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Abstract

In our paper [Bernoulli 26(2), 2020, 1381-1409], we found all strong Markov solutions that spend
zero time at 0 of the Stratonovich stochastic differential equation dX = |X|* odB, a € (0,1). These
solutions have the form X! = F(BY), where F(z) = ﬁ|x|1/(17‘1) signz and B? is the skew Brownian

motion with skewness parameter 6 € [—1, 1] starting at F~'(Xo). In this paper we show how an addition
of small external additive noise eW restores uniqueness. In the limit as € — 0, we recover heterogeneous
diffusion corresponding to the physically symmetric case 8 = 0.
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1 Introduction

In [Cherstvy et al.| (2013)), the authors considered the so-called heterogeneous diffusion process defined as a
solution of the Stratonovich stochastic differential equation

t
X, :m+f | X,|* 0 dB, (1.1)
0

with & € R and B being a standard Brownian motion. It is always assumed that |z|* = |z|* - I(z # 0), so
that |0|* = 0 for any « € R. This equation can be seen as a Stratonovich version of the famous diffusion

t
Xf =2+ J | X&) dB, (1.2)
0

firstly studied by (1962). It is well-known that equation (1.2) has a unique strong solution for
a > 1/2 and has infinitely many solutions for « € (0,1/2). A complete analysis of equation (1.2]) can be

found in Chapter 5 from |Cherny and Engelbert| (2005).

It is clear that in the Stratonovich setting, the presence of the irregular point {0} also affects the existence
and uniqueness of solutions of (|L.1)).

The physicists’ approach to exploited in the papers by [Cherstvy et al| (2013 and
is the solution by regularization. Indeed, let o € (0,1) and let {o.} be a family of smooth functions
with integrable derivatives such that o.(z) > 0 and |o.(z) — |z|*| — 0 uniformly on compacts as ¢ — 0.
Consider a regularized equation dZ§ = o.(ZF) o dB; that can be equivalently written in the Itd form as

1
dZ; = 0.(Z;)dB; + 505(Z756)U;(Zt€) dt, Zg =z (1.3)
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Figure 1: The function o(x) = |z|* and o.(x) = 4/|z]?* + €2 (left) and o.(x) defined in (1.10]) (right).

There exists a unique strong solution Z¢ to (1.3]) that can be found explicitly with the help of the well-known
Lamperti method. Indeed, let
T
d
F.(z) = f Y zeR. (1.4)
o 0=(y)

The function F. is monotonically increasing and C'-smooth with locally integrable second derivative. The
Itd formula with generalized derivatives from (Krylov, (1980, Chapter 2, Section 10) is applicable and yields

F.(Z;) = F.(x) + B; (1.5)
and hence
Z¢ = F7Y(B; + F.(x)). (1.6)

Now one can argue that upon passing to the limit as € — 0, the processes Z¢ converge to the solution X
of the original SDE (|1.1). Unfortunately, the rigorous justification of this intuitively transparent procedure
turns out to be tricky. Let us illustrate this by an example.

Example 1.1. We assume that « € (—1,1) and for brevity we set the initial value 2 = 0. We consider the

family {oc}.e(0,17 of the form
oo(x) =+/|z[?*+ 2, zeR, (1.7)
see Figure [1] (left).
Then, a straightforward calculation yields that

F.(z) - Fy(a) i= ——|a|' *signa,

1-a (1.8)
FoY(z) — Fyl(a) := |(1 — )z| 7= signa,

€

so that the limit process
X0 = By (By) (1.9)

is a candidate for a solution to (|1.1))
On the other hand, let A, B > 0 and let
g, x¢€[—Ae, Bel,
o.(z) = { |t — Be + e¥/*|*, x> Be, (1.10)
|x 4+ Ae — eV/*|*,  z < —Ae,

see Figure 1] (right). Applying the Lamperti transformation and passing to the limit as above we find that

0, ze€l[A, B],
Fol(x) — Fily(x) = 7|(1704)(x+A)|1ﬁ, T < —A, (1.11)
|(1-a)(x—B)|™=, x> B.



Hence another candidate for the solution is the process
XM= P (By). (1.12)

Note that such a process X“*Z spends positive time at zero.

It turns out that the processes X° and X% are indeed strong solutions of the equation for
a € (=1,1). This follows by a straightforward verification with the help of the generalized It6 formula by
[Follmer et al.| (1995]).

Excluding solutions spending positive time at zero as non-physical does not always guarantee uniqueness.
Indeed, in our previous paper (Pavlyukevich and Shevchenko| (2020))), the following theorem was proven.

Theorem 1.2 (Theorem 4.5, Pavlyukevich and Shevchenko (2020)). Let z € R and 6 € [—1,1], and let BY
be a skew Brownian motion that is a unique strong solution of the SDE

B! = Fy'(x) + B, + 0LY(B%), t=>0, (1.13)

LO(BY) being the symmetric local time of BY at zero.
1. Let a€ (0,1). Then X! = Fy(BY) is a strong solution of (L.1)) which is a homogeneous strong Markouv
process spending zero time at 0.

