ξlm,ξtm)(w̃ jm)l

)(

1

m

m

∑
l′=1

κ(ξl′m,ξtm)(w̃im)l′

)

+
1

σ̃ jmσ̃im

m

∑
l=1

|(w̃ jm)l |√
m

m

∑
l′=1

|(w̃im)l′ |√
m

O

(

1

m2

)

=
1

σ̃ jmσ̃im

m

∑
t=1

σ̃ jm(z̃ jm)t σ̃im(z̃im)t +
1

σ̃ jmσ̃im

O

(

1

m2

)

= δi j +
1

σ̃ jmσ̃im

O

(

1

m2

)

.

Since ‖∂ 2
y (κ(ξlm,y)κ(ξl′m,y))‖∞ ≤ 4C2

K and ∑m
l=1

|(w̃ jm)l |√
m

≤ 1, we can write the constant exactly in O

notation as
4C2

K

24m2 . Together with the fact that σ̃2
lm ≥ σ2

l /2 for l ≤ Jm, we get

∣

∣(ṽ jm, ṽim)−δi j

∣

∣≤ 1

σ̃ jmσ̃im

4C2
K

24m2
≤ C2

K

3σ jσim2

and (3.21). This brings us to the proof of (3.21). The upper bound is clear from the definition of Pṽ jm.

For the lower bound we use the lemma 5. As a first step, we show that

∥

∥K∗Kṽ jm − σ̃2
jmṽ jm

∥

∥≤ C3
K

2σ jm2
. (A.10)
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Indeed,

K∗Kṽ jm =
∫

k(y, ·)
∫

κ(y,z)ṽ jm(z)dzdy

=
∫

κ(y, ·)
[

∫

κ(y,z)ṽ jm(z)dz− 1

m

m

∑
l=1

κ(y,ξlm)ṽ jm(ξlm)

]

dy

+
∫

κ(y, ·) 1

m

m

∑
l=1

κ(y,ξlm)ṽ jm(ξlm)dy

=

∫

κ(y, ·)
[

∫

κ(y,z)ṽ jm(z)dz− 1

m

m

∑
l=1

κ(y,ξlm)ṽ jm(ξlm)

]

dy (A.11)

+
1

m

m

∑
l=1

ṽ jm(ξlm)

[

∫

κ(y, ·)κ(y,ξlm)dy− 1

m

m

∑
l′=1

κ(ξl′m, ·)κ(ξl′m,ξl)

]

(A.12)

+
1

m2

m

∑
l,l′=1

κ(ξl′m, ·)κ(ξl′m,ξl)ṽ jm(ξlm). (A.13)

Now, for (A.13) we have

1

m2

m

∑
l,l′=1

κ(ξl′m, ·)κ(ξl′m,ξl)ṽ jm(ξlm) =
1

m2

m

∑
l,l′=1

κ(ξl′m, ·)κ(ξl′m,ξl)
1

σ̃ jm

√
m

m

∑
i=1

(w̃ jm)iκ(ξim,ξlm)

=
1

m
3
2

m

∑
l,l′=1

κ(ξl′m, ·)κ(ξl′m,ξlm)(z̃ jm)l =
σ̃ jm√

m

m

∑
l′=1

(w̃ jm)l′κ(ξl′m, ·) = σ̃2
jmṽ jm(·).

Next we bound (A.12) from above and obtain

∥

∥

∥

∥

∥

1

m

m

∑
l=1

ṽ jm(ξlm)

[

∫

κ(y, ·)κ(y,ξlm)dy− 1

m

m

∑
l′=1

κ(ξl′m, ·)κ(ξl′m,ξl)

]∥

∥

∥

∥

∥

≤ C2
K

6m2

1

m

m

∑
l=1

|ṽ jm(ξlm)|=
C2

K

6m3

m

∑
l=1

∣

∣

∣

∣

∣

1

σ̃ jm

√
m

m

∑
i=1

(w̃ jm)iκ(ξim,ξlm)

∣

∣

∣

∣

∣

=
C2

K

6m
5
2

m

∑
l=1

∣

∣(z̃ jm)i

∣

∣≤ C2
K

6m2
.

