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THE QUANTUM RABI MODEL: TOWARDS BRAAK’S

CONJECTURE

ZEÉV RUDNICK

Abstract. We establish a density one version of Braak’s conjec-
ture on the fine structure of the spectrum of the quantum Rabi
model, as well as a recent conjecture of Braak, Nguyen, Reyes-
Bustos and Wakayama on the nearest neighbor spacings of the
spectrum. The proof uses a three-term asymptotic expansion for
large eigenvalues due to Boutet de Monvel and Zielinski, and a
number theoretic argument from uniform distribution theory.

1. Introduction

In this note we address a conjecture of Braak [1] about the fine struc-
ture of the spectrum of the quantum Rabi model (QRM), a fundamen-
tal model of light-matter interaction, which describes the interaction
between a two-level atom (qubit) coupled to a quantized, single-mode
harmonic oscillator, see the survey [7].
The Hamiltonian of the system is

H = a†a+∆σz + gσx(a+ a†)

where σx = ( 0 1
1 0 ), σz = ( 1 0

0 −1 ) are the Pauli matrices of the two-level
system, assumed to have level splitting 2∆; a† and a are the creation
and annihilation operators of the harmonic oscillator with frequency set
to be unity; and g > 0 measures the strength of the coupling between
the systems.
The Rabi Hamiltonian commutes with a parity operator P = (−1)a

†
aσz,

and hence the Hilbert space of states decomposes into the±1-eigenspaces
of P which are preserved by H. The Rabi model Hamiltonian in each
of the parity eigenspaces can be described by the Jacobi matrices




d±(0) a(1) 0 0 . . .
a(1) d±(1) a(2) 0 . . .
0 a(2) d±(2) a(3) . . .
. . .



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2 ZEÉV RUDNICK

with
d±(k) = k ± (−1)k∆, a(k) = g

√
k.

The spectrum of H breaks up into a union of two parity classes.
The spectrum in each parity class is non-degenerate, and this allows a
unique labeling of the corresponding eigenvalues in increasing order

E+
1 < E+

2 < · · · < E+
n < . . .

and likewise for the negative parity class {E−
n }.

The eigenvalues in each parity class satisfy E±
n = n − g2 + o(1) as

n → ∞ [6, 8], so that for n sufficiently large, each interval [n, n + 1]
contains at most 4 shifted eigenvalues E±

n + g2. Braak [1] conjectured
that

Conjecture 1.1 (Braak’s G-conjecture). For a given parity class, all
intervals [n, n+ 1] contains at most two shifted eigenvalues, two inter-
vals containing no shifted eigenvalues are not adjacent, and two inter-
vals containing two shifted eigenvalues are also not adjacent.

In this note, we show that Braak’s conjecture holds for “almost all” n,
in the following sense:

Theorem 1.2. Fix ∆ > 0 and g > 0. For all but at most O(N3/4+o(1))
values of n ≤ N , the interval (n, n + 1) contains exactly two shifted
eigenvalues of one of the parity classes, and none for the other parity
class, while the adjacent intervals (n− 1, n) and (n+ 1, n+ 2) contain
exactly two eigenvalues of the other parity class and none of the first
parity class. Moreover, neither n nor n± 1 are shifted eigenvalues.
In particular, almost all intervals [n, n + 1] contain exactly two ele-

ments of the shifted spectrum.

Concerning the last assertion, there are special choices of the pa-
rameters g and ∆ for which there are “exceptional” eigenvalues E such
that E + g2 is an integer, see [7, §3.2] and the references therein, and
our theorem excludes n− g2 being one of these eigenvalues for almost
all n.
An application of Theorem 1.2 is to prove a recent conjecture of

Braak, Nguyen, Reyes-Bustos and Wakayama [2] on the nearest neigh-
bor spacings of the full spectrum. Denote by {Ek} the ordered eigen-
values of H of both parity classes:

E1 ≤ E2 ≤ . . .

In [2], the nearest neighbor spacings δn := En+1 − En were classified
into three types: positive if both En, En+1 fell into the positive parity
class, negative if both fell into the negative parity class, and mixed if
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one of the pair was positive and one negative. Based on numerical
observation, it was conjectured [2, eq 14] that

Conjecture 1.3 (Spacings conjecture for the QRM). The frequencies
of the three different types of nearest neighbor spacings are 1/4,1/4,1/2,
respectively.

This clearly follows from the full conjecture of Braak, but since we
establish that Braak’s conjecture holds for 100% of n′s, we have also
established Conjecture 1.3.
Finally, we examine the value distribution of the normalized devia-

tions

δ±n := n1/4
(
E±

n −
(
n− g2

))
.

