
Encoding position by spins: Objectivity in the boson-spin model

Tae-Hun Lee∗ and Jarosław K. Korbicz†
Center for Theoretical Physics, Polish Academy of Sciences,

Aleja Lotników 32/46, 02-668 Warsaw, Poland
(Dated: May 7, 2024)

We investigate quantum objectivity in the boson-spin model, where a central harmonic oscillator
interacts with a thermal bath of spin- 1

2
systems. We analyze how information about a continuous

position variable can be encoded into discrete, finite-dimensional environments. More precisely, we
study conditions under which the so-called spectrum broadcast structures (SBS) can be formed in
the model. These are multipartite quantum state structures, representing a mode-refined form of
decoherence. Working in the recoil-less limit, we use the Floquet theory to show that despite its
apparent simplicity, the model has a rich structure with different regimes, depending on the motion
of the central system. In one of them, the faithful encoding of the position and hence objectivity
are impossible irrespectively of the resources used. In another, large enough collections of spins will
faithfully encode the position information. We derive the characteristic length scales, corresponding
to decoherence and precision of the encoding.
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I. INTRODUCTION

Although quantum mechanics is believed to be the
most fundamental theory of Nature, it is mysterious and
puzzling that we still have not fully succeeded in ex-
plaining our daily observed world by quantum mechan-
ics. How is it possible for all counter-intuitive quan-
tum natures like superposition, interference, disturbance,
non-locality, etc., clearly disappear in our macroscopic
world? Although many alternative approaches compete
for explaining the quantum-to-classical transition, none
of them has been agreed on so far. In this situation it
is important to restrict ourselves to the question how
far the classical-quantum discrepancy can be explained
within the current-state quantum mechanics. One of the
aspects of the problem is the objective character of the
macroscopic world as first noted by Zurek [1, 2]. Objec-
tivity may be viewed as an observer-independence, bears
some resemblance to the relativity theory. But due to
the inevitable disturbances introduced by observations
in quantum mechanics, it is not a priori clear how to
achieve the observer independence, at least at the basic
level of measurement results.

In the history of physics, there has been an orthodox
view that the world existing outside of the system of in-
terest plays a role of a source of noise which can be, at
least in principle, perturbatively controlled, so when it
is minimized, the “true nature” will get more and more
approachable. But quantum mechanics changed that
view: our macroscopic reality can be considered the con-
sequence of interaction between a system and the rest
of the world, as emphasized by the decoherence theory
[3, 4]. Within this view there has been an idea devel-
oped, called quantum Darwinism, aiming at explaining
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the apparent observer-independence in the macroscopic
world [1, 2, 5, 6]. It postulates that interactions between
a system and an environment redundantly transfer the
information of a system to the environment during de-
coherence. The idea has opened a new field of objectiv-
ity studies (see, e.g., [7–11] for some of the most recent
developments). Although quantum Darwinism does not
completely explain the non-unitary collapse process, the
famous measurement problem, it is still remarkable that
within quantum mechanics some form of objective clas-
sicality can be derived.

A further development of the quantum Darwinism idea
is represented by spectrum broadcast structures (SBS)
[6, 12, 13], which are specific quantum-state structures,
encoding an operational form of objectivity. SBS are
a stronger form of quantum Darwinism in a sense that
SBS formation implies the original quantum Darwinism
conditions but not vice versa [7]. Under appropriate con-
ditions, SBS have been shown to form in almost all the
canonical decoherence models [4], i.e., a collisional deco-
herence [12], quantum Brownian motion (QBM) in the
recoil-less limit [14, 15], a spin-spin model [16, 17], and a
spin-boson model [14, 18]. The only one left is a boson-
spin model, which we analyze in this work. The central
system is a massive oscillator interacting with a thermal
bath of spin-12 systems. We use here a recoil-less ap-
proximation, similarly as in the QBM studies [14, 15],
where a harmonic oscillator influences the spin environ-
ment, but the recoil is suppressed. This approximation
leads to the same form of Hamiltonian as for, e.g., a two-
level atom interacting with linearly polarized light [19].
As the effective Hamiltonian for the spin environment is
time periodic, this allows us to use the Floquet theory
and the high-frequency expansion. The most interesting
question arising in this model, and absent in previous
studies, is how finite-dimensional environments encode a
continuous variable (the central oscillator’s amplitude).
We show that depending on the state of motion of a
central oscillator there can be either only a momentary
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formation of SBS states or a permanent or asymptotic
one. Interestingly, this behavior is opposite to the QBM
model, showing once again the stark difference between
spin and oscillator environments. We derive the length
scales corresponding to decoherence and faithful infor-
mation encoding in the environment, which scale 1/

√
N ,

where N is the environment fractions size that is used to
store the information or decohere the system.

We will be interested in a so-called partially reduced
state ρS:oE , where a fraction of the environment, assumed
unobserved and denoted by uE, was traced out as an un-
avoidable loss, but the remaining fraction, denoted by
oE, is kept for observation. The spectrum broadcast
structures (SBS) or an objective quantum state, is then
defined as follows [6, 12]:

ρS:fE =
∑
i

pi|i⟩S⟨i| ⊗ ρE1
i ⊗ · · · ⊗ ρ

EfN

i , (1)

where

ρEk
i ρEk

j = 0 (2)

for i ̸= j, which is equivalent to the states ρEk
i having or-

thogonal supports and thus being perfectly distinguish-
able. After unobserved degrees of freedom traced out,
the SBS of a total density matrix are in an orthogo-
nal convex combination form. The approach to the SBS
is marked by vanishing quantum coherence (off-diagonal
elements) and a perfect distinguishability (diagonal ele-
ments), corresponding to a vanishing decoherence factor
and a vanishing generalized overlap (state fidelity), re-
spectively [16]. These are the objectivity markers that
we will analyze in various regimes.

II. DYNAMICS OF SYSTEM

The total Hamiltonian H for a simple harmonic oscil-
lator, bilinearly interacting with spin- 12 environment [4]
is given by

H = HS +
∑
i

H
(i)
E +

∑
i

H
(i)
int, (3)

where

HS =
P̂ 2

2M
+

1

2
MΩ2X̂2,

H
(i)
E = −∆i

2
σ(i)
x ,

H
(i)
int = giX̂ ⊗ σ(i)

z , (4)

where M and Ω are a mass and an angular frequency
of an oscillator, respectively, and gi and ∆i are a spin-
environmental coupling constant and a self-energy (also
called the tunneling matrix element) for the ith spin sys-
tem, respectively. Here only bipartite interactions H(i)

int

between the ith spin and the harmonic oscillator are con-
sidered, without mutual interactions among the spins.
Despite its simple form, the total Hamiltonian (3) is dif-
ficult to solve directly. For the purpose of our analysis it
is, however, enough to use the so-called recoil-less limit,
at least as a first approximation. In this limit, the central
oscillator is assumed to be massive enough not to feel the
recoil of the environment, while each of the environmen-
tal spins is affected by the motion of the central oscillator,
which acts as a classical force. This is an opposite limit
to the much more popular Born-Markov limit, where it is
an environment that is assumed not to be affected by the
system. The justification for such a choice comes from
the fact that we are primarily interested in an information
leakage from a system to an environment as cutting the
influence of the system on the environment would also cut
the information leakage. Hence, it leads us to a study of
the opposite, recoil-less limit. It can be viewed as a ver-
sion of the Born-Oppenheimer approximation [20] and it
was already used in the objectivity studies in [14, 21, 22].
In the recoil-less limit, the system S evolves unperturbed,
according to its own dynamics HS . It influences the envi-
ronment via the interaction Hamiltonian where the sys-
tem’s position operator X̂ can be approximated by the
classical trajectory X(t;X0), starting at some initial po-
sition X(0) = X0. The resulting approximate solution is
given by the following ansatz [14]:

|ΨS:E⟩ =
∫
dX0ϕ0(X0)e

−iĤSt|X0⟩Ûeff(X(t;X0))|ψ0⟩,

(5)
Here ℏ = 1 convention has been used and will be applied
to the entire presentation. Ûeff(X(t;X0)) is the evolution
generated by

Heff =
∑
i

(
−∆i

2
σ(i)
x + giX(t;X0)σ

(i)
z

)
, (6)

and |ϕ0⟩ and |ψ0⟩ are initial states of S and E respec-
tively. Formally, (5) is generated by a controlled-unitary
evolution:

ÛS:E(t) =

∫
dX0e

−iĤSt|X0⟩⟨X0| ⊗ Ueff(X(t;X0)), (7)

acting on the initial state |ϕ0⟩|ψ0⟩. For simplicity, we
will limit ourselves to trajectories obtained when the sys-
tem is initially in the squeezed coherent state in posi-
tion |ϕ0⟩ = D̂(α)Ŝ(r)|0⟩, where D̂(α) = eαâ

†−α∗â and
Ŝ(r) ≡ er(â

2−â†2)/2. First, we may assume that initial
position is the maximum X0 with the squeezed vacuum
wave function in position, so that:

X(t;X0) = X0 cos(Ωt). (8)

For the analysis of a zero initial position, we may assume
X(t = 0) = 0 and take X(t;X0) = X0 sin(Ωt).

