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Abstract

Given a function f : R → R, call a decreasing sequence x1 > x2 > x3 > · · · f -bad if f(x1) > f(x2) >
f(x3) > · · · , and call the function f ordinal decreasing if there exist no infinite f -bad sequences. We
prove the following result, which generalizes results of Erickson et al. (2022) and Bufetov et al. (2024):
Given ordinal decreasing functions f, g1, . . . , gk, s that are everywhere larger than 0, define the recursive
algorithm “M(x): if x < 0 return f(x), else return g1(−M(x−g2(−M(x−· · ·−gk(−M(x−s(x))) · · · ))))”.
Then M(x) halts and is ordinal decreasing for all x ∈ R.

More specifically, given an ordinal decreasing function f , denote by o(f) the ordinal height of the
root of the tree of f -bad sequences. Then we prove that, for k ≥ 2, the function M(x) defined by
the above algorithm satisfies o(M) ≤ φk−1(γ + o(s) + 1), where γ is the smallest ordinal such that
max {o(s), o(f), o(g1), . . . , o(gk)} < φk−1(γ).

Keywords: Ordinal, recursive algorithm, ordinal decreasing function, fusible number, Veblen function.

1 Introduction

Erickson, Nivasch and Xu [6, 7, 10] studied the following recursive algorithm M :

M(x) =

{
−x, if x < 0;
M(x−M(x−1))

2 , if x ≥ 0.
(1)

For example it can be checked that M(1) = M(1−M(0))
2 = 1

8 , M( 32 ) =
1
32 , M(2) = 2−10, M( 52 ) = 2−31 and

M(3) = 2−1,541,023,937 (see Figure 1).
Erickson, Nivasch and Xu [6, 7, 10] proved that M terminates on all real inputs, although Peano Arith-

metic cannot prove that M terminates on all natural inputs. PA-independence was shown by proving that
1

M(n) grows as fast as Fε0(n− 7) for integers n ≥ 8.

The motivation for algorithm M lies in the set of fusible numbers. As Erickson et al. [6] showed, M(x)
returns the distance between x and the smallest “tame fusible number” larger than x. However, algorithm
M is worth studying on its own right, since it is a simple algorithm for which its termination is not so easy to
prove. In a follow-up paper, Bufetov, Nivasch and Pakhomov [3] studied a generalization of fusible numbers
to n-fusible numbers and a corresponding generalization of algorithm M to the following algorithm Mn:

Mn(x) =

{
−x, if x < 0;
Mn(x−Mn(x−···−Mn(x−1)··· ))

n , if x ≥ 0;
(2)

where Mn(x− · · · ) repeats n times. They showed that for every n ≥ 1, Mn terminates on all real inputs.
In this paper we study the following question: Which modifications can be done to algorithm M , or to

its generalization Mn, such that they will still halt on all real inputs? For example, what would happen if, in
(1), we change the denominator 2 to 3? What would happen if we change the “−1” to something depending
on x?

In this paper we identify a large class of algorithms that generalize Mn and halt on all real inputs. The
description of the algorithms, as well as the proof that they halt on all real inputs, involve a property of
real-valued functions, which we call ordinal decreasing.
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Figure 1: The graph of M(x) up to x = 2.1.

Figure 2: Examples of ordinal decreasing functions.

1.1 Ordinal decreasing functions

Definition 1.1. Given a function f : D → R for some D ⊆ R, we call a descending sequence x1 > x2 >
x3 > · · · in D f -bad if f(x1) > f(x2) > f(x3) > · · · . We call the function f ordinal decreasing if there exist
no infinite f -bad sequences. We call f ordinal decreasing up to a if it is ordinal decreasing in the interval
(−∞, a] ⊆ D.

Some examples of ordinal decreasing functions are:

1. Every nonincreasing function.

2. A function f in the domain [0, 1) that is divided into a sequence of intervals {In} where In = [1 −
2−n, 1− 2−(n+1)) and where f is decreasing in each interval (see Figure 2, left).

