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Abstract

In our paper [Bernoulli 26(2), 2020, 1381–1409], we found all strong Markov solutions that spend
zero time at 0 of the Stratonovich stochastic differential equation dX “ |X|

α
˝ dB, α P p0, 1q. These

solutions have the form Xθ
t “ F pBθ

t q, where F pxq “ 1
1´α

|x|
1{p1´αq signx and Bθ is the skew Brownian

motion with skewness parameter θ P r´1, 1s starting at F´1
pX0q. In this paper we show how an addition

of small external additive noise εW restores uniqueness. In the limit as ε Ñ 0, we recover heterogeneous
diffusion corresponding to the physically symmetric case θ “ 0.

Keywords: Generalized Itô’s formula, heterogeneous diffusion process, local time, non-uniqueness, selection
problem, singular stochastic differential equation, skew Brownian motion, Stratonovich integral.
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1 Introduction

In Cherstvy et al. (2013), the authors considered the so-called heterogeneous diffusion process defined as a
solution of the Stratonovich stochastic differential equation

Xt “ x `

ż t

0

|Xs|α ˝ dBs (1.1)

with α P R and B being a standard Brownian motion. It is always assumed that |x|α “ |x|α ¨ Ipx ‰ 0q, so
that |0|α “ 0 for any α P R. This equation can be seen as a Stratonovich version of the famous diffusion

XG
t “ x `

ż t

0

|XG
s |α dBs (1.2)

firstly studied by Girsanov (1962). It is well-known that equation (1.2) has a unique strong solution for
α ě 1{2 and has infinitely many solutions for α P p0, 1{2q. A complete analysis of equation (1.2) can be
found in Chapter 5 from Cherny and Engelbert (2005).

It is clear that in the Stratonovich setting, the presence of the irregular point t0u also affects the existence
and uniqueness of solutions of (1.1).

The physicists’ approach to (1.1) exploited in the papers by Cherstvy et al. (2013) and Sandev et al.
(2022) is the solution by regularization. Indeed, let α P p0, 1q and let tσεu be a family of smooth functions
with integrable derivatives such that σεpxq ą 0 and |σεpxq ´ |x|α| Ñ 0 uniformly on compacts as ε Ñ 0.
Consider a regularized equation dZε

t “ σεpZε
t q ˝ dBt that can be equivalently written in the Itô form as

dZε
t “ σεpZε

t qdBt `
1

2
σεpZε

t qσ1
εpZε

t qdt, Zε
0 “ x. (1.3)
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Figure 1: The function σpxq “ |x|α and σεpxq “
a

|x|2α ` ε2 (left) and σεpxq defined in (1.10) (right).

There exists a unique strong solution Zε to (1.3) that can be found explicitly with the help of the well-known
Lamperti method. Indeed, let

Fεpxq :“

ż x

0

dy

σεpyq
, x P R. (1.4)

The function Fε is monotonically increasing and C1-smooth with locally integrable second derivative. The
Itô formula with generalized derivatives from (Krylov, 1980, Chapter 2, Section 10) is applicable and yields

FεpZε
t q “ Fεpxq ` Bt (1.5)

and hence
Zε
t “ F´1

ε pBt ` Fεpxqq. (1.6)

Now one can argue that upon passing to the limit as ε Ñ 0, the processes Zε converge to the solution X
of the original SDE (1.1). Unfortunately, the rigorous justification of this intuitively transparent procedure
turns out to be tricky. Let us illustrate this by an example.

Example 1.1. We assume that α P p´1, 1q and for brevity we set the initial value x “ 0. We consider the
family tσεuεPp0,1s of the form

σεpxq “
a

|x|2α ` ε2, x P R, (1.7)

see Figure 1 (left).
Then, a straightforward calculation yields that

Fεpxq Ñ F0pxq :“
1

1 ´ α
|x|1´α signx,

F´1
ε pxq Ñ F´1

0 pxq :“ |p1 ´ αqx|
1

1´α signx,

(1.8)

so that the limit process
X0

t :“ F´1
0 pBtq (1.9)

is a candidate for a solution to (1.1)
On the other hand, let A,B ě 0 and let

σεpxq “

$

’

&

’

%

ε, x P r´Aε,Bεs,

|x ´ Bε ` ε1{α|α, x ą Bε,

|x ` Aε ´ ε1{α|α, x ă ´Aε,

(1.10)

see Figure 1 (right). Applying the Lamperti transformation and passing to the limit as above we find that

F´1
ε pxq Ñ F´1

A,Bpxq “

$

’

&

’

%

0, x P rA,Bs,

´|p1 ´ αqpx ` Aq|
1

1´α , x ă ´A,

|p1 ´ αqpx ´ Bq|
1

1´α , x ą B.