The process X is the unique strong solution of (1.1]) which is a homogeneous strong Markov process
spending zero time at 0 and such that

1446
P(Xf>O|X0=O)=T, t>0.

2. Let a € (—1,0]. Then X = F(BY) is the unique strong solution of (L.1]) which is a homogeneous strong
Markov process spending zero time at 0.

In other words, for « € (0, 1), the equation is underdetermined even in the class of homogeneous
strong Markov processes spending zero time at 0. In this respect, equation can be seen as a stochastic
counterpart of the deterministic non-Lipschitzian equation &; = |x¢|* that has infinitely many solutions if
started at x < 0.

In general, these solutions spend positive time at 0. However one can always single out the unique mazimal
solution spending zero time at 0. Such a non-uniqueness feature of a ODE with continuous coefficients is
known as the Peano phenomenon. It is also known that uniqueness, or singling out of physically meaningful
solutions spending zero time at 0, can be restored by means of the regularization by noise, studied for the
first time by Bafico and Baldi| (1982) and |[Veretennikov| (1983). In particular Theorem 5.1 in

(1982) implies that solutions of the SDE

¢
x§ =;v+f [z5]|% ds + eWy (1.14)
0
driven by a small Brownian motion eW weakly converge to the maximal deterministic solution

" ((1—a)t+ﬂc1_o‘)ﬁ, x>0,

¢ () = o o (1.15)
{—(|:z:|1a —(1- oz)t):" + (1 =)t - |:r|1*a):", x <0,
that spends zero time at 0. More results on the stochastic Peano phenomenon can be found in the works
by [Delarue and Flandoli| (2014), [Trevisan| (2013]), [Pilipenko and Proske, (2018)), Pilipenko and Pavlyukevich|
(2020).
The goal of this paper is to apply the “regularization” procedure to the SDE , i.e. to consider the
perturbed SDE

t
X7 :x+f | X% odBs + W, (1.16)
0

in the presence of another independent Brownian motion W. From the physical point of view, the Brownian
motion W with vanishing amplitude € represents the ambient environmental noise whereas the Brownian



motion B is responsible for the diffusive behaviour of the “heavy” particle X¢ in the non-homogeneous
medium determined by the non-linear “temperature profile” x — |z|*.

The qualitative result of the present paper is that solutions of the regularized equation converge
to the benchmark solution

1

X)) =F;N(By) = |(1 —)B; + || signx‘ " sign ((1 —)B; + || signx) (1.17)

that spends zero time at 0 and has no “asymmetry” at the origin.

This result is a manifestation of the “selection” procedure in the SDE case. In the limit as € — 0, the

regularized solution X¢ always “selects” the natural solution ([1.17)) among all possible solutions of (|1.1)) that
may have asymmetric behaviour at 0, stay positive time at zero, or be non-Markovian, etc.

2 Preliminaries and the main result

Throughout the article, we work on a stochastic basis (Q,.%#,F,P), i.e. a complete probability space with a
filtration F = (F;);>0 satisfying the standard assumptions. The process (B, W) = (B, Wi)¢>0 is a standard
continuous two-dimensional Brownian motion on this stochastic basis.

First we briefly recall definitions related to stochastic integration. More details may be found in [Protter
(2004)).

The main mode of convergence considered here is the uniform convergence on compacts in probability
(the u.c.p. convergence for short): a sequence X™ = (X/*)i=0, n = 1, of stochastic processes converges to
X = (Xp)¢=0 in u.c.p. if for any ¢ > 0

sup |X2—XS\5O, n — 0. (2.1)
s€[0,t]

Let a sequence of (deterministic) partitions D,, = {0 =t} <t} <ty <---} ={0=tg <ty <ty <---}of
[0,0), n = 1, be such that for each ¢ = 0 the number of points in each interval [0, ] is finite, and the mesh
| Dy := supgsq [t —t3_;| — 0 as n — o00. A continuous stochastic process X has quadratic variation [X]
along the sequence {D,,},>1 if the limit

[X]e:=lim > [ Xp, — Xg |

n—0o0
tr€D, tr <t
exists in the u.c.p. sense. Similarly, the quadratic covariation [X, Y] of two continuous stochastic processes
X and Y is defined as a limit in u.c.p.
[X’ Y]t = nh—{rolo Z (th+1 - th)(Y;ka - Ytk)

t€D, tr <t
When X and Y are semimartingales, the quadratic variations [X], [Y] and the quadratic covariation [X, Y]
exist, moreover, they have bounded variation on any finite interval.

Further, we define the It6 integral as a limit in u.c.p.

t
XsdYs = liinoo Z Xty (Ytk+1 - Ytk)
0 " tr€Dn tr<t

and the Stratonovich (symmetric) integral as a limit in u.c.p.

t t
1
J X, odY, :f X,dY, + =[X,Y],
0 0 2

. 1
= lim Z §(th+1 + th)(Y;‘/k+1 - Y;‘/k)v

n—0o0
t€D, tr <t

provided that both the It6 integral and the quadratic variation exists. Again, when both X and Y are
continuous semimartingales, both integrals exists, and the convergence holds in u.c.p.