3. A function f in the domain (0, 1] that is divided into a sequence of intervals {In} where In =
(2−(n+1), 2−n], such that f is decreasing in each In but such that for each n there exist only finitely
many n < m such that f(2−m) > limx→(2−n)+(f(x)) (see Figure 2, right).

The notion of an f -bad sequence is analogous to the notion of a bad sequence in a well partial order (see
Section 2.4 below for background on well partial orders). We can naturally extend the analogy, and define
the ordinal type o(f) of an ordinal decreasing function f , as follows:

Given an ordinal decreasing function f , define the tree of f -bad sequences Tf as the (possibly infinite)
tree that contains a vertex vf (x) for each f -bad sequence x = ⟨x1 > · · · > xn⟩, and contains an edge
connecting each vf (⟨x1 > · · · > xn⟩), n ≥ 1 to its parent vf (⟨x1 > · · · > xn−1⟩). The root of the tree is
vf (⟨⟩), corresponding to the empty sequence.

Since Tf contains no infinite path, there exists a unique way to assign to each vertex v ∈ Tf an ordinal
height o(v), such that o(v) = limw child of v(o(w) + 1) for all v ∈ Tf . We define the ordinal type o(f) of the
function f to be the ordinal height of the root of Tf , meaning o(f) = o(vf (⟨⟩)).
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Given x ∈ D, we define of to be the function from the reals to the ordinals recursively given by of (x) =
limx′<x,f(x′)<f(x)(of (x

′) + 1). Then it is easy to verify that o(f) = limx∈R(of (x) + 1).
Given an interval D ⊂ R, let o(f |D) denote the ordinal type of the restriction of f to D.

1.2 Our results

Now we can state the main results of our paper.

Theorem 1.2. Consider the recursive algorithm:

M(x) =

{
f(x) if x < 0;

g1(−M(x− g2(−M(x− · · · − gk(−M(x− s(x))) · · · )))) if x ≥ 0;
(3)

where the functions s(x), f(x) and gi(x) for all i are all ordinal decreasing and larger than 0 for every x in
the appropriate ranges: (−∞, 0) for f, gi, and [0,∞) for s.

Then M(x) halts and is ordinal decreasing for all x ∈ R.

Note that Theorem 1.2 covers the cases mentioned above, by taking k = n, g1(x) = − x
n , gi(x) = −x for

2 ≤ i ≤ n and s(x) = 1.
We also prove the following upper bounds on o(M) in terms of k and o(f), o(s), o(g1), . . . , o(gk).

Theorem 1.3. Let M be the function computed by the algorithm of Theorem 1.2. If k = 1, then let γ satisfy
max {o(f), o(s), o(g1)} < ωωγ

. Then o(M) ≤ ωωγ+1(o(s)+1). For k ≥ 2, let γ satisfy max{o(f), o(s), o(g1), . . . ,
o(gk)} < φk−1(γ). Then o(M) ≤ φk−1(γ + o(s) + 1).

By comparison, the specific function M of Erickson et al. [7] satisfies o(M) = φ1(0) = ε0, and the
generalization of Bufetov et al. [3] satisfies o(M) = φn−1(0). (See Section 2.2 below for the definition of the
φ notation.)

2 Background

2.1 Real induction

In this paper we will use the following result, which is called real induction (see Clark [4] for a survey).

Lemma 2.1. Let S ⊂ R be a set that satisfies:
(R1) There exists a ∈ R such that (−∞, a) ⊂ S.
(R2) For all x ∈ R, if (−∞, x) ⊂ S, then x ∈ S.
(R3) For all x ∈ S, there exists y > x such that (x, y) ⊂ S.
Then S = R.

Proof. Suppose S ̸= R. Let a = inf(R \ S). By (R1) a ̸= −∞. Therefore by (R2), a ∈ S. Therefore (R3)
yields a contradiction.

It is worth noting for our purposes that since Peano Arithmetic is built upon the natural numbers, we
cannot use real induction within Peano Arithmetic, but must rely on Second Order Arithmetic.

