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THE QUANTUM RABI MODEL: TOWARDS BRAAK’S
CONJECTURE

ZEEV RUDNICK

ABSTRACT. We establish a density one version of Braak’s conjec-
ture on the fine structure of the spectrum of the quantum Rabi
model, as well as a recent conjecture of Braak, Nguyen, Reyes-
Bustos and Wakayama on the nearest neighbor spacings of the
spectrum. The proof uses a three-term asymptotic expansion for
large eigenvalues due to Boutet de Monvel and Zielinski, and a
number theoretic argument from uniform distribution theory.

1. INTRODUCTION

In this note we address a conjecture of Braak [1] about the fine struc-
ture of the spectrum of the quantum Rabi model (QRM), a fundamen-
tal model of light-matter interaction, which describes the interaction
between a two-level atom (qubit) coupled to a quantized, single-mode
harmonic oscillator, see the survey [7].

The Hamiltonian of the system is

H =a'a+ Ao, + go.(a+ a)

where 0, = (13), 0. = (§ %) are the Pauli matrices of the two-level

system, assumed to have level splitting 2A; a’ and a are the creation
and annihilation operators of the harmonic oscillator with frequency set
to be unity; and g > 0 measures the strength of the coupling between
the systems.

The Rabi Hamiltonian commutes with a parity operator P = (—1)"‘“"02,
and hence the Hilbert space of states decomposes into the +1-eigenspaces
of P which are preserved by H. The Rabi model Hamiltonian in each
of the parity eigenspaces can be described by the Jacobi matrices

d+(0) a(l) 0 0
a(l) di(1) a(2) 0
0 a2 di(2) a(3)
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with
do(k) = k£ (=1)*A,  a(k) = gVk.
The spectrum of H breaks up into a union of two parity classes.
The spectrum in each parity class is non-degenerate, and this allows a
unique labeling of the corresponding eigenvalues in increasing order

Ef <Ef<---<Ef<..

and likewise for the negative parity class {E }.

The eigenvalues in each parity class satisfy EX = n — g% + o(1) as
n — oo [6, 8], so that for n sufficiently large, each interval [n,n + 1]
contains at most 4 shifted eigenvalues £ + ¢g2. Braak [I] conjectured
that

Conjecture 1.1 (Braak’s G-conjecture). For a given parity class, all
intervals [n,n + 1] contains at most two shifted eigenvalues, two inter-
vals containing no shifted eigenvalues are not adjacent, and two inter-
vals containing two shifted eigenvalues are also not adjacent.

In this note, we show that Braak’s conjecture holds for “almost all” n,
in the following sense:

Theorem 1.2. Fiz A > 0 and g > 0. For all but at most O(N3/4+o()
values of n < N, the interval (n,n + 1) contains exactly two shifted
eigenvalues of one of the parity classes, and none for the other parity
class, while the adjacent intervals (n — 1,n) and (n+ 1,n+ 2) contain
exactly two eigenvalues of the other parity class and none of the first
parity class. Moreover, neither n nor n + 1 are shifted eigenvalues.

In particular, almost all intervals [n,n + 1] contain exactly two ele-
ments of the shifted spectrum.

Concerning the last assertion, there are special choices of the pa-
rameters g and A for which there are “exceptional” eigenvalues E such
that E + ¢* is an integer, see [7, §3.2] and the references therein, and
our theorem excludes n — g2 being one of these eigenvalues for almost
all n.

An application of Theorem is to prove a recent conjecture of
Braak, Nguyen, Reyes-Bustos and Wakayama [2] on the nearest neigh-
bor spacings of the full spectrum. Denote by {Fj} the ordered eigen-
values of H of both parity classes:

By <E, <...

In [2], the nearest neighbor spacings 9, := E, 11 — E, were classified
into three types: positive if both E,, E, 1 fell into the positive parity
class, negative if both fell into the negative parity class, and mized if
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one of the pair was positive and one negative. Based on numerical
observation, it was conjectured [2, eq 14| that

Conjecture 1.3 (Spacings conjecture for the QRM). The frequencies
of the three different types of nearest neighbor spacings are 1/4,1/4,1/2,
respectively.