We recall that a continuous semimartingale X is an Itd semimartingale if its semimartingale characteristics
are absolutely continuous with respect to Lebesgue measure, see, e.g., Definition 2.1.1 in |Jacod and Protter
(2012) and |Ait-Sahalia and Jacod| (2018)).

In this paper, we define

-1, x <0,
signz := <0, z =0, (2.2)
1, >0,
and for any a € R we set
@ =%,z # 0,
|| = {O B (2.3)
, x=0.
We also denote
() := |x| sign x. (2.4)

Throughout the article, C' will be used to denote a generic constant, whose concrete value is not important
and may change between lines.

First we give the intuition that will lead to the main result. Although the function = — |z|* is not
smooth, let us formally rewrite equation in the It0 form with the noise induced drift in the spirit of
the formula . Thus we obtain another SDE

t t
Yi—a +J VE[*dB, + %J (V)21 ds + W (2.5)
0 0

Note that the SDEs (|1.16)) and (2.5) are of different nature and do not have to be equivalent.
Assume now that Y is the solution of (2.5). Then it is a Markov process with the generator

_ yPete
2

Ly)2e1i(y), feC2(R,R). (2.6)

A f(y) () +

[\

However, A® is also the generator of the diffusion
t - a
Zy =+ f VIZg|P +e2dB; + §f (Z2)%~tds
0 0
t ~
:$+J |Z5|?¢ + €2 0 dBq
0
driven by some other Brownian motion B. The solution to equation ([2.7) has been determined explicitly in

([L.6) as Z& = F-1(B; + F.(x)), and hence we get that

Vi L FNB, + F.(z), t=0. (2.8)

It is clear that Z¢, and also Y°, converges in law to the benchmark solution X°. The same convergence
will also hold for solutions X¢ of the perturbed Stratonovich equation if one establishes an equivalence
between the equations and (|2.5]).

Now let us turn to equations and . The concept of strong solution for these equations is
defined in a standard manner.

Definition 2.1. A strong solution to is a continuous stochastic process X¢ such that
1. X¢ is adapted to the augmented natural filtration of (B, W);
2. for any ¢ > 0, the integral Sé | X | dBs and the quadratic covariation [|X€|%, B]; exist;
3. for any t > 0, equation holds P-a.s.

Definition 2.2. A strong solution to (2.5 is a continuous stochastic process Y such that



1. Y is adapted to the augmented natural filtration of (B, W);
2. for any ¢ > 0, the integrals Sé |YE|* dB;s and S(t)(YS‘E)M_1 ds exist;
3. for any ¢ = 0, equation ([2.5)) holds P-a.s.

Definition 2.3. A weak solution to (1.16]) is a triple ()Z'E,E,WN/) of adapted continuous processes on a
stochastic basis (Q2,.#,F, P) such that

1. B and W are independent standard Brownian motions on ((~2, :/;,IF‘, 13),

2. for any t > 0, the integral Sé |X¢|*dB, and the quadratic covariation [|X¢|*, B], exist;
3. for any t = 0,

¢
X, =x+ f | X% odBs + W, (2.9)
0

holds P-a.s.
Definition 2.4. ~A “faNk Eolution to is a is a triple (?E,é, f/IV/) of adapted continuous processes on a
stochastic basis (2, #,F, P) such that
1. B and W are independent standard Brownian motions on (Q, jﬁ‘, f’),
2. for any ¢ > 0, the integrals Sé |Y|*dB, and Sé(f’g)m’l ds exist;
0

3. for any t >

)

t t
Y=o+ J |YS|*dBs + % J (Ye)2e—lds + W, (2.10)
0 0

holds P-a.s.

The main results of this paper are given in the following theorems. The proofs will be presented in the
subsequent sections.

Theorem 2.5. For any ¢ > 0 and any « € (—1,1), equation (2.5) has a weak solution, where for o = 0,
g Sé(Yf)zO"lds := 0 and for a € (—1,0) the integral

[[oeeas i [ ozpe-av = oyas (2.11)
is understood in the principle value (v.p.) sense as defined in|Cherny (2001).
Theorem 2.6. For any e > 0 and any « € (0, 1), the pathwise uniqueness property holds for the SDE .
Applying the Yamada—Watanabe theorem, we arrive at the following result.
Theorem 2.7. For any e > 0 and a € (0,1), equation has a unique strong solution.
Concerning the equivalence of and the following holds true.

Theorem 2.8. For any o € (0,1), a strong solution to the stochastic differential equation (2.5) is also a
strong solution to (1.16]).

