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Abstract. This survey aims to collect the main results of the theory of the set-
theoretical solutions to the pentagon equation obtained up to now in the literature.
In particular, we present some classes of solutions and raise some questions.
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Introduction

The pentagon equation classically originates from the field of Mathematical Physics.
It appears in various forms in different contexts, such as in the representation theory of
quantum groups as the Biedenharn–Elliott identity for 6j-symbols [4], in quantum con-
formal field theory as the identity for the fusion matrices [27], in quasi-Hopf algebras as
the consistency equation for the association [11]. Still, it appears in other areas of math-
ematics, also with different terminologies (see, for instance, [1, 2, 14, 17, 18, 25, 31]). The
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pentagon equation belongs to the family of polygon equations [10] that are associated with
a Tamari lattice, namely, a partially ordered set whose elements consist of all the binary
bracketings of a string of n + 1 symbols. In particular, the pentagon equation describes a
Tamari lattice of order four. We refer to the papers [10, 28] for more details on this topic
and further references to the occurrences of the pentagon equation in literature.

Given a vector space V over a field F , a linear map S : V ⊗ V → V ⊗ V is said to be
a solution of the pentagon equation if

S12S13S23 = S23S12,

where S12 = S⊗ idV ,S23 = idV ⊗S,S13 = (idV ⊗Σ)S12 (idV ⊗Σ), with Σ the flip operator
on V ⊗V , i.e., Σ(u⊗ v) = v⊗ u, for all u, v ∈ V . Maillet [21] showed that solutions of the
pentagon equation lead to solutions of the tetrahedron equation [34], a multidimensional
generalization of the well-known quantum Yang-Baxter equation [3, 32]. Indeed, as one
can note, the pentagon equation is the quantum Yang-Baxter equation with the middle
term missing on the right-hand side. By the way, we highlight that the Yang-Baxter
equation and the tetrahedron equation belong to the family of N-simplex equations which
are related to the higher Bruhat order (see [10]). Furthermore, Militaru showed that
bijective solutions on finite dimensional vector spaces are in one-to-one correspondence
with finite dimensional Hopf algebras, so the classification of the latter is reduced to the
classification of solutions (see [26, Theorem 3.2]).

In 1998, Kashaev and Sergeev [16] began the study of the pentagon equation in set-
theoretical terms to find vector solutions, pursued further in [15]. If X is a finite set and
s : X ×X → X ×X is a map satisfying the relation

s23s13s12 = s12s23,

where s12 = s × idX , s23 = idX ×s, s13 = (idX ×τ) s12 (idX ×τ), with τ(x, y) = (y, x),
for all x, y ∈ X , they associated its pullback S, i.e., the linear operator in the space of
the functions on X × X defined as S(f)(x, y) = f(s(x, y)), for all x, y ∈ X . The map
s above is said to be a set-theoretical solution of the pentagon equation, or briefly a PE
solution, on X . Thus, if s is a PE solution on X , then S is a solution of the pentagon
equation with appropriate definition for the tensor product of infinite dimensional vector
spaces. Yet, the first instances of PE solutions can be also extrapolated from the papers by
Zakrzewski [33] and Baaj and Skandalis [2], where the authors dealt with specific solutions
on differential manifolds and measure spaces, respectively. A purely algebraic transcription
of these solutions can be found in [5]. In this paper, the authors provide the first systematic
approach for investigating PE solutions. Writing a PE solution s : X × X → X × X as
s(x, y) = (x · y, θx(y)), where θx : X → X is a map, for every x ∈ X , one has that

- (X, ·) is a semigroup,

- θx(y) · θx·y(z) = θx(y · z),

- θθx(y)θx·y = θy,
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for all x, y, z ∈ X . Therefore, the natural first step is to look for PE solutions in a group.
In this regard, a complete classification of these maps was provided in [5, Theorem 13] in
terms of normal subgroups of the group. Subsequently, the authors in [24] have started
the study of PE solutions in the family of Clifford semigroups with an attempt to describe
them (see [7] and the monographs [20, 29] for more details on this class of semigroups).
However, the study has not been completed because there are many families of solutions.
Given a Clifford semigroup X , they describe the E(X)-invariant PE solutions, namely,
those solutions for which θa(e) = θa(f), for all e, f ∈ E(X) and for every a ∈ X . Moreover,
they construct a family of E(X)-fixed PE solutions, i.e., those solutions for which θa fixes
every element in E(X), for every a ∈ X . Further developments in this regard can be found
in this paper.