Assuming a completely separable initial state:

ρS:E(0) = ρS(0)⊗
⊗
i

ρ
(i)
E (0), (9)
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which is motivated here by the fact that we wish to study
buildup of the system-environment correlations, the full
solution is easily obtained from (7):

ρS:E(t) =

∫
dX0dX

′
0ρ(X0, X

′
0)e

−iHSt|X0⟩⟨X ′
0|eiHSt

⊗
N⊗
i=1

Ui(X0, t)ρ
(i)
E (0)U†

i (X
′
0, t), (10)

where

ρ(X0, X
′
0) ≡ ⟨X0|ρS(0)|X ′

0⟩ (11)

are the initial coherences and the conditional evolutions
of the ith spin, Ui(X0, t), are generated by:

Hi = −∆i

2
σ(i)
x + giX0 cos(Ωt)σ

(i)
z . (12)

This allows us to find the effective evolution of spin
states. The above Hamiltonian is well known and de-
scribes, e.g., an interaction of a linearly polarized light
with a two-level atom [19]. The periodicity in time allows
us to use the standard methods of the Floquet theory (see
[23] for the historical work and, e.g., [24, 25] for modern
expositions) to find approximate solutions.

The Floquet theorem states that a unitary evolution
for a periodic Hamiltonian can be written as a product of
a unitary evolution driven by a periodic time-dependent
Hamiltonian K(t) with the same period of the Hamil-
tonian and a unitary evolution by a time-independent
Hamiltonian HF :

U(t, t0) = e−iK(t)e−i(t−t0)HF eiK(t0). (13)

HF is responsible for a slow dynamics forming an over-
all profile while K(t) for a fast dynamics forming inter-
nal profile with the same oscillator periodicity K(t) =
K(t + T ) as the given periodic Hamiltonian (14). The
operators K(t) and HF can be perturbatively identified
by using the high-frequency expansion [24, 25]. One Tay-
lor expands HF in 1/Ω ≪ 1, while K(t) is the remaining
part after HF has been taken out. In general, conver-
gence of the expansion is not always guaranteed [24, 25].
By imposing conditions on the rest of parameters with
Ω, the convergence of the series can be controlled, as we
remark below. Fourier expanding the Hamiltonian (14),

Hi = H0 +

∞∑
j=1

(V (j)eijΩt + V (−j)e−ijΩt), (14)

where H0 = −(∆/2)σx and V (1) = V (−1) = (gX0/2)σz,
the rest being zero, one finds the high-frequency expan-
sion of HF and K(t) (we omit the environment index i
for simplicity):

HF = H0 +
1

Ω

∞∑
j=1

1

j
[V (j), V (−j)]

+
1

2Ω2

∞∑
j=1

1

j2
([[V (j), H0], V

(−j)] + H.c.) + · · · ,

(15)

and

K(t) =
1

iΩ

∞∑
j

1

j
(V (j)eijΩt − V (−j)e−ijΩt)

+
1

iΩ2

∞∑
j

1

j2
([V (j), H0]e

ijΩt − H.c.) + · · · . (16)

For the purpose of this work, we take the lowest non-
vanishing correction terms only and t0 = 0. This gives:

tHF = −∆̃(1− ξ2)τσx, (17)
K(t) = ξσz sin τ (18)

where we introduced dimensionless position ξ, tunneling
energy ∆̃, and time τ :

ξ ≡ gX0

Ω
, ∆̃ ≡ ∆

2Ω
, τ ≡ Ωt. (19)

Picking the initial time t0 = 0, there is no initial kick
K(0) = 0. The convergence of the expansion is guar-
anteed for ∆̃, ξ ≪ 1. Using (17) and (18), the unitary
evolutions defined in (13) are easily found:

e−i(t−t0)HF = cos[∆̃(1− ξ2)τ ] + iσx sin[∆̃(1− ξ2)τ ],

e−iK(t) = cos[ξ sin τ ]− iσz sin[ξ sin τ ]. (20)

The first is the slow motion part of the dynamics, while
the second is the fast motion part (the micromotion),
with the time-periodic frequency proportional to sin τ .
They lead to the following effective evolution, modulo
O(Ω−2) terms:

Uk(X0, t) =
[
cos(ξk sin τ)− iσ(k)

z sin(ξk sin τ)
]

(21)

×
[
cos[∆̃k(1− ξ2k)τ ] + iσ(k)

x sin[∆̃k(1− ξ2k)τ ]
]
.

III. OBJECTIVE QUANTUM STATES

We now investigate possibilities of a formation of the
SBS-like state (1). The form of the evolution (7) dictates
that the corresponding pointer state eigenvalues are the
initial oscillator position X0, equivalently its amplitude,
that controls the evolution of the environment and hence
leaks into it. Following the general quantum Darwinism
setup, we assume that part of the environment, called
oE, is under observation while the rest, called uE, is
unobserved. We are thus interested in the partial trace
of (10) over uE:

ρS:oE(t) = TruEρS:E(t) (22)

=

∫
dX0dX

′
0ρ(X0, X

′
0)ΓX0,X′

0
e−iHSt|X0⟩⟨X ′

0|eiHSt

⊗
⊗
i∈oE

Ui(X0, t)ρ
(i)
E (0)U†

i (X
′
0, t),



4

where

ΓX0,X′
0
≡

∏
k∈uE

Tr[Uk(X0, t)ρ
(k)
E (0)U†

k(X
′
0, t)] (23)

=
∏
k

Γ
(k)
X0,X′

0

is the decoherence factor, associated with the unobserved
part of the environment uE. We note that since the de-
coherence factor is a function, which magnitude is always
less than one, it can never be ∼ δ(X0 −X ′

0), and hence
a full decoherence and a strict S : E disentanglement
cannot happen, though they take place for discrete vari-
ables, but they happen rather in an existence of some de-
coherence length, below which coherences are preserved
[15, 26].