2.2 Veblen functions

The finite Veblen functions φn, n ∈ N are a sequence of functions from ordinals to ordinals, defined by
starting with φ0(α) = ωα, and for each n ∈ N, letting

φn+1(0) = lim
k∈N

φ(k)
n (0);

φn+1(α+ 1) = lim
k∈N

φ(k)
n (φn+1(α) + 1);

φn+1(α) = lim
β<α

φn+1(β), α limit.
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Here f (k) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k

denotes k-fold application of f . Ordinals of the form φ1(α) are called epsilon

numbers, and are denoted εα = φ1(α).

2.3 Natural sum and product of ordinals

Given ordinals α, β with Cantor Normal Forms

α = ωα1 + . . .+ ωαn , with α1 ≥ . . . ≥ αn,

β = ωβ1 + . . .+ ωβm , with β1 ≥ . . . ≥ βm;

their natural sum α⊕ β is given by ωγ1 + . . .+ ωγn+m , where γ1, . . . , γn+m are α1, . . . , αn, β1, . . . , βm sorted
in nonincreasing order. The natural product of α, β is given by

α⊗ β =
⊕

1≤i≤n

1≤j≤m

ωαi⊕βj .

(See e.g. de Jongh and Parikh [5].)
The natural sum and natural product operations are commutative and associative, and natural product

distributes over natural sum. These operations are also monotonic, in the sense that if α < β then α⊕ γ <
β⊕ γ, if α ≤ β then α⊗ γ ≤ β⊗ γ, and if α < β and γ > 0 then α⊗ γ < β⊗ γ. Furthermore, α+ β ≤ α⊕ β
and αβ ≤ α⊗ β.

Recall that if α = ωα1+ · · ·+ωαk is in CNF, then αω = limn∈N αn = ωα1+1, and αω = limn∈N αn = ωα1ω.
Then the following properties are readily checked:

• α⊕ · · · ⊕ α︸ ︷︷ ︸
n

= α⊗ n, n ∈ N;

• limn∈N α⊕ n = α+ ω (not α⊕ ω!);

• if α and β are limit ordinals, then α⊕ β = limα′<α,β′<β(α
′ ⊕ β′);

• limn∈N α⊗ n = αω (not α⊗ ω!);

• if both α < ωγ and β < ωγ then α⊕ β < ωγ ;

• if both α < ωωγ

and β < ωωγ

then α⊗ β < ωωγ

.

Define the repeated natural product by transfinite induction, by letting α[0] = 1, α[β+1] = α[β] ⊗ α, and
α[β] = limγ<β α

[γ] for limit β. It can be checked that

α[ω] = lim
n∈N

α[n] = lim
n∈N

(α⊗ · · · ⊗ α) = αω.

In general, for limit β we have α[β] = αβ , as can be shown by ordinal induction on β. It can also be shown
by ordinal induction on β that (ωωα

)[β] = (ωωα

)β . (See also Altman [1].)

2.4 Well partial orders

Given a set A partially ordered by ⪯, a bad sequence is a sequence a1, a2, a3 . . . of elements of A such that
there exist no indices i < j for which ai ⪯ aj . Then ⪯ is said to be a well partial order (WPO) if there exist
no infinite bad sequences of elements of A. The ordinal type of A, denoted o(A), is the ordinal height of the
root of the tree of bad sequences of A. It also equals the maximal order type of a linear order ≤ extending
⪯ (Blass and Gurevich [2], see also de Jongh and Parikh [5]).

Given WPOs A and B, their disjoint union A ⊔ B can be well partially ordered by letting x ⪯ y if and
only if x, y ∈ A and x ⪯A y or x, y ∈ B and x ⪯B y. Then o(A⊔B) = o(A)⊕ o(B) [5]. Also, their Cartesian
product A × B can be well partially ordered by letting (a, b) ⪯ (a′, b′) if and only if a ⪯A a′ and b ⪯B b′.
Then o(A×B) = o(A)⊗ o(B) [5].