Describing PE solutions on arbitrary semigroups seems very challenging since there
are many even in the case of small-order semigroups. For example, for semigroups of
order 3 there are already 202 non-isomorphic solutions (see [22, Appendix B]). Because
of this, several authors have studied specific classes of PE solutions. In this respect,
Colazzo, Jespers, and Kubat [9] described all the involutive PE solutions, namely, solutions
satisfying the property s2 = idX×X . Recently, the author in [23] started the investigation of
idempotent PE solutions, i.e., solutions such that s2 = s. A classification of these solutions
is obtained in the case of monoids having central idempotents. Additionally, in [6], one
can find a description of PE solutions that are also set-theoretical solutions of the Yang-
Baxter equation, the so-called P-QYBE solutions. Easy examples are the maps s of the
form s(x, y) = (f(x), g(y)), with f, g : X → X idempotent maps such that fg = gf , that
belong to the class of Lyubashenko’s solutions (for more details, see [12]).

Another line of research consists of looking for methods to obtain new solutions starting
from known ones. In [6], some can be found, such as the technique of the matched product
of two solutions s and t on two semigroups S and T , respectively, that is a new solution
on the semigroup S ⊲⊳ T (see [6, Definition 1]), namely a semigroup including the classical
Zappa product of S and T (see [19, Definition 1.1]).

In this survey, we give an overview of PE solutions and collect several results on this
little-explored area. Some open questions will be raised during the work that may inspire
the reader. Specifically, the survey is organized as follows: in the first section, we give
some preliminaries and examples by recalling the description of all PE solutions defined
in groups; in the second one, we present some problems related to PE solutions in the
class of Clifford semigroups; the third section is devoted to the description of all involutive
PE solutions: the fourth one contains the characterization of idempotent PE solutions in
monoids having central idempotents and some issues concerning this class of solutions.
Finally, in the last paragraph, we give some hints on other classes of PE solutions that one
could study, namely the commutative and cocommutative ones.

1 Definitions and examples

This section aims to give some basics on PE solutions. In particular, we recall some
examples and constructions.
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Let X be a non-empty set. The map s : X×X → X×X given by s(x, y) = (x·y, θx(y)),
where θx : X → X is a map, for every x ∈ X , is a PE solution if, and only if, (X, ·) is a
semigroup and the following hold

θx(y) · θx·y(z) = θx(y · z), (P1)

θθx(y)θx·y = θy, (P2)

for all x, y, z ∈ X . Moreover, s is said to be involutive if s2 = idX×X ; idempotent if s2 = s;
non-degenerate if θx is bijective, for every x ∈ X .

Definition 1.1. Let X and Y be two semigroups and consider s(x, y) = (xy, θx(y)) and
t(u, v) = (uv, ηu(v)) two PE solutions on X and Y , respectively. Then, s and t are isomor-
phic if there exists a semigroup isomorphism ψ : X → Y such that ψθx(y) = ηψ(x)ψ(y), for
all x, y ∈ X , or, equivalently, (ψ × ψ)s = t(ψ × ψ).

From now on, we will use juxtaposition for the product in any semigroup. In the
following, we give some examples of solutions.

Example 1.2.

1. Let X be a set and f, g : X → X maps such that f 2 = f , g2 = g, and fg = gf .
Then, the map s(x, y) = (f (x) , g (y)), for all x, y ∈ X , is an idempotent PE solution
on X (cf. [25]). Note that this map also belongs to the class of P-QYBE solutions
since it also satisfies the quantum Yang-Baxter equation (cf. [6, Examples 8]).

2. If S is a semigroup and γ ∈ End(S) such that γ2 = γ, the map s(x, y) = (xy, γ (y)) ,
for all x, y ∈ S, is a PE solution on S (see [5, Examples 2-2.]). Note that s is
non-degenerate if, and only if, γ = idS.

3. Let S = {0, a, b} be the null semigroup, i.e., xy = 0, for all x, y ∈ S. Consider the
maps θ0 = idS and θa = θb such that θa(0) = 0, θa(a) = b, and θa(b) = a. Then,
the map s(x, y) = (0, θx(y)) is an idempotent and non-degenerate PE solution on S
(see [22, Appendix B]).