To bound (A.11) we use for α ≤ 2 that

‖∂ α ṽ jm‖∞ =

∥

∥

∥

∥

∥

1

σ̃ jm

√
m

m

∑
l=1

∂ α
y κ(ξlm, ·)(w̃ jm)l

∥

∥

∥

∥

∥

∞

≤ 1

σ̃ jm

CK√
m

m

∑
l=1

|(w̃ jm)l | ≤
CK

σ̃ jm
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and thus

∥

∥

∥

∥

∥

∫

κ(y, ·)
[

∫

κ(y,z)ṽ jm(z)dz− 1

m

m

∑
l=1

κ(y,ξlm)ṽ jm(ξlm)

]

dy

∥

∥

∥

∥

∥

≤ CK

supy ‖∂ 2
y (κ(y, ·)ṽ jm(·))‖∞

24m2
≤ C3

K

6σ̃ jmm2
≤

√
2C3

K

6σ jm2
.

Since σ j ≤CK we get

∥

∥K∗Kṽ jm − σ̃2
jmṽ jm

∥

∥≤ C2
K

6m2
+

√
2C3

K

6σ jm2
≤ (1+

√
2)C3

K

6σ jm2
≤ C3

K

2σ jm2

which shows (A.10). Now we use Lemma 5. By Lemma 4 we have that |σ2
j − σ̃2

jm| ≤
C2

K

3m2 <
c j

2
, so

j ∈ argmini∈N
∣

∣

∣σ2
i − σ̃2

jm

∣

∣

∣= {ψ−( j), ...,ψ+( j)} =: I j. Then by (A.12) of Lemma 5 with

min
i6∈I j

|σ2
i − σ̃2

jm| ≥ min
i6∈I j

|σ2
i −σ2

j |− |σ2
j − σ̃2

jm| ≥ c j −
C2

K

3m2
≥ c j

2
=: c

and

‖K∗Kṽ jm − σ̃2
jmṽ jm‖ ≤

C3
K

2σ jm2
=: ε ,

we deduce that

(ṽ jm,Pṽ jm)≥ ‖ṽ jm‖2 − ε2

c2
≥ ‖ṽ jm‖2 −

C6
K

4σ2
j m4

c2
j

4

≥ ‖ṽ jm‖2 − C6
K

c2
jσ

2
j m4

.

�

Proof of Theorem 7 First, note that

(gm, w̃ jm)Rm√
mσ̃ jm

=
(Km f , w̃ jm)Rm

σ̃ jm

=
( f ,K∗

mw̃ jm)

σ̃ jm

=
( f ,∑m

l=1(w̃ jm)lκ(ξlm, ·))√
mσ̃ jm

= ( f , ṽ jm).

We begin to decompose the error as

f̃ δ
k,m − f :=

k

∑
j=1

(gδ
m, w̃ jm)Rm√

mσ̃ jm

ṽ jm − f =
k

∑
j=1

(gδ
m −gm, w̃ jm)Rm√

mσ̃ jm

ṽ jm +
k

∑
j=1

( f , ṽ jm −Pṽ jm)ṽ jm

+
k

∑
j=1

( f ,Pṽ jm)(ṽ jm −Pṽ jm)+
k

∑
j=1

( f ,Pṽ jm)Pṽ jm − f . (A.14)
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First we analyze the first term, the random contribution. Due to the unbiasedness of the noise, we obtain

E





∥

∥

∥

∥

∥

k

∑
j=1

(gδ
m −gm, w̃ jm)Rm√

mσ̃ jm

ṽ jm

∥

∥

∥

∥

∥

2


=
k

∑
j, j′=1

E
[

(gδ
m −gm, w̃ jm)Rm(gδ

m −gm, w̃ j′m)Rm

]

mσ̃ jmσ̃ j′m
(ṽ jm, ṽ j′m)

=
δ 2

m

k

∑
j=1

1

σ̃2
jm

‖ṽ jm‖2 ≤ 4δ 2

m

k

∑
j=1

1

σ2
j

.