This clearly follows from the full conjecture of Braak, but since we
establish that Braak’s conjecture holds for 100% of n’s, we have also
established Conjecture [L3

Finally, we examine the value distribution of the normalized devia-
tions

oF = nl/ (Ey —(n—4g%)).
As an application of the method of proof of Theorem [[.2, we show that
the deviations in each parity class satisfy an arcsine law:

Theorem 1.4. For any subinterval [, 5] C [—\/%Tg, \/%]f we have

g d
A} - [ Tﬁ

The proof of Theorem starts with an approximation to the eigen-
values due to Boutet de Monvel and Zielinski [3] and concludes with a
number-theoretic argument.

1
. < . +
lim —N#{n < N:0; €,

N—oo
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2. THE CASE OF GOOD n’S

Boutet de Monvel and Zielinski [3] proved a three term expansion
for the eigenvalues in each parity class:

A (=1)"cos(0,)

1 Ey=n—g°

+ O(?’L_l/2+o(1)),

where
0, = 4g/n — %

(this approximation was apparently proposed in [4], see also [§]).
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Fix 0 € (0,1/4) small and let N > 1. We say that n € [N/2, N] is
“good” if
| cos(0,)] > N~1/4+9,
Otherwise we say that n is “bad”.
Let 7 = EF + g2 be the shifted eigenvalues, and denote by X+ =
{xE} the shifted spectra in each parity class.

Proposition 2.1. Let N > Ny(g,A) be sufficiently large. If n €
[N/2, N] is “good” then m, n £ 1 are not shifted eigenvalues and ei-
ther

i) the interval (n,n+1) contains both x,, and z, ,: (n,n+1)NX~ =
{z,, 2,1}, and no elements of X while the intervals (n — 1,n) and
(n+1,n+2) contain no elements of X, (n—1,n) contains both =},
and x}, while (n + 1,n+ 2) contains both x}., and x;_,.

or

ii) Otherwise, the same holds with the roles of X~ and X reversed.

Proof. Let N > Ny(g,A) be large, and take n € [N/2, N]. Then
1
Opi1=0,+0 | —
a (=)

— 4 2

since

Hence

c08(h+1) = cos(bh) + O (V%) ’

and likewise

cos(f,_1) = cos(f,) + O (\/LN) |

and the same holds for cos(6,,42).
Therefore, for “good” n, if cos(6,) > N~1/4%9 then cos(fps1), cos(Oniz) >
%N ~1/4+9 and in particular have the same sign as cos(f,), and and anal-
ogous statement holds true if cos(f,) < —N~1/4F9.
Let’s assume that (—1)" cos(,) > N~1/4. Then
= —n = A (_1)n COS(HTL> + O(n—l/2+o(1)> > 1 A

" V2mg nt/4 2\/2ng

so that x;, € (n,n+ 1). Moreover,

N—l/4+(5 >0

1
(=)™ cos(Opr1) = —(—1)" cos(fpr1) < —§N_1/4+5 <0
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because cos(f,+1) has the same sign and roughly the same size as
cos(f,). Hence

A (=1)""cos(0,41)
V27g nl/4
1 A
< — _—N—1/2+5 <0
4./2mg
so that =, € (n,n + 1). Likewise z, ;, < n — 1 so that z,,_, €
(n—2,n—1),and 2., € (n+2,n+3),z,_ 5, € (n—2,n—1). Thus
X N (na n+ 1) = {xr_za xf_z+1}>
XTNn(n—=1n)=0=X"N(Mn+1,n+2)
in this case. Furthermore, for the other parity class, we have
A (=1)"cos(b,) 1 A
V2rg  nl/ 2/2mg
so that z;7 € (n—1,n), and arguing as above we see that =,z , €
(n+1,n+2)and o} |,z , € (n—1,n), so that
X+ N (n - 1,71) = {x:—27$7t—1}7 X+ N (TL + 1,71 + 2) = {x:+l>$7t+2}
and Xt N(n,n+1)=0.
If (—1)"cos(f,) < —N~'/4 then we reverse the roles of the parity
classes. O