4. Let G be a group of finite exponent, E = {1, . . . , n}, and σ ∈ Sym(n) such that
σσ(i)+1 = σi, for any i ∈ E. Put S = G×E, the map s : S × S → S × S defined by

s((i, a), (j, b)) =
(

(i, ab) ,
(

σi(j), b
))

is a bijective PE solution on S (see [9, Example 1.3]). Additionally, s is involutive
if, and only if G has exponent 2 and σ has order 2.

Other examples of PE solutions can be obtained from the pioneering works [2, 33],
where the authors deal with the PE solutions in non-algebraic contexts, by calling such
maps pentagonal transformations. We present such solutions by transcribing them in purely
algebraic terms.
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Example 1.3. Let G be a group that admits an exact factorization through two subgroups
H,K and p1 : G → H , p2 : G → K the projection maps such that every x ∈ G can be
written as x = p1(x) p2(x). Then, the maps s, r : G×G→ G×G given by

s (x, y) =
(

p2
(

yp1 (x)
−1)x, yp1 (x)

−1) and r (x, y) =
(

xp1
(

p2 (x)
−1 y

)

, p2 (x)
−1 y

)

are bijective PE solutions on G. In particular, G endowed with the operation defined by
the first component of the map r (or s) is a left group, i.e., the direct product of a left zero
semigroup and a group.

The maps in Definition 1.3 are such that r = τsτ , with τ the flip map. In general,
one has that if s is a bijective PE solution on a set X , the map sop = τs−1τ also is a PE
solution, called the opposite PE solution of s (in analogy to the opposite operators defined
on Hilbert spaces [2]).

In [16, Proposition 1], one can find the first systematic way for constructing PE solutions
which we recall below.

Proposition 1.4. Let G be a group, X a subsemigroup of G, and λ, µ : X → G maps such
that, for all x, y ∈ X,

1. x ∗ y := µ(x)−1µ(xy) ∈ X,

2. µ(x ∗ y) = λ(x)µ(y).

Then, the map s : X ×X → X ×X given by s(x, y) = (xy, x ∗ y) is a PE solution on X.

The following theorem illustrates how to find all the PE solutions in the case of a group.

Theorem 1.5. [5, Theorem 15] Let G be a group, K a normal subgroup of G, and R a
system of representatives of G/K. If µ : G → R is a map such that µ(x) ∈ Kx, for any
x ∈ G, then the map s(x, y) =

(

xy, µ (x)−1 µ (xy)
)

, for all x, y ∈ G, is a PE solution.
Vice versa, if s(x, y) = (xy, θx(y)) is a PE solution on the group G, then the set

K = {x ∈ G | θ1(x) = 1} is a normal subgroup of G, Im θ1 is a system of representatives
of G/K, θ1(x) ∈ Kx, and θx(y) = θ1 (x)

−1 θ1 (xy) , for all x, y ∈ G.

It immediately follows from Definition 1.5 that the only bijective PE solution on a
group G is given by the map sG(x, y) = (xy, y) that is known in literature as Kac-Takesaki
solution, concerning the associated linear operator defined on the Hilbert space of square-
integrable functions [30].

An easy example of PE solutions on the symmetric group is the following.

Example 1.6. Let n ≥ 3, Symn the symmetric group of order n, An the alternating group
of degree n, and R = {idSymn

, π} a system of representatives of Symn /An, where π is a
transposition in Symn. Moreover, consider the map µ : Symn → R given by

µ(α) =

{

π if sgn(α) = −1

idSymn
if sgn(α) = 1,
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for every α ∈ Symn. Then, the map s(α, β) =
(

αβ, µ (α)−1 µ (αβ)
)

, for all α, β ∈ Symn, is
a PE solution on Symn.

In the next section, we will show how to extend the theorem above to a specific class of
solutions defined on Clifford semigroups. Regarding the PE solutions defined on monoids,
some properties of the maps θx are given in [23] and we recall them below.

Lemma 1.7. Let M be a monoid with identity 1 and s(x, y) = (xy, θx(y)) a PE solution
on M . Then, the following hold:

1. θx(1) ∈ E(M),

2. θ1 = θθx(1)θx,

3. θ1(x) ∈ θ1(1)M ,

4. θx = θθ1(x)θx,

for every x ∈M .

However, we are still far from a classification.

Problem 1. Study or find some constructions of PE solutions defined on monoids.