4



3 Proof of Theorem 1.2

We start by proving some properties of ordinal decreasing functions.

Lemma 3.1. Suppose f : D → R is ordinal decreasing. Then for every infinite decreasing sequence {xn} in
D there is an infinite subsequence {x′

n} for which {f(x′
n)} is nondecreasing.

Proof. By the infinite Ramsey’s theorem [8]. Define an infinite complete graph in which there is a vertex for
each xi and color each edge {xi, xj}, i < j red if f(xi) > f(xj) and green otherwise.

Since f(x) is ordinal decreasing up to y our graph cannot contain a monochromatic red infinite complete
subgraph. Therefore there exists a monochromatic green infinite subgraph, and thus the original sequence
contains an infinite nondecreasing subsequence (comprised of all the vertices in the subgraph).

Lemma 3.2. Suppose g(x) is ordinal decreasing in D and f(x) is ordinal decreasing up to supx∈D(−g(x)).
Then f(−g(x)) is ordinal decreasing in D.

Proof. Consider an infinite decreasing sequence {xn} in D. By Lemma 3.1, there exists a nondecreasing
subsequence of {g(xn)}. If this subsequence is not strictly increasing, there exists i < j such that g(xi) =
g(xj), and so is f(−g(xi)) = f(−g(xj)). Otherwise we have a strictly decreasing sequence of −g(x), and since
f(x) is ordinal decreasing up to supx∈D(−g(x)), we can find f(−g(xj)) ≥ f(−g(xi)), and we are done.

Lemma 3.3. Suppose f(x) and g(x) are ordinal decreasing in D. Then f(x)+ g(x) is ordinal decreasing in
D.

Proof. By Lemma 3.1, for every strictly decreasing sequence {xn} in D we can find a subsequence {x′
n} such

that {f(x′
n)} is nondecreasing. For that subsequence we can find by definition i < j such that g(x′

j) ≥ g(x′
i).

Hence, f(x′
j) + g(x′

j) ≥ f(x′
i) + g(x′

i) as desired.

(In this paper we only use Lemma 3.3 for the special case g(x) = −x.)

Lemma 3.4. Let β > 0, and suppose f(x) is ordinal decreasing in D = (y, y + β) and larger than 0. Then
there exists an 0 < ε < β such that for every y < x < y + ε we have x− f(x) < y.

Proof. Suppose for a contradiction that for every 0 < ε < β we have a counterexample x ∈ (y, y + ε) with
x − f(x) ≥ y. Then, we have an infinite sequence {xn} of such counterexamples with lim(xn) = y, but
because 0 < f(xn) ≤ xn − y there exists an infinite subsequence {x′

n} for which f(x′
n) is decreasing, in

contradiction to f(x) being ordinal decreasing in D.

We are ready to prove our main result.

Proof of Theorem 1.2. Consider the recursive algorithm

M(x) =

{
f(x), if x < 0

g1(−M(x− g2(−M(x− · · · − gk(−M(x− s(x))) · · · )))) if x ≥ 0
(4)

where s(x), f(x) and gi(x) for all i are all ordinal decreasing and larger than 0 for every x in the appropriate
ranges: (−∞, 0) for f, gi, and [0,∞) for s.

We claim that M(x) halts and is ordinal decreasing for every x. We will prove this by real induction
(Lemma 2.1).

Assuming otherwise, let

S = {x | M is defined and ordinal decreasing up to x}.

Since for x < 0 M(x) is defined by M(x) = f(x), we have (−∞, 0) ∈ S. Hence, S satisfies property (R1).
Next, suppose that (−∞, y) ⊆ S. Then note that M(y) is defined, since for every i M(y − gi(−M(y −

· · · − gk(−M(y − s(y))) · · · ))) is defined by induction, since functions gi and s have output larger than 0.
Hence, M(x) is ordinal decreasing up to y itself. Hence y ∈ S as well, so S satisfies property (R2).