To identify under such conditions the candidates for
the information-encoding states ρEk

i from (1), we recall
that in the Darwinism setup, the observers monitor the
system only indirectly, via portions of the environment.
Since in realistic conditions, a single environment will in
general carry a vanishingly small information about the
system, we assume that each observer has an access to
a collection of environments, called macrofraction [12],
scaling with the total number of environments N . The
state of a macrofraction is obtained from (22) by tracing
out everything except for the given macrofraction:

ρmac(t) = TrSoE\macρS:oE(t) (24)

=

∫
dX0p(X0)ρmac(X0),

where p(X0) ≡ ⟨X0|ρS(0)|X0⟩ is the probability distri-
bution of the initial position and:

ρmac(X0) ≡
⊗

k∈mac

Uk(X0, t)ρ
(k)
E (0)U†

k(X0, t) (25)

is the conditional state corresponding to X0. Thus, to
know X0, each observer must be able to distinguish the
states (25) for different X0. There are different scenar-
ios to study state distinguishability [27], e.g., quantum
Chernoff bound used already in some studies of quan-
tum Darwinism [28, 29] or, more appropriate here due
to the continuous parameter, quantum metrology [30].
Here, like in the the previous SBS studies, we will follow
a simple form of the latter and will study the general-
ized overlap (state fidelity), which is the integral of the
Quantum Fisher Information [31]:

B(ρ, ρ′) ≡
[
Tr

√√
ρρ′

√
ρ

]2
. (26)

Note B(ρ, ρ′) here is defined by squaring, which is dif-
ferent from the usual definition. We note that B(ρ, ρ′)
vanishes if and ony if the states have orthogonal sup-
ports, ρρ′ = 0, providing a measure of distinguishability.
Although it produces less tight bounds on the probability
of discrimination error than the quantum Chernoff bound

[28, 32], it has the property of factorizing w.r.t. the ten-
sor product, making its calculation easier and similar to
the decoherence factor:

Bmac
X0,X′

0
≡ B[ρmac(X0), ρmac(X

′
0)] =

∏
k∈mac

B
(k)
X0,X′

0
. (27)

From the metrological point of view, encoding X0 into
a completely separable state (25) leads to a rather unin-
teresting classical scenario [30], but encoding efficiency is
not our goal here and we postpone a study of more ad-
vanced scenarios with entangled macrofraction states to
a future research. Just like with the decoherence, we ex-
pect that distinguishability will be achieved only at some
characteristic length scale.

Summarizing, the approach to the SBS structure will
be characterized by two quantities [16], the decoherence
factor (23) and the generalized overlap (27). We will call
them “objectivity markers”. We note that their factorized
character, i.e. a total measure is a product of measures
for individual environmental systems, which is due to the
uncorrelated initial state. As one expects, a single fac-
tor corresponding to a single environmental spin, will be
oscillatory and of course will not lead anywhere close to
the SBS structure. However due to the factorized charac-
ter, we expect that for a sufficiently large groups of spins
a considerable dephasing will take place at some length
scales, leading to an approximate SBS structure.

IV. CALCULATION OF OBJECTIVITY
MARKERS

Here without loss of generality we consider only a single
spin environment in each expression (23, 27), dropping
the environment indices. State fidelity has a particularly
simple form for spin- 12 states. Let M ≡ √

ρρ′
√
ρ, then:

B(ρ, ρ′) = TrM + 2
√
detM. (28)

Since in our case ρ and ρ′ have the same initial state ρ0
but different evolutions, U and U ′, we obtain:

M = U
√
ρ0U

†U ′ρ0U
′†U

√
ρ0U

†,

and finally:

BX0,X′
0
= Tr

[
U†
X0,X′

0
ρ0UX0,X′

0
ρ0

]
+ 2det ρ0,

where we defined a relative evolution operator:

UX0,X′
0
≡ U†(X ′

0, t)U(X0, t). (29)

We note that the decoherence factor also depends on it.
Before calculating the markers for the evolution (21) ,

we first derive general expressions. We will find it conve-
nient to use the Bloch representation, decomposing any
operator into identity and Pauli matrices. This represen-
tation will give a nice geometrical interpretation for the
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decoherence factor and the generalized overlap and their
complementarity relation. Let us decompose the initial
state and the relative evolution in the Pauli basis:

ρ0 =
1

2
(1 + a⃗ · σ⃗) , (30)

where |⃗a| ≤ 1 and

UX0,X′
0
= u0 + iu⃗ · σ⃗, (31)

where

u20 + |u⃗|2 = 1. (32)

Then it is easy to obtain the decoherence factor:

ΓX0,X′
0
= u0 + i⃗a · u⃗ (33)

and its modulus:

|ΓX0,X′
0
|2 = u20 + (⃗a · u⃗)2, (34)

which controls the decoherence process in the position ba-
sis. Calculation of the generalized overlap in turn, leads
to (see Appendix A for the details):

BX0,X′
0
= 1− |⃗a× u⃗|2. (35)

Combining (34) and (35) the relation between |ΓX0,X′
0
|2

and BX0,X′
0

is expressed by:

BX0,X′
0
− |ΓX0,X′

0
|2 = (1− |⃗a|2)(1− u20). (36)

This relation can be interpreted as a sort of complemen-
tarity between decoherence and distinguishability.

Using (34) and (36), we can express the decoherence
factor and the generalized overlap in the high-frequency
expansion of Sec. II. As seen, the decoherence factor and
the generalized overlap are a function of only a vector a⃗
representing an initial density matrix for a spin ρ0 and a
relative unitary operator UX0,X′

0
defined in (29). Using

(21), we obtain in the lowest non-zero order of the high-
frequency expansion

UX0,X′
0
= U†

F (τ ; ξ
′)UK(τ ; ξ − ξ′)UF (τ ; ξ)

= u0 + iu⃗ · σ⃗, (37)

where

u0 = cos[∆̃(ξ2 − ξ′2)τ ] cos[δξ sin τ ],

u1 = − sin[∆̃(ξ2 − ξ′2)τ ] cos[δξ sin τ ],

u2 = sin[∆̃(2− ξ2 − ξ′2)τ ] sin[δξ sin τ ],

u3 = − cos[∆̃(2− ξ2 − ξ′2)τ ] sin[δξ sin τ ], (38)

with the notation δξ ≡ ξ − ξ′ and the dimensionless pa-
rameters defined in (19). We recall that for the trajec-
tories (8) there is no initial kick at t0 = 0 [cf. (18)].
Each ui in (38) is a product of a fast and a slow mov-
ing parts, as one would expect from the Floquet theory.

The frequency of the slow motion is proportional to the
tunneling energy ∆̃, while the fast-moving terms are in-
dependent of it and have the time-dependent frequency
δξ sin τ . There is also a distinction between (u0, u1) and
(u2, u3). The (u0, u1) pair has large overall sinusoidal
patterns with small internal vibrations while in (u2, u3)
the overall profiles are comparable to internal vibrations.
As we will see, the fast moving parts are unwanted for
objectivity.

To proceed further, we will assume that the environ-
ment is initially in the thermal state, i.e.

ρ
(k)
E (0) =

e−βH
(k)
E

Tr[e−βH
(k)
E ]

=
1

2

[
1 + σx tanh

(
β∆k

2

)]
,

(39)

where β = 1/kBT , so that the parameters of the initial
state are given by a⃗ = (E(β), 0, 0), where we introduced:

E(β) ≡ tanh

(
β∆

2

)
=

⟨E⟩
∆/2

, (40)

denoting the average thermal energy, rescaled by the tun-
neling energy. We obtain the following single-factor ex-
pressions for the decoherence and the generalized overlap:

|Γ1
X0,X′

0
|2 = u20 + E(β)2u21 (41)

B1
X0,X′

0
= 1− E(β)2 + E(β)2(u20 + u21). (42)

which leads to:

|Γ1
X0,X′

0
|2 =

[
1− sin2[∆̃(ξ2 − ξ′2)τ ]

cosh2(β∆/2)

]
cos2[δξ sin τ ] (43)

B1
X0,X′

0
= 1− E(β)2 sin2[δξ sin τ ]. (44)

The time dependence of the decoherence factor is given
by the slow-motion and the fast-motion modulating each
other. In contrast, the generalized overlap depends only
on the fast oscillating part. We note that the decoher-
ence factor depends here on the temperature, contrasting
the result in a boson-spin system mapped from that of
the quantum Brownian motion in the Born-Markov ap-
proximation. [4]. In particular, at zero temperature the
slow-motion part vanishes. Sample plots of the markers
as the functions of the rescaled time τ are presented in
Figs. 1 and 2.