To conclude this preliminary section, we mention the technique of matched product of
PE solutions introduced in [6], which is a method to obtain a new PE solution on the
Cartesian product of two semigroups starting from two given ones. To recall it, we first
give the following definition.

Definition 1.8. Let S and T be semigroups, α : T → SS and β : S → T T maps, and
set αu := α (u), for every u ∈ T , and βa := β (a), for every a ∈ S. Moreover, let
s(a, b) = (ab, θa(b)) and t(u, v) = (uv, ηu(v)) PE solutions on S and T , respectively. If the
following conditions are satisfied

αu (aαv (b)) = αu (a)αβa(u)v (b) and βa (βb (u) v) = βbαv(a) (u)βa (v) ,

θaαu = θαv(a)αβa(v)u,

θaαu(b) = αηβb(u)(v)θaαu(b),

ηβbαv(c)(u)
βc(v) = βθaαu(b)αβb(u)v

(c)ηβb(u)(v),

for all a, b, c ∈ S and u, v ∈ T , then we call (s, t, α, β) a matched quadruple.

It is a routine computation to verify that S×T , endowed with the operation defined by
(a, u) (b, v) = (aαu(b), βb(u)v), for all (a, u), (b, v) ∈ S × T , is a semigroup, called matched
product of S and T and denoted by S ⊲⊳ T . As a class of examples, one can easily find the
classical Zappa product [19].

6
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Theorem 1.9. Let S, T be semigroups and (s, t, α, β) a matched quadruple. Then, the map
s ⊲⊳ t : (S × T )× (S × T ) → (S × T )× (S × T ) defined by

s ⊲⊳ t ((a, u), (b, v)) =
(

(aαu(b), βb(u)v) ,
(

θaαu(b), ηβb(u)(v)
))

,

for all (a, u) , (b, v) ∈ S × T , is a PE solution on S ⊲⊳ T , called the matched product of s
and t.

Example 1.10. Let S = {1S, x, y} be the commutative idempotent monoid such that
xy = y and T = {1T , z} the unique idempotent monoid on two elements. Consider the
maps α : T → SS given by α1T = idS and αz = γ, where γ ∈ End(S), γ2 = γ, and
β : S → T T defined by β1S = idT and βx(u) = βy(u) = 1T , for every u ∈ T . Moreover,
let s(a, b) = (ab, γ(b)) and t(u, v) = (uv, v) be the PE solutions on S and T , respectively.
Then, (s, t, α, β) is a matched quadruple and the map

s ⊲⊳ t ((a, u), (b, v)) =



















((a, v), (1S, v)) if b = 1S, u = 1T

((a, uv), (1S, v)) if b = 1S, u 6= 1T

((ab, v, (γ(b), v)) if b 6= 1S, u = 1T

((aγ(b), v), (γ(b), v)) if b 6= 1S, u 6= 1T

is a PE solution on S ⊲⊳ T .

2 PE solutions on Clifford semigroups

In this section, we focus on PE solutions defined on a Clifford semigroup and satisfying
special properties on the set of all idempotents discussed in [24]. Moreover, we propose
some topics to be developed.

We begin by recalling some basic facts from the theory of Clifford semigroups that
will be useful in the following. For a more detailed treatment of this class of semigroups,
we refer the reader to the paper by Clifford [7] and the monographs by Petrich [29] and
Lawson [20]. A semigroup X is inverse if for each x ∈ X there exists a unique x−1 ∈ X
such that

x = xx−1x and x−1 = x−1xx−1.

Clearly, every group is an inverse semigroup. We have (xy)−1 = y−1x−1 and (x−1)−1 = x,
for all x, y ∈ X . Additionally, X is Clifford if the idempotents xx−1 and x−1x are equal, for
any x ∈ X , or, equivalently, the idempotents are central in the sense that they commute
with every element in X . Furthermore, any Clifford semigroup is a union of groups.
More specifically, denoting by E(X) the set of all idempotents of X , there exist a family
{Ge}e∈E(X) of disjoint groups and a family of group homomorphisms ϕf,e : Gf → Ge, for
all e, f ∈ E(X) with e ≤ f , i.e., ef = fe = e, with ϕf,e(y) = ey, for any y ∈ Gf , such that
the product in X can be expressed as xy = ϕe,ef (x)ϕf,ef (y), for all x ∈ Ge and y ∈ Gf .