To establish strong uniqueness of equation (1.16), we show that any of its strong solutions also solves (|2.5|)
and appeal to Theorem ([2.7). We will establish the equivalence of solutions that are It6 semimartingales. In
other words, we assume that the bracket process [|X¢|*, B] is absolutely continuous with respect to Lebesgue
measure.

Remark 2.9. It will follow from Lemma that for any strong solution Y to (2.5, a € (0, 1), the process
[|[Y¢]|*, B] is absolutely continuous and hence Y is an Ité6 semimartingale.



Theorem 2.10. Let € > 0 and let X be a strong solution to (1.16) such that the bracket [|X¢|*, B]
is absolutely continuous with respect to Lebesgue measure. Then it is also a strong solution to (2.5). In
particular, strong existence and uniqueness holds for equation (1.16) in the class of Ité6 semimartingale
solutions.

Eventually we formulate the main qualitative result about the stochastic selection of the benchmark
solution.

Theorem 2.11. Let v € (0,1). Let X be a strong solution of (2.5) or an Ité semimartingale solution of

(1.16). Let X° be a benchmark solution (1.17). Then
X - Xx° (2.12)

m u.c.p. as € — 0.

3 Analysis of the SDE (2.5) with singular drift

We first address the question of weak existence of a solution of equation . It can be established even
for @ € (—1,1). However, for negative «, the drift should be understood in the principal value (v.p.), see
Cherny| (2001)).

The following function that has already appeared above in the Lamperti method will be crucial in showing
both weak existence and pathwise uniqueness of solution. Let

o-(y) = V]yl>* + &2 (3.1)

and

Ay,
F.(x) *Jo o (0) eR, ¢>0. (3.2)

Clearly, for each £ > 0 and « € (—1, 1), the transformation Fr: R — R is a bijection. In the neighbourhood
of zero we have
etz, ae(0,1),

Fx)~<{(1+&)"2 .2, a=0, (3.3)
(L+]a))™t - (@)l ae (=1,0),
and
el ae(0,1),
d 2y—1/2
@Fs(x) :0'5(33‘) ~ (1+5 ) / z, a=0, (34)
lz|l*l,  a e (~1,0).

Hence, F ! is a monotonically increasing absolutely continuous function, L F=1(2) = o.(F-!(z)), and in
the neighbourhood of zero

q g, ac(0,1),
—F M)~ {1+ ez, a=0, (3.5)
dz 2ol 2ol

(1 + |a]) el - |z| T+l a € (—1,0).

In particular for o € (—1,1), %F;l is locally square integrable, so that the generalized 1t6 formula (Follmer
et al., 1995, Theorem 4.1) for the Brownian motion is applicable to F- 1.
For a € (0, 1), the second derivative

d2 a(z)2e!
—F(r)=————F"——, 0, 3.6
dz2 () ([z]2* + 2)372 z 7 (3.6)
is in L] _(R), so that the It6 formula with generalized derivatives from (Krylovl 1980, Chapter 2, Section
10) is applicable.



3.1 Proof of Theorem [2.5]

In this section we assume that o € (—1,1). Let € > 0 be fixed.
Let W1, W? be independent standard Wiener processes, and let W := %(VV1 + W?). Define the process

Ve =t (Fg(x) + Wt) (3.7)
and set
(1Y) + &) dW! + (|Y2|* —€) dW?
t f | | 6 (| S| 5) S , (3.8)
O-E(YSE)
— |Vg[*) AWl + (V5| + ) dW?
e f . . (3.9)
\/> o-(Y¥)

It is straightforward to check that B° and W€ are continuous martingales with [Bf], = [W¢];, = t,
[B=,W¢]; = 0. Then, by the Lévy characterization, B¢ and W*¢ are independent standard Wiener pro-
cesses. It is also clear that

VE|[ (IVE]™ + &) AW + (|~ — &) AW

V2 o (YY)

V7| dBf + ed Wy =

P G V) AW} + (V| + ) AW (3.10)
\/i Js(ﬁe)
= 0.(Y7)dW,.

Applying the generalized It6 formula (Theorem 4.1 in [Féllmer et al.| (1995])) to the Brownian motion W and
the function F- ! in (3.7) and taking into account (3.10)), we get

¢
Yi=x+ J o (Ys) o dWy
0

t

N

=z + J e (YE)dW, + 5[05(Y5)7 W1, (3.11)
0

—~

_ x—l—J Ve dBE + e + 1[05(1/6) ..
For a € (0,1), by (Follmer et all |1995, Remark 3.2 (c)),
079 W1 = [ (72" s (3.12)
for a € (—1,0), by (Cherny} 2001, Corollary 4.4),
(0. (V5), W] = a - V.p.J (V)21 ds, (3.13)

0

whence we arrive at the SDE (2.5) for the triple (Y, B, I/IN/E)

3.2 Proof of Theorem [2.6]

Now we turn to the path-wise uniqueness of solution to , using the ideas by |Le Gall| (1984). In this
section we assume that « € (0,1).