The full decoherence and overlap functions are prod-
ucts of the above factors [cf. (23) and (27)]. We be-
gin their analysis by first assuming small dimensionless
amplitudes of the central oscillator ξ, ξ′ ≪ 1, which al-
lows to expand the trigonometric functions. In particu-
lar, sin2[∆̃(ξ2−ξ′2)τ ] ≈ (ξ2−ξ′2)2t2∆2/4+O(ξ8), which
is valid for times:

t≪ 2Ω2

g2∆|X2
0 −X

′2
0 |
. (45)

Similarly, we expand the fast motion factors containing
[(ξ − ξ′) sin τ ]. Keeping the terms at most quadratic in
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FIG. 1: Time dependence of decoherence factors for a
single spin environment (43). The solid and dashed lines
stand for ξ = 0.9 and 0.6, respectively, while ξ′ = 0.1 is
fixed. The rest of the parameters are ∆̃ = 1

6 , β∆ = 1.
Both slow and fast oscillations are clearly visible.

FIG. 2: Time dependence of generalized overlaps for a
single spin environment (44). The solid and dashed lines
stand for ξ = 0.9 and 0.6, respectively, while ξ′ = 0.1 is

fixed. The rest of the parameters are the same as in
Fig. 1 for a better comparison: ∆̃ = 1

6 , β∆ = 1.

ξ, we obtain:

|Γ1
X0,X′

0
|2 = 1− δξ2 sin2 τ +O(ξ4)

≈ exp

[
−g

2δX2
0

Ω2
sin2 Ωt

]
, (46)

where we returned to the original variables having de-
fined (19) and defined δX0 ≡ X0−X ′

0. The temperature
dependence, the whole slow oscillating part, disappears
in the lowest order and appears only in the ξ4 terms and
higher. The behavior of the generalized overlap is differ-
ent in this respect and depends strongly on the temper-
ature even in the lowest order in ξ:

B1
X0,X′

0
= 1− δξ2E(β)2 sin2 τ +O(ξ4)

≈ exp

[
−g

2δX2
0

Ω2
E(β)2 sin2 Ωt

]
. (47)

To calculate the products (23) and (27), we will assume
that the constants gk and ∆k are identically and inde-
pendently distributed according to some probability dis-
tributions and there are sufficiently many terms in the
resulting sums in the exponentials to apply the law of

large numbers:

|ΓX0,X′
0
|2 =

∏
k∈uE

|Γ(k)
X0,X′

0
|2 = exp

[
−δX

2
0

Ω2

∑
k∈uE

g2k sin
2 Ωt

]
(48)

≈ exp

[
−Nu

⟨g2⟩δX2
0

Ω2
sin2 Ωt

]
, (49)

where Nu, is the size of the unobserved fraction uE of
the environment and ⟨g2⟩ is the average of gk over the
uE. This procedure [16] can be viewed as a form of an
introduction of spectral density, but we keep control of
the number of spins in the fractions. Similarly for the
generalized overlap:

BX0,X′
0
=

∏
k∈mac

B
(k)
X0,X′

0

≈ exp

[
−Nmac

⟨g2⟩δX2
0

Ω2

〈
E(β)2

〉
sin2 Ωt

]
, (50)

where Nmac is the observed macrofraction size and we
assumed that the distributions of gs’ and ∆s’ are inde-
pendent;

〈
E(β)2

〉
is understood as the average over the

∆ [cf. (40)]. Due to the periodicity of the markers (49)
and (50), it is immediately obvious that in the small dis-
placement limit, there are complete recoherences at the
turning points tn = nπ/Ω and there is no asymptotic be-
havior as t→ ∞. We can thus speak of the approach to
the objective state only in the time intervals between the
turning points. As anticipated, this approach is governed
by two length scales, controlling the decoherence and the
distinguishability processes:

λdec ≡
Ω√

Nu⟨g2⟩
, (51)

λdist ≡
Ω√

Nmac⟨g2⟩ ⟨E(β)2⟩
. (52)

Their dependencies on the fraction sizes, or equiv-
alently on the Hilbert space dimensionalities of the
fractions, mean that shorter distances are resolved as
more spins are taken into account. We call the above
length scales the decoherence and the distinguishabil-
ity length scales. The distinguishability length scale is
temperature-dependent and grows with the temperature
approximately linearly for high temperatures. This is in-
tuitively clear as hotter environment is closer to the to-
tally mixed state and thus its information-carrying capa-
bilities are worse. Moreover, for non-zero temperatures,
λdist > λdec for the same fraction sizes, meaning that one
can extract the position X0 from the environment with
a worse resolution than one at which the environment
decoherences the central system. This phenomenon of
“bound information” in the environment was observed in
the QBM model in [15].

Let us now analyze the objectivity markers beyond the
small-amplitude approximation. We first look at the gen-
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eralized overlap:

BX0,X′
0
=

∏
k∈mac

[
1− Ek(β)

2 sin2(δξk sin τ)
]
. (53)

It is immediately clear that the time-periodic frequency
sin τ dictates the periodic character of BX0,X′

0
:

BX0,X′
0
(t) = BX0,X′

0
(t+ π/Ω), (54)

irrespectively of what are the distributions of gk and ∆k.
In particular, this periodicity implies a complete loss of
distinguishability, BX0,X′

0
(tn) = 1, at the turning points

tn = nπ/Ω, just like in the approximate analysis above.
The behavior of BX0,X′

0
(t) can be approximated using

the Law of Large Numbers in the following way:

logBX0,X′
0
=

∑
k∈mac

logB
(k)
X0,X′

0
≈ Nmac⟨logB1

X0,X′
0
⟩

≤ Nmac log⟨B1
X0,X′

0
⟩, (55)

where we used the concavity of the logarithm. Further-
more:

⟨B1
X0,X′

0
⟩ = 1−

〈
E(β)2

〉 〈
sin2(δξ sin τ)

〉
.

We are interested in the last average as it determines
the time dependence. For simplicity we will assume a
uniform distribution of g over some interval [0, ḡ]. This
corresponds to a spectral density with a sharp cut-off at
ḡ. Elementary integration gives:

〈
sin2(δξ sin τ)

〉
=

1

ḡ

ḡ∫
0

dg sin2
[
gδX0

Ω
sin τ

]
(56)

=
1

2

[
1− sinc

(
2ḡδX0

Ω
sin τ

)]
, (57)

where sincx ≡ sinx/x, which leads to:

BX0,X′
0
≈[

1− 1

2

〈
E(β)2

〉(
1− sinc

(
2ḡδX0

Ω
sin τ

))]Nmac

. (58)

Since 1− sincx ≈ x2/6+O(x4), rises(decays) around the
turning points tn = nπ/Ω are given by the small ampli-
tude approximation (50), with λdist rescaled by an unim-
portant factor

√
3. A sample plot of (58) is presented in

Fig. 3 for different values of δξ̄ = ḡδX0/Ω. The decoher-
ence factor can be analyzed in the same steps (55)-(58)
with the complication that it is composed of both slow-
and fast-moving parts. We need the average of (43). For
simplicity we will assume ∆k = ∆ so the only random-

FIG. 3: Generalized overlap for Nmac = 100 spin
environments with different interaction couplings ξ (the

solid and dashed lines stand for ξ̄ = 0.9 and 0.6,
respectively.). (∆̃ = 1

6 ,Ω = 3, β∆ = 1, ξ̄′ = 0.1) are
chosen.

ness is in gk:〈
|ΓX0,X′

0
|2
〉
=

〈
cos2(δξ sin τ)

〉
−

〈
sin2[∆̃(ξ2 − ξ′2)τ ] cos2(δξ sin τ)

〉
cosh2(β∆/2)

=
cosh(β∆)

cosh(β∆) + 1

〈
cos2(δξ sin τ)

〉
(59)

+
1

2 cosh(β∆) + 2

{〈
cos[2∆̃(ξ2 − ξ′2)τ ]

〉
(60)

+
〈
cos[2∆̃(ξ2 − ξ′2)τ ] cos(2δξ sin τ)

〉}
, (61)

≡ Γfast(τ) + Γslow(τ), (62)

where we used trigonometric and hyperbolic identities to
simplify the expressions. The first term 59 is the fast
oscillating part which is equal to:

Γfast(τ)

=
cosh(β∆)