7
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Let us observe that every Clifford semigroup X gives rise to the following PE solutions

I(x, y) = (xy, y), F(x, y) =
(

xy, yy−1
)

, E(x, y) = (xy, e),

for all x, y ∈ X , where e ∈ E(X). These examples suggest studying the PE solution classes
defined as follows.

Definition 2.1. A PE solution s(x, y) = (xy, θx(y)) on a semigroup X is said to be:

1. E (X)-invariant if θx(e) = θx(f), for all x ∈ X and e, f ∈ E(X);

2. E(X)-fixed if θx(e) = e, for all x ∈ X and e ∈ E(X).

In particular, E is E (X)-invariant, while I and F are E (X)-fixed on any Clifford
semigroup X .

Example 2.2. Let M = {1, x, y} be the commutative Clifford monoid defined by x2 = x,
y2 = x, and xy = y, and γ ∈ End(M) the semigroup morphism given by γ(1) = γ(x) = x
and γ(y) = y. Then, the map s(a, b) = (ab, γ(b)) is an E(M)-invariant PE solution on M .

Next, following [24, Theorem 15], we show how to construct all the E(X)-invariant PE
solutions on a Clifford semigroup X , by extending the description in Definition 1.5. First,
recall that a congruence τ on E(X) is said to be normal if

∀ e, f ∈ E(X) e τ f =⇒ ∀ a ∈ X a−1ea τ a−1fa.

Moreover, a subsemigroup K of X is normal if E(X) ⊆ K and for all a ∈ K it holds that
a−1 ∈ K and a−1Ka ⊆ K. Thus, if K is a normal subsemigroup of X , the pair (K, τ) is
named a congruence pair of X if

∀ a ∈ X, e ∈ E(X) ae ∈ K and (e, a−1a) ∈ τ =⇒ a ∈ K.

Besides, recall that the restriction of a congruence ρ in X to E(X) is also a congruence on
E(X), called the trace of ρ and usually written as tr ρ. Denote by Ker ρ the union of all
the idempotent ρ-classes, namely,

Ker ρ =
⋃

e∈E(X)

ρe

where ρe = {x ∈ X | (x, e) ∈ ρ}, for all e ∈ E(X). The properties of ρ can be described
entirely in terms of Ker ρ and tr ρ, as we show next (for more details, see [13, Section 5.3]).

Theorem 2.3 (cf. Theorem 5.3.3 in [13]). Let X be an inverse semigroup. If ρ is a congru-
ence on X, then (Ker ρ, tr ρ) is a congruence pair. Conversely, if (K, τ) is a congruence
pair, then

ρ(K,τ) = {(a, b) ∈ X ×X |
(

a−1a, b−1b
)

∈ τ, ab−1 ∈ K}

is a congruence on X. Moreover, Ker ρ(K,τ) = K, tr ρ(K,τ) = τ , and ρ(Ker ρ,tr ρ) = ρ.

8
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Theorem 2.4. Let X be a Clifford semigroup, ρ a congruence on X such that X/ρ is a
group and R a system of representatives of X/ρ. If µ : X → R is a map such that

µ (xy) = µ (x)µ (x)−1 µ (xy)

and (µ(x), x) ∈ ρ, for all x, y ∈ X, then the map s(x, y) =
(

xy, µ (x)−1 µ (xy)
)

, for all
x, y ∈ X, is an E(X)-invariant PE solution on X.

Conversely, let s(x, y) = (xy, θx(y)) be an E (X)-invariant PE solution on X. Then,
there exists a congruence pair (K, τ), with

K = {x ∈ X | θe(x) ∈ E(X), for any e ∈ E(X)} and τ = E(X)× E(X),

such that

ρ(K,τ) = {(x, y) ∈ X ×X |
(

x−1x, y−1y
)

∈ τ, xy−1 ∈ K}

is a congruence on X and θe (X) is a system of representatives of the group X/ρ(K,τ) and
(θe (x) , x) ∈ ρ(K,τ), for all e ∈ E(S) and x ∈ X. Moreover, the map θe satisfies

θe (xy) = θe (x) θe (x)
−1 θe (xy) ,

and θx(y) = θe(x)
−1θe(xy), for all x, y ∈ X and e ∈ E (X).

Proposition 2.5. Let X be a Clifford semigroup and

s(x, y) = (xy, θx(y)), t(u, v) = (uv, ηu(v))

two E(X)-invariant PE solutions on X. Then, s and t are isomorphic if, and only if, there
exists an isomorphism ψ of X such that ψθe = ηeψ, for every e ∈ E(X).