Finally suppose y ∈ S. We will show that (y, y + ε) ⊆ S for some ε > 0, meaning S satisfies property
(R3).
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I0 I1 I2 I3 I4 I5 I6 I7 I8 Iω Iω+1 Iω·2… …

Figure 3: An ordinal decreasing function (solid line) induces a partition of the x-axis into a transfinite
number of intervals (dotted lines).

In order to do that, we will show by induction on i = k, . . . , 1 that Mi(x) = gi(−M(x−· · ·− gk(−M(x−
s(x))) · · · )) is defined and ordinal decreasing up to y + εi for some εi > 0. Let us start with the base case
i = k. In this case Mk(x) = gk(−M(x−s(x))). By Lemma 3.3, −x+s(x) is an ordinal decreasing function in
[0,∞), hence by Lemma 3.4 on s(x), there is an εk such that x−s(x) < y for every y < x < y+εk. Hence, by
assumption and Lemma 3.2, M(−(−x+ s(x))) = M(x− s(x)) is ordinal decreasing and defined up to y+ εk
and so is gk(−M(x − s(x))), as desired. For the induction step, suppose Mi(x) is ordinal decreasing and
defined up to y+εi. By Lemma 3.3, −x+Mi(x) is ordinal decreasing and defined up to y+εi. Furthermore,
by Lemma 3.4 there exists some εi−1 such that x − Mi(x) < y for every y < x < y + εi−1. Hence, by
assumption and Lemma 3.2 M(x − Mi(x)) is defined and ordinal decreasing up to y + εi−1. Hence, so is
Mi−1 = gi−1(−M(x−Mi(x))). Hence by Lemma 2.1 we have S = R.

4 Proof of Theorem 1.3

Let f : D → R be an ordinal decreasing function that is positive in some interval D = [x1, x2), x1 ̸= −∞. By
Lemma 3.4, the function f induces a partition of D into maximal intervals as follows. Define the endpoints
pα by

p0 = x1;

pα+1 = max {y ≤ x2 : x− f(x) < pα for all x < y};
pα = lim

β<α
pβ , α limit.

Then define the intervals Iα = [pα, pα+1) for ordinals α. These intervals form a partition of D. Figure 3
shows how the intervals Iα can be computed graphically: Starting at x1 on the x-axis, we move up-right in
a straight line with slope 1, until we encounter the graph of f or pass above the graph. At that point, we
descend to the x-axis, mark a new endpoint pα, and start this process again.

Lemma 4.1. The ordinal number of intervals Iα into which D is partitioned is at most ω · (o(f |D) + 1).

Proof. Recall that f is positive for all x ∈ D. Call x ∈ D a near-root of f if there exists an infinite increasing
sequence y1, y2, y3, . . . ∈ D such that limn→∞ yn = x and limn→∞ f(yn) = 0. Let Lf ⊂ R be the set of
near-roots of f . The set Lf is well-ordered in R, since from an infinite decreasing sequence of near-roots we
could construct an infinite f -bad sequence. More precisely, denoting the ordinal type of Lf by o(Lf ), we
have o(Lf ) ≤ o(f).

Call a near-root z ∈ Lf limit if there exist near-roots z1, z2, z3, . . . ∈ Lf that converge to z; otherwise
call z non-limit.

Observation 4.2. Let z ∈ D. Then there exists an infinite sequence of ω consecutive intervals Iα, Iα+1,
Iα+2, . . . that converge to z if and only if z is a non-limit near-root of f .
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Proof. Suppose first that z is not a near-root of f . Then there exists an 0 < ε < x2 − z such that f(x) ≥ ε
for all z − ε ≤ x ≤ z + ε (where the part z − ε ≤ x ≤ z follows from the fact that z is not a near-root, and
the part z ≤ x ≤ z + ε follows from the fact that f is ordinal decreasing). Therefore, an interval Iα whose
left endpoint is in (z − ε, z) must contain z in its interior. Hence, there are not ω-many intervals converging
to z.

