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Abstract

Many physics-based and machine-learned scoring functions (SFs) used to predict protein-

ligand binding free energies have been trained on the PDBBind dataset. However, it is

controversial as to whether new SFs are actually improving since the general, refined,

and core datasets of PDBBind are cross-contaminated with proteins and ligands with

high similarity, and hence they may not perform comparably well in binding prediction

of new protein-ligand complexes. In this work we have carefully prepared a cleaned

PDBBind data set of non-covalent binders that are split into training, validation, and

test datasets to control for data leakage, defined as proteins and ligands with high se-

quence and structural similarity. The resulting leak-proof (LP)-PDBBind data is used

to retrain four popular SFs: AutoDock Vina, Random Forest (RF)-Score, Interaction-

GraphNet (IGN), and DeepDTA, to better test their capabilities when applied to new

protein-ligand complexes. In particular we have formulated a new independent data
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set, BDB2020+, by matching high quality binding free energies from BindingDB with

co-crystalized ligand-protein complexes from the PDB that have been deposited since

2020. Based on all the benchmark results, the retrained models using LP-PDBBind

consistently perform better, with IGN especially being recommended for scoring and

ranking applications for new protein-ligand systems.

Introduction

Scoring functions (SFs) are crucial in computer aided drug discovery, utilized for selecting

the most probable binding pose geometry and/or free energy of binding between a ligand

and a protein.1,2 There are a plethora of SFs being developed and widely used by compu-

tational chemists, but they can be broadly categorized into either classical scoring functions

(CSFs),3–13 or machine learning scoring functions (MLSFs).14–21 CSFs such as the commonly

used AutoDock Vina3 are designed to model intermolecular interactions or missing free en-

ergy components, and can benefit both from better design of the functional form, many-body

physics, as well as the availability of training data for parameterization of their semi-empirical

or empirical functions.3–9 Data-driven MLSFs by contrast are less reliant on physical interac-

tion modeling and are far more dependent on experimental information,11,22,23 culminating

in the current development and use of sophisticated machine learning (ML) models14–21

whose much larger parameter spaces are optimized on large, high quality datasets. Some

representative MLSF designs include Random Forest Score (RF-Score)14 that is based on

atom-pair distance counts, InteractionGraphNet (IGN)15 that uses graph neural network

(GNN) to represent raw 3-dimensional protein and ligand structures, and DeepDTA18 that

predicts binding affinities using amino acid sequences of the proteins and SMILES strings of

the ligands. More recent models have been proposed that achieve better accuracy at binding

affinity prediction, including RFScore-V324 that incorporates terms from AutoDock Vina,

and also PIGNet,16 RTMScore17 and GIGN21 which are more advanced GNN-based models.

The majority of protein-ligand interaction SF predictors, whether physical or machine-
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learned, have been trained on the PDBBind dataset.25 The Comparative Assessment of

Scoring Functions (CASF) benchmark, which assesses the scoring power, ranking power,

docking power and screening power of various SFs, was also conducted on the PDBBind

core set.26 More specifically PDBBind is a curated set of ∼20K protein-ligand complex

structures and their experimentally measured binding affinities, in which the ”general” and

”refined” data subsets are used for training, and a separate ”core” set is used for testing.

However, not all protein-ligand complex structures in the general and refined data sets are as

high-quality as those in the core set which contains protein-ligand complexes with the best

structural resolution and most reliable binding affinity data.25 Additionally, the average size

of the ligands in the core set is also smaller than that in the rest of the PDBBind dataset,

which may make the core set easier prediction targets. Furthermore, as we will show later,

the majority of the core data records in the PDBBind dataset have identical proteins and/or

ligands with that found in the general and/or refined sets. As such, most empirical SFs

and MLSF models have been trained with significant data leakage, and thus their reported

performance on the core set is only a true measure of new protein-ligand complexes with high

similarity, but will inevitably have limited transferability to low-similarity ligand-proteins

scenarios.

The definition of data leakage in PDBBind is not as literal a scenario in which the exact

occurrence of input representation occurs in both training and test sets. Instead data leakage

here refers to highly similar protein or ligands measured by sequence and chemical similarity

and similar structure occurring in both the training and testing datasets. This will lead to

artificially high evaluation results that do not fully reflect the performance of the models

in real world applications.27 Therefore, the most standard data splitting protocol in the

machine learning community, which is to randomly split the dataset into train, validation

and test subsets will inevitably introduce significant data leakage issue. Given that many

MLSFs training on PDBBind do not carefully investigate the data similarity issue, whether

these new MLSFs have truly surpassed traditional CSFs in actual predictive performance is
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still an open question, or how well any given CSF or MLSF performs on new protein-ligand

binding applications.28–31 It is already known that any SF model can be overtrained so that

it has exceptional performance on the training dataset, a problem which can be mitigated by

several known regularization strategies to provide better generalization to an independent

test set.32,33 Equally important, however, is to control for data leakage into the test set itself,

without which can lead to false confidence in predictive capacity when the training dataset

has high similarity to the test set, but manifests as poor generalization when the sequence

or structure similarity is low.29

Two typical solutions have been taken to mitigate this data leakage issue: one is to

perform data splits based on scaffolds, protein families or protein clusters, and the other

is to perform time-based cutoff which was proposed on earlier versions of PDBBind,24 and

was suggested by the authors of the EquiBind model on the PDBBind 2020 release.34 The

scaffold or target based splitting can make sure the proteins in the complex are not similar

between training and testing datasets, but they usually do not take the ligand similarities

into account. The idea of a time-based splitting mimics a ”blind test” setting, by which the

model can only be trained with data released in year 2019 or earlier, and predictions are

made with data after year 2019, so that the test data will never be covered by training data.

However, since new drugs are being developed that can interact with popular protein targets

that have been established for years,35,36 and existing drug molecules may also be tested on

new proteins,37 there are still frequent encounters with almost identical proteins or ligands

in the latest experiments with earlier assays. As such, a time based splitting of the dataset

is still not an ideal solution.

For the purpose of retraining SFs that can either truly generalize, or just as importantly

to anticipate when it will not work well when similarity of protein-ligand complexes is low,

we build a new data split to mitigate data leakage of highly similar sequence and structures

of both proteins and ligands in the training and test set. In this work we reorganize the

PDBBind data into new train, validation and test datasets which we call Leak Proof PDB-
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Bind (LP-PDBBind), by minimizing sequence and chemical similarity of the proteins and

ligands between the datasets as well as making sure the protein-ligand structural interaction

patterns are different among the data splits as well. Our new data splitting can be regarded

as an improvement over just a protein scaffold split by providing similarity control on the

ligands as well, which we hypothesize will decrease the chance of a model making predictions

by memorizing ligand structures.38,39 Furthermore we have cleaned the PDBBind data to

eliminate covalent bound ligand-protein complexes (thus focusing on non-covalent binding),

certain ligands with very low frequency occurrences of certain atomic elements, to remove

obvious steric clashes, as well as maintaining consistency in reported binding free energies

and their units.

We then use the cleaned LP-PDBBind data for the development of new versions of

several foundational SFs, including AutoDock Vina,3 RF-Score,14 IGN,15 and DeepDTA.18

This provides a standardized way to train and benchmark different SFs with the exact

same train, validation and test data. Furthermore, in order to provide a true independent

benchmark for the new SFs that result from retraining using the cleaned LP-PDBBind, we

created a new evaluation dataset, BDB2020+. BDB2020+ is compiled based on entries into

the BindingDB dataset40 that were deposited after 2020, and further filtered according to

the same similarity control criteria used for the development of the new LP-PDBBind. As

a further test of ranking power, we additionally prepared two sets of experimental binding

affinity data for different ligand complexes of the SARS-CoV-2 main protease (Mpro)41

and epidermal grow factor receptor (EGFR),42 neither of which was included in the LP-

PDBBind training dataset (although Mpro has similar SARS-CoV-1 protease proteins in

PDBBind). Finally, we perform two control evaluated the performance of retrained SFs on

docked structures using the old Vina SF to mimic a more typical drug discovery scenario.

The results show that all SFs trained on PDBBind show better performance on the LP-

PDBBind test set due to data leakage, while the retrained models using the LP-PDBBind

split are found to give a more true measure of performance. Furthermore, the newly trained
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SFs in general now perform much better on the completely independent BDB2020+ data set,

showing that the new split can help with better generalization. Furthermore, even though

the models were trained using cocrystal structures, improvements are also seen on redocked

structures, thus demonstrating the applicability for the retrained SFs in actual practice.

Hence, we believe LP-PDBBind provides a better way of utilizing the existing PDBBind

dataset, and provides a more realistic and meaningful benchmark to help develop higher

quality and more generalizable SFs in the future.

Methods

Cleaning the PDBBind dataset

The majority of protein-ligand affinity prediction models are designed for non-peptide drug-

like small molecules. However, a careful investigation of the protein-ligand complexes in

PDBBind dataset elucidated that all the ligands are not necessarily drug like. Figure 1(a-c)

shows the distributions of the number of heavy atoms, molecular weights and quantitative

estimate of drug-likeness (QED)43 for ligands in the general, refined and core set in the

PDBBind dataset. Figure 1(d) shows that some ligands contain unusually large macrocycles,

are peptide like, or contain long aliphatic chains. Including these data in the training of a

ML model might make it harder for the model to learn key features related to the binding

of drug-like small molecules to protein targets.

Some proteins and ligands in the PDBBind dataset contain uncommon elements, such as

Hg, Cu and Sr in proteins or Co, Se or V in ligands; the proportion of occurrence for each

element is summarized in Supplementary Table 3 for proteins and Supplementary Table 4 for

ligands. A small portion of the structures in PDBBind dataset also contained steric clashes,

and there was one structure for which the ligand was far away from any peptide chain (PDB

ID: 2R1W). These should be excluded from the dataset due to the low quality of the complex

structures, and the PDB IDs containing steric clashes (minimum heavy atom distance <1.75
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Å) are also provided in the Supplementary Information. It is difficult for ML models to

learn protein-ligand interactions when poor data and uncommon elements are present in

the PDBBind dataset. Therefore, we have defined a ”cleaner” version of PDBBind which

only contains all data with ligand QED values larger than 0.2, protein and ligand elements

that have at least 1‰ (more than 19 occurrences in the dataset), and minimum heavy-atom

distance between protein and ligand fall within 1.75 and 4 Å. We call this subset of the data

Clean Level 1 (CL1).

Figure 1: Property distributions and example ligands in the PDBBind dataset. (a) Distri-
bution of number of heavy atoms, (b) molecular weights and (c) QED values for ligands in
general, refined and core set of PDBBind dataset. (d) Example of ligand structures in the
PDBBind dataset, with the corresponding PDB IDs

The binding affinity in terms of ∆G is directly related to the dissociation coefficient Kd

or Ki through the formula ∆G = −RT ln(K).44 However, a large portion of the data in

PDBBind is reported in terms of IC50, which cannot be easily translated to ∆Gs due to its

dependence on other experimental conditions and inhibition mechanisms.45 The IC50 values

for the same protein-ligand complex can vary up to one order of magnitude in different
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assays. In addition, some data in PDBBind were not reported as exact values. Therefore,

a second clean level (CL2) was defined on top of CL1, that additionally requires the target

values are converted from records with “Kd = xxx” or “Ki = xxx”, to ensure the reliability of

experimental binding free energy data. Finally, considering the original splitting of PDBBind

into general/refined/core was based on structure quality,25 we also defined a third and highest

quality level of data (CL3) that only retained data from refined and core set of PDBBind

while still complying with all other quality-control metrics that we have defined. The total

amount of data in PDBBind v2020 filtered with CL1, CL2 and CL3 are 14324, 7985 and

4404, respectively. The CL1 level dataset was used for retraining models described later

because it contains the most amount of data. The CL2 level dataset was used for validation

and test because the binding affinity data are more reliable at this level. We did not use

CL3 in this study because it had the smallest amount of data, but as it may be useful for

others we have provided identifiers of these protein-ligand complexes which are available at

https://github.com/THGLab/LP-PDBBind/ along with the CL1, CL2 data sets.