Let Y, Y¢ be two strong solutions to and let U® := F.(Y?) and U® := F.(Y¢). Then, by the
extension of It6’s formula from (Krylov, 1980, Chapter 2, Sectlon 10) we have

AU = dF.(YF) = G.(YF) dB; + H.(YF) dW,

— G.(F-\(UF)) dB, + H.(F= (UF)) dW;, 30, (3.14)



where

Ga(y) = O'Ey(y)’

H.(y) = : (3.15)

The same formula holds for the processes ye and U €, too.

Since G.(y)? + H.(y)?> = 1, both U® and U® are standard Wiener processes, by virtue of the Lévy
characterization. This, in particular, implies weak uniqueness for .

Denote R} = U; — (7755 Then by Tanaka’s formula

U v U; = Ui + (U - Up)*

t ~ 1 ~
=U; +J L(US > U5)d(Us = U3) + s LY (U° = U?)

0 s s s s ) (316)

t

N ~ 1

=+ J G (F-NUE v U?))dBg + H.(F-1(US v U?)) dW, + §L?(RE).
0

Suppose that LY(R?) = 0. Then, by appealing to the extended It6 formula once more, we see that F.(U¢v ﬁs)
is another strong solution to ([2.5)), which implies that U¢ = U€ in view of weak uniqueness.
Thus, we are left to show that L?(R®) = 0. To this end, it suffices to show that for any ¢t > 0

t €
f IB>0) i), <0 as, (3.17)
0 R

see Lemma 1.1 in [Le Gall| (1984). Indeed, since R° is a continuous martingale the mapping a — L% (R®)
is continuous, see Corollaries 1.8 and 1.9 in Chapter IV in [Revuz and Yor| (2005). Therefore if L(R®) =
L% (R?) does not vanish the occupation time formula will yield

L I(RS © L}(R*
f I(#; > 0) d[R7]s = f Li(r) da =+ as. (3.18)
o I o+ @

To show (3.17)) we apply forthcoming Lemma to get

I(RS > 0)ds

f I(R: > 0)d[Re], J G.(YE) — G.(Vo))? \H (V) — H.(VE)]
0 R Uz —Us
f |\Y€|a |Y5\ | Al

I(R; > 0)ds

S

YE (6% YE [e3 1
f i | " “I(RE > 0)ds (3.19)

cf ) I(RE > 0)ds

5 _ €
— CEJ - US }?(Us)H(Rg > 0)ds
0 ¢ -Us

where we have abbreviated h.(y) = (Fgl(y))a. Note that h.(+) is absolutely continuous with integrable
derivative. Using the relation

he(US) — he. r7e 1 ~
(Us) K s) _ J L (U + (1 — 6)TF) do, (3.20)
Ut -Ug 0
we can write ,
f ha(Ulj)—’[i](U) (RS > 0)ds < C. J- J L (UZ + (1 — 0)U%) df ds. (3.21)
0 s —Us



For cach 6 € [0, 1], the process R®Y := QU* + (1 — 0)U* can be written as

t 1
RS = f 12’ dB, + f vl AW, (3.22)
0 0

with the processes ;¢ and v5¢ given by
6,9 _ € ~5 879 _ £ ~e
i = 0(G (V) + G(77)) and vp? = (1- 0) (H.() + H.(F)). (3.23)

One easily checks that 3 < [u5?|? + [v5|> < 1, Therefore, R® possesses a local time and for all 6 € [0, 1],
zeR,

ELY(R*Y) < V2EL¥(W) = 2\/?(3,—*/%. (3.24)
m

Using Fubini’s theorem and the occupation time formula we obtain the estimate

1 pt 1
EJ f RL(OUE + (1 — 0)UZ) dsdo = EJ J hL(z)L¥(R®?) dx df
0 Jo 0 ﬂf (3.25)
< Cx/z?f f . (z)e 2 dz df < Cpe < o0,
0 JR

whence we get (3.17).

In the following Lemma we prove a technical estimate that has been used in (3.19).

Lemma 3.1. Let a € (0,1), and let G. and H. be functions defined in (3.15). Then for any e > 0 there is
C. > 0 such that for all y1,y2 € R we have

2 2 o ol?
|Ge(y1) = Ge(y2)|” + [He(yr) — He(y2)|” < Cellin|® — |y2|*] - (3.26)

Proof. Denote for some 81,82 € R

G:(y1) = sin fy, He(y1) = cos (1,

G-(y2) = sinfa, H.(yz) = cos fBa. (3.27)

Then we have

|sin 31 — sin Ba]? + | cos B — cos fa|> = 2 — 2sin f sin By — 2 cos By cos Ba
= 2(1 — cos(fB1 — B2))
<|B1 — B2l
= ‘arcsin G:(y1) — arcsin Gg(yg)‘2
2
= |avesin (G (y) He (42) = Ge(ya) He (1) )|

e(lyl™ = lya|*) 2 (3.28)

oc(y1)o=(y2)
2 a a2 2
< eyl i |sz2\ s
oc(y1)?0-(y2) 4
o a2
ISP
€
4e? + 1
< CE (’|yl|a — |ya|®
€

= ’ arcsin

2
/\1),

and the inequality (3.26) follows. O

10



4 Analysis of the SDE (1.1) with the bracket

In this and further sections we restrict ourselves to the case « € (0,1).