In other words, ψ sends the system of representatives θe(X) into the other one ηe (ψ(X)).
With regards to the class of E(X)-fixed PE solutions, a construction has been provided.

Indeed, considering that every Clifford semigroup can be seen as a union of groups Ge, it
is natural to contemplate whether it is possible to construct a global PE solution from PE
solutions obtained in each of its groups.

Proposition 2.6. Let X be a Clifford semigroup and assume that, for every e ∈ E(X),

s[e](x, y) =
(

xy, θ
[e]
x (y)

)

is a PE solution on Ge. Moreover, for all e, f ∈ E(X), let

ǫe,f : Ge → Gf be maps such that ǫe,f = ϕe,f if e ≥ f . Assume the following conditions are
satisfied

θ
[h]
ǫef,h(xy)

= θ
[h]
ǫe,h(x)ǫf,h(y)

and ǫf,hθ
[f ]
ǫe,f (x)

(y) = θ
[h]
ǫe,h(x)

ǫf,h(y),

for all e, f, h ∈ E(X) and x ∈ Ge, y ∈ Gf . Set θx(y) := θ
[f ]
ǫe,f (x)

(y), for all x ∈ Ge, y ∈ Gf .

Then, the map s(x, y) = (xy, θx(y)) is an E(X)-fixed PE solution on X.

9
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Example 2.7. Let X be a Clifford semigroup and s[e] (a, b) =
(

ab, γ[e] (b)
)

a PE solution

on the group Ge, with γ
[e] an idempotent endomorphism of Ge, for every e ∈ E(X). Then,

by choosing maps ǫe,f : Ge → Gf , for all e, f ∈ E(X) such that ϕe,fγ
[e] = γ[f ]ϕe,f if e ≥ f

and ǫe,f (x) := f otherwise, one has that the map s(a, b) =
(

ab, γ[f ](b)
)

, for all a ∈ Ge and
b ∈ Gf , is a PE solution on X .

Denoting by Ke the kernel of each PE solution s[e] on Ge, i.e., the normal subgroup
Ke = {a ∈ Ge | θ

[e]
e (a) = e} of Ge that we know to exist from Definition 1.5, we have the

following result.

Proposition 2.8. Let X be a Clifford semigroup, ǫe,f(e) = f , for all e, f ∈ E(X) with
e ≤ f , and s be an E(X)-fixed solution on X constructed as in Definition 2.6. Then,

K = {a ∈ X | ∀ e ∈ E(X), e ≤ a, θe(a) = aa−1} =
⋃

e∈E(X)

Ke.

However, in [24], it is argued that this cannot be a description. In light of the previous
discussion, the following question arises.

Problem 2. Find all the E(X)-fixed PE solutions on a Clifford semigroup X.

To conclude, we observe that not every PE solution on a Clifford X lies in the class of
E(X)-invariant or E(X)-fixed PE solutions (see [24, Example 4]). Thus, the next problem
arises.

Problem 3. Find and study other classes of PE solutions on a Clifford semigroup X.

3 Description of the involutive PE solutions

In this section, we recall the description of the involutive PE solutions obtained by
Colazzo, Jespers, and Kubat in [9].

Initially, let s(x, y) = (xy, θx(y)) be an involutive PE solution on a semigroup X . Then,
beyond (P1) and (P2), the following additional equalities

xyθx(y) = x and θxyθx(y) = y

hold, for all x, y ∈ X . We give some immediate considerations.

Remark 3.1.

1. If G is a group, then the only bijective PE solution sG(x, y) = (xy, y) on G is
involutive if, and only if, G is an elementary abelian 2−group.

2. If L is a left zero semigroup and sL is an involutive PE solution on L, one has that
the map s = sL × sG is an involutive PE solution on the left group X = L× G. In
addition, [9, Theorem 3.2] shows that the converse is true, namely, all the involutive
PE solutions are of this type. It is mainly a consequence of [8, Theorem I.1.27].

10
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Therefore, from the considerations above, the problem of describing all the involutive
PE solutions reduces to finding them on a left zero semigroup. It will turn out that all
such solutions are uniquely determined by two elementary abelian 2−groups. Thus, in the
following, we list some results and useful notions to give the main theorem.