New splitting of PDBBind dataset

We have formulated a new splitting of the PDBBind dataset to minimize the similarity be-

tween training, validation and test data as much as possible in order to eliminate the risk of

data leakage. Ligand similarities were calculated as the Dice similarity46 between a pair of

ligands based on Morgan fingerprints of the ligands using 1024 bits.47 Similarities for proteins

were calculated as the percentage of matched number of residues over the length of aligned

sequences after sequences were aligned using the Needleman-Wunsch alignment.48 More de-

tails on the calculation of similarity for proteins and ligands and data splitting procedure are

given in the Supplementary Information. The total amount of data in the training, validation

and test data after the new splitting are 11513, 2422 and 4860, respectively, and the data for

each category is reported in Supplementary Table 5. The new splitting procedure ensures

the data in the training set has a maximum protein sequence similarity of 0.5 and maximum
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ligand similarity of 0.99 to any data in the validation or test datasets, and the maximum

similarity between any validation and test data is 0.9 for protein sequence similarity and 0.99

for ligand similarity. The similarity cutoffs are carefully chosen to reach a balance between

the dis-similarity of train and test datasets and the amount of data in each subset. A higher

similarity cutoff for the ligands was used compared to the protein similarity cutoff because

similar ligands might interact differently with different types of proteins, which is useful for

a ML model to learn.

Additionally, we explored the protein-ligand interaction similarities using proteo-chemometrics

interaction fingerprints49 and validated the exclusion of highly similar interaction patterns in

the dataset using our splitting procedure. The proteo-chemometric interaction fingerprints

extend the connectivity fingerprints (ECFPs) by the interactions between ligand atoms and

nearby residues from the protein in 3D space, and maps the interaction patterns into a fixed

size integer vector with a length of 256. The pairwise interaction fingerprint similarities were

then calculated using a weighted Jaccard similarity score

SIFP(X, Y ) =

∑
i(min(Xi, Yi))∑
i(max(Xi, Yi))

where X and Y are the interaction fingerprints for two complexes. As we will show later,

our splitting procedure also ensures distinct separation of data in the train, validation and

test subset of PDBBind in terms of interaction fingerprints.

Compilation of the BDB2020+ dataset

Because many of the recent SFs have been trained on PDBBind, which means utilizing a

subset of PDBBind as the test dataset risks data leakage, we have created a new benchmark

dataset that is independent of PDBBind. To fulfill the need for a fair benchmark, we looked

for the records deposited in BindingDB40,50 after year 2020. Given that many data in Bind-

ingDB overlap with the PDBBind dataset which contains data up to year 2020, we have
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only looked at data in BindingDB deposited after year 2020 to minimize the chance of data

leakage. BindingDB is one of the largest public binding affinity repositories, which also pro-

vides additional experimental conditions including assay information, pH and temperature.

However, it does not guarantee each record has an associated 3D complex structure.

We have developed a workflow to match complex structures in RCSB PDB with records in

BindingDB. Since a complex may contain multiple ligands, but only one matches the record

in BindingDB, we selected the ligand in the PDB that has the best structural match with

the SMILEs provided in BindingDB, and ensuring that the number of heavy atoms is exactly

the same. We then used rdkit51 to reassign bond orders to the extracted ligands using the

BindingDB SMILES as reference. This step was necessary because bond orders are usually

not present in a PDB file and are typically inferred from local atomic geometries, which

sometimes result in unreasonable bonding structures; thus the bond order reassignment step

ensures the rationality of the processed structures.

Additionally, any chain that is within 5 Å of the ligand was compared with the interacting

chain sequence in BindingDB record. A reliable match was only made when the consecutive

aligned residues are exactly the same. The reason to keep strict alignment criterion is that if

the protein contains mutations, the binding affinity might change significantly, in which case

the BindingDB record will not represent the true binding affinity for the complex structure

in the PDB and is not usable for the benchmark. After discarding all unmatched data, we

obtained 130 data records, out of which 115 contains accurate binding affinity data, and

defines the BDB2020+ test dataset. The flowchart of the building process of BDB2020+

dataset is illustrated in Supplementary Figure S1.

We have further prepared the redocked structures using the original AutoDock Vina for

each protein-ligand complex in the BDB2020+ dataset to evaluate the performance of the

retrained SFs on docked poses instead of co-crystal structures obtained from experiments,

because the co-crystal structures are usually unavailable in real-world applications. Specif-

ically, for each data in BDB2020+ dataset, we run AutoDock Vina docking to generate 30
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poses with exhausiveness=64. The pose with the lowest Vina score and the pose that is

most similar to the cocrystal structure in terms of symmetry-corrected RMSD52 were both

retained. However, any data with the lowest RMSD to the co-crystal structure larger than

2 Å were excluded to prevent the influence of bad docking, resulting a total of 104 data

remained for the redocked set of BDB2020+ that is closest to the co-crystal structure.

Preparation of two target-specific datasets

Finally, we have prepared two additional datasets of protein-ligand complexes with the same

protein and different ligands so that we could evaluate the ranking accuracies of the SFs

before and after retraining using LP-PDBBind. The first dataset is based on the SARS-

CoV-2 main protease (Mpro) for which a wide variety of potential Mpro inhibitors have

been developed.41 We have manually extracted published co-crystal structures of Mpro with

a number of non-covalent inhibitors,53–65 and prepared a dataset containing 40 structures

and corresponding experimental binding affinity measurements. The second dataset involves

the epidermal growth factor receptor (EGFR), which is a receptor tyrosine kinase related

to multiple cancers including lung cancer, pancreatic cancer and breast cancer.42 Similarly,

we have selected 23 representative non-covalent protein-ligand complex structures of EGFR

with binding affinities taken from BindingDB.66–80 The two dataset were selected as two

representative scenarios of using the SFs on a similar or different protein-ligand complex

than what was included in the training dataset.

Retraining Scoring Functions with LP-PDBBind

The LP-PDBBind CL1 cleaned data for non-covalent binders of PDBBind were used to

retrain AutoDock Vina,3 IGN,15 the 2010 RF-Score14 and DeepDTA.18 These models cover

a wide range of different approaches for scoring, and are representative of different dimensions

of the SF space of models. AutoDock vina is a CSF that contains molecular interaction terms

consisting of a van der Waals-like potential (defined by a combination of a repulsion term
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and two attractive Gaussians), a nondirectional hydrogen-bond term, a hydrophobic term,

and a conformational entropy penalty, all of which are weighted by empirical parameters.

The other three methods belong to MLSF category but vastly differ in their feature set.

The RF-Score model is based on random forest regression that predicts binding affinities

from the number of occurrences of a particular protein-ligand atom type pair interacting

within a certain distance range using 3D structures. InteractionGraphNet (IGN) utilizes

a graph neural network operating on the 3D complex structures, and the node and edge

features are straightforward information about atoms and bonds, including atom types, atom

hybridization, bond order, etc. Finally, DeepDTA is a Y-shaped 1-dimensional convolutional

neural network that takes in protein sequences and ligand isomeric SMILES strings as input

and outputs the predicted binding affinities, making it a model that does not rely on the

exact 3D structure of the complex.

Details on the retraining of these models are described in the Supplementary Information.

In short, AutoDock vina was retrained by optimizing its six empirical parameters by mini-

mizing the mean absolute error between predicted and experimental binding affinities using

the Nelder-Mead optimization algorithm.81 Both IGN and DeepDTA were retrained by mini-

mizing the mean squared error using gradient descent method as implemented in PyTorch.82

For RF-Score, the optimization was driven by variance reduction between prediction and

experimental affinities in each decision tree using the scikit-learn implementation.83 After

retraining, the new AutoDock Vina, RF-Score, IGN, and DeepDTA model performances are

compared with the old models as tested on the non-covalent LP-PDBBind test set using

the CL2 data, the BDB2020+ new benchmark data, the Mpro and EFGR applications, and

finally evaluated on the redocked structures in BDB2020+ dataset.
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Results

Analysis of PDBBind Splittings

Data distributions of PDBBind under the original split (general set/refined set/core set),

Equibind Split (train/validation/test) and LP-PDBBind (train/validation/test) are provided

in Figure 2 a-c. LP-PDBBind has significantly extended the size of the test set compared

with the original PDBBind split and the more recent Equibind split. A bigger test set

provides more accurate evaluation of model performance when the model is applied to data

that has not been trained on. By contrast, the number of data in the training set is much

smaller in LP-PDBBind. As we will show later, the shrinkage in the training set is necessary,

because it keeps the similarity with validation/test set sufficiently low. Compared with the

Equibind split, we have also decreased the number of discarded data, because we only discard

data when they are highly similar to any other data in train, validation or test set.

One of the main purpose of defining the new split of PDBBind is to prevent data leak-

age between training, validation, and test data. To understand whether the new split has

solved the data leakage issue, the maximum similarity for proteins and ligands between the

training, validation, and test data under the EquiBind split and LP-PDBBind, and maxi-

mum similarity between the general set and core set under the original PDBBind split are

summarized in Figure 2(d-g). The original PDBBind split has significant protein and ligand

overlap between the general and core sets, as can be seen in the sharp peak at similarity

of 1.0 in Figure 2(d,f). The same level of similarity between the refined and core sets in

the original PDBBind split are shown in Supplementary Figure 2. Since many ML models

use the PDBBind core set as the test dataset without carefully excluding similar data from

their respective training dataset, the performance of these models reported may be overly

optimistic and do not reflect their true generalizability and needs to be reevaluated.

The Equibind split is a significant step forward in reorganizing the PDBBind data more

reasonably. Its time-based cutoff in defining the test dataset decreased the chance of data
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Figure 2: Data statistics under different splits of the PDBBind dataset. Number of data
in different splits of the PDBBind dataset: (a) general, refined and core set in original
PDBBind split; (b) train, validation, test set and discarded data in Equibind split; (c) train,
validation, test set and discarded data in LP-PDBBind. Comparison of maximum protein
sequence similarities between test set and train set (or core set and general set in original
PDBBind split) (d) or between validation set and train set under Equibind split and LP-
PDBBind(e). Comparison of maximum ligand similarities between test set and train set (or
core set and general set in original PDBBind split) (f) or between validation set and train set
under Equibind split and LP-PDBBind(g). Comparison of maximum interaction fingerprint
similarities between test set and train set (or core set and general set in original PDBBind
split) (h) or between validation set and train set under Equibind split and LP-PDBBind(i).
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leakage, but still did not eliminate the possibility of highly-similar data that occurs in both

train and test set. By comparison, LP-PDBBind minimizes overlap between data in the

train and test set by design, keeping the maximum sequence similarty between any protein

in the test set and any protein in the train set below 0.5, and the maximum ligand similarity

below 0.99 (Figure 2(d,f)). Therefore, results for a model trained with the LP-PDBBind

train set and evaluated with LP-PDBBind test set should better reflect the performance of

the model when applied to a new protein-ligand complex that may be very different than

data used for training the model.