Now, with Lemma 6,

‖ṽ jm −Pṽ jm‖2 = ‖ṽ jm‖2 −2(ṽ jm,Pṽ jm)+‖Pṽ jm‖2 = ‖ṽ jm‖2 − (ṽ jm,Pṽ jm)≤
C4

K

c2
jσ

2
j m4

, (A.15)

and by (3.19) and (3.20) we have ‖ṽ jm‖2 ≤ 2. So

∥

∥

∥

∥

∥

k

∑
j=1

( f , ṽ jm −Pṽ jm)ṽ jm

∥

∥

∥

∥

∥

2

=
k

∑
j=1

( f , ṽ jm −Pṽ jm)
2‖ṽ jm‖2 +

k

∑
j, j′=1

j 6= j′

( f , ṽ jm −Pṽ jm)( f , ṽ j′m −Pṽ j′m)(ṽ jm, ṽ j′m)

≤ ‖ f‖
k

∑
j=1

‖ṽ jm −Pṽ jm‖2‖ṽ jm‖2 +
k

∑
j, j′=1

j 6= j′

|( f , ṽ jm −Pṽ jm)( f , ṽ j′m −Pṽ j′m)|
2C2

K

3σ jσ j′m
2

≤ 2‖ f‖
k

∑
j=1

‖ṽ jm −Pṽ jm‖2 +
2C2

K

3m2

(

k

∑
j=1

|( f , ṽ jm −Pṽ jm)|
σ j

)2

≤ 2‖ f‖
k

∑
j=1

‖ṽ jm −Pṽ jm‖2 +
2C2

K‖ f‖2

3m2

(

k

∑
j=1

‖ṽ jm −Pṽ jm‖
σ j

)2

≤ C4
K‖ f‖2

m4

k

∑
j=1

1

c2
jσ

2
j

+
2C6

K‖ f‖2

3m6

(

k

∑
j=1

1

c jσ2
j

)2

.

Further, using Cauchy’s inequality, we get

∥

∥

∥

∥

∥

k

∑
j=1

( f ,Pṽ jm)(ṽ jm −Pṽ jm)

∥

∥

∥

∥

∥

2

≤
(

k

∑
j=1

|( f ,Pṽ jm)|‖ṽ jm −Pṽ jm‖
)2

≤
k

∑
j=1

( f ,Pṽ jm)
2

k

∑
j=1

‖ṽ jm −Pṽ jm‖2

≤ C4
K

m4

k

∑
j=1

( f ,Pṽ jm)
2

k

∑
j=1

1

c2
jσ

2
j

,
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and can bound the term

k

∑
j=1

( f ,Pṽ jm)
2 =

k

∑
j=1

(

ψ+( j)

∑
j′=ψ−( j)

( f ,v j′)(v j′ ,Pṽ jm)

)2

≤
k

∑
j=1

ψ+( j)

∑
j′=ψ−( j)

( f ,v j′ )
2

ψ+( j)

∑
j′=ψ−( j)

(v j′ ,Pṽ jm)
2

≤
k

∑
j=1

ψ+( j)

∑
j′=ψ−( j)

( f ,v j′)
2‖Pṽ jm‖2 ≤ Mk

k

∑
j=1

( f ,v j)
2

(

1+
C2

K

3σ2
j m2

)

≤ 2Mk‖ f‖2. (A.16)

Finally,

k

∑
j=1

( f ,Pṽ jm)Pṽ jm − f =
ψ+(k)

∑
j=1

( f ,Pṽ jm)Pṽ jm −
ψ+(k)

∑
j=1

( f ,v j)v j −
∞

∑
j=ψ+(k)+1

( f ,v j)v j

−
ψ+(k)

∑
j=k+1

( f ,Pṽ jm)Pṽ jm,

and we set k′ := ψ+(k). It is ψ+(k) ≤ Jm by definition of Jm. Note that Pṽ1m, ...,Pṽk′m are not

orthonormal in general, so we define the Gramian matrix Γk′ :=
(

(Pṽ jm,Pṽ j′m)
)k′

j, j′=1
. From the

orthonormality of the vi it follows that

(

Pṽ jm,Pṽ j′m
)

=
(

Pṽ jm,Pṽ j′m
)

δψ−( j)ψ−( j′)

=
(

ṽ jm, ṽ j′m
)

δψ−( j)ψ−( j′)+
(

Pṽ jm − ṽ jm, ṽ j′m
)

δψ−( j)ψ−( j′)+
(

Pṽ jm,Pṽ j′m − ṽ j′m
)

δψ−( j)ψ−( j′).