2 cosh(β∆) + 2

[
1 + sinc

(
2ḡδX0

Ω
sin τ

)]
, (63)

where we used above the same averaging as in (56) and
(57). It is clearly time-periodic due to the periodic fre-
quency sin τ , just like (58), but it is multiplied by a
temperature-dependent factor that is always smaller than
1. The behavior around the turning points tn = nπ/Ω
is again given by the Gaussian law (49) with the λdec

rescaled by
√
3. The terms (60) and (61) are the slow os-

cillating parts, contributing for non-zero temperatures.
They can be calculated explicitly for a uniform distribu-
tion by using Fresnel integrals as they contain g2 under
the cosine. For example, the term (60) is proportional
to:

f(τ) ≡
〈
cos[2∆̃(ξ2 − ξ′2)τ ]

〉
=

1√
2∆̃(ξ̄2 − ξ̄′2)τ

C

(√
2∆̃(ξ̄2 − ξ̄′2)τ

)
, (64)
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where C(x) ≡
∫ x

0
du cosu2 is the cosine Fresnel integral

and ξ̄ ≡ ḡX0/Ω. The long-time behavior of this term
is determined by an asymptotic expansion for large x,
C(x) ≈

√
π/8 + sinx2/2x + O(x−3) [33], which gives

f(τ) ∼ 1/
√
τ for long times. The last term, (61), is a bit

more complicated but can be manipulated using basic
trigonometric identities (Refer to Appendix (B2). As a
result, from (64) and (B2) it follows that for large times
Γslow(τ) ∼ 1/

√
τ . And finally:

|ΓX0,X′
0
|2 ≈ [Γfast(τ) + Γslow(τ)]

Nu (65)

= [Γfast(τ)]
Nu +O

(
1√
τ

)
(66)

=

[
cosh(β∆)

cosh(β∆) + 1

]Nu
[
1

2
+

1

2
sinc

(
2ḡδX0

Ω
sin τ

)]Nu

(67)

+O

(
1√
τ

)
Despite the presence of a time-periodic term, unlike the
generalized overlap (58) this function can effectively de-
cay with time, meaning decoherence can take place. This
is due to the temperature-dependent prefactor in (67),
which multiplies the sinc-term and which decays with
temperature and for high temperatures (small β) is of
the order ∼ 2−Nu . Thus, although the sinc-term is equal
to one at the turning points tn = nπ/Ω, its contribution
is damped by the temperature-dependent term. A sam-
ple plot of the exact expression (65) using (63),(64) and
(B2) is presented in Fig. 4.

We conclude that for cosine trajectories (8), although
a central oscillator can be effectively decohered, the envi-
ronment however is unable to reliably store the amplitude
information for all times as there are periodic and com-
plete losses of distinguishability at the turning points.
Thus, objective states can form only between the turn-
ing points. We suspect these perfect revivals are caused
by the recoil-less approximation, which completely ne-
glects the damping of the central oscillator. They are
also in contrast with the oscillator environment, where
for the same trajectory (8) and under the same approx-
imation (5) no such revivals were observed, but rather
a steady decay [14]. The revivals, in turn, appeared in
the QBM model for sine trajectories, corresponding to
initial position squeezing, which was in agreement with
the earlier works [34]. It is therefore interesting to study
more general trajectories in the current model too.

A. Arbitrary Trajectory

An arbitrary trajectory of the central oscillator is ob-
tained by adding a constant phase ϕ to (8):

X(t) = X0 cos(τ + ϕ). (68)

It is then interesting to investigate how this phase can
affect the objectivity, especially whether there is a pos-

FIG. 4: Decoherence factors for Nu = 20 spin
environments with different interaction couplings ξ (the

solid and dashed lines stand for ξ = 0.9 and 0.6,
respectively.). (∆̃ = 1

6 ,Ω = 3, β∆ = 1, ξ′ = 0.1) are
chosen.

sibility to overcome the asymmetry between the decay-
ing decoherence factor and the monotonously oscillating
generalized overlap found above. The phase changes the
Fourier components V (1) and V (−1) in the high-frequency
expansion in (14),

V (±1) =
gX0

2
σz → gX0

2
σze

±iϕ. (69)

Consequently, as seen in (15) and (16), K(t) gets a phase
change (18):

K(t) = ξσz sin(τ + ϕ), (70)

while the Floquet Hamiltonian HF remains the same as
in (17). In (13) ϕ ̸= 0 contributes to UX0,X′

0
due to the

non-trivial initial kicks K(0). Explicitly, from (13) and
(37), we obtain UX0,X′

0
= u0 + iu⃗ · σ⃗ with [cf. (38)]

u0 = cos[δξ sinϕ] cos[∆̃(ξ2 − ξ′2)τ ] cos[δξ sin(τ + ϕ)]

+ sin[δξ sinϕ] cos[∆̃(ξ2 + ξ′2 − 2)τ ] sin[δξ sin(τ + ϕ)]

u1 = − cos[(ξ + ξ′) sinϕ] sin[∆̃(ξ2 − ξ′2)τ ]

× cos[δξ sin(τ + ϕ)]

+ sin[(ξ + ξ′) sinϕ] sin[∆̃(ξ2 + ξ′2 − 2)τ ]

× sin[δξ sin(τ + ϕ)]

u2 = − sin[(ξ + ξ′) sinϕ] sin[∆̃(ξ2 − ξ′2)τ ]

× cos[δξ sin(τ + ϕ)]

− cos[(ξ + ξ′) sinϕ] sin[∆̃(ξ2 + ξ′2 − 2)τ ]

× sin[δξ sin(τ + ϕ)] (71)

u3 = sin[δξ sinϕ] cos[∆̃(ξ2 − ξ′2)τ ] cos[δξ sin(τ + ϕ)]

− cos[δξ sinϕ] cos[∆̃(ξ2 + ξ′2 − 2)τ ] sin[δξ sin(τ + ϕ)].

The only relevant components for the decoherence factor
(34) and the generalized overlap (35) associated with the
thermal state (39), i.e. with a⃗ = (E(β), 0, 0), are u0 and
u1, which follows from (32). We first analyze the small ξ
approximation as it is easier. The factors u20 and u21 then
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read as

u20 = 1− δξ2[sin2 ϕ+ sin2(τ + ϕ)

− 2 sinϕ sin(τ + ϕ) cos(2∆̃τ)] +O(ξ4), (72)

u21 = O(ξ4),

which from (34) and (35) lead to the following single-spin
expressions:

|Γ1
X0,X′

0
|2 = 1− δξ2[sin2 ϕ+ sin2(τ + ϕ)

− 2 sinϕ sin(τ + ϕ) cos(2∆̃τ)] +O(ξ4),

= exp

[
−δξ2

∣∣∣sinϕ+ ei2∆̃τ sin(τ + ϕ)
∣∣∣2]

+O(ξ4)

B1
X0,X′

0
= 1− E(β)2δξ2[sin2 ϕ+ sin2(τ + ϕ)

− 2 sinϕ sin(τ + ϕ) cos(2∆̃τ)] (73)

+O(ξ4)

= exp

[
−δξ2E(β)2

∣∣∣sinϕ+ ei2∆̃τ sin(τ + ϕ)
∣∣∣2]

+O(ξ4).

For multiple spins, the law of large numbers can be also
used and implies that the exponents above are rescaled
by the fraction sizes, similarly to (49) and (50):

|ΓX0,X′
0
|2 ≈

exp

[
−Nu

⟨g2⟩δX2
0

Ω2

∣∣∣sinϕ+ ei2∆̃τ sin(τ + ϕ)
∣∣∣2] , (74)

BX0,X′
0
≈

exp

[
−NmacE(β)2

⟨g2⟩δX2
0

Ω2

∣∣∣sinϕ+ ei2∆̃τ sin(τ + ϕ)
∣∣∣2] .
(75)

Figs. 5 and 6 clearly show that the periodicity of the
objectivity makers for a single macrofraction of spin en-
vironment with a non-zero phase, e.g., ϕ = ±π

2 is bro-
ken, though the generalized overlap does not decay much.
This will make them decays for multi-spin environment.