Given that proteins with low sequence similarity might still be homologous and contain

binding pockets that share similar interaction characteristics,27 it is essential to double check

on the similarities of protein-ligand interaction patterns for complexes in this new split

of PDBBind dataset. The proteo-chemometrics based interaction fingerprints49 were used

to evaluate the interaction pattern similarities. Figure 2h shows the distribution of the

maximum interaction fingerprint similarities for each complex in the test dataset with all

complex structures in the training dataset under both the new LP-PDBBind split and the

time-based Equibind split, and also the comparison between data in PDBBind core set and

general set. LP-PDBBind has also eliminated data with high fingerprint similarity between

train and test, which means the data with low protein sequence or ligand similarity but

high interaction similarity is not an issue for the LP-PDBBind dataset, and the performance

of any scoring function trained with LP-PDBBind train set and evaluated with the test

set should be a realistic reflection of the model performance even when the protein-ligand

interaction patterns are quite different from the complexes used for training.

To help with training more transferable models, we have also defined the validation set to

be equally different than the train set as the test set. Figure 2(e,g,i) illustrates the maximum

protein similarities, maximum ligand similarities and maximum interaction fingerprint sim-

ilarities between the validation and training sets for the Equibind split and LP-PDBBind,

respectively. The similarity between validation and training sets under LP-PDBBind is also
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well controlled so that the validation set can be used to select the most transferable model

or hyperparameters when training the model. By comparison, the validation set in Equibind

split is too similar to the train set, hence overfitting will not be effectively captured when

monitoring model performance on the validation set. As is provided in Supplementary Fig-

ure 3, both the Equibind and LP-PDBBind splits of PDBBind, the validation and test set

have a wide range of (dis)/similarities on proteins, ligands and their interactions. Therefore

using the validation set for model selection will not lead to overfitting and thus increase

transferability to the test set.

Evaluating Retrained Models with LP-PDBBind

After the AutoDock Vina, IGN, RF-Score and DeepDTA models were retrained using LP-

PDBBind, the performance were first compared on the LP-PDBBind test dataset filtered to

CL2 for better reliability of data. Table 1 provides the mean and standard deviations on the

root mean square error (RMSE) of the binding affinity prediction (∆Gbind) on the training,

validation, and test data for the models retrained with LP-PDBBind from 3 different model

initializations, and comparing it to the original models and their performance on the LP-

PDBBind test data. Supplementary Figure 4 shows the scatter plots of the best model

and reports the correlation coefficient between predicted and experimental binding affinities.

Due to the data leakage issue, performance of the original models on the LP-PDBBind test

data are over-estimated for the MLSFs. By comparison, AutoDock Vina due to its small

number of trainable parameters does not suffer from the data leakage issue, and has achieved

lower RMSE after retraining. Among the MLSF models, IGN has the smallest generalization

gap, and is also the best performing model when evaluated using the LP-PDBBind test set

within uncertainties. Since random forest models can almost perfectly fit training data,84,85

the RF-Score model has exceptional performance on the LP-PDBBind training dataset, but

its validation and test performance is on par with the IGN model. DeepDTA also performs

quite well on the training dataset, but exhibits a large generalization gap with respect to
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the validation dataset, and has slightly higher RMSE on the test dataset than the other two

MLSFs. Overall the original MLSF models have seen some of the LP-PDBBind test proteins

and ligands in their training, and thus they appear to perform better than they actually do

when data leakage is controlled for using the LP-PDBBind data.

Table 1: The training and test errors for the original and retrained models using LP-
PDBBind for AutoDock Vina, IGN, RF-Score, and DeepDTA in terms of root mean square
error (RMSE) in kcal/mol. Reported standard deviations were calculated with 3 different
random initializations of model weights during training.

Model RMSE Original RMSE Retrained
test train validation test

AutoDock Vina 2.85 2.42 ± 0 2.29 ± 0 2.56 ± 0
IGN 1.82 1.65 ± 0.07 2.00± 0.03 2.16± 0.13
RF-Score 1.89 0.68 ± 0.003 2.14 ± 0.01 2.10 ± 0.003
DeepDTA 1.34 1.41± 0.11 2.07± 0.02 2.29± 0.04

Figure 3 and Table 2 summarize the scoring performance of the original and retrained

models on the independent BDB2020+ benchmark dataset; the corresponding scatter plots

for the original and retrained models are provided in Supplementary Figure 5. We see that

upon retraining, all four models have achieved meaningful improvements on the BDB2020+

benchmark set. In terms of RMSE, AutoDock Vina decreased by 1.2 kcal/mol while the

other three MLSFs decreased by 0.2-0.3 kcal/mol. The changes in the correlation coefficients

are more profound: both IGN and RF-Score have achieved absolute correlation coefficients

better than 0.5, and improvements for AutoDock Vina and DeepDTA are also clear. Overall

Table 2: Performance comparisons on the BDB2020+ benchmark set in terms of root mean
square error (RMSE) and Pearson correlation coefficient (R) for different models before and
after retraining using LP-PDBBind. Reported standard deviations were calculated with 3
different random initializations of model weights during training.

Model RMSE (kcal/mol) R
original retrained difference original retrained

AutoDock Vina 3.31 2.10 ± 0 -37% 0.23 0.29±0
IGN 1.62 1.38± 0.09 -9∼20% 0.41 0.54±0.04
RF-Score 1.80 1.61 ± 0.008 -10∼11% 0.36 0.51± 0.008
DeepDTA 1.98 1.72±0.10 -9∼19% 0.18 0.26±0.07
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Figure 3: Performance comparisons using different models and different benchmark datasets.
(a) Comparison on the root mean square error (RMSE) for different models. Lower is
better. Blue bars indicate RMSEs on the LP-PDBBind test dataset using retrained models,
orange bars indicate RMSEs for the models without retraining using LP-PDBBind, and
green bars indicate RMSEs for the models retrained using LP-PDBBind. (b) Comparison
on the Pearson correlation coefficient (R) for different models.
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Overall, IGN and RFScore have improved more significantly than the other two, especially

IGN that has achieved 1.38± 0.09 kcal/mol in RMSE and 0.54± 0.04 in correlation coefficient

when evaluated on the BDB2020+ dataset. We attribute the improvements on the model

performances to our resplit of the PDBBind dataset because the training dataset becomes

more diverse and representative, and that helps the SFs to find more transferable features

and make more accurate predictions.

Figure 3 also compares the performance of the four models on BDB2020+ with the

results evaluated on the LP-PDBBind test dataset. Interestingly, we find that all models

have achieved lower RMSE on the BDB2020+ dataset but also lower Pearson correlation

coefficients, R, other than IGN that has similar correlation coefficients between LP-PDBBind

test dataset and BDB2020+ benchmark set. This seemingly contradictory result is actually

reasonable due to the dataset distribution differences of the two evaluation benchmarks. The

LP-PDBBind test dataset contains much more data than BDB2020+, and also spans a wider

range of binding affinity values. The measured − log(Kd) values in the LP-PDBBind test

dataset ranges from 0 to 12 (i.e. 12 orders of magnitude), but the BDB2020+ dataset only

ranges from 4 to 10. Given that extreme predictions from a robust ML model is unlikely,

a narrower range of binding affinities means the overall error will be smaller. However, it

also poses challenge for successfully differentiating the nuances between more clustered data

points, and therefore it is also more difficult to achieve higher correlation coefficients.

Nevertheless, we see that the relative rankings of the four methods are consistent between

different evaluation benchmarks and different metrics. We find that IGN and RF-Score per-

form consistently better than AutoDock Vina and DeepDTA when trained on the new split.

In terms of a generalization gap to new data, we also see the correlation differences are the

smallest for IGN and RF-Score. These results are consistent with the overall performances

of the models, and provide evidence that modern MLSFs can indeed surpass CSFs such as

AutoDock Vina, even when protein and ligand similarities are low. While DeepDTA as a

MLSF is an exception to this conclusion, we suggest that it is because it does not explicitly
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take molecular geometries as input, and it would perhaps explain why it does not achieve

the same level of accuracy as MLSF or CSF models relying on 3-dimensional information of

protein-ligand complexes.

Evaluating the Ranking Capabilities of the Retrained Models

The improvement in scoring power, despite being significant, still does not fully reflect the

ranking capabilities of the SFs which are more important in deciding which compound to

prioritize in a real-world drug discovery campaign. Therefore, we have prepared an Mpro

dataset and an EGFR dataset to evaluate the ranking accuracy of the SFs before and after

retraining using LP-PDBBind.

Figure 4 shows the distributions of experimental binding affinities and protein and lig-

and similarities when comparing the LP-PDBBind training data with the Mpro and EGFR

datasets. The binding affinities for these two systems are found to be in a narrower range

than the LP-PDBBind training data. While the average binding affinity of the Mpro dataset

is roughly in line with the LP-PDBBind training dataset, the ligands in the EGFR dataset

have an overall tendency to bind stronger to their targets. This shift in the average indicates

that the EGFR is more ”out-of-distribution” than the Mpro dataset. By calculating the

Kullback-Leibler divergence (KL-divergence)86 with the kernel density estimations between

binding affinities in the LP-PDBBind train dataset and the two target-specific datasets,

we found that the KL-divergence between LP-PDBBind train dataset and SARS-COV-2

Mpro dataset is 3.45, and the KL-divergence between LP-PDBBind train dataset and EGFR

dataset is 4.46, also validating the EFGR dataset has more dissimilar binding affinities to

the training dataset. Figure 4b-e further show that the protein and sequence similarities of

the two evaluation datasets are overall very dissimilar to the LP-PDBBind training dataset,

with the exception of a small fraction of protein and ligand sequence similarity attributable

to the SARS-CoV-1 Mpro training entry PDB ID: 3V3M87 for the Mpro dataset. Hence the

Mpro and EFGR evaluations reflect two representative scenarios of using the SFs on a
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Figure 4: Data statistics for the SARS-CoV-2 main protease (Mpro) benchmark set and
epidermal growth factor receptor (EGFR) benchmark set. (a) Distributions of the binding
affinity data (− logKd) in the LP-PDBBind train dataset in blue, Mpro benchmark set in
orange and EGFR set in green. (b-c) Distributions of protein sequence similarities between
the Mpro protein (b) and EGFR protein (c) with proteins in the LP-PDBBind train dataset.
(d-e) Distributions of ligand fingerprint similarities between molecules in the Mpro bench-
mark set (d) and EGFR benchmark set (e) with ligands in the LP-PDBBind train dataset.
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similar or different protein-ligand system than what wasincluded in the PDBBind dataset.

Table 3 summarizes the RMSE, Pearson correlation coefficients (R) and Spearmann cor-

relation coefficients (RS or ranking power) for the data in the Mpro and EGFR evaluation

sets using both the original models and the models retrained using LP-PDBBind. The pre-

diction scatter plots for the Mpro benchmark dataset and EGFR benchmark dataset are

provided in Supplementary Figures 6 and 7. For the Mpro dataset, all four models exhibit

some modest improvement in terms of RMSE. AutoDock Vina, RF-Score and DeepDTA

have all achieved higher correlations in terms of R and RS. The correlation on the retrained

IGN model has slightly decreased but is still similar to the original values. Taken all metrics

into account, AutoDock Vina is the best performing SF for the Mpro dataset, although the

differentiation among all models is not large.