From (A.15) we deduce

|(Pṽ jm,Pṽ j′m − ṽ j′m)|δψ−( j)ψ−( j′)+ |(Pṽ jm − ṽ jm, ṽ j′m)|δψ−( j)ψ−( j′) ≤
4C2

K

c jσ jm2
.

By the Gerschgorin circle theorem and Lemma 6, for the eigenvalues γ1k′ , ...,γk′k′ of Γk′ , it holds that

|γik′ −1| ≤ |1− (Pṽim,Pṽim)|+
ψ+(i)

∑
j=ψ−(i)

j 6=i

|(Pṽim,Pṽ jm)|

≤ |1− (ṽim, ṽim)|+
ψ+(i)

∑
j=ψ−(i)

j 6=i

|(ṽim, ṽ jm)|+
4Mk′C

2
K

ciσim2
≤ 5Mk′C

2
K

ciσim2
. (A.17)

The choice of Jm guarantees that the above estimate can further be bounded by 1/2 from above, which

implies that all γik′ are positive. Hence Γk′ is invertible and Pṽ1m, ...,Pṽk′m are linearly independent.
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Since k′ = ψ+(k) it follows that span(Pṽ1m, ...,Pṽk′m) = span(v1, ...,vk′). We now define

Wk′ : Rk′ → L2(0,1), α =
(

α1 ...αk′
)T 7→

k′

∑
j=1

α jPṽ jm

with adjoint

Wk′
∗ : L2(0,1)→ R

k′ , h 7→
(

(h,Pṽ1m) ... (h,Pṽk′m)
)T

.

Then Γk′α =Wk′
∗Wk′α and therefore Wk′Γ

−1
k

W ∗
k′ = P

N (Wk′ )
⊥ = Pspan(v1,...,vk′ )

. Thus, it holds that

k′

∑
j=1

( f ,Pṽ jm)Pṽ jm −
k′

∑
j=1

( f ,v j)v j =Wk′W
∗
k′ f −Wk′Γ

−1
k′ W ∗

k′ f =Wk′(Ik′ −Γ−1
k′ )W

∗
k′ f ,

with Ik′ : Rk′ → R
k′ the identity matrix. Using (A.16) with h instead of f , we obtain the estimate

‖Wk′‖= ‖W ∗
k′‖= sup

h∈L2(0,1)
‖h‖=1

∥

∥

∥

∥

∥

∥





(h,Pṽ1m)
...

(h,Pṽk′m)





∥

∥

∥

∥

∥

∥

Rm

= sup
h∈L2(0,1)
‖h‖=1

√

√

√

√

k′

∑
j=1

(h,Pṽ jm)2 ≤
√

2Mk′ .

Further, (A.17) implies that

∣

∣1− γ−1
ik′
∣

∣≤ |1− γik′ |
γik′

≤
5Mk′C

2
K

ciσim
2

1− 5Mk′C
2
K

ciσim
2

≤ 10Mk′C
2
K

ciσim2
,

and since Ik′ is the identity matrix ‖Ik′ −Γ−1
k′ ‖ ≤ maxi≤k′

10MiC
2
K

ciσim
2 follows. Consequently,

∥

∥

∥

∥

∥

k′

∑
j=1

( f ,Pṽ jm)Pṽ jm −
k′

∑
j=1

( f ,v j)v j

∥

∥

∥

∥

∥

= ‖Wk′(Ik′ −Γ−1
k′ )W

∗
k′ f‖ ≤ max

i≤k′

20M2
i C2

K‖ f‖
ciσim2

.