Now suppose z is a near-root of f . Then no interval Iα whose left endpoint is left of z can contain z
in its interior. If z is a non-limit near-root of f , then there exists an ε > 0 such that (z − ε, z) contains
no near-roots of f . Hence, for every ε′ < ε, the interval (z − ε, z − ε′) contains only finitely many intervals
Iα. And therefore, there exist ω-many consecutive intervals Iα converging to z. If, on the other hand, the
near-root z is itself a limit of near-roots of f , then some left-neighborhood of z contains at least ω2-many
intervals Iα.

Hence, there is a one-to-one correspondence between non-limit elements of Lf and sequences of ω-many
consecutive intervals Iα, except for a possible final sequence after the last element of Lf . Lemma 4.1
follows.

Lemma 4.3. Let J ⊆ R be an interval, and let J1, J2 be a partition of J into two intervals, with J1 left of
J2. Then o(f |J) ≤ o(f |J1

) + o(f |J2
).

Proof. Every f -bad sequence in J can be partitioned into an f -bad sequence in J2 followed by an f -bad
sequence in J1 (though the converse is not necessarily true). Hence, the tree of f -bad sequences T(f |J ) is
a subtree of the tree formed by attaching a copy of T(f |J1

) to each leaf of T(f |J2
). The ordinal type of this

latter tree is o(f |J1
) + o(f |J2

), so the claim follows.

Lemma 4.4. Let f be ordinal decreasing, and let g(x) = f(x) − x (which is ordinal decreasing by Lemma
3.3). Then o(g) ≤ o(f).

Proof. Every g-bad sequence is also f -bad, hence Tg ⊆ Tf .

Lemma 4.5. Suppose g(x) is ordinal decreasing up to y and f(x) is ordinal decreasing up to y′ = supx<y(−g(x)).
Let h(x) = f(−g(x)) (which is ordinal decreasing up to y by Lemma 3.2). Then o(h|y) ≤ o(g|y)⊗ o(f |y′).

Proof. Let A = o(g|y) ⊗ o(f |y′) be WPO by the standard product order mentioned in Section 2.4. Given
x ≤ y, let E(x) = (og(x), of (−g(x))) ∈ A.

Lemma 4.6. If x > x′ and E(x) ⪯ E(x′) then h(x) ≤ h(x′). (Hence, E is analogous to what Rathjen and
Weiermann [9] call a quasi-embedding.)

Proof. We have x > x′ and og(x) ≤ og(x
′). Hence, g(x) ≤ g(x′) (because x > x′ and g(x) > g(x′) would

imply og(x) > og(x
′)). If g(x) = g(x′) then h(x) = h(x′) and we are done. Otherwise, g(x) < g(x′), so

−g(x) > −g(x′). We also have of (−g(x)) ≤ of (−g(x′)). Hence, h(x) = f(−g(x)) ≤ f(−g(x′)) = h(x′), as
desired.

Hence, if x1 > x2 > · · · > xn is an h-bad sequence then E(x1), E(x2), . . . , E(xn) is a bad sequence in A.
Therefore, o(h|y) ≤ o(A) = o(g|y)⊗ o(f |y′).

The following lemma is not actually used in this paper, but it might be of independent interest:

Lemma 4.7. Suppose f and g are ordinal decreasing, and let h(x) = f(x)+g(x) (which is ordinal decreasing
by Lemma 3.3). Then o(h) ≤ o(f)⊗ o(g).

Proof. The claim follows by considering the quasi-embedding E(x) = (of (x), og(x)).
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4.1 The case k = 1

When k = 1 the algorithm is

M(x) =

{
f(x), x < 0;

g(−M(x− s(x))), x ≥ 0.

Consider the partition of [0,∞) into intervals induced by s. Namely, let

p0 = 0;

pα+1 = max {y : x− s(x) < pα for all x < y}, for α ≥ 1;

pα = lim
β<α

pβ , for α limit.