4.1 Proof of Theorem [2.8

Our main goal in this section is to show that for a € (0,1), the solution Y to (2.5)) also solves (1.16]), i.e.
that [|Y¢]*, B], = a §y(V)2 ! ds.

Lemma 4.1. Let ¢ > 0 and let Y be a strong solution to (2.5). Then, for any o € (0,1) the quadratic

varation
[V, Bl = lim ) (¥l =¥, 1) (Be. — Bu) ()

t€Dy b <t

exists as a limit in u.c.p. and

[V<[*, B], = j (V521 ds. (4.2)

Proof. Define the processes

(|YE|™ 4+ ) dB, — (|YE|* — &) dW,
, (4.3)
t \fj Us(Ys)
YE|* —e)dBs + (|YE|* + €) AW
WQ’E:—J (1% : : 4.4
N o (V) (44)

It is easy to check that W', W?2¢ are independent standard Brownian motions and the original Brownian
motions B and W satisfy the no-tilde counterparts of (3.8) and ([3.9)), namely, we have

B _ 1J-t (|Y55|a+8) dWSla (|Ye‘oz_ ) W28
- \f oe(Yy) ’

4.5
f —|[YE|) dWEe + (JYF|™ + ) dW2e (4.5)
t \/> Oe (Yss) .
The process
= 1
Wi = E(th’e + W) (4.6)
is also a Brownian motion and we have the equality
AWE = |Y£|* dB, + edW,. (4.7)

Literally repeating the argument of Section |3.1| we get that the process }A/;E = F-Y(Fo(2) + V/[ZE) solves ([2.5)).

Therefore, by the uniqueness Theorem YE = YF = F-HF.(x) + Wf) a.s
Let us apply the generalized It6 formula from [Follmer et al.| (1995) to the function

he(z) == [FZ 1 (Fe(@) + 2)|%, L€ L (R), (4.8)

and the Brownian motion WE:

t
Y ~ 1 ~
[YE|* = he(Wy) = [z|* +J hL(W5) AW, + §[hé(W€),W5]t
0
(4.9)

t
2o+ af (VE)2 o (YE) dITE + A,
0
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where Af = %[h;(ﬁf), Ws]t is an adapted zero energy process (Follmer et al., |1995, Theorem 3.5). Now we
decompose the bracket’s partial sum as

> (el = 1Y) (B — Bi,)

tr€D, tr <t
f Lo (V2) ATV - (Byy — Biy) (4.10)
tkeD <t Ytk
+ Z <A§k - Aik,l)(Btk - Btk,1> = J1€ + J2€
treD,, tr<t

Since A° is of zero energy, the second sum J§ converges to zero in probability by the Cauchy—Schwarz
inequality.
We rewrite the first sum in terms of W€ and W?2*:

=) f (Y5)* (Y)dwlf.rk PP+ e
€Dy <t ey 0e(YS)
te  |yelo _
J Ys a— (Ys) dWSLe f ‘ s | = € dWSQ,e
tkeD <t th—1 th—1 o.(Y¥)
ti el
J Ys a— e(YSE) dWSQ,a J |Ys | _:5 dWSLa (4.11)
tkED te<t th—1 th—1 o-(Y¥)
ke |ye|la
J 1axxﬂdwf@-J Lii—;fdwfﬁ
tkeDn <t 2 tho1 o:(Ys)

= 5(1151 + 15, + 15, + 152).

By Theorems I1.23 and I1.29 from [Protter| (2004) we obtain that as n —

t
155 [ (v ) ds
0

¢
5, 5 f (YO H(Ye|* =€) ds, (4.12)
0
ITQ E) 07 1251 E’ 0,
and the statement of the Lemma follows. .

4.2 Proof of Theorem [2.10|

To establish strong uniqueness of equation (1.16)), we can show that any of its strong solutions also solves
(2.5) and appeal to Theorem This is done under the additional requirement that the solution is a
semimartingale.

Remark 4.2. From Lemma[L1]it follows that for any strong solution Y to (2.5), the process [[Y¢|*, B] is
absolutely continuous and hence of locally bounded variation.

Recall that o, and F; satisfy (3.1) and (3.2).

Lemma 4.3. F.(X¢?)? is a semimartingale with decomposition

¢ X2|*dB, +edW,
ﬁxxﬂ%zguf+2fpxxﬁ|s| c

N S

where t — L$ is a non-decreasing continuous process.