We see that the decays are governed by the same length
scales (51) and (52) and the functions are doubly periodic
with the periods given by Ω−1 and ∆−1. Apart from this,
the behavior in the small ξ approximation is essentially
the same as for ϕ = 0 case in (49) and (50). We will see
that this will change for a general ϕ. Some remarks are
in order. For the purpose of this work, we are assuming
∆k being the same for all spins. This avoids complicated
averages of the type

∫
d∆tanh(β∆/2) cos(2∆t) although

obviously different ∆k can introduce dephasing, helping
to counter the periodicity. This possibility will be inves-
tigated elsewhere. Here, we concentrate on randomized
coupling constants gk.

We now estimate the objectivity markers for arbitrary
parameters. According to our procedure [cf. (55)], we

FIG. 5: Time dependence of decoherence factor for a
single spin environment with ϕ = ±π

2 . The solid and
dashed lines correspond to ξ = 0.9 and 0.6, respectively,
while ξ′ = 0.1 is fixed. The rest of the parameters are

∆̃ = 1
6 , β∆ = 1. The separation between a slow and fast

oscillations is less clear due to involvement of another
frequency than for ϕ = 0 in Fig.1

FIG. 6: Time dependence of the generalized overlap for
a single spin environment with ϕ = ±π

2 . The solid and
dashed lines correspond to ξ = 0.9 and 0.6, respectively,
while ξ′ = 0.1 is fixed. The rest of the parameters are

∆̃ = 1
6 , β∆ = 1. The separation between a slow and fast

oscillations is less clear due to involvement of another
frequency than for ϕ = 0 in Fig.2

need the averages of the single-spin functions. The de-
tailed calculations are presented in Appendix B. As be-
fore, we separate between the fast and slow oscillating
parts:

⟨|Γ1
X0,X′

0
|2⟩ = Γfast(τ) + Γslow(τ) (76)

where oscillating parts are

Γfast(τ) ≡
1

8

[
2 + sinc{δξ̄[sinϕ+ sin(τ + ϕ)]}

+sinc{δξ̄[sinϕ− sin(τ + ϕ)]}
]

+
E(β)2

8

[
2 + sinc{(ξ̄ + ξ̄′) sinϕ+ δξ̄ sin(τ + ϕ)]}

+sinc{(ξ̄ + ξ̄′) sinϕ− δξ̄ sin(τ + ϕ)]}
]

(77)

and decaying parts behaving asymptotically as 1/
√
τ are

Γslow(τ) ≡
∑
a,b,c

dΓabcF
Γ[a, b, c] = O

(
1√
τ

)
(78)



10

with FΓ[a, b, c] defined in (B5) and dΓabc can be identified
in (B3) and (B4). Similarly,

⟨BX0,X′
0
⟩ = Bfast(τ) +Bslow(τ) (79)

where

Bfast(τ) ≡ 1− E(β)2

8

[
4− sinc{δξ̄[sinϕ+ sin(τ + ϕ)]}

− sinc{δξ̄[sinϕ− sin(τ + ϕ)
]
} (80)

− sinc{(ξ̄ + ξ̄′) sinϕ+ δξ̄ sin(τ + ϕ)]}
− sinc{(ξ̄ + ξ̄′) sinϕ− δξ̄ sin(τ + ϕ)]}

]
and

Bslow(τ) ≡
∑
a,b,c

dBabcF
B [a, b, c] = O

(
1√
τ

)
(81)

with FB [a, b, c] defined in (B5) and dBabc can be identified
in (B3) and (B4). As τ → ∞, Γslow and Bslow die out as
1/
√
τ and only Γfast and Bfast remain. Thus, as τ → ∞

a total decoherence factor and a total generalized overlap
are given by the fast movers only.

|ΓX0,X′
0
|2 = [Γfast(τ) + Γslow(τ)]

Nu

= [Γfast(τ)]
Nu +O

(
1√
τ

)
, (82)

BX0,X′
0
= [Bfast(τ) +Bslow(τ)]

Nmac

= [Bfast(τ)]
Nmac +O

(
1√
τ

)
. (83)

The trajectory with ϕ = 0, i.e. X = X0 cos τ studied
before, is rather particular in the structure of UX0,X′

0

[Eq.(38)] in that the slow moving part with the frequency
∆̃(ξ2 − ξ′2) completely vanishes, leaving only the fast
moving part in BX0,X′

0
. In this oscillatory case, it is not

possible to have a decay of BX0,X′
0

regardless of the num-
ber of spins. However, as we see for ϕ ̸= 0 the situation
is different as even a small ϕ leads to the dephasing of
the sinc functions in (77) and (81), which in turn lead to
a decay of both functions for many spin environments as
we demonstrate below.

We show that max[Γfast(τ)] < 1, max[Bfast(τ)] < 1 for
any τ > 0, which means both functions are exponentially
damped as multiple spins are considered [cf. (82) and
(83)]. It will be convenient to introduce the following
functions:

g−(τ) ≡ sinc{δξ̄[sinϕ+ sin(τ + ϕ)]}
+ sinc{δξ̄[sinϕ− sin(τ + ϕ)]} (84)

g+(τ) ≡ sinc{(ξ̄ + ξ̄′) sinϕ+ δξ sin(τ + ϕ)]}
+ sinc{(ξ̄ + ξ̄′) sinϕ− δξ sin(τ + ϕ)]}. (85)

Their extrema for ξ, ξ′ < 1, which guarantees the High
Frequency Expansion and the positivity of sinc functions,

are given by:

sin(τ + ϕ+ π/2) = 0, (86)
sin(τ + ϕ) = 0. (87)

Since at ϕ = 0 the second condition indicates the max-
ima, g±(τ) continues being shifted to the left by ϕ ̸= 0 as
sin(τ + ϕ) = 0 moves to the left. So it can be recognized
that the first condition gives the minima while the other
one the maxima, which read for t > 0:

max(Γfast) =
1

4

{
1 + sinc(δξ̄ sinϕ) (88)

+ E(β)2
(
1 + sinc[(ξ̄ + ξ̄′) sinϕ)]

)}
=

1 + E(β)2

2
− ϕ2

24

[
δξ2 + E(β)2(ξ̄ + ξ̄′)2

]
+O(ϕ4)

(89)

and

max(Bfast) = 1− E(β)2

4

{
2− sinc(δξ̄ sinϕ)

− sinc[(ξ̄ + ξ̄′) sinϕ)]
}

(90)

= 1− ϕ2

12
E(β)2(ξ̄2 + ξ̄′2) +O(ϕ4) (91)

Note that these values depend on (ξ̄, ξ̄′) and β∆ but not
directly on the tunneling energy ∆̃, which is neverthe-
less necessary to damp the slow moving parts as we have
shown earlier. We see from the above expressions that:

1. max(Bfast) < 1 for any non-zero ϕ, provided
E(β) > 0, i.e. the temperature is finite, β > 0.

2. max(Γfast) < 1 for any non-zero ϕ, provided
E(β) < 1, i.e. the temperature is non-zero, β <∞.

This, in turn, implies via (82) and (83) that outside the
temperature extremes, both markers |ΓX0,X′

0
|2, BX0,X′

0

are asymptotically damped for Nu, Nmac ≫ 1 and the
state (22) approaches the objective state. The amount
of damping, and hence the quality of the objectivity in
the state, depends on Nu, Nmac and the temperature.
For small ϕ, we obtain from (82) and (83) the following
bounds:

|ΓX0,X′
0
|2 ⪅

[
1 + E(β)2

2
− ϕ2

24

[
δξ2 + E(β)2(ξ̄ + ξ̄′)2

]]Nu

≈
[
1 + E(β)2

2

]Nu

exp

[
−Nuϕ

2 δξ
2 + E(β)2(ξ̄ + ξ̄′)2

12(1 + E(β)2)

]
(92)

BX0,X′
0
⪅

[
1− E(β)2ϕ2

12
(ξ̄2 + ξ̄′2)

]Nmac

≈ exp

[
−Nmac

E(β)2ϕ2

12
(ξ̄2 + ξ̄′2)

]
(93)

This situation is to be contrasted with the previous Sec-
tion, where we showed that the cosine trajectory (8) does
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FIG. 7: Decoherence factor for large spin environments
as a function of time and different phases ϕ. The

dotted, the dashed line, and the thick line correspond to
ϕ = π/10, π/4, π/2, respectively.