Then define the intervals I−1 = (−∞, 0) and Iα = [pα, pα+1) for ordinals α.
Denote τα = o(M |(−∞,pα)). We will compute τα by ordinal induction. The base case is α = 0, for which

p0 = 0, and thus τ0 = o(M |I−1
) = o(f).

If x ∈ Iα = [pα, pα+1) then x − s(x) < pα, and hence oM (x − s(x)) < τα. Therefore, by Lemma 4.3,
Lemma 4.4, and two applications of Lemma 4.5,

τα+1 = o(M |(−∞,pα+1)) ≤ o(M |(−∞,pα)) + o(M |Iα)
≤ τα + τα ⊗ o(s)⊗ o(g).

Let γ be large enough such that max {o(f), o(g), o(s)} < ωωγ

. Then τ0 = o(f) ≤ ωωγ

, and it follows

by ordinal induction on α that τα ≤ ωωγ(1+α). By Lemma 4.1, we conclude that o(M) ≤ ωωγ+1(o(s)+1), as
desired.

4.2 The case k = 2

When k = 2 the algorithm is

M(x) =

{
f(x), x < 0;

g1(−M(x− g2(−M(x− s(x))))), x ≥ 0.

Denote M2(x) = g2(−M(x − s(x))), and M(x) = M1(x) = g1(−M(x −M2(x))). Define the points pα and
the intervals Iα as above, based on the function s.

Partition each interval Iα into subintervals Iα,β based on the function M2, as follows. Define points pα,β
by

pα,0 = pα;

pα,β+1 = max {y ≤ pα+1 : x−M2(x) < pα,β for all x < y}, for β ≥ 1;

pβ = lim
β′<β

pβ′ , for β limit.

Then define the subintervals Iα,β = [pα,β , pα,β+1).
Denote τα = o(M |(−∞,pα)) and τα,β = o(M |(−∞,pα,β)). Also denote σα = o(M2|Iα).

Lemma 4.8. We have τα,0 = τα and τα,β+1 ≤ τα,β + τα,β ⊗ τα ⊗ o(s)⊗ o(g2)⊗ o(g1).

Proof. The first claim follows by definition. The second one follows by Lemmas 4.3, 4.4, and 4.5, since for
x ∈ Iα,β we have x− s(x) < pα and x−M2(x) < pα,β .

Lemma 4.9. We have σα ≤ τα ⊗ o(s)⊗ o(g2).

Proof. Similarly.

8



We have τ0 = o(f). By Lemma 4.1, the ordinal number of subintervals into which interval Iα is partitioned
is ω · (σα + 1).

From Lemma 4.8 it follows, by transfinite induction on β, that τα,β ≤ τα ⊗ (τα ⊗ o(s)⊗ o(g2)⊗ o(g1))
[β].

Hence,
τα+1 ≤ (τα ⊗ o(s)⊗ o(g2)⊗ o(g1))

[ω·(τα⊗o(s)⊗o(g2)+2)].

Let γ be smallest such that max {o(f), o(g1), o(g2), o(s)} < εγ . Applying the above equation ω many times,
we obtain that, if γ < τα, then τα+ω is bounded by an infinite exponential tower of τα. Hence, it follows
by ordinal induction on β that τωβ ≤ εγ+β . By Lemma 4.1, the ordinal number of intervals Iα is at most
ω · (o(s) + 1). Hence, o(M) ≤ εγ+o(s)+1, as desired.

4.3 The general case

The algorithm for general k for x ≥ 0 is

M(x) = M1(x) = g1(−M(x−M2(x))), where

M2(x) = g2(−M(x−M3(x))), where

...

Mk−1(x) = gk−1(−M(x−Mk(x))), where

Mk(x) = gk(−M(x− s(x))).

Define the endpoints pα1,...,αi for 1 ≤ i ≤ k by

pα1+1 = max {y : x− s(x) < pα1 for all x < y};
pα1,...,αi−1,αi+1 = max {y ≤ pα1,...,αi−1 : x−Mk−i+2(x) < pα1,...,αi for all x < y}, 2 ≤ i ≤ k.