Table 3: Performance comparisons on the SARS-CoV-2 main protease (Mpro) and epidermal
growth factor receptor (EGFR) benchmark set in terms of root mean square error (RMSE)
in kcal/mol, Pearson correlation coefficient (R) and Spearmann correlation coefficient (RS)
for different models before and after retraining using LP-PDBBind. The retrained model
with the best performance on the BDB2020+ benchmark dataset was used to predict binding
affinities in the Mpro and EGFR dataset.

Mpro Model RMSE (kcal/mol) R RS

original retrained original retrained original retrained
AutoDock Vina 1.20 1.17 0.55 0.66 0.51 0.68
IGN 1.86 1.44 0.64 0.61 0.69 0.65
RF-Score 2.06 1.64 0.43 0.52 0.47 0.58
DeepDTA 1.18 0.88 0.59 0.64 0.60 0.65

EFGR Model RMSE (kcal/mol) R RS

original retrained original retrained original retrained
AutoDock Vina 3.11 1.59 0.25 0.38 0.21 0.36
IGN 1.06 0.96 0.36 0.65 0.17 0.62
RF-Score 1.57 0.97 -0.15 0.52 -0.18 0.45
DeepDTA 1.22 1.05 0.23 0.44 0.20 0.43

However, the results on the EGFR dataset exhibit much larger variations for the different

models, and the changes are significant for all the SFs. There is a dramatic decrease by

˜50% in RMSE for AutoDock Vina, and both R and RS have increased significantly. IGN

has a slight decrease in RMSE but the correlation coefficients have improved remarkably
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from 0.36 to 0.65 in Pearson correlation coefficient and from 0.17 to 0.62 in in Spearmann

correlation coefficient. These values are the highest among all retrained models, and do not

differ much with the Mpro results and thus showing good generalizability. RF-Score has also

benefitted from retraining quite significantly, with a 0.6 kcal/mol decrease in RMSE, and

the correlation coefficients have improved from -0.15 to 0.52 in terms of R and from -0.18 to

0.45 in terms of RS. Finally, DeepDTA has also seen improvements upon retraining, but the

ranking capability of the retrained DeepDTA model is still inferior to the other two MLSFs.

Overall, the performance rankings of the four SFs are still consistent with that obtained

from the LP-PDBBind test set benchmark and the BDB 2020+ benchmark. But the EFGR

benchmark emphasizes that new applications will benefit from better generalizability of the

newly retrained models, especially for IGN.

Rescoring Docked Poses and Pose Selection using the Retrained

Scoring Functions

Cocrystal structures are usually unavailable during the early stages of the drug discovery

process. This it is important to quantify the binding affinity estimations from the retrained

SFs using predicted structures, such as the complex structures obtained from molecular

docking. Using the BDB2020+ structures redocked with AutoDock Vina and the original

Vina scoring function, we have evaluated the accuracies of the retrained AutoDock Vina, IGN

and RF-Score as a rescoring method, and the results are summarized in Table 4; DeepDTA

was not compared because its predictions do not rely on the exact 3-dimensional structures

of the complex.

Following a recent study that suggests a modified set of empirical parameters for AutoDock

Vina that improves its ranking capabilities, we have also evaluated its performance on the

redocked BDB2020+ benchmark set.88 To better separate pose selection capabilities from

scoring capabilities, we report metrics on both the redocked structures with the best docking

scores, and the redocked poses that have the lowest RMSDs to the cocrystal structures.
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Table 4: Performance comparisons on scoring with redocked structures of the BDB2020+
benchmark set in terms of root mean square error (RMSE) and Pearson correlation coefficient
(R) for different models before and after retraining using LP-PDBBind. The retrained model
with the best performance on the BDB2020+ benchmark dataset was used in this benchmark.
AutoDock Vina with the newly suggested weights in Ref. 88 was also added for comparison.

Redocked Structures
(Best Score)

RMSE (kcal/mol) R
original retrained original retrained

AutoDock Vina 2.12 1.99 0.22 0.26
AutoDock Vina with Modified Weights (Ref. 88) 3.35 / 0.25 /
RF-Score 1.78 1.56 0.34 0.49
IGN 1.66 1.42 0.33 0.46

Redocked Structures
(Closest to Cocrystal)

RMSE (kcal/mol) R
original retrained original retrained

AutoDock Vina 2.18 2.02 0.13 0.22
AutoDock Vina with Modified Weights (Ref. 88) 3.40 / 0.17 /
RF-Score 1.83 1.61 0.27 0.46
IGN 1.65 1.43 0.34 0.43

Again, we observed a consistent improvement over the original models after retrain-

ing the SFs using LP-PDBBind, which means even though the models were trained using

cocrystal structures, they could be used to rescore docked poses and achieve higher ac-

curacies when compared with experimental binding affinities. In the top-scored redocked

structure in BDB2020+ benchmark set, AutoDock Vina has improved from 2.12 to 1.99

kcal/mol in RMSE and the correlation coefficients improved from 0.22 to 0.26. Compared

to the suggested new weights in Ref. 88, the AutoDock Vina scoring function retrained with

LP-PDBBind still has better scoring and ranking capabilities. The improvements on the

retrained RF-Score and IGN models are also distinct, especially in the correlation coeffi-

cients that have improved from 0.34 to 0.49 for RF-Score and from 0.33 to 0.46 for IGN. The

performance on the redocked structures that are closest to the known cocrystal structure

eliminates the influence of bad docked poses and purely reflects the scoring and ranking capa-

bilities of the retrained models on correctly docked structures. The performance was similar

to that evaluated on the best-scored poses, further showing that the improvements obtained

by retraining the models using cocrystal structures are transferable to docked structures.
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However, we would like to emphasize that the newly trained Vina scoring function is

not intended for docking, because a scoring function designed for docking should be trained

with high energy decoy poses which are missing in the PDBBind dataset. Consequently,

the repulsion parameter in our retrained Vina scoring function (0.014212) is much smaller

than the original value (0.840) and the scoring function cannot differentiate bad poses that

have atoms too close to each other. Nevertheless, the improvements shown for scoring power

and ranking power are meaningful, because the virtual screening process can be broken into

multiple steps, and we could use the original Vina SF for docking and the retrained one to

rescore top poses to achieve better accuracy.

Discussion and Conclusion

The area of computational drug discovery relies on generalizable scoring functions that have

robust scoring and ranking power of binding affinities of ligand-protein complexes. However

due to the lack of independently built datasets that test the true generalizability of the

SFs, it is hard to differentiate among the plethora of many models which have been trained

and tested on the original split of the PDBBind dataset. As we have shown, there is too

much overlap between the PDBBind general and refined data used for training with the core

subset, leading to the possibility of inflated performance metrics that in turn lead to false

confidence in how such models will perform on new protein-ligand complexes.89

In order to reduce data similarity between training, validation, and test data of the

PDBBind dataset, we have developed LP-PDBBind using an iterative process to select most

similar data first into the test set, and then validation set, so that the final training dataset

has low similarity with validation or test dataset. We have also cleaned the PDBBind data

in multiple ways: CL1 removed covalent ligand-protein complexes, the low populations of

drug molecules with underrepresented chemical elements, and complexes with steric clashes.

In addition to CL1, the CL2 level of cleaning aimed for consistent measures of binding
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free energies by either converting Kd or eliminating data reported as IC50. Finally, CL3

eliminated the general set to perform splits on the refined and core set data which is deemed

of higher quality. However, it is always a trade-off between the quality of data and the

amount of data, and all of the results reported here were based on training on CL1 data and

testing on CL2. In addition we have isolated the covalent binding data from PDBBind that

may help newly formulated SF predict these type of protein-ligand complexes.

Furthermore, to provide a benchmark dataset truly independent of PDBBind, we have

compiled the BDB2020+ dataset derived from the BindingDB database deposited after 2020

to minimize time-cutoff based data leakage, and further ensuring that there is no overlap

with PDBBind. Additionally, we also tested ranking power through construction of the

Mpro and EFGR ligand-protein complex series. The SARS-CoV-2 Mpro protein has high

similarity counterparts in the PDBBind dataset, and the other series involving EGFR does

not have anything similar in the training dataset of PDBBind. These new data should also

be useful in future evaluation and/or finetuning of any scoring function.

In this work we utilized the new split of PDBBind using CL1 to retrain AutoDock Vina,

IGN, RF-Score and DeepDTA and compared the old models with the retrained models on

the LP-PDBBind test set, as well as the fully independent BDB2020+ data, Mpro series,

and EGFR series. We have demonstrated that using a different splitting of the same dataset

leads to significant performance improvements, and the improvements are transferable from

using co-crystal structures as input to using docked structures as input. The comparison

between the different benchmark results for the SFs can be well explained by the ”difficulty

level” of these datasets, and provide insights about the generalizability of various models.

We found that well performing models also have more stable ranking results for different

ligands towards a protein target. When the target system is similar to data included in

the training dataset, the differentiation between models are not obvious. However, when

the protein target is not similar to anything in the training dataset, we found that different

SFs demonstrate quite different generalization capabilities; the IGN model retrained with
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LP-PDBBind is recommended due to its reliable good scoring and ranking power.

However, since the PDBBind dataset does not contain decoy structures that are impor-

tant to allow the models to learn characteristics of true complex structures, the retrained

SFs are not expected to have better docking power for recognizing native ligand bound

poses. The usefulness of the retrained SF relies on their capability to rescore docked poses

and achieve better accuracy when compared to experimental binding affinity measurements.

Meanwhile, it would be worthwhile to generate decoy structures for the BDB2020+ dataset

to better benchmark the docking and screening powers of the SFs independent of the PDB-

Bind dataset. In summary, the cleaned LP-PDBBind data in its current form is a valuable

resource for training more transferable SFs, and we hope reporting evaluation metrics on the

BDB2020+ dataset can also become a common practice for future SFs.
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Reformulation of the PDBBind Dataset

Description for processing the PDBBind dataset

All PDB files were downloaded from RCSB to recover the original headers, and the cat-

egories of the proteins were defined according to whether the keywords occurred in the

header. The header information was extracted using the biopython package version 1.81.?

The categories we considered include transport proteins, hydrolases, transferases, transcrip-

tion proteins, lyases, oxidoreductases, isomerases, ligases, membrane proteins, viral proteins,

chaperone proteins, and metalloproteins. A protein file with none of these keywords occur-
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ring in the header were categorized into a generic ”other” category. Protein sequences were

extracted directly from the PDBBind dataset files using the SEQRES records, and sequences

for proteins with multiple chains were concatenated using a column (:) symbol. Additionally,

the SMILES strings for each of the ligands were extracted using the rdkit package (2023.3.2

version)? from either the .mol2 or .sdf file provided in the original PDBBind dataset. The

.mol2 files were used with higher priority due to their generally better description of bond

orders in the ligands compared with the .sdf files in the PDBBind dataset. The latter were

used instead when rdkit failed to read in .mol2 files.

Similarity calculation and Data Resplitting of protein and ligands

in the PDBBind dataset

Similarities for each ligand to any other ligand in the whole PDBBind dataset were calculated

based on the Morgan fingerprints of the ligands using 1024 bits.? According to a study that

compares multiple similarity score metrics, the Tanimoto index, Dice index, Cosine coefficient

and Soergel distance were giving similar results on molecule similarity calculations and all

worked pretty well.? In our work the Dice similarity is reported for the ligand pairs according

to the following:?

sim =
2|A ∪B|
|A|+ |B| (1)

where |A∪B| counts the number of bits set to ON in the fingerprints of both ligands A and

B, and |X| counts the number of bits set to ON in an single ligand X. A radius of 2 was

first used when calculating Morgan fingerprints of the ligands; if the similarity between two

ligands was calculated to be 1, it is recalculated using Morgan fingerprints of the ligands with

radius of 4 to allow more careful validation of ligand identity, and the radius is extended to

10 if a radius of 4 still result in a similarity of 1. If the similarity was still 1 with the extended

radius for calculating the fingerprint, the canonical SMILES string of the two molecules were

compared and any discrepancy in the canonical SMILES will enforce the similarity to 0.99.
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These steps were designed to ensure ligands with similarity of 1 are strictly identical.