(ξ̄ = 0.9, β∆ = 1, ξ̄′ = 0.1), Nu = 20 are chosen.)

FIG. 8: Generalized overlap for large spin environments
as a function of time and different phases ϕ. The

dotted, the dashed line, and the thick line correspond to
ϕ = π/10, π/4, π/2, respectively.

(ξ̄ = 0.9, β∆ = 1, ξ̄′ = 0.1), Nmac = 100 are chosen.)

not lead to the permanent damping of the generalized
overlap for any amount of spins in the macrofraction
and hence no permanent objective states can be formed.
Sample plots of both markers, using the exact expres-
sions calculated in Appendix B, are presented in Figs. 7
and 8. We see in particular that it is more difficult to
damp the generalized overlap as it takes about five times
more spins than needed to induce the decoherence. This
is to be expected as the spins are encoding the continuous
variable: the oscillation amplitude X0.

V. CONCLUDING REMARKS

We analyzed the emergence of objectivity in the last
canonical models of decoherence, a boson-spin model in
SBS state formation that so far has not been used in
the rest. Due to the complicated dynamics, we used
the recoil-less limit where the influence of the environ-
ment on the central oscillator is assumed to be negligi-
ble. This is an opposite limit to the usual Born-Markov
one, but the most appropriate for studying information
transfer to the environment during the decoherence pro-

cess. The recoil-less limit can be viewed as a version of
the Born-Oppenheimer approximation, where the central
system evolves unperturbed and affects the environmen-
tal spins via coupling to its classical trajectory, which
acts as an external time-dependent force. The resulting
effective dynamics of the environment allows for the use
of the Floquet theory. We perform the analysis in the
non-vanishing lowest order of the high-frequency expan-
sion and demonstrate and find in particular, an interest-
ing fact: the fast moving parts of the motion are detri-
mental to the emergence of objectivity while the slow
moving parts enable it. Another interesting aspect of
the model, not present in other canonical models, is a
mismatch between the encoded variable, which is a con-
tinuous position-like variable (the oscillation amplitude),
and the encoding system, which is finite dimensional (a
collection of spins). In this respect, we show two facts.
Firstly, we derive two characteristic wavelengths: one
corresponding to the decoherence scale on the side of
the central system and another governing the resolution,
with which collections of environmental spins encode the
continuous variable. The lengths are different, in partic-
ular, the encoding one depends on the temperature and
is larger than the decoherence one, which shows the phe-
nomenon of “bound information” in the environment: the
resolution of a possible read-out from the environment is
lower than the scale on which coherences are destroyed.
Both length scales depend on the fraction size, i.e., the
bigger the size, the lower the length scales, which is quite
intuitive. However, the presence of the length scales does
not guarantee a stable formation of objectivity. We show
that the latter depends on the type of motion of the cen-
tral system. In particular, for initial states with a well-
defined momentum, there can be only a momentary for-
mation of objectivity, while even a small departure from
this specific initial condition, leads to an asymptotic for-
mation of objective states. This is exactly opposite to
what one finds in QBM, where initially well-defined mo-
mentum states lead to a stable appearance of objectivity,
and one of the examples showing how spin and oscillator
environments differ.

Our analysis can be applied for the quantum measure-
ment theory in the following points. Firstly, our result is
an example of how a continuous variable can be measured
by finite-dimensional systems in a realistic scenario of an
open quantum dynamics. Secondly, from a broader per-
spective, it could be used to have an exemplary answer
to the fundamental question of when the measurement is
completed. One may postulate that it is completed when
the system + measuring apparatus are close enough to
the SBS state, which guarantees an objective character of
the measurement result. This remark of course applies to
the whole of the SBS and quantum Darwinism program.
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Appendix A: Generalized Overlap in Bloch
Representation

We will get a geometrical expressions for the gener-
alized overlap B2(ρ, ρ′) for a qubit when ρ and ρ′ are
unitarily related and its relation with the decoherence
factor |ΓX0,X′

0
|2. B(ρ, ρ′) is defined in (26) as

B(ρ, ρ′) = TrM + 2
√
detM, (A1)

where

M =
√
ρρ′

√
ρ (A2)

with

ρ ≡ Uρ0U
†, ρ′ ≡ U ′ρ0U

′†.

Using the cyclic property of a trace and a determinant,
B(ρ, ρ′) in (A1) is rewritten as

B(ρ, ρ′) = TrM̃ + 2
√
det M̃, (A3)

where W = U†U ′ = U†
X0,X′

0
and

M̃ =Wρ0W
†ρ0. (A4)

With the notations W = u0− iu⃗ · σ⃗ and ρ0 = (1+ a⃗ · σ⃗)/2,
we express Wρ0 as

Wρ0 =
1

2
(v0 + v⃗ · σ⃗), (A5)

where

v0 ≡ u0 − i⃗a · u⃗
vi ≡ u0ai − iui + (u⃗× a⃗)i. (A6)

With ρ0W = (W †ρ0)
† and W †(u⃗) = W (−u⃗) we obtain

ρ0W :

ρ0W =
1

2
(v0 + ⃗̄v · σ⃗), (A7)

where

v̄i ≡ u0ai − iui − (u⃗× a⃗)i. (A8)

Using (A4),(A5), and (A7), we obtain

M̃ = m̃0 +
∑
i

m̃iσi, (A9)

where

m̃0 ≡ 1

4
(|v0|2 + v⃗ · ⃗̄v∗),

m̃i ≡
1

4
[viv

∗
0 + v̄∗i v0 + i(v⃗ × ⃗̄v∗)i].

and hence TrM is expressed as

TrM = TrM̃ =
1

2
(|v0|2 + v⃗ · ⃗̄v∗). (A10)

From (A6) and (A8)∑
i

viv̄
∗
i = u20 |⃗a|2 − |u⃗× a⃗|2 + |u⃗|2,

|v0|2 = u20 + (⃗a · u⃗)2,

Using these TrM in (A10) is expressed in terms of a⃗ and
u⃗

TrM = 2m̃0 =
1

2
[1 + (2u20 − 1)|⃗a|2 + 2(⃗a · u⃗)2]

=
1

2
[1 + |⃗a|2]− [|u⃗|2 |⃗a|2 − (⃗a · u⃗)2]

=
1

2
(1 + |⃗a|2)− |⃗a× u⃗|2. (A11)

From (A2) and ρ0 = (1 + a⃗ · σ⃗)/2, detM = (det ρ0)
2 is

detM =
1

16
(1− |⃗a|2)2 ≥ 0. (A12)

Plugging TrM and detM in (A11) and (A12) into (A1),

B(ρ, ρ′) = 1− |⃗a× u⃗|2 ≤ 1. (A13)

With the expression for a decoherence factor |ΓX0,X′
0
|2 =

1−|u⃗|2+(⃗a·u⃗)2 in (34), B(ρ, ρ′) expression can be related
to |ΓX0,X′

0
|2,

B(ρ, ρ′) = (1− |⃗a|2)|u⃗|2 + |ΓX0,X′
0
|2

= (1− |⃗a|2)(1− u20) + |ΓX0,X′
0
|2. (A14)

Appendix B: Objectivity Markers for a General
Classical Trajectory

From (71) it can be seen that the structure of
UX0,X′

0
(ϕ) = u0(ϕ) + iu⃗(ϕ) · σ⃗ with a general classical

trajectory with arbitrary phase ϕ becomes more com-
plicated due to the non-unity initial kick in (13). For
a thermal state (39), in order to average |ΓX0,X′

0
|2 and

B(ρ, ρ′) over g, we need to average u20(ϕ) and u21(ϕ) over
g with a uniform distribution of g. The arguments in
cosines and sines in (71) are divided into one in the first
order in g and one quadratic in g. According to (71), we
denote the first order arguments by

gk− ≡ g(X −X ′) sinϕ,

gk+ ≡ g(X +X ′) sinϕ,

gk(τ) ≡ g(X −X ′) sin(τ + ϕ)
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and the second order arguments by

sτg2 ≡ ∆̃(X2 −X ′2)τg2,

mτg2 + dτ ≡ ∆̃(X2 +X ′2)τg2 − 2∆̃τ.