+t+ LS, t>0, (4.13)

12



Proof. Let T > 0 and let D, = {t} =

kT2 ™ k = 0,...,2"} be the dyadic partition of [0,7]. The
semimartingale X¢ has quadratic variation equal to

¢

[X<], = J X2 ds + e t. (4.14)
0

Note also that F.(-)? € C%(R,R) with

= , 4.15
dz /]2]20 + €2 ( )
d? 2 20 F.(z)(z)%*1
"(2) = —F.(2)% = — < ) 4.16
he(z) = g Fe(?) |22 + &2 (22 + €2)3 )

Note that the last term in (4.16]) is well defined and continuous since F(z) ~ z/e, z — 0, see (3.3). By virtue
of the generalized It6 formula from [Follmer et al.| (1995) we get

he(2) = iFe(z)2 72FE(Z)

‘ t P (XE)(XE)2a-1
FE(XtE)QzFE(x)Z—i—J he(X5)dXE +t— =(X5)(X5)
0

0 VX2 .
t t .
:Fe($)2—|—j hE(XE)de—kt—%f he(X2)(XE)20"1 gs,
0 0

where the first integral exists as a limit in u.c.p.:

t
f he(X5)dXS = lim Y ho(X5 (X5 — X5 ).
0 n— - ) -

D ) (4.18)
tpeDy, ty <t
We expand
th
S on(G )G X5 )= Y g ) [ (i seam)
treD,, tr <t treDy, tp<t th1 (4.19)
) .
+ 5 Z hs(Xf;;fl)(A?;; - A%;fl)»
tREDp, tY <t
where A = [|X¢|*, B]. Since h.(X¢) is continuous, we have
£ ¢
3 hs(ng_l)f (X2 dB, +dW,) — J he(XE)(IXE|"dB +2dW,), n—om,  (4.20)
tne D, th <t ' [ 0
in u.c.p. Further, define
70 =min{s > tp_;: X. =0} At} (4.21)
and write
D he(Xh (A5 - 45 )
tp€Dy, tp <t (4 22)
= D he(Xh (AL AL+ D he(X )(ASne — A ).
tR€Dn,ty <t tR€Dnp,ty <t
Note that he(Xne) = 0if 7" <1} and Afy — AZn. = 0if 7" =t} Therefore,
k k
€ 2 g g 13 g 2
hE(th_l)(Atg - AT]?,E) = (hE(XtZ_l) - hE(XT’?)) (Atz,s — AT):,,E)
tpeDy ) <t tp€Dy, ty <t
4.23
< Y (he(Xh )= he(X2)T Y (A5 —A%) >0, n— o 2
"k—1 Tk K Tk
7€ Dt <t

)
treDy, tp<t
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thanks to the fact that A is of bounded variation on [0,¢]. On [t}_,,7,°], X¢ satisfies a Stratonovich SDE
with smooth coefficients, therefore (see Section V.5 in [Protter| (2004))

u

Tl I S R T ) (4.24)

n
k—1

Fix m > 1 and consider n > m. Let
m . ME _ m
D, = {tj eD,,: T =1 } (4.25)

be the points of partition D,, such that X¢ does not vanish on the intervals [t;ﬁl, t;"] Let

Py, = U Ponj = U {ti € Dty € [t72y,1]']} (4.26)

tmeDs tmeDs,

m

be the corresponding points of the finer partition D,, 2 D,,. Clearly,

th
201
PR EC IR CEE N E D N he<sz_1>'aL (X7 ds
tnePs, | tr<t teDs tT <t tRePs k—1
o (4.27)
J
-y aJ he(XE) (X521 ds = K™, n— .
treDg tm<t Vi
Further, using again (4.24)) we get
TE
N h g -Ah )= N hlXf e (DR
tpeD\PE, , tr<t tReDR\P, , tn<t k—1

is a non-decreasing process. As n — o0, it converges to some non-negative non-decreasing process, say, L™¢,

and we get
t

F.(X5)? = F.(x)* + 2f he(X5)(IX5|* B + e dWy)
0 . (4.29)
+t4+ K"+ L — %f ho(X5)(XE)** ds.
0

Moreover, since the set of zeros of X¢ is closed and h.(z)(2)?*~! = 0 for z = 0, we get

+ t
K- S f I(X5 # 0)he (X5)(XE)*H ds = %f he(XD(X)* Hds, m—oo.  (430)

As a result, the processes L™*¢ also monotonically converge as m — o to some non-decreasing limit L°.
Hence, passing to the limit in (4.29), we get the desired statement. O

Lemma 4.4. For any a € (—1,0) and t € [0,T], there is Cqcr > 0 such that

E|X;|* < Cqer. (4.31)
Moreover, X¢ spends zero time at 0.
Proof. By Lemma Q5 = F.(X?)? solves the equation

t
Q= F.(2)* + 2J A QAWE +t + L, (4.32)
0

where

t s € gla
e - J sign (F(X?)) (| X5 dBs + e dWs) (4.33)