(1.11)
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Hence another candidate for the solution is the process

XA,B
t :“ F´1

A,BpBtq. (1.12)

Note that such a process XA,B spends positive time at zero.
It turns out that the processes X0 and XA,B are indeed strong solutions of the equation (1.1) for

α P p´1, 1q. This follows by a straightforward verification with the help of the generalized Itô formula by
Föllmer et al. (1995).

Excluding solutions spending positive time at zero as non-physical does not always guarantee uniqueness.
Indeed, in our previous paper (Pavlyukevich and Shevchenko (2020)), the following theorem was proven.

Theorem 1.2 (Theorem 4.5, Pavlyukevich and Shevchenko (2020)). Let x P R and θ P r´1, 1s, and let Bθ

be a skew Brownian motion that is a unique strong solution of the SDE

Bθ
t “ F´1

0 pxq ` Bt ` θL0
t pBθq, t ě 0, (1.13)

L0pBθq being the symmetric local time of Bθ at zero.
1. Let α P p0, 1q. Then Xθ

t “ F0pBθ
t q is a strong solution of (1.1) which is a homogeneous strong Markov

process spending zero time at 0.
The process Xθ is the unique strong solution of (1.1) which is a homogeneous strong Markov process

spending zero time at 0 and such that

PpXθ
t ě 0 | X0 “ 0q “

1 ` θ

2
, t ą 0.

2. Let α P p´1, 0s. Then X0
t “ F pB0

t q is the unique strong solution of (1.1) which is a homogeneous strong
Markov process spending zero time at 0.

In other words, for α P p0, 1q, the equation (1.1) is underdetermined even in the class of homogeneous
strong Markov processes spending zero time at 0. In this respect, equation (1.1) can be seen as a stochastic
counterpart of the deterministic non-Lipschitzian equation 9xt “ |xt|

α that has infinitely many solutions if
started at x ď 0.

In general, these solutions spend positive time at 0. However one can always single out the uniquemaximal
solution spending zero time at 0. Such a non-uniqueness feature of a ODE with continuous coefficients is
known as the Peano phenomenon. It is also known that uniqueness, or singling out of physically meaningful
solutions spending zero time at 0, can be restored by means of the regularization by noise, studied for the
first time by Bafico and Baldi (1982) and Veretennikov (1983). In particular Theorem 5.1 in Bafico and
Baldi (1982) implies that solutions of the SDE

xε
t “ x `

ż t

0

|xε
s|α ds ` εWt (1.14)

driven by a small Brownian motion εW weakly converge to the maximal deterministic solution

x˚
t pxq “

#

`

p1 ´ αqt ` x1´α
˘

1
1´α , x ą 0,

´
`

|x|1´α ´ p1 ´ αqt
˘

1
1´α

`
`

`

p1 ´ αqt ´ |x|1´α
˘

1
1´α

`
, x ď 0,

(1.15)

that spends zero time at 0. More results on the stochastic Peano phenomenon can be found in the works
by Delarue and Flandoli (2014), Trevisan (2013), Pilipenko and Proske (2018), Pilipenko and Pavlyukevich
(2020).

The goal of this paper is to apply the “regularization” procedure to the SDE (1.1), i.e. to consider the
perturbed SDE

Xε
t “ x `

ż t

0

|Xε
s |α ˝ dBs ` εWt (1.16)

in the presence of another independent Brownian motion W . From the physical point of view, the Brownian
motion W with vanishing amplitude ε represents the ambient environmental noise whereas the Brownian
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motion B is responsible for the diffusive behaviour of the “heavy” particle Xε in the non-homogeneous
medium determined by the non-linear “temperature profile” x ÞÑ |x|α.

The qualitative result of the present paper is that solutions of the regularized equation (1.16) converge
to the benchmark solution

X0
t “ F´1

0 pBtq “

ˇ

ˇ

ˇ
p1 ´ αqBt ` |x|1´α signx

ˇ

ˇ

ˇ

1
1´α

sign
´

p1 ´ αqBt ` |x|1´α signx
¯

(1.17)

that spends zero time at 0 and has no “asymmetry” at the origin.
This result is a manifestation of the “selection” procedure in the SDE case. In the limit as ε Ñ 0, the

regularized solution Xε always “selects” the natural solution (1.17) among all possible solutions of (1.1) that
may have asymmetric behaviour at 0, stay positive time at zero, or be non-Markovian, etc.