As an application of the method of proof of Theorem 1.2, we show that
the deviations in each parity class satisfy an arcsine law:

Theorem 1.4. For any subinterval [α, β] ⊂ [− ∆√
2πg

, ∆√
2πg

], we have

lim
N→∞

1

N
#
{
n ≤ N : δ±n ∈ [α, β]

}
=

∫ β

α

dy

π
√

2πg
∆2 − y2

.

The proof of Theorem 1.2 starts with an approximation to the eigen-
values due to Boutet de Monvel and Zielinski [3] and concludes with a
number-theoretic argument.

Acknowledgement: I thank Daniel Braak, Eduard Ianovich and
Masato Wakayama for helpful discussions, and a referee for corrections
to an earlier version of the paper.
This research was supported by the European Research Council

(ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 786758).

2. The case of good n’s

Boutet de Monvel and Zielinski [3] proved a three term expansion
for the eigenvalues in each parity class:

(1) E±
n = n− g2 ∓ ∆√

2πg

(−1)n cos(θn)

n1/4
+O(n−1/2+o(1)),

where

θn = 4g
√
n− π

4
.

(this approximation was apparently proposed in [4], see also [8]).
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Fix δ ∈ (0, 1/4) small and let N ≫ 1. We say that n ∈ [N/2, N ] is
“good” if

| cos(θn)| > N−1/4+δ .

Otherwise we say that n is “bad”.
Let x±

n = E±
n + g2 be the shifted eigenvalues, and denote by X± =

{x±
n } the shifted spectra in each parity class.

Proposition 2.1. Let N ≥ N0(g,∆) be sufficiently large. If n ∈
[N/2, N ] is “good” then n, n ± 1 are not shifted eigenvalues and ei-
ther
i) the interval (n, n+1) contains both x−

n and x−
n+1: (n, n+1)∩X− =

{x−
n , x

−
n+1}, and no elements of X+ while the intervals (n − 1, n) and

(n+1, n+2) contain no elements of X−, (n− 1, n) contains both x+
n−1

and x+
n , while (n+ 1, n+ 2) contains both x+

n+1 and x+
n+2.

or
ii) Otherwise, the same holds with the roles of X− and X+ reversed.

Proof. Let N ≥ N0(g,∆) be large, and take n ∈ [N/2, N ]. Then

θn+1 = θn +O

(
1√
N

)

since

θn+1 − θn = 4g
√
n + 1− 4g

√
n =

4g√
n+ 1 +

√
n
∼ 2g√

N
.

Hence

cos(θn+1) = cos(θn) +O

(
1√
N

)
,

and likewise

cos(θn−1) = cos(θn) +O

(
1√
N

)
.

and the same holds for cos(θn±2).
Therefore, for “good” n, if cos(θn) > N−1/4+δ then cos(θn±1), cos(θn±2) >

1
2
N−1/4+δ and in particular have the same sign as cos(θn), and and anal-

ogous statement holds true if cos(θn) < −N−1/4+δ.
Let’s assume that (−1)n cos(θn) > N−1/4+δ. Then

x−
n − n =

∆√
2πg

(−1)n cos(θn)

n1/4
+O(n−1/2+o(1)) >

1

2

∆√
2πg

N−1/4+δ > 0

so that x−
n ∈ (n, n+ 1). Moreover,

(−1)n+1 cos(θn±1) = −(−1)n cos(θn±1) < −1

2
N−1/4+δ < 0
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because cos(θn±1) has the same sign and roughly the same size as
cos(θn). Hence

x−
n+1 − (n + 1) =

∆√
2πg

(−1)n+1 cos(θn+1)

n1/4
+O(n−1/2+o(1))

< − 1

4

∆√
2πg

N−1/2+δ < 0

so that x−
n+1 ∈ (n, n + 1). Likewise x−

n−1 < n − 1 so that x−
n−1 ∈

(n− 2, n− 1), and x−
n+2 ∈ (n + 2, n+ 3), x−

n−2 ∈ (n− 2, n− 1). Thus

X− ∩ (n, n+ 1) = {x−
n , x

−
n+1},

X− ∩ (n− 1, n) = ∅ = X− ∩ (n+ 1, n+ 2)

in this case. Furthermore, for the other parity class, we have

x+
n−n = − ∆√

2πg

(−1)n cos(θn)

n1/4
+O(n−1/2+o(1)) < −1

2

∆√
2πg

N−1/2+δ < 0

so that x+
n ∈ (n− 1, n), and arguing as above we see that x+

n+1, x
+
n+2 ∈

(n+ 1, n+ 2) and x+
n−1, x

+
n−2 ∈ (n− 1, n), so that

X+ ∩ (n− 1, n) = {x+
n−2, x

+
n−1}, X+ ∩ (n + 1, n+ 2) = {x+

n+1, x
+
n+2}

and X+ ∩ (n, n+ 1) = ∅.
If (−1)n cos(θn) < −N−1/4+δ then we reverse the roles of the parity

classes. �

3. Bounding the exceptional set

To conclude the proof of Theorem 1.2, we need to bound the number
of “bad” n ∈ [N/2, N ], that is | cos(θn)| < N−1/4+δ, which follows from