Similarities for proteins were calculated based on the aligned sequences of the proteins.

Considering that it is unlikely two proteins belonging to different functional categories are

similar, the sequence similarities were calculated only for proteins in the same category (i.e.

transport proteins, hydrolases, etc.), and any two proteins that belong to different categories

were defined to have similarity of 0. Within each category, every pair of protein sequences

were aligned using the Needleman-Wunsch alignment algorithm,? and the similarity was

calculated as the number of aligned residues divided by the total length of the aligned

sequence.

Data splitting was first done inside each protein category, and an iterative process was

employed to separate the dataset step by step using the following algorithm: In the first

iteration, 5 complexes were randomly selected as seed data in the test set, and all data in

the same protein category that have protein sequence similarity greater than 0.9 or ligand

similarity greater than 0.99 were added to the test set as well. If protein-ligand complex data

that have protein sequence similarity greater than 0.5 or ligand similarity greater than 0.99

were found, they too were added to the validation set. Any data newly added to the test set

in this iteration will become seed data in the next iteration, and the iteration continues until

no new data are added to the test set. Next, a similar process was applied to the validation

data, adding all remaining data that have protein sequence similarity greater than 0.5 or

ligand similarity greater than 0.99 into the validation set. The remaining data is then defined

as the training set.

After data splitting by protein category, the protein-ligand complexes for training, val-

idation, and testing were combined to define the splitting for the whole dataset. However,

after combination the ligand similarity might still exceed 0.99 for data from different cate-

gories. Therefore, any data in the combined training set that has ligand similarity greater

than 0.99 to any other data in the validation or test set were discarded altogether. The

resulting number of data in the training, validation, and test set were 11513, 2422 and 4860,
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respectively, after this cleaning step.

Covalent Binders in PDBBind v2020

The PDBBind v2020 dataset includes 14108 protein-ligand complexes in the general set,

5050 complexes in the refined set and 285 complexes in the core set.? It is important

to treat covalent and non-covalent binders separately in PDBBind, because most existing

algorithms that predict protein-ligand binding primarily focus on non-covalent interactions.

As far as we are aware, there has been no systematic study of whether the binders in

PDBBind are covalent or non-covalent. Relying on the CovBinderInPDB? repository, we

have identified covalent binders in the PDBBind dataset. The ligand names were extracted

from the PDB files by comparing the minimum distance between any atom from the ligands in

PDBBind database and residues in the PDB files downloaded from the RCSB database. If the

minimum distance is less than 1Å, the matched residue name was compared with the record

in CovBinderInPDB to identify whether the ligand is a covalent binder. If the minimum

distance is more than 1Å or the residue name did not match the record in CovBinderInPDB,

the structures were manually checked to identify whether the ligands are covalent binders or

not. Ultimately 893 covalent binders and 18550 non-covalent binders were identified in the

PDBBind dataset.

Model Retraining Procedures

All models were retrained using the CL1 version of the LP-PDBBind training dataset to

achieve balance between data cleanliness and the amount of training data available. For

model validation and testing, the non-covalent LP-PDBBind validation and test data at

CL2 were used to ensure data quality is higher, and can be considered as an optimistic

estimation of the performance of these models on high quality data.
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AutoDock Vina Retraining

There are six empirical parameters in the AutoDock Vina scoring function (gauss1, gauss2,

repulsion, hydrophobic, hydrogen, and rotation penalty).? ? For each molecule in the LP-

PDBBind training set, the 6 individual terms of AutoDock Vina were calculated using the

vina binary (v1.2.3) by setting weight of one term to one and the rest of the weight to 0. The

weights of these six terms were optimized by minimizing the mean absolute error between the

weighted sum of six terms and binding free energy through the Nelder-Mead optimization

algorithm.? The final retrained AutoDock Vina parameters are provided in Supplementary

Table 1 and all further evaluations of retrained models are done with these modified weights.

Table 1: Retrained AutoDock Vina Weights

Term Weight
gauss1 0.003372
gauss2 -0.008098
repulsion 0.014212
hydrophobic -0.008361
hydrogen -0.227928
rot 0.05846

RF-Score Retraining

The RF-Score (RF) uses Random Forest model to predicts binding affinities with counts of a

particular protein-ligand atom type pair interacting within a certain distance range based on

3D structures.? We here followed the RF-Score-v1 approach, where nine common elemental

atom types (C, N, O, F, P, S, Cl, Br, I) for both the protein and the ligand were considered

and neighboring contacts between a protein-ligand atom pair were defined within 12 Å. Only

atom pairs with non-zero occurrence over the whole training dataset were considered, which

result in 36 features in total. For fairness of comparison, we trained a RF model on the

PDBbind2007 refined set, denoted as the original model, and on the LP-PDBBind training

data, as the retrained model, using the same script.
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IGN Retraining

InteractionGraphNet (IGN)? utilizes two independent graph convolution modules to se-

quentially learn the intramolecular and intermolecular interactions from the 3D structures

of protein-ligand complexes to predict binding affinities.? Protein pockets were extracted

using Chimera (v1.17.3) by selecting residues that are within 10 Å of any atom from the

ligand, and then the protein and ligand structures were saved as RDKit objects. Due

to molecule generation errors in RDKit,? which is required for featurizing the 3D struc-

tures into graph representations, only 6378 complexes from the LP-PDBBind training set

were used. The code for retraining the IGN model (https://github.com/THGLab/LP-

PDBBind/tree/master/model retraining/IGN) was adapted from the original training scripts

using the same feature size and layer numbers as the original published model with only the

training data modified. The exact hyperparameters for retraining are provided below:

Table 2: Retrained IGN hyperparameters

Term Weight
epochs 500
batch size 128
graph feat size 128
num layers 2
outdim g3 128
d FC layer 128
repetitions 3
lr 0.001
l2 0.00001
dropout 0.2

DeepDTA Retraining

DeepDTA is a purely data-driven approach which does not rely on physical interactions or

3D structural information. Instead, it uses 1D convolutions on the string representations of

the proteins and ligands to make predictions.? Since the method did not originally train on

the PDBBind dataset, we retrained the model with the original PDBBind general and refined
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sets using a PyTorch implementation of the original code: https://github.com/THGLab/LP-

PDBBind/tree/master/model retraining/deepdta. More specifically, we did a 90-10 train-

validation split on the data for training and then tested its performance on the core set.

Different protein and ligand kernel sizes were used as suggested by the original work and

the best-performed parameters with the protein kernel size of 12, ligand kernel size of 4 and

channel size of 32 were chosen to serve as the original model in our performance compari-

son tables. The retrained model with LP-PDBBind was also generated following the same

scheme.

Since the 1d convolution requires a fixed size of the protein sequence and ligands, during

all training processes, proteins with sequence lengths longer than 2000 and ligands with

isomeric SMILES lengths longer than 200 were discarded, resulting in the final number of

training data, validation data and test data to be 7338, 956 and 2162, respectively. Also,

since the ligand encoding was based on the training set only, all ligands with unseen tokens

from their isomeric SMILES strings in the test set and real-world examples are discarded,

resulting in a loss of 15 data points. It is worth noting that these losses of data happen to

both the original model and the retrained model, so it won’t affect our conclusions in this

work.
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Supporting Tables

Table 3: Counts and proportion of chemical element occurrences in all proteins in the PDB-
Bind dataset

Element
Number of data

containing element
Proportion of data
containing element

C 19398 1.00
S 16375 0.84
O 19398 1.00
N 19398 1.00
Zn 1842 0.09
Ca 400 0.02
Co 66 0.003
Mg 858 0.04
Ni 79 0.004
Mn 356 0.02
Fe 104 0.01
Na 138 0.01
K 78 0.004
Se 107 0.01
Hg 6 0.000
Cu 16 0.001
Cs 1 0.000
P 105 0.01
Cd 22 0.001
Sr 1 0.000
Ga 1 0.000
Rb 1 0.000

8



Table 4: Counts and proportion of chemical element occurrences in all ligands in the PDB-
Bind dataset. Only elements that occur in the binding pocket were considered.

Element
Number of data

containing element
Proportion of data
containing element

C 19398 1.00
S 5146 0.27
O 18338 0.95
N 17515 0.90
Cl 2255 0.12
P 2087 0.11
F 2500 0.13
Br 459 0.02
I 133 0.01
B 240 0.01
Se 16 0.001
Fe 21 0.001
Co 4 0.000
V 2 0.000
Ru 10 0.000
Be 1 0.000
Ir 5 0.000
Zn 1 0.000
Mg 1 0.000
Re 1 0.000
As 4 0.000
H 6 0.000
Cu 1 0.000
Pt 2 0.000
Rh 1 0.000
Si 5 0.000
Sb 1 0.000
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Table 5: Number of train, validation and test data in each protein category before merging
for the new split of PDBBind

Protein type Train Validation Test
hydrolase 4038 318 1377
transferase 2226 1228 1837
other 3050 405 134
transcription 642 52 298
lyase 331 71 465
transport 503 35 83
oxidoreductase 342 52 182
ligase 342 38 90
isomerase 199 70 64
chaperone 50 66 184
membrane 157 56 71
viral 196 18 53
metal containing 85 13 22
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Supporting Figures

Figure 1: Flowchart of the BDB2020+ curation process. Starting with the original Bind-
ingDB dataset, the records with potential matched structures in the RCSB database were
identified by searching the InChi keys that occur in BindingDB to find all PDB records that
contain the same ligand, and then further filtering based on the PDBID of the target chain
that was also recorded in the BindingDB dataset. Release dates of the PDB structures were
extracted from the RCSB PDB records and only records after year 2020 were selected for
further processing. Additionally, we employed the same similarity criterion as what was used
in developing LP-PDBBind, and removed all data that has sequence similarity greater than
50% or ligand similarity greater than 99%. The filtered PDB files were downloaded from
the RCSB database and small molecule ligands were extracted from the PDB files. The
original BindingDB dataset? ? was matched with PDB database records by exact ligand
matches. The matched records were further filtered based on release date and similarity
with the PDBBind dataset. All ligands were extracted from the downloaded PDB files, and
the ligand matching the SMILES in the BindingDB dataset was selected for further process.
Protein chains in the vicinity of the ligand were also extracted. Both the matched ligand
and protein chains were further processed to ensure identity with the record in PDBBind.
Any discrepancy will result in a mismatch of data and will be discarded.
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Figure 2: Data similarity between refined set and core set in the PDBBind original split.
Comparison of maximum protein similarities (a), ligand similarities (b) and interaction fin-
gerprint similarities (c) between refined set and core set under original split of PDBBind.

Figure 3: Data similarity between validation set and test set in different splittings of PDB-
Bind. Comparison of maximum protein similarities (a), ligand similarities (b) and interaction
fingerprint similarities (c) between validation set and test set under Equibind split and LP-
PDBBind.
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Figure 4: Scatter plots for predicted scores and experimental binding affinities before and
after model retraining for different models evaluated on UCBSplit test dataset. Scatter plots
for original models: (a) AutoDock vina, (b) IGN, (c) RF-Score, and (d) DeepDTA; Scatter
plots for models retrained with UCBSplit: (e) AutoDock vina, (f) IGN, (g) RF-Score, and
(h) DeepDTA.