U | XEPY + €2
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is a standard Wiener process. Since L° is non-decreasing and continuous, a slight modification of the
comparlson Theorem 3.7 in Chapter IX in |Revuz and Yor| (2005)) yields that Q5 > Qt, > 0, with probability
1, where Q6 is the unique strong solution to the equation

t
Q= F.(2)* + 2f Qs dWE +1t, (4.34)
0

and hence is a square of a standard Wiener process started at F.(z). Consequently, Q° spends zero time
at zero. Furthermore, noting that for |F;(z)| < C:|z|, € R, for some C. > 0 (recall (3.3))), we obtain for
a>-—1

E|X{|" < CYE|F.(X{)|* = C2E|Qf|*/* < C2E|Q|*? = CYE|F.(z) + Wi|* < Cear. (4.35)
O
Lemma 4.5. Let X© be an Ité semimartingale solution of the equation (L.16]). Then

[|X°|*, B]: = aL (X5)2 1 ds. (4.36)

Proof. Without loss of generality assume that = 0. Denote AS = [|X¢|*, B];. Since X¢ is an It6 semi-
martingale, there is a progressively measurable process a® = (a§);>0 such that

t
Af = f as ds. (4.37)
0
For each n > 1 consider the stopping times
oy =0,
1
ot =inf {t > 0055 1X7 = -}, (4.38)
n

oy =inf{t >7,"°: X; =0}, k=1

Denote
n75 Pyp—
07° =D Loy, ey (B), (4.39)
k

and note that 6;"° € [0, 1] for all n,e and ¢. By Lemma since X¢ spends zero time at 0, we get
J o= ds < f (X2 < 1/n)ds — 0, n — co. (4.40)
Hence _—
B oA o1
_EQJW (X522 ds + ) (AZpe = Adpe 1)
ko 0Tk At k
t T t
= aJ (X5)2*1ds —Zaf (X5)2e-t ds—!—J 07°dAS (4.41)
UZ’E 0

L(X&)Qa 1d S ()+Sn5()

Clearly, by Lemma [4.4] and the dominated convergence theorem

t
E|S7(t)] < ozEf |XZP (XS < 1/n)ds - 0, n— oo, (4.42)
0
and .
1S5 < ()] < f 0rflas|ds -0, n—ow as. (4.43)
0
Since |07°a8| < |ag|, the dominated convergence theorem finishes the proof. O
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5 Proof of Theorem 2.11]

Recall that )
X0 .= ((1 —Q)B; — (I)H) s, (5.1)
is the strong solution of the equation (1.1)) that spends zero time at zero and has no skew behaviour at zero.

Let X¢ be the semimartingale solution of (1.16]) or (2.5). We apply the generalized It6 formula from Krylov
(1980) to get

FL(XE) = J | XE|*dBs + e dW,
A 1XE2e + €2
a t (Xg)*hds )2e—lds PIxePe(xe)2e-tds o [f e2(X5)2e1ds
| XePo + e2 N 5 o (X 2232 *L (| Xz ]2 + £2)3/2 (5.2)
_B * edB, toedw,
=B, + If.
Equivalently, we have
Xi=F 1B +I). (5.3)
Since
F' @) — Fyl(@) = (1—a)7a ()T as &—0 (5.4)

uniformly on each compact interval, to prove the Theorem it is sufficient to show that I converges to zero
in u.c.p.
By the Doob inequality, for any ¢t > 0

dB, dw, 2
E sup |I5]* < 2E sup ‘f ° ‘ + 2E sup ‘J ° ’
se[0,¢] sef0,4] 1 Jo /| XE[2> + €2 sefo,6]'Jo A/[XE[2> + €2

5.5
t e?ds (5:5)

<16E | ——.
o i+ 2

To evaluate the latter expectation we recall that due to (3.7) X© 4 F-YF.(z) + 171\/) for some Brownian

motion W. Let us show that

E boe?ds g2 ds
‘Xe‘za_,_gz - Fo 200 4 g2
ol 2>>| 56
J f e = FE(L)) dyds -0, £—0
Vars ) F ()P 1 22 '
First we note that for all y > 0 and € > 0
Y dz yl—a
Fe(y) < C T 1a Fo(y) (5.7)
and hence
IF-(y) < [Fo(y)], veR, (5.8)
and
_ _ SR TN
[E )| = [Fy '(y) = (1 - a)T=[y| ™=, yeR. (5.9)
For x > 0 and y € R we have 0 < F.(z) < Fy(x) get the following estimate:
1 g2 e*(y7%t<w))2
V2rt |F=H(y) |2 + €2 (5.10)
Lo/ _ =Fo@)? '
S Vani (e %1 o0,0) W) + To,Ro@n @) €7 20 I{my(a),00) (y)>
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The right hand side of (5.10)) is integrable on (¢,y) € (0,T] x R. Since for each ¢t € (0,7] and y # 0

1 g2 (y=Fe (2))2 1 g2

€ 2t < — 0,
Vert [F2 (y))2e + &2 Vort (1 — a)yPe/0-a) 1 2

the limit (5.6 follows by the dominated convergence theorem. Since F. is asymmetric, the limit (5.6)) holds
for z < 0, too.

£ —0, (5.11)
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