θn mod π ∈
[π
2
−N−1/4+δ,

π

2
+N−1/4+δ

]

or from

((
4g

π

√
n+

1

4
)) ∈

[
− N−1/4+δ

π
,
N−1/4+δ

π

]

where ((x)) = x− ⌊x⌋ ∈ [0, 1) denotes the fractional part.
An elementary argument due to Fejér (1920) (see e.g. [5, Chapter

1 §2]) shows that for any a > 0, and any shift γ ∈ R, for suitable
c = c(a, γ) > 0, for N ≫ 1, for any interval [α, β] ∈ [0, 1],

∣∣∣∣#
{
n ∈ [N/2, N ] : ((a

√
n+ γ)) ∈ [α, β]

}
− (β − α)

N

2

∣∣∣∣ ≤ c
√
N.

and in particular, for an interval of length > N−1/2+o(1) the number
of fractional parts which fall into that interval is asymptotically N/2
times the length of that interval. In our case, the length of the interval
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is 2
π
N−1/4+δ and we obtain that the number of “bad” n ∈ [N/2, N ] is

about N3/4+δ, as claimed.
For the readers’ benefit, we recall Fejér’s argument for the case of the

fractional parts of
√
n. If k2 ≤ n < (k+1)2 then ((

√
n)) =

√
n−k, and

then ((
√
n)) ∈ [α, β] means α ≤ √

n−k ≤ β or (k+α)2 ≤ n ≤ (k+β)2,
so that n lies in an interval of length 2k(β−α) +O(1). Summing over
k we see that the number of n ∈ [N/2, N ] with ((

√
n)) ∈ [α, β] is

∑
√

N/2≤k<
√
N

{2k (β − α) +O (1)} = (β − α)
N

2
+O(

√
N).

4. Proof of Theorem 1.4

Proof. We want to count #
{
n ≤ N : δ−n ∈ [α, β]

}
. According to (1),

we have

δ−n = C(−1)n cos
(
4g

√
n− π

4

)
+O(n−1/4+o(1))

with

C =
∆√
2πg

.

For the purpose of understanding the distribution of δ−n , we may ignore
the remainder term.
Writing ϕn = 2g

π

√
n−1

8
, we observe that cos

(
4g

√
n− π

4

)
= cos(2πϕn)

depends only on the fractional part ((ϕn)) ∈ [0, 1) of ϕn.
We split the range n ∈ [1, N ] into even and odd n’s. First take

n = 2m even. Then δ−2m ∈ [α, β] is equivalent to

α̂ ≤ cos(2πϕ2m) ≤ β̂

where

α̂ :=
α

C
, β̂ :=

β

C
.

Writing 1[α̂,β̂] for the indicator function of the interval [α̂, β̂], we have

#
{
2m ≤ N : δ−2m ∈ [α, β]

}
=

N/2∑

m=1

1[α̂,β̂] (cos (2πϕ2m)) .

Now the function 7→ 1[α̂,β̂] (cos (2πx)) is Riemann integrable, and from

uniform distribution of the fractional parts of ϕ2m (Fejér’s theorem) it
follows that (see e.g. [5, Chapter 1, §1])

lim
N→∞

1

N/2

N/2∑

m=1

1[α̂,β̂] (cos (2πϕ2m)) =

∫ 1/2

−1/2

1[α̂,β̂] (cos (2πx)) dx.
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Now
∫ 1/2

−1/2

1[α̂,β̂] (cos (2πx)) dx =
1

π

∫ π

0

1[α̂,β̂] (cos (y)) dy

=
1

π

∫ β̂

α̂

dt√
1− t2

=
1

π

∫ β

α

Cdy√
1− C2y2

=

∫ β

α

dy

π
√

2πg
∆2 − y2

.

Therefore we obtain

lim
N→∞

1

N
#
{
2m ≤ N : δ−2m ∈ [α, β]

}
=

1

2

∫ β

α

dy

π
√

2πg
∆2 − y2

.

The same considerations are valued in the case that n = 2m + 1 is
odd, except that we require

α̂ ≤ − cos(2πϕ2m) ≤ β̂,

leading to the integral
∫ 1/2

−1/2

1[−β̂,−α̂] (cos (2πx)) dx

which gives the same result.
Altogether we obtain

lim
N→∞

1

N
#
{
δ−n ∈ [α, β]

}
=

∫ β

α

dy

π
√

2πg
∆2 − y2

.

The argument for δ+n is identical. �
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