It remains to bound ∑k′
j=k+1( f ,Pṽ jm)Pṽ jm. With similar reasoning as in (A.16) we obtain

∥

∥

∥

∥

∥

k′

∑
j=k+1

( f ,Pṽ jm)Pṽ jm

∥

∥

∥

∥

∥

2

≤
k′

∑
j=k+1

( f ,Pṽ jm)
2

k′

∑
j=k+1

‖Pṽ jm‖2

≤ 2Mk

k′

∑
j=ψ−(k)

( f ,v j)
2

k′

∑
j=k+1

(

1+
C2

K

3σ2
j m2

)

≤ 4M2
k

k′

∑
j=ψ−(k)

( f ,v j)
2.

Combining all the previous estimates, we end up with

√

E‖ f̃ δ
k,m − f‖2 ≤ 2δ√

m

√

√

√

√

k

∑
j=1

1

σ2
j

+
(1+

√
Mk)C

2
K‖ f‖

m2

√

√

√

√

k

∑
j=1

1

c2
jσ

2
j

+

√
2C3

K‖ f‖√
3m3

k

∑
j=1

1

c jσ2
j

+
4M2

k C2
K‖ f‖

3σ2
k m2

+2Mk

√

√

√

√

ψ+(k)

∑
j=ψ−(k)

( f ,v j)2 +

√

√

√

√

∞

∑
j=ψ+(k)+1

( f ,v j)2.

�
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Proof of Theorem 8 As mentioned above, compared to the setting in Theorem 7, we need to carefully

analyze the contribution of the systematic component in the data propagation error. First, we show that

∥

∥gmo
−gmo

∥

∥

2 ≤ ‖g′′‖2
∞

9 ·64m3
o

. (A.18)

To prove (A.18), we check that the right-hand side g of (2.1) is twice differentiable. In fact, we have

d2

dx2
g(x) =

d2

dx2
(K f )(x) =

d2

dx2

∫

κ(x,y) f (y)dy =
∫

∂ 2

∂x2
κ(x,y) f (y)dy.

This is due to the dominated convergence theorem, since both κ and f are bounded by the assumption.

Thus, using the Cauchy-Schwartz inequality, we obtain

‖g′′‖∞ ≤ sup
x
‖∂ 2

x κ(x, )̇‖‖ f‖ ≤Cκ‖ f‖ ≤CκC f .

Now we use the Taylor expansion on ξimo with the exact Peano remainder term. This gives for ζt ∈
[ξo(i−1)+t,m,ξimo ] the identity

1

o

o

∑
t=1

g(ξ(i−1)o+t,m)−g(ξimo)

= −g(ξimo)+
1

o

o

∑
t=1

(

g(ξimo)+g′(ξimo)(ξ(i−1)o+t,m −ξimo)+
g′′(ζt )

2

(

ξ(i−1)o+t,m −ξimo

)2

)

=
1

o

o

∑
t=1

(

g′(ξimo)(ξ(i−1)o+t,m −ξimo)+
g′′(ζt)

2

(

ξ(i−1)o+t,m −ξimo

)2

)

.

Next, we show that

1

o

o

∑
t=1

g′(ξimo)(ξ(i−1)o+t,m −ξimo) = 0. (A.19)

First,

ξi,m
o
=

1

o

o

∑
t=1

ξo(i−1)+t,m,

ξ(i−1)o+t,m −ξimo =
2(o(i−1)+ t)−1

2m
− 2i−1

2 m
o

=
2t −o−1

2m
,

for i = 1, ...,m/o and t = 1, ...,o. Furthermore, for o even, we have

ξ(i−1)o+t,m −ξimo =−
(

ξ(i−1)o+(o−t),m −ξimo

)

for i = 1, ...,m/o and t = 1, ...,o/2, while for o odd we have

ξ(i−1)o+t,m −ξimo =−
(

ξ(i−1)o+(o−t),m −ξimo

)
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for i = 1, ...,m/o and t = 1, ...,(o−1)/2, and

ξ(i−1)o+ o+1
2 ,m −ξimo = 0.