For 1 ≤ i ≤ k, define the intervals Iα1,...,αi
= [pα1,...,αi

, pα1,...,αi−1,αi+1).
For 1 ≤ i ≤ k, define the ordinals τα1,...,αi = o(M |(−∞,pα1,...,αi

)).
For 1 ≤ i ≤ k − 1, define the ordinals σα1,...,αi = o(Mk−i+1|Iα1,...,αi

).

Lemma 4.10. We have

σα1,...,αi
≤ o(s)⊗ o(gk)⊗ · · · ⊗ o(gk−i+1)⊗ τα1

⊗ · · · ⊗ τα1,...,αi
.

Lemma 4.11. We have

τα1,...,αk−1,0 = τα1,...,αk−1
,

τα1,...,αk−1,αk+1 ≤ τα1,...,αk
+ τα1 ⊗ · · · ⊗ τα1,...,αk

⊗ o(s)⊗ o(g1)⊗ · · · ⊗ o(gk).

Corollary 4.12. We have

τα1,...,αk
≤ τα1,...,αk−1

⊗
(
τα1

⊗ · · · ⊗ τα1,...,αk−1
⊗ o(s)⊗ o(g1)⊗ · · · ⊗ o(gk)

)[αk].

Proof. By transfinite induction on αk.

Denote δ = o(f)⊗ o(s)⊗ o(g1)⊗ · · · ⊗ o(gk).

Lemma 4.13. Let 2 ≤ i ≤ k. Given α1, . . . , αk−i, let ρ be sufficiently large such that

max
{
τα1,...,αk−i

, δ
}
≤ φi−1(ρ).

Then
τα1,...,αk−i,ωβ ≤ φi−1(ρ+ β) for every β.
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Proof. By induction on i, and for each i by ordinal induction on β. The case β = 0 for every i follows since
τα1,...,αk−i,0 = τα1,...,αk−i

.
Suppose first that i = 2. By Lemma 4.1, the interval Iα1,...,αk−1

is partitioned into at most ω·(σα1,...,αk−1
+

1) subintervals. Substituting this value into αk in Corollary 4.12, and applying Lemma 4.10, we obtain

τα1,...,αk−2,αk−1+1 ≤
(
δ ⊗ (τα1,...,αk−1

)[k−1]
)ω·(δ⊗(τα1,...,αk−1

)[k−1]+2)
.

Applying the above equation ω many times, we obtain that τα1,...,αk−2,αk−1+ω is bounded by an infinite
exponential tower of τα1,...,αk−2,αk−1

. Hence, it follows by ordinal induction on β that

τα1,...,αk−2,ωβ ≤ φ1(ρ+ β),

as desired.
Now let i ≥ 3, and suppose the claim is true for i− 1. Hence, for sufficiently large ρ, we have

τα1,...,αk−i+1,ωβ ≤ φi−2(ρ+ β) for every β. (5)

By Lemma 4.1, the interval Iα1,...,αk−i+1
is partitioned into at most ωβ subintervals for β = σα1,...,αk−i+1

+1.
Substituting this value of β in (5) and using the bound of Lemma 4.10,

τα1,...,αk−i,αk−i+1+1 ≤ φi−2

(
ρ+ δ ⊗ (τα1,...,αk−i+1

)[k−i+1] + 1
)
.

Applying the above equation ω many times, we obtain that τα1,...,αk−i,αk−i+1+ω is bounded by ω many
applications of φi−2 on τα1,...,αk−i,αk−i+1

. Hence, it follows by ordinal induction on β that

τα1,...,αk−i,ωβ ≤ φi−1(ρ+ β),

as desired.

Taking i = k in Lemma 4.13, we get τωβ ≤ φk−1(γ + β) for γ large enough such that δ < φk−1(γ). Since
the number of intervals Iα1 is at most ω · (o(s)+1), we conclude that o(M) ≤ φk−1(γ+ o(s)+1), as desired.

Acknowledgements. Thanks to the reviewers of a previous version for their helpful comments.
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