Figure 5: Scatter plots for predicted scores and experimental binding affinities before and after
model retraining for different models evaluated on BDB2020+ benchmark dataset. Scatter
plots for original models: AutoDock vina (a), IGN (b), RF-Score (c) and DeepDTA(d);
Scatter plots for models retrained with UCBSplit: AutoDock vina (e), IGN (f), RF-Score
(g) and DeepDTA (h)
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Figure 6: Scatter plots for predicted scores and experimental binding affinities before and
after model retraining for different models evaluated on SARS-CoV-2 main protease (Mpro)
benchmark dataset. Scatter plots for original models: AutoDock vina (a), IGN (b), RF-Score
(c) and DeepDTA(d); Scatter plots for models retrained with UCBSplit: AutoDock vina (e),
IGN (f), RF-Score (g) and DeepDTA (h)

Figure 7: Scatter plots for predicted scores and experimental binding affinities before and after
model retraining for different models evaluated on epidermal growth factor receptor (EGFR)
benchmark dataset. Scatter plots for original models: AutoDock vina (a), IGN (b), RF-Score
(c) and DeepDTA(d); Scatter plots for models retrained with UCBSplit: AutoDock vina (e),
IGN (f), RF-Score (g) and DeepDTA (h)
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Covalent Binders

The identifiers of the 893 covalent binders in PDBBind v2020 (count: 893):

3HJ0, 2XLC, 6Q35, 4BCB, 5GWZ, 6P8X, 4DKT, 3B1T, 3BG8, 5E0G, 1EAS, 5WEJ, 1Z6F,

1BIO, 6B1H, 3BJM, 5I24, 3ZCZ, 4JJE, 6N4T, 4AXM, 2I72, 4QVM, 1KDW, 3HD3, 6HVS,

4R3B, 1P06, 5TG4, 5DGJ, 5DPA, 2OC1, 1P04, 5FAO, 4QWU, 5ZWH, 4WKS, 2O7V, 4GS6,

5C1Y, 1A3E, 4NO8, 1QX1, 2G5T, 1KE3, 3SN8, 4QWL, 3ZMH, 5T66, 3KJF, 5D9P, 5DP5,

3D4F, 1MXO, 1L6Y, 5WDL, 1LHE, 1PI4, 4BCC, 3LJ7, 1RHM, 5WAG, 6DA4, 2QL5, 6BL1,

5OM9, 6B1J, 5GWY, 1O45, 5OYD, 1QWU, 4OON, 1KDS, 6CHA, 6B1F, 4QWS, 6HHH,

6BKX, 5H6V, 3KW9, 1ONG, 4QVL, 5X02, 5J7S, 4AN1, 5FAT, 1P10, 1RHQ, 2H5D, 6RNI,

4DCD, 6DGE, 4WKV, 4AMZ, 5FA7, 6RNE, 4QZ2, 1QCP, 3P8E, 2AUX, 1I8J, 1K2I, 2FDA,

1O4K, 3NS7, 6B0Y, 1VSN, 5TYN, 1AU0, 1RWX, 1NC6, 5CYI, 4JG8, 4D8E, 3LLE, 1F1J,

3PA8, 6M9F, 3SNB, 4LEN, 4OOL, 4MNV, 1BGO, 1ZPC, 6B1Y, 3UR9, 6CN8, 4KQO,

1AHT, 2FS9, 6MKQ, 4GK7, 3NZI, 1QJ6, 4BS5, 4E3L, 4J70, 6HVU, 4PIQ, 1P01, 1F9E,

5INH, 6FV1, 3S1Y, 1RHJ, 4QW0, 5W14, 4MAO, 5DP6, 5HL9, 5ACB, 2MLM, 4O7D,

6ND3, 2WIJ, 4S2I, 6AFJ, 5KRE, 3TJM, 5TYL, 1GZG, 2G5P, 2WJ2, 2ZZ6, 4QVV, 3BM8,

2XNI, 3H0E, 2QNZ, 5SYS, 1Q6K, 4WX6, 5MJB, 4PKB, 6HVW, 1RTL, 3BH3, 4QW5,

5DP4, 1NY0, 3OYP, 1E34, 1U9W, 1YMX, 3SVV, 6SKD, 2WJ1, 4XBB, 5V2Q, 3W2P,

5VQY, 9LPR, 6DUD, 3LCE, 1GA9, 6HHI, 3RDH, 4Z16, 1YT7, 2XU5, 4ZRO, 5FOO, 1NMS,

2WOQ, 1FSW, 6HV7, 6NVG, 2NQG, 6UN3, 1QJ1, 5TTU, 3MXR, 6Q5B, 6CZU, 4YQV,

5JH6, 3SNA, 4WYY, 4IMZ, 5EEC, 6EYZ, 4F49, 5T6F, 2Y59, 4E3I, 3IKA, 6I0X, 1AYV,

4QZ3, 2XDM, 3KWB, 4LV3, 5L6O, 1RHR, 3ZMI, 6RN6, 8LPR, 4QWX, 4WKU, 1AU2,

1TMB, 3MBZ, 4PL5, 6FFS, 4XJR, 2LPR, 6FDU, 5TH7, 5HLB, 5MAJ, 2HWP, 1UOD,

1A46, 6NVI, 1GFW, 6QG7, 4WX4, 4J5P, 6QHR, 6FDQ, 3LPR, 5FAQ, 1MPL, 3VB5,

1FSY, 6MHB, 4X68, 3V4J, 6IUO, 6HVR, 4QPS, 6DB4, 4QBB, 1ORW, 2OZ2, 3EX6, 5WFJ,

6M8Y, 4X6J, 5VQV, 1NQC, 4EST, 6D3G, 6QHO, 1GMY, 6AFE, 2R4B, 2ALV, 5V2P,

4QW4, 4IMQ, 4XBD, 6HHG, 5J9Z, 2Y2N, 4YV8, 1INC, 5E7R, 5NE1, 3PR0, 6AFA, 3FMQ,

3O6T, 4OB2, 3FMR, 2WZX, 3W2Q, 6B95, 1O4I, 6RNU, 3QN7, 6S1S, 3KQA, 5VQX, 5U4G,
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1MY8, 1ZPB, 4WKT, 3SZB, 6UN1, 6QW8, 4X69, 3ZEB, 4JG7, 6IB2, 3LOK, 6HUB, 7LPR,

6B1X, 1NYY, 5J87, 6IC6, 4WSK, 5SWH, 3V4X, 2FTD, 5YU9, 3VB7, 3O87, 4QVN, 4JK6,

5DG6, 6PNO, 6IYV, 5J8I, 3K84, 6NVJ, 5HG8, 2Y2I, 5VQE, 3ZVW, 2A4Q, 6HTD, 6BIC,

4WZ5, 1YLV, 3KJN, 5C91, 4JR0, 3UFA, 6S9W, 1IEM, 3A73, 1AD8, 6AFI, 5W13, 5J8X,

5WKL, 5NUD, 4E3N, 5X5G, 4YQU, 3BM6, 4QWI, 1H8Y, 2WGI, 5LCJ, 4WEF, 3QSD,

1TBZ, 2QLB, 1GGD, 2WIK, 4QVW, 1PAU, 6LPR, 4WM9, 4QVP, 6B41, 2XU1, 5TDI,

1ZOM, 3LOX, 2XDW, 6NVL, 2QQ7, 5DP8, 1YLY, 6M8W, 5XHR, 3SZ9, 4YAS, 1O4D,

3EWU, 2QKY, 5KYK, 6HVA, 1P02, 1ERO, 3GJS, 1W31, 2OP9, 3OPR, 1O43, 6HTR,

5GMP, 4VGC, 3OPP, 5WAD, 4GD6, 4NO1, 5LC0, 6O8I, 4WSJ, 4OLC, 1U9X, 6JPJ, 4QZ1,

3ZOT, 6K1S, 2XLN, 2XOW, 6G9F, 3VB6, 2EEP, 4QWR, 4MVN, 5LPR, 5TG2, 3FNM,

1MNS, 4MZO, 6DI1, 6MHM, 2AUZ, 1B0F, 2AJD, 3D62, 2Q9N, 1C3B, 5TYJ, 6RJP, 6PNN,

2Q3Z, 5J9Y, 4QXJ, 1P03, 6MZW, 5TTS, 3QKV, 3BLT, 5UG9, 3ZMJ, 2JAL, 3O1G, 4NNN,

1QHR, 4Q2K, 4PNC, 3KWZ, 4QQC, 6M9C, 3SV8, 1W12, 5V88, 6E5G, 2QLJ, 4JJ7, 2Y2K,

5ORL, 1A5G, 4I9O, 4NNW, 3ZVT, 2QLQ, 6M9D, 5TOZ, 5TYK, 6OVZ, 4QWJ, 2QLF,

3GPJ, 2Y4A, 2AJL, 3V6R, 4LV2, 2GVF, 1EXW, 4MNW, 4YHF, 6HHJ, 1BMQ, 4UUQ,

2GBG, 4WX7, 5ZWF, 4XUZ, 5HLD, 6AFL, 5D6F, 1IEW, 4TWY, 2O9A, 3C9E, 2HOB,

5YOF, 5L6P, 5TG6, 1VGC, 3O86, 1RHU, 4GHT, 4QZ4, 3G3M, 6CQZ, 1O4A, 5FQ9, 5EST,

5A3H, 1DOJ, 4E3J, 3K83, 5E0H, 4PIS, 5GTY, 3S22, 3S3Q, 5TEH, 1GBT, 1ERQ, 1NL6,

2XU4, 2H5I, 1A09, 4PL3, 2WIG, 1LHD, 4QW7, 7GCH, 2ZU4, 4QZX, 1W10, 4NO9, 5D11,

6F6R, 1LLB, 6DQB, 5TYP, 6E5B, 4E3K, 1LHG, 5LWN, 1LHF, 1RXP, 4MZS, 2ZU5, 4M1J,

6GOP, 6AFG, 1RWW, 4YRT, 4QWF, 1H1B, 5GNK, 4I7D, 3SND, 4PID, 5E0J, 1NJU, 1KE0,

5WAC, 2OC0, 1MS6, 2UZJ, 2AJB, 5JK3, 5TTV, 3HHA, 1NO9, 1NPZ, 5X79, 6PGP, 4INT,

2QL9, 5D6E, 2QCN, 6S9X, 3G3D, 6MHC, 3BLS, 1B5G, 4INH, 2OP3, 3MXS, 3VGC, 1RE1,

4XCU, 5UG8, 5VQZ, 2FM2, 6NVH, 2F9U, 3S3R, 1L6S, 2GBF, 4HCV, 4PL4, 3W2T, 6AFC,

4I7C, 6HUQ, 1G37, 6AFH, 2YJB, 5DP7, 5U4F, 4M8T, 5DP9, 4QVY, 3KRD, 4JMX, 2XU3,

4WBG, 4NO6, 2F9V, 2BDL, 6RN9, 2Y2J, 2YJC, 4QZ0, 4CCD, 1W14, 6N9P, 4QWG, 4PJI,

5GSO, 4HRD, 6MNY, 6G8N, 2V6N, 4MNX, 3BLU, 6HUC, 6G7F, 2XK1, 6OIM, 5WKM,
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5FAS, 4E3M, 4D8I, 5TG1, 6HTC, 5V4Q, 4WMC, 6ALZ, 3HWN, 4MBF, 2HWO, 4QZ5,