Tpt1 — (n_l_ 1) =

+ O(n—1/2+o(1))

+ +O(n—1/2+o(1)) < N-V2+8

Ty —n = —

3. BOUNDING THE EXCEPTIONAL SET

To conclude the proof of Theorem [I.2], we need to bound the number
of “bad” n € [N/2, N], that is | cos(,)| < N~/4+ which follows from

6, mod 7 € [g — N—1/4+6’ g + N—1/4+5]

or from

49 1 N—1/4+6 N—1/4+6
(Gvat+ e -——=—F]
where ((x)) = x — |x] € [0,1) denotes the fractional part.
An elementary argument due to Fejér (1920) (see e.g. [0, Chapter
1 §2]) shows that for any @ > 0, and any shift v € R, for suitable
c¢=c(a,v) >0, for N > 1, for any interval [«, 5] € [0, 1],

#{n € /2N @V + ) € o} = (- )| < oV,

and in particular, for an interval of length > N~%/2*°(1) the number
of fractional parts which fall into that interval is asymptotically N/2
times the length of that interval. In our case, the length of the interval
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is 2N~1/4%% and we obtain that the number of “bad” n € [N/2, N] is
about N340 as claimed.

For the readers’ benefit, we recall Fejér’s argument for the case of the
fractional parts of \/n. If k* < n < (k+1)? then ((y/n)) = v/n—k, and
then ((y/n)) € [o, f] means o < \/n—k < Bor (k+a)?> < n < (k+ )3,
so that n lies in an interval of length 2k(8 — ) + O(1). Summing over
k we see that the number of n € [N/2, N] with ((v/n)) € [a, f] is

> (kG- 0} = (B-a)5 + OV,
V/N/2<k<v/N

4. PROOF OF THEOREM [I.4]

Proof. We want to count #{n <N:§, € [a,ﬁ]}. According to (),
we have

9, = C(—1)"cos <4gf — %) + O(n~ /4t

with
A
V2mg

For the purpose of understanding the distribution of ¢, , we may ignore
the remainder term.

Writing ¢,, = %r—g\/ﬁ—%, we observe that cos (4gv/n — T) = cos(2mp,,)
depends only on the fractional part ((¢,)) € [0,1) of @,.

We split the range n € [1, N] into even and odd n’s. First take

n = 2m even. Then 6,5, € [«, 8] is equivalent to

C =

a < cos(2mpay,) < B

where 5
~ (67 i~
Writing La for the indicator function of the interval [@, 8], we have
N/2
#{2m <N:06; € [a,ﬁ]} =3 145 (cos (2mpam)) -
m=1

Now the function — 1 5 (cos (27z)) is Riemann integrable, and from
uniform distribution of the fractional parts of ¢y, (Fejér’s theorem) it
follows that (see e.g. [5, Chapter 1, §1])

N/2 1/2

lim —— > 1. = 2 am)) = 1. - 277)) dz.
I 75 22 T (005 Gromn)) = [ 35 (oo (2
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1/2 1 T
/_ lag (cos (2mz)) dx = _/0 1:5 (cos (y)) dy

1/2 ™

1 (% at

%/a Vi
E/B&:/BL
TJo J1=C22 o w\/%'
Therefore we obtain

1
1 < NS
lim N#{Qm <N 14y, € |

1 [P dy
] ) Ly
— 00 2 o 2ﬂ 2
T\ AZ — Y
The same considerations are valued in the case that n = 2m + 1 is
odd, except that we require

a < —cos(2mpam) < B,
leading to the integral

1/2
/ 1, 5 g (cos(27mz)) da
~1/2
which gives the same result.

Altogether we obtain

lim i#{(s,; c [a,ﬁ]} - /BL.

N—oo N a 2AL2g . y2
The argument for 0, is identical. O
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