First, following [9, Section 4], given an involutive PE solution s(x, y) = (xy, θx(y)) on
a semigroup X , one can consider the following congruence relation

∀x, y ∈ X x ∼ y ⇐⇒ θx = θy.

So, setting X := X/ ∼ and denoting by x the ∼-class of x ∈ X , one has that X is a left
zero semigroup and the map Ret(s) (x, y) =

(

xy, θx (y)
)

is an involutive PE solution on

X , called the retract of s. Moreover, the PE solution s is called irretractable if s = Ret(s).
One can show that Ret(s) is irretractable.

The following is a complete description of irretractable involutive PE solutions.

Proposition 3.2. Let (A,+) be an elementary abelian 2-group. Then, tA(x, y) = (x, x+ y)
is an irretractable involutive PE solution on A.

Conversely, if s is an irretractable involutive PE solution on a semigroup X, then there
exists a structure (X,+) of elementary abelian 2-group on X such that s(x, y) = (x, x+y),
for all x, y ∈ X.

The following problem might be interesting to deal with.

Problem 4. Study a possible retract relation for bijective (not necessarily involutive) PE
solutions.

Lemma 3.3. [9, Proposition 5.1 - 5.3] Let (A,+) be an elementary abelian 2-group , tA
the irretractable involutive PE solution on A, X a non-empty set, and σ : A→ Sym(X) a
map. Setting S = X ×A, we have that the map ExtσX(tA) : S × S → S × S given by

ExtσX(tA)((x, a), (y, b)) =
(

(x, a) ,
(

σa+bσ
−1
b (y) , a+ b

))

,

for all (x, a), (y, b) ∈ S, is an involutive PE solution on S, called the extension of tA by
X and σ. In addition, every involutive PE solution on a left zero semigroup can be so
constructed.

Theorem 3.4. [9, Theorem 5.5 - 5.6] Let s(x, y) = (xy, θx(y)) be an involutive PE solution
on a semigroup S. Then, there exist two elementary abelian 2-groups A and G, and a non-
empty set X such that S may be identified with X × A×G and

s = ExtσX(tA)× sG,

for some σ : G→ Sym(X), where tA is the irretractable involutive PE solution defined on
A and sG is the bijective PE solution on G. Moreover, Ret(s) = tA.

In addition, all the involutive PE solutions, up to isomorphism, on a non-empty set S
are in bijective correspondence with decompositions of S as a product of X × A×G.

11
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Finally, [9, Corollary 5.7] determines how many involutive PE solutions there are.
Namely, assume that S is a non-empty set of cardinality 2n(2m + 1), with n,m ≥ 0.
Then, there exists exactly

(

n+2
2

)

involutive PE solutions on S.

4 Idempotent PE solutions

This section is devoted to recalling essential features of idempotent PE solutions. In
particular, we mention the description of solutions on monoids having central idempotents,
contained in [23].

First, a PE solution s(x, y) = (xy, θx(y)) on a semigroup X is idempotent if, and only
if, the following equalities

xyθx(y) = xy and θxyθx(y) = θx(y)

are satisfied, for all x, y ∈ X . Below we list properties, showing that idempotents of the
semigroup X play an important role. First, following [8, p. 22], given a semigroup X and
e ∈ E(X), then e is a left identity (resp. right identity) if ex = x (resp. xe = x), for every
x ∈ X , and the sets

eX = {x ∈ X | ex = x}, Xe = {x ∈ X | xe = x}

coincide respectively with the principal right and left ideals of X generated by e.

Proposition 4.1. Let X be a semigroup, e ∈ E(X), and s(x, y) = (xy, θx(y)) an idempotent
PE solution on X.

1. If x ∈ Xe, then

a. x ∈ Xθx(e),

b. ∀y ∈ X θy(x) ∈ Xθx(e),

c. θe = θeθx.

2. If x ∈ eX, then

d. θe(x) ∈ E(X),

e. x ∈ X θe(x),

f. ∀y ∈ X θy(x) ∈ Xθe(x),

g. θx is an idempotent map.

Clearly, Definition 4.1 can be applied if X is a monoid. The following Corollary collects
the consequences of this specialization.

12
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Corollary 4.2. If M is a monoid and s(x, y) = (xy, θx(y)) an idempotent PE solution on
M , then the following hold for every x ∈M :

1. θ1(x) ∈ E(X) and, in particular, θ1(1) = 1,

2. θx = θθ1(x),

3. θ1 = θ1θx,

4. θx is idempotent.