1P05, 3MKF, 5C1X, 6CQT, 6B1O, 4YEC, 6QFT, 1EAT, 4HRC, 5WAE, 1IAU, 2ZU3,

6IYW, 3RJM, 1U9V, 1AUJ, 2QL7, 4HNP, 2Y2P, 6IC5, 3E90, 1YM1, 6FV2, 5W12, 1TYN,

6BL2, 4QKX, 3ZIM, 1QTN, 4AMY, 2NQI, 3OF8, 3EX3, 2H65, 5NE3, 1LHC, 1EKB, 1SNK,

5AHJ, 1MEM, 4KIO, 6ARY, 3OVX, 4INR, 5ZWE, 1NLJ, 1RHK, 4HCU, 2FXR, 4AMX,

6BIB, 4U0X, 6QW9, 1YK7, 2I03, 3LXS, 3SNC, 1ONH, 4QW1, 1TU6, 3B1U, 6B1W, 6HGY,

5UGC, 2Z3Z, 6MHD, 4MZ4, 4MNY, 5VND, 4JK5, 2QAF, 3OJ8, 6GCH, 1MWT, 6P8Y,

3KJQ, 4YRS, 6HUV, 2RCX, 2H5J, 5LVX, 4QWK, 5F02, 6D8E, 5WAF, 5EE8, 4QW3, 4NK3,

4JG6, 5G0Q, 2G63, 2Y55, 6B0V, 5MAE, 4R02, 5T6G, 5LCK, 6HUU, 5HG9, 6AFD, 6ERT,

4R6V, 4INU, 1A61, 6QG4, 5NGF, 4FZG, 5FAP, 4QQ5, 2WAP, 6GCR, 6BID, 5TYO, 4HBP,

2OBO, 6RTN, 5TG5, 4QZ7, 3EYD, 1PI5, 5MQY, 3SV7, 6HVT, 6GXY, 2FJ0, 4JJ8, 6RN7,

2XE4, 6QWB, 3VB4, 2A4G, 2Q9M, 4BSQ, 4AMW, 5ZA2, 3U1I, 3FKV, 6H0U, 4QW6,

3T9T, 1O41, 2FS8, 1E37, 3I4A, 6HV5, 4YQM, 4LV1, 6B1E, 2Y2H, 3BWK, 2YJ9, 1O4E,

5I23, 2OC7, 1AYU, 6FFN, 1QJ7, 5XYZ, 6AFF, 5TG7, 3BAR, 3I06, 5GWA, 5J5D, 4E3O,

6HVV, 4QZ6, 6PGO, 4WZ4, 2XZC, 1HBJ, 5HG7, 6G9S, 6AX1, 2LP8, 6GZY, 2YJ8, 4Q1S,

6AF9, 6QW7, 4L0L, 3SJO, 1AWF, 1F7B, 1TLO, 1QFS, 6IB0, 4FZC, 5NPB, 5NWZ, 6QWA,

1YMS, 4QZW, 2WZZ, 3IUT, 6SKB, 6J6M, 5C20, 1AWH, 2VGC, 1NKM, 6HV4, 6G8M,

6BQ0, 2R6N, 5HG5, 3N4C, 3K7F, 6PNM, 3SJI, 4IVK, 4QVQ, 4DMY, 6P8Z, 4RSP, 5CLS,

3O88, 2YJ2, 3V6S, 4X0U, 4AN0, 6HTP, 2XCN, 3SV6

Structures Containing Steric Clashes in PDBBind

Here are the PDBIDs for structures in PDBBind v2020 with minimum distance between

heavy atoms in the ligand and the protein less than 1.75Å (count: 1303): 3N9S, 4U1B, 3ZHX,

1EW8, 2FZK, 2Q8Z, 5GOF, 1EX8, 1OLX, 3A6T, 1KM3, 4K55, 5EFA, 3K1J, 4L51, 3NXQ,

6D1H, 1FZQ, 1JLR, 6O5T, 1I9N, 4U6C, 2ZZ2, 1X8R, 4U71, 2RK8, 2V8W, 6HH3, 4FL2,

1RNM, 3ISS, 3DJV, 1PVN, 4U6W, 1B38, 1MAI, 1V48, 2C94, 1LCP, 3B7I, 1V11, 4EU0,
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4R3W, 6CZB, 4NXV, 6CZC, 6D1G, 1NKI, 3B7R, 4K5P, 2V2H, 1W4Q, 1MRS, 1AFL, 2ISW,

4AXD, 3HU3, 3EVD, 1M83, 4DEL, 3RV4, 3IAE, 6D1B, 4UOH, 3B3C, 1WUQ, 3WGG,

4U0W, 3RBU, 3AHO, 6JDI, 1G98, 3A1E, 4K3N, 4QJX, 2OI2, 1JVU, 1B55, 2W8W, 6IHT,

2RCN, 2R75, 3D2E, 3PCG, 2GSU, 4NCN, 4KAX, 2C92, 1TLP, 4QRH, 2YAY, 1TKB, 3S8L,

1YQ7, 1G53, 1KSN, 4DCS, 1JYQ, 1QK4, 4P5D, 1FT7, 6D9S, 4PVY, 6OF5, 2QTN, 5D6J,

2AMT, 4L50, 4IDN, 6D1J, 1WUR, 1RNT, 1SLN, 1BXR, 3G1V, 1PKX, 4ZCS, 5CBM, 1LVU,

6JON, 3I73, 3EBI, 3EXH, 2TMN, 5HVA, 4U69, 3OVE, 2WF5, 4JNE, 4FL1, 2E91, 1M5W,

5FSX, 2XBP, 4U73, 5HWU, 2WE3, 6FAA, 6D15, 1RP7, 6D3Q, 5NW7, 1M7Y, 1YFZ, 1U0G,

2PY4, 4LPS, 1YDD, 5LTN, 3DJO, 3K5X, 2QTA, 3BXF, 5TMP, 2RIO, 1PFU, 2PU1, 1B57,

3A1C, 3D7K, 1S5Z, 1M0Q, 1A4R, 6J72, 3UPK, 4U70, 1V16, 6MNV, 3JUK, 4U6Z, 1ATR,

6FHK, 3OZG, 1OLS, 3EGT, 3AHN, 3OV1, 3AAS, 6DD0, 3Q71, 3EXE, 3FZN, 6D1A, 1D2E,

2E92, 3N1C, 1MUE, 5EVZ, 4ETZ, 4JYC, 6D18, 2PQC, 3C56, 6HH5, 5C2O, 3FZY, 1HYO,

5BV3, 2NSL, 6H77, 3I9G, 5UV2, 1HI4, 3DJP, 2R59, 4DY6, 1EW9, 2VT3, 2FXV, 5YHE,

5LDP, 1Q54, 2WZF, 3FUC, 2W5G, 2PTZ, 5F2R, 5HJQ, 1X8T, 2X97, 4OR6, 1VSO, 3MKE,

3HJ0, 2XLC, 6Q35, 4BCB, 5KHG, 3LOO, 3L0K, 5TIG, 6JN4, 2Y4M, 6EJI, 2PJ4, 4QIR,

3BG8, 1QF5, 6G15, 1EAS, 1Z6F, 1BIO, 6B1H, 3BJM, 5I24, 3ZCZ, 5YBI, 3HU2, 6N4T,

2I72, 4QVM, 1KDW, 3POA, 1TMM, 4EFG, 6HVS, 3GGC, 2VF6, 4R3B, 1SRE, 1P06,

5O3R, 5TG4, 5JNL, 1NU8, 2OC1, 3ATV, 1P04, 5FAO, 5IZM, 4QWU, 2CFG, 6N97, 5EOU,

4WKS, 4OCP, 5C1Y, 3UIG, 2Y1G, 4NO8, 1ONP, 2G5T, 1KE3, 4QWL, 3ZMH, 5T66, 3KR5,

5D9P, 1DB4, 1WC6, 3D4F, 4F3H, 1MXO, 1L6Y, 1Y8P, 1LHE, 2PJA, 1PI4, 4ZQT, 4BCC,

3LJ7, 6CZD, 5JEK, 5WAG, 3TDH, 6DA4, 3UED, 3WNS, 5OM9, 6B1J, 3EWZ, 1O45,

3D9P, 5OYD, 1QWU, 1H79, 4DXJ, 4OON, 1KDS, 6B1F, 4UMJ, 4QWS, 1TKC, 6BKX,

5H6V, 1ONG, 5ZDG, 4KXM, 6I5J, 4P4F, 4QVL, 5X02, 5J7S, 5J7J, 4AN1, 4DN0, 4P4S,

5FAT, 1T29, 1P10, 1R0X, 2H5D, 5B5P, 1QJB, 4WKV, 4AMZ, 5FA7, 6FEL, 6RNE, 1Y8O,

4QZ2, 1QCP, 3GQO, 2MC1, 3ZP9, 2AUX, 2PJC, 1I8J, 3E0P, 1K2I, 6G01, 2FDA, 1O4K,

6AEC, 5W38, 3QXC, 6B22, 6B0Y, 1VSN, 6FA5, 4YX9, 5TYN, 4KP4, 6NNG, 5CYI, 4BXN,

4G8L, 3PA8, 6FAC, 6IPL, 6M9F, 4K5N, 4LEN, 1AO0, 4OOL, 4MNV, 4E1E, 1ZPC, 1KWR,
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6B1Y, 3FYZ, 5L44, 4YB7, 6R4V, 1CSI, 1H7A, 2Z7H, 1OTH, 4KQO, 5F1C, 4JJF, 4EEJ,