This shows (A.19). Consequently,

1

o

o

∑
t=1

g(ξ(i−1)o+t,m)−g(ξimo) =
1

o

o

∑
t=1

g′′ (ζt)

2

(2t −o−1)2

4m2

and we get

‖gmo
−gmo]‖2 =

mo

∑
i=1

(

1

o

o

∑
t=1

g(ξ(i−1)o+t,m)−g(ξimo)

)2

≤ ‖g′′‖2
∞

64m4o2

mo

∑
i=1

(

o

∑
t=1

(2t −o−1)2

)2

≤ ‖g′′‖2
∞

64m4o2
mo

(

1

3
(o(o2 −1)

)2

≤ ‖g′′‖2
∞

9 ·64m3
o

,

which shows (A.18). Now, for the data propagation error (the variance), we derive

E





∥

∥

∥

∥

∥

k

∑
j=1

(gδ
mo

−gmo , w̃ jmo)Rm

√
moσ̃ jmo

ṽ jmo

∥

∥

∥

∥

∥

2




=
k

∑
j=1

E
[

(gδ
mo

−gmo , w̃ jmo)
2
Rm

]

moσ̃2
jmo

‖ṽ jmo‖2

+
k

∑
j,i

j 6=i

E
[(

gδ
mo

−gmo , w̃ jmo

)

Rm

]

E
[

(gδ
mo

−gmo, w̃imo)Rm

]

moσ̃ jmoσi,mo

(ṽ jmo , ṽimo)

≤ 2

mo

k

∑
j=1

δ 2

o
+(gmo

−gmo , w̃ jmo)Rm

σ̃2
jmo

+
2C2

K

3m3
o

k

∑
i, j

i6= j

(gmo
−gmo , w̃ jmo)Rm(gmo

−gmo , w̃imo)Rm

σ̃2
jmo

σ2
i,mo

≤ 4δ 2

m

k

∑
j=1

1

σ2
j

+
4

mo

k

∑
j=1

(gmo
−gmo , w̃ jmo)

2
Rm

σ2
j

+
8C2

K

3m3
o

(

k

∑
j=1

(gmo
−gmo, w̃ jmo)Rm

σ2
j

)2

≤ 4δ 2

m

k

∑
j=1

1

σ2
j

+
4

moσ2
k

k

∑
j=1

(gmo
−gmo , w̃ jmo)

2
Rm

+
8C2

K

3m3
o

(

k

∑
j=1

1

σ4
j

)(

k

∑
j=1

(gmo
−gmo , w̃ jmo)

2
Rm

)

≤ 4δ 2

m

k

∑
j=1

1

σ2
j

+
4

moσ2
k

‖gmo
−gmo‖2

Rm +
8C2

K

3m3
o

∥

∥gmo
−gmo

∥

∥

2

Rm

k

∑
j=1

1

σ4
j

≤ 4δ 2

m

k

∑
j=1

1

σ2
j

+
‖g′′‖2

∞

9 ·16m4
oσ2

k

+
C2

K‖g′′‖2
∞

9 ·24m6
o

k

∑
j=1

1

σ4
j

.
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For the remaining error terms, we simply replace m with mo and obtain

√

E

∥

∥

∥

∥

f̃
δ

k,mo
− f

∥

∥

∥

∥

2

≤ 2δ√
m

√

√

√

√

k

∑
j=1

1

σ2
j

+
‖g′′‖∞

12m2
oσk

+
CK‖g′′‖∞

6
√

6m3
o

√

√

√

√

k

∑
j=1

1

σ4
j

+

√

√

√

√

∞

∑
j=ψ+(k)+1

( f ,v j)2

+2Mk

√

√

√

√

ψ+(k)

∑
j=ψ−(k)

( f ,v j)2
(1+

√
Mk)C

2
K‖ f‖

m2
o

√

√

√

√

k

∑
j=1

1

c2
jσ

2
j

+

√
2C3

K‖ f‖√
3m3

o

k

∑
j=1

1

c jσ2
j

+max
i≤k′

20M2
i C2

K‖ f‖
ciσim2

o

.

This completes the proof. �
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