As a consequence of the definition, ifM is a cancellative monoid the unique idempotent
PE solution on X is the map s(x, y) = (xy, 1); it belongs to the class of PE solutions
discussed in Example 1.2-2. On the other hand, even considering non-cancellative monoids
of small orders, one can note that among the PE solutions, several idempotent ones do
not belong to the class of solutions in Example 1.2-2. The following is an easy example
in [22, Appendix B].

Example 4.3. Let M = {1, a, b} be the commutative monoid with identity 1 and multi-
plication given by a2 = a, ab = a, b2 = 1. Then, there are 3 idempotent solutions, up to
isomorphism:

1. s(x, y) = (xy, 1);

2. r(x, y) = (xy, γ(y)), with γ :M →M defined by γ(1) = γ(b) = 1 and γ(a) = a;

3. t(x, y) = (xy, θx(y)), with θx : M → M the map given by θx(1) = 1, θx(a) = a, for
every x ∈ M , and θ1(b) = θb(b) = 1 and θa(b) = b.

Note that, in general, the map θ1 is not a homomorphism.

Proposition 4.4. Let M be a monoid having central idempotents and s(x, y) = (xy, θx(y))
an idempotent PE solution on M . Then, the map θ1 is an idempotent monoid homomor-
phism fromM to E(M). Moreover, denoting by ker θ1 = {(x, y) ∈M×M | θ1(x) = θ1(y)},
the following hold

1. θ1(M) is a system of representatives of M/ ker θ1;

2. (θx(y), y) ∈ ker θ1, for all x, y ∈M .

In light of the previous results, we describe the idempotent PE solutions on monoids
having central idempotents (see [23, Theorem 19]).

Theorem 4.5. Let M be a monoid having central idempotents and µ an idempotent monoid
homomorphism from M to E(M) such that, for every x ∈M , µ(x) = ex, with ex ∈ E(M)

13
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a right identity for x. Moreover, let {θe : M → M | e ∈ Imµ} be a family of maps such
that θ1 = µ, and for all e, f ∈ Imµ,

θe = θeθef ,

θe(xy) = θe(x)θh(y),

θejθe(x) = θe(x),

for all x, y ∈ M , with h = µ(ex) and j = µ(x). Then, s(x, y) = (xy, θµ(x)(y)) is an
idempotent PE solution on M . Conversely, every idempotent PE solution on M can be so
constructed.

Problem 5. Describe idempotent PE solutions on other classes of semigroups.

5 Commutative and cocommutative PE solutions

Other classes of PE solutions that can be studied are the commutative and the cocom-
mutative ones. These classes were introduced in [5] as an analogue of the commutative
and the cocommutative multiplicative unitary operators, i.e., vector solutions defined on
Hilbert spaces (for more details, see [1, Definition 2.1]).

Definition 5.1. A PE solution s : X × X → X × X on a semigroup X is said to be
commutative if s12s13 = s13s12; cocommutative if s13s23 = s23s13.

It is a routine computation to check that a PE solution s(x, y) = (xy, θx(y)) on a
semigroup X is commutative if and only if

xzy = xyz and θx = θxy,

for all x, y, z ∈ X . On the other hand, s is cocommutative if and only if

xθy(z) = xz and θxθy = θyθx,

for all x, y, z ∈ X . There exist PE solutions that are both commutative and cocommuta-
tive, such as the maps in 1. of Example 1.2. Moreover, according to [9, Corollary 3.4], if
s is an involutive PE solution, then s is both commutative and cocommutative. Besides,
if X is a monoid, the unique cocommutative PE solution is given by s(x, y) = (xy, y). All
the commutative PE solutions on a monoid X are described in [23, Proposition 5]. The
same results can be observed in the case of a commutative or cocommutative PE solutions
on a Clifford semigroup X (see [24, Proposition 9]). We summarize below:

Proposition 5.2. Let X be a monoid (or a Clifford semigroup). Then, a PE solution
s(x, y) = (xy, θx(y)) on X is

1. commutative if and only if X is a commutative monoid (or Clifford semigroup) and
θx = γ, with γ ∈ End(X), γ2 = γ, for every x ∈ X;

14
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2. cocommutative if and only if θx = idX , for every x ∈ X.

Problem 6. Classify commutative or cocommutative PE solutions on other classes of semi-
groups.
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