1AHT, 2FS9, 6MKQ, 4GK7, 3NZI, 1QJ6, 4E3L, 2J4K, 4J70, 6HVU, 1P01, 5INH, 1H07,

3S1Y, 4QW0, 5W14, 5DP6, 5HL9, 4WYZ, 5ACB, 1TPZ, 4O7D, 3X1K, 2WIJ, 4S2I, 5ICV,

5KRE, 4R17, 3TJM, 2JBV, 5TYL, 4QLU, 2QPJ, 3TL0, 2G5P, 2WJ2, 2ZZ6, 4QVV, 2XNI,

2QNZ, 6AGP, 4PKB, 6HVW, 1LF8, 1RTL, 3BH3, 4QW5, 1EBG, 1NY0, 1E34, 1U9W, 2IOA,

1YMX, 4K8O, 6SKD, 2Z7I, 2WJ1, 1TL7, 1X07, 2Y1D, 9LPR, 1GA9, 1MN9, 3WDC, 6AK6,

4QLV, 6R4S, 6FMP, 3RDH, 3DPC, 5FOO, 2WOQ, 1FSW, 2PJ5, 6HV7, 5AB0, 3RYW,

6UN3, 1QJ1, 5TTU, 3L0N, 6AEH, 3MXR, 6Q5B, 1CSS, 6CZU, 4R18, 1G05, 5JH6, 6OM4,

4JG0, 4WYY, 4IMZ, 5EEC, 6EYZ, 3HU1, 2VHQ, 5NPF, 2Y59, 4E3I, 6PK7, 5UV1, 5Z68,

4K5M, 6IPM, 4QZ3, 2XDM, 4LV3, 2C1N, 3AAV, 4FUT, 4FR3, 3ZMI, 1PPW, 8LPR, 5BRN,

1NZV, 4QWX, 5F29, 4WKU, 3EXF, 6N54, 4GKC, 4RAB, 3MBZ, 4PL5, 4JJG, 2XAQ,

2P0X, 4XJR, 6IPH, 2LPR, 6FDU, 4U6E, 5HLB, 3HWX, 1UOD, 4DEM, 1P6D, 1AKQ,

1LV8, 1AMN, 6QG7, 4J5P, 6FDQ, 5NPR, 3FHE, 3LPR, 5FAQ, 1MPL, 5L6H, 3VB5, 1FSY,

4X68, 3V4J, 4QLQ, 6HVR, 1O8B, 6NZG, 4HWT, 6DB4, 1ML1, 1AKV, 5JAZ, 1ORW,

2OZ2, 3EX6, 5WFJ, 6M8Y, 4X6J, 1B39, 1NQC, 5UQ9, 4EST, 5W10, 4JN4, 6D3G, 1EIX,

1RYH, 6N94, 4QW4, 2A4R, 5YR5, 1KF0, 1D7X, 2QTR, 5EY8, 5JMP, 5J9Z, 2Y2N, 4YV8,

1INC, 3T2C, 3LXO, 6MLF, 1E8H, 5NE1, 3PR0, 1JBD, 3FMQ, 4OB2, 3FMR, 2WZX, 1O4I,

6RNU, 6S1S, 5U4G, 1MY8, 1YHM, 2C9D, 3D67, 5YR6, 1ZPB, 4WKT, 6UN1, 6QW8, 4X69,

3ZEB, 6IB2, 6HUB, 7LPR, 3ZKF, 4UV9, 5K6S, 2Z4W, 6B1X, 1NYY, 5IZL, 4WSK, 3VB7,

3K41, 3O87, 5BSK, 4QVN, 3L6F, 3CST, 5OD5, 3K84, 1VJC, 2Y2I, 5VQE, 3ZVW, 2A4Q,

4WUP, 6HTD, 5F5B, 1C7F, 4LOJ, 4WZ5, 3SHV, 1YLV, 2QM7, 1YON, 1VJD, 1U2R, 3ZY2,

3E16, 6Q30, 2Y4L, 1IEM, 1AD8, 6EUV, 5W13, 2QCD, 4I9S, 4GA3, 5AGJ, 5J8X, 4L2X,

4BG6, 5NUD, 3TDZ, 5KHD, 3AU6, 1GGN, 4E3N, 5X5G, 4EHM, 3GZN, 5NHZ, 3BM6,

4QWI, 1H8Y, 2WQP, 2WGI, 6J7L, 1RU2, 4NZM, 1TBZ, 3AXK, 5YKP, 4LIL, 4HE9, 1RGK,

1GGD, 5NZ2, 2WIK, 6RMM, 4QVW, 6LPR, 4WM9, 4QVP, 5GSW, 2PU0, 1ZOM, 6PXC,

5FB0, 1Y19, 3LOX, 1T3T, 4CLP, 2XDW, 1YLY, 6M8W, 5XHR, 4YAS, 1O4D, 1I9L, 3EWU,

2QKY, 2ORK, 5KYK, 6ISD, 6HVA, 6DD1, 1P02, 1ERO, 6GFM, 1AKU, 1W31, 3OPR,
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1O43, 4RHU, 2PJ0, 6HTR, 6AR2, 3MLE, 4VGC, 6HYS, 3OPP, 3LLM, 4U0G, 5WAD, 1I9Q,

4EXZ, 4Y67, 4GD6, 4H38, 4NO1, 5LC0, 6E5S, 4FL3, 6AK5, 4WSJ, 1U9X, 4QZ1, 5NYZ,

3WDZ, 3ZOT, 3ZMQ, 6K1S, 2XLN, 2XOW, 3WNR, 6G9F, 3V7D, 3KC0, 3VB6, 4QWR,

3NCQ, 4MVN, 5LPR, 4A0J, 3RG2, 3Q7P, 1QJA, 3FNM, 3IQV, 3IUC, 1MNS, 3RBM, 4OAZ,

2AUZ, 6IA7, 4G5Y, 6G2N, 1B0F, 2AJD, 3D62, 2Q9N, 1C3B, 6GIU, 5TYJ, 6RJP, 1BWN,

2Q3Z, 1I9M, 1NJT, 5J9Y, 4U0U, 2L0I, 4KW6, 4QXJ, 1NZL, 2Y8L, 1P03, 4ZCW, 3EX2,

3QKV, 3BLT, 4UVA, 3ZMJ, 3NBA, 2JAL, 4NNN, 5NPS, 1QHR, 6C5J, 4Q2K, 4W5J, 4EDE,

4LQY, 4QQC, 2E95, 4GS9, 4I9R, 6M9C, 4P5E, 3SV8, 1W12, 2V0C, 2HQU, 4OEL, 6AK4,

2E98, 1O4F, 5J7P, 2Y2K, 3QT7, 2O1V, 4NNW, 3ZS1, 3ATU, 3ZVT, 2QLQ, 1RU1, 6M9D,

5ZDC, 5TYK, 6B4H, 6OVZ, 2HA0, 4QWJ, 3GPJ, 2Y4A, 3OB2, 2H5A, 2AJL, 1BJR, 3Q72,

4LV2, 2CMC, 2GVF, 5HH4, 4UUQ, 2GBG, 5W8V, 4WX7, 2ZA3, 5ZWF, 4XUZ, 1AKR,

5HLD, 3CF1, 1MF4, 5D6F, 4WN0, 2PJ6, 1IEW, 6BS5, 2HOB, 4DWG, 5YOF, 5TG6, 1VGC,

5DOH, 3O86, 1X6U, 4QZ4, 3G3M, 6CQZ, 1O4A, 5FQ9, 5EST, 4PRY, 5A3H, 1DOJ, 4E3J,

3K83, 4AY6, 1GVK, 6IPJ, 3S22, 5TEH, 3WYJ, 1GBT, 6PGX, 4W4S, 1ERQ, 2E93, 3G4F,

4N1Z, 1A09, 4PL3, 2WIG, 3EHW, 1LHD, 1AZL, 4QW7, 7GCH, 5MXQ, 2Z52, 2O4H, 3BH8,

4QZX, 1W10, 4NO9, 5D11, 1LLB, 5TYP, 5IM3, 1CSH, 6E5B, 4E3K, 1LHG, 2A29, 1NFS,

1Y98, 3U8D, 1LHF, 1RXP, 4M1J, 6GOP, 5HYX, 4QWF, 5YR4, 1H1B, 6QXS, 3A1S, 4PID,

4GV8, 1NJU, 2QCG, 1KE0, 5WAC, 2OC0, 6IPI, 6EGS, 3Q2G, 2AJB, 5W19, 5JK3, 1NO9,

5MOC, 6E7M, 5MI3, 5SVK, 5X79, 4INT, 4RXC, 3FCK, 1LRT, 5H63, 5D6E, 2QCN, 3G3D,

6AI9, 3V0P, 3BLS, 1H9L, 2OP3, 3MXS, 3VGC, 6NPF, 5L6J, 2FM2, 2F9U, 1VKJ, 2Q80,

4TMF, 1L6S, 5EWZ, 2GBF, 4PL4, 1RYF, 3W2T, 1XFV, 6HUQ, 5WRS, 1G37, 1CSR, 4JBS,

1MAU, 3QX8, 5DP7, 4M8T, 4QVY, 4K5O, 3KRD, 4JMX, 5AEL, 4RAQ, 4WBG, 6N9T,

5OLK, 2PJ2, 2K0X, 4NO6, 1FPY, 2F9V, 2BDL, 6RN9, 4K19, 2Y2J, 4QZ0, 3E4A, 4CCD,

1W14, 6N9P, 6RML, 4U82, 4QWG, 4PJI, 5GSO, 1GX4, 5M9D, 4HRD, 6G8N, 3BB1, 4QLS,

2E99, 3BLU, 6HUC, 6G7F, 3IOI, 2XK1, 5EY9, 4GZ3, 3UX0, 3UO9, 5FAS, 4E3M, 6HTC,

5V4Q, 4WMC, 3PJT, 4MBF, 4QZ5, 1P05, 3MKF, 5C1X, 6CQT, 1NYM, 6B1O, 6QFT,

1GX0, 3CPH, 5HH6, 1EAT, 1U0H, 4HRC, 4EUV, 5WAE, 1IAU, 2H1H, 1OXG, 3RJM,

20



1AUJ, 5EXX, 4HNP, 2Y2P, 6IC5, 3E90, 6H78, 3D9L, 1YM1, 5G1P, 4RAC, 5W12, 1TYN,

6BL2, 2ITK, 2G83, 3FV7, 3ZIM, 1QTN, 4AMY, 5HH5, 3EX3, 5NE3, 1LHC, 5A3R, 1EKB,

5AHJ, 5E2V, 3BUO, 6ARY, 6MMC, 4INR, 2FXR, 4AMX, 4U0X, 6QW9, 2P59, 2I03, 1BSK,

3D9M, 1ONH, 4QW1, 4K5L, 1I3Z, 6B1W, 2QCF, 3BU6, 2P1C, 1FT4, 5VND, 4YM4, 2QAF,

4DWB, 2PLL, 3RSB, 3LDW, 16PK, 3OJ8, 6GCH, 1MWT, 2QCM, 4V11, 6HUV, 2RCX,

5LVX, 4QWK, 2JG8, 5WAF, 5EE8, 4QW3, 4NK3, 1ELS, 2IT4, 5G0Q, 2WVA, 3B9S, 2G63,

2Y55, 6B0V, 5MAE, 4R02, 6IPK, 6HUU, 1YYY, 6ERT, 4R6V, 4INU, 1G9R, 5OSY, 4FZG,

2JBJ, 5FAP, 4QQ5, 2WAP, 5TYO, 5X9H, 4HBP, 2OBO, 6RTN, 5TG5, 1I9O, 4QZ7, 3EYD,

1PI5, 3SV7, 6HVT, 2FJ0, 5E2N, 2XE4, 6QWB, 4KXL, 3VB4, 2A4G, 2Q9M, 4BSQ, 5ZA2,

2WIC, 6G6X, 3U1I, 4JFX, 5KNU, 3FKV, 5JBI, 4QW6, 1O41, 2FS8, 1E37, 6CSE, 5LVF,

4OSF, 6HV5, 4LV1, 6B1E, 2Y2H, 3KSL, 1O4E, 5I23, 2OC7, 4RUU, 1QJ7, 5XYZ, 5KNR,

5K7H, 1SZ0, 6BUU, 5TG7, 2AD5, 3BAR, 4AY5, 5GWA, 4E3O, 6NNR, 6HVV, 3FZC, 4QZ6,

1M9N, 4WZ4, 2XZC, 1HBJ, 6G9S, 6AX1, 5EJE, 1TKA, 6GZY, 2L75, 3FSJ, 4OEM, 4Q1S,

3NCR, 5L6I, 6MU1, 6QW7, 4L0L, 5NI0, 4QLT, 1AWF, 1F7B, 6AEJ, 1QFS, 6IB0, 4FZC,

6OTT, 5NPB, 6QWA, 2F89, 1BA8, 2PSX, 4RAO, 3ZJC, 1YMS, 4QZW, 2WZZ, 2Y8Q, 6CJJ,

4GE5, 6SKB, 1AWH, 3HXE, 5JC1, 2VGC, 1SYO, 1NKM, 6HV4, 6G8M, 6BQ0, 3UEC,

5ZDE, 1JRS, 3K7F, 4IVK, 3WNT, 3BGM, 4QVQ, 2HR6, 5CLS, 3O88, 4P4T, 4X0U, 6E3P,

2ONB, 4AN0, 6HTP, 2XCN, 3SV6
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