Hence, UX0,X′
0

in (71) is expressed by short notations,
c(x) ≡ cosx and s(x) ≡ sinx:

u0 = c(k−g)c(sτg2)c[k(τ)g] + s(k−g)c(mτg2+dτ )s[k(τ)g],

u1 = −c(k+g)s(sg2τ)c[k(τ)g] − s(k+g)s(−mτg2−dτ )s[k(τ)g],

u2 = −s(k+g)s(sτg2)c[k(τ)g] + c(lg)s(−mτg2−dτ )s[k(τ)g],

u3 = s(k−g)c(sτg2)c[k(τ)g] − c(k−g)c(mτg2+dτ )s[k(τ)g].

|ΓX0.X′
0
|2 with the thermal state a⃗ = (tanh[β∆/2], 0, 0)

is expressed as

|ΓX0.X′
0
|2 = u20 + a2u21,

where

u20 = c2(k−g)c
2
(sτg2)c

2
[k(τ)g] + s2(k−g)c

2
(mτg2+dτ )

s2[k(τ)g]

+
1

2
s[2k(τ)g]s(2k−g)c

2
(sg2τ)c

2
(mτg2+d),

u21 = c2(k+g)s
2
(sg2τ)c

2
[k(τ)g] + s2(k+g)s

2
(−mτg2−dτ )

s2[k(τ)g]

− 1

2
s[2k(τ)g]s(2k+g)s(sg2τ)s(−mτg2−dτ ) (B1)

Products of cosines and sines are decomposed into single
cosines and sines. For instance, the first term in u20 in
(B1) is decomposed into cosine functions

c2(k−g)c
2
(sτg2)c

2
[k(τ)g]

=
1

8
+

1

8
{c(2k−g) + c(2sτg2) + c[2k(τ)g]}

+
1

16
{c(2sτg2+2k−g) + c(2sτg2−2k−g) + c[2sτg2+2k(τ)g]

+ c[2sτg2−2k(τ)g] + c[2k(τ)g+2k−g] + c[2k(τ)g−2k−g]}

+
1

32
{c(sτg2+2k(τ)g+k−g) + c[sτg2+2k(τ)g−k−g]

+ c(sτg2−2k(τ)g+k−g) + c[sτg2−2k(τ)g−k−g]}.

All terms in (B1) are finally into cosine functions of linear
or quadratic functions of g. We define an average value
as an integral of a function over g from 0 to a maximum
value ḡ,

⟨f(g)⟩ ≡ 1

ḡ

ḡ∫
0

dgf(g).

Relevant functions to consider are only a cosine function
with different arguments. For quadratic arguments of

cosine ⟨cos[ag2 + bg + c]⟩ for a ̸= 0 is

1

ḡ

ḡ∫
0

dg cos[ag2 + bg + c]

=
1√
aḡ

cos

(
b2

4a
− c

)[
C

(√
aḡ +

b

2
√
a

)
− C

(
b

2
√
a

)]
+

1√
aḡ

sin

(
b2

4a
− c

)[
S

(√
aḡ +

b

2
√
a

)
− S

(
b

2
√
a

)]
,

where C(x) ≡
∫ x

0
du sinu2 and S(x) ≡

∫ x

0
du sinu2. For

linear arguments, ⟨cos(bg + c)⟩ for b ̸= 0 is

1

ḡ

ḡ∫
0

dg cos[bg + c] =
1

ḡb
(sin[bḡ + c]− sin[c]),

Especially, for instance, the average value of
2 cosAg2 cosBg is given by

2⟨cosAg2 cosBg⟩ = ⟨cos(Ag2 +Bg)⟩+ ⟨cos(Ag2 −Bg)⟩
= cos

(
B2/4A

) 〈
cos[A(g +B/2A)2] + cos[A(g −B/2A)2]

〉
+ sin

(
B2/4A

) 〈
sin[A(g +B/2A)2] + sin[A(g −B/2A)2]

〉
=

cos
(
B2/4A

)√
ḡ2A

{
C[

√
A(ḡ +B/2A)] + C[

√
A(ḡ −B/2A)]

}
+

sin
(
B2/4A

)√
ḡ2A

{
S[
√
A(ḡ +B/2A)] + S[

√
A(ḡ −B/2A)]

}
(B2)

Finally, average values of u20 and u21 in (B1) are written in
terms of constants, sinc functions and the Fresnel pairs
F [a, b, c]:

⟨u20⟩ =
1

4
+

1

8
sinc[ω− + ω(τ)] +

1

8
sinc[ω− − ω(τ)]

+
1

16
F [sτ, 0, 0] +

1

16
F [mτ, 0, dτ ]

+
1

16
F [sτ, ω−, 0] +

1

16
F [sτ, ω(τ), 0]

+
1

32
F [sτ, ω− + ω(τ), 0] +

1

32
F [sτ, ω− − ω(τ), 0]

− 1

16
F [mτ, ω−, dτ ]−

1

16
F [mτ, ω(τ), dτ ]

+
1

32
F [mτ, ω− + ω(τ), dτ ] +

1

32
F [mτ, ω− − ω(τ), dτ ]

+
1

16
F [(m+ s)τ/2, ω− − ω(τ), dτ/2]

− 1

16
F [(m+ s)τ/2, ω− + ω(τ), dτ/2] (B3)

+
1

16
F [(m− s)τ/2, ω− − ω(τ), dτ/2]

− 1

16
F [(m− s)τ/2, ω− + ω(τ), dτ/2]
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and

⟨u21⟩ =
1

4
+

1

8
sinc[ω+ + ω(τ)] +

1

8
sinc[ω+ − ω(τ)])

− 1

16
F [sτ, 0, 0]− 1

16
F [mτ, 0, dτ ]

− 1

16
F [sτ, ω+, 0]− 1

16
F [sτ, ω(τ), 0]

− 1

32
F [sτ, ω+ + ω(τ), 0]− 1

32
F [sτ, ω+ − ω(τ), 0]

+
1

16
F [mτ, ω+, dτ ] +

1

16
F [mτ, ω(τ), dτ ]

− 1

32
F [mτ, ω+ + ω(τ), dτ ]−

1

32
F [mτ, ω+ − ω(τ), dτ ]

+
1

16
F [(m+ s)τ/2, ω+ − ω(τ), dτ/2]

− 1

16
F [(m+ s)τ/2, ω+ + ω(τ), dτ/2]

− 1

16
F [(m− s)τ/2, ω+ − ω(τ), dτ/2] (B4)

+
1

16
F [(m− s)τ/2, ω+ + ω(τ), dτ/2],

where ξ ≡ ḡX, ξ′ ≡ ḡX ′,

ω(τ) ≡ 2δξ sin(τ + ϕ),

ω− = 2δξ sinϕ, ω+ = 2(ξ + ξ′) sinϕ,

F [a, b, c] ≡
= ⟨cos(ag2 + bg + c)⟩+ ⟨cos(ag2 − bg + c)⟩

=
1√
aḡ

cos

(
b2

4a
− c

)[
C

(√
aḡ +

b

2
√
a

)
+C

(√
aḡ − b

2
√
a

)]
+

1√
aḡ

sin

(
b2

4a
− c

)[
S

(√
aḡ +

b

2
√
a

)
+S

(√
aḡ − b

2
√
a

)]
(B5)

and

sinc[b] ≡ 1

ḡ

ḡ∫
0

dg cos[bg] =
sin[bḡ]

bḡ
.
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