2 Preliminaries and the main result

Throughout the article, we work on a stochastic basis pΩ,F ,F,Pq, i.e. a complete probability space with a
filtration F “ pFtqtě0 satisfying the standard assumptions. The process pB,W q “ pBt,Wtqtě0 is a standard
continuous two-dimensional Brownian motion on this stochastic basis.

First we briefly recall definitions related to stochastic integration. More details may be found in Protter
(2004).

The main mode of convergence considered here is the uniform convergence on compacts in probability
(the u.c.p. convergence for short): a sequence Xn “ pXn

t qtě0, n ě 1, of stochastic processes converges to
X “ pXtqtě0 in u.c.p. if for any t ě 0

sup
sPr0,ts

|Xn
s ´ Xs|

P
Ñ 0, n Ñ 8. (2.1)

Let a sequence of (deterministic) partitions Dn “ t0 “ tn0 ă tn1 ă tn2 ă ¨ ¨ ¨ u “ t0 “ t0 ă t1 ă t2 ă ¨ ¨ ¨ u of
r0,8q, n ě 1, be such that for each t ě 0 the number of points in each interval r0, ts is finite, and the mesh
}Dn} :“ supkě1 |tnk ´ tnk´1| Ñ 0 as n Ñ 8. A continuous stochastic process X has quadratic variation rXs

along the sequence tDnuně1 if the limit

rXst :“ lim
nÑ8

ÿ

tkPDn,tkăt

|Xtk`1
´ Xtk |2

exists in the u.c.p. sense. Similarly, the quadratic covariation rX,Y s of two continuous stochastic processes
X and Y is defined as a limit in u.c.p.

rX,Y st :“ lim
nÑ8

ÿ

tkPDn,tkăt

pXtk`1
´ XtkqpYtk`1

´ Ytkq.

When X and Y are semimartingales, the quadratic variations rXs, rY s and the quadratic covariation rX,Y s

exist, moreover, they have bounded variation on any finite interval.
Further, we define the Itô integral as a limit in u.c.p.

ż t

0

Xs dYs “ lim
nÑ8

ÿ

tkPDn,tkăt

XtkpYtk`1
´ Ytkq

and the Stratonovich (symmetric) integral as a limit in u.c.p.

ż t

0

Xs ˝ dYs “

ż t

0

Xs dYs `
1

2
rX,Y st

“ lim
nÑ8

ÿ

tkPDn,tkăt

1

2
pXtk`1

` XtkqpYtk`1
´ Ytkq,

provided that both the Itô integral and the quadratic variation exists. Again, when both X and Y are
continuous semimartingales, both integrals exists, and the convergence holds in u.c.p.
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We recall that a continuous semimartingaleX is an Itô semimartingale if its semimartingale characteristics
are absolutely continuous with respect to Lebesgue measure, see, e.g., Definition 2.1.1 in Jacod and Protter
(2012) and Aı̈t-Sahalia and Jacod (2018).

In this paper, we define

signx :“

$

’

&

’

%

´1, x ă 0,

0, x “ 0,

1, x ą 0,

(2.2)

and for any α P R we set

|x|α :“

#

|x|α, x ‰ 0,

0, x “ 0.
(2.3)

We also denote
pxqα :“ |x|α signx. (2.4)

Throughout the article, C will be used to denote a generic constant, whose concrete value is not important
and may change between lines.

First we give the intuition that will lead to the main result. Although the function x ÞÑ |x|α is not
smooth, let us formally rewrite equation (1.16) in the Itô form with the noise induced drift in the spirit of
the formula (1.3). Thus we obtain another SDE

Y ε
t “ x `

ż t

0

|Y ε
s |αdBs `

α

2

ż t

0

pY ε
s q2α´1 ds ` εWt. (2.5)

Note that the SDEs (1.16) and (2.5) are of different nature and do not have to be equivalent.
Assume now that Y ε is the solution of (2.5). Then it is a Markov process with the generator

Aεfpyq “
|y|2α ` ε2

2
f2pyq `

α

2
pyq2α´1fpyq, f P C2pR,Rq. (2.6)

However, Aε is also the generator of the diffusion

Zε
t “ x `

ż t

0

a

|Zε
s |2α ` ε2 d rBs `

α

2

ż t

0

pZε
s q2α´1ds

“ x `

ż t

0

a

|Zε
s |2α ` ε2 ˝ d rBs

(2.7)

driven by some other Brownian motion rB. The solution to equation (2.7) has been determined explicitly in

(1.6) as Zε
t “ F´1

ε p rBt ` Fεpxqq, and hence we get that

Y ε
t

d
“ F´1

ε p rBt ` Fεpxqq, t ě 0. (2.8)

It is clear that Zε, and also Y ε, converges in law to the benchmark solution X0. The same convergence
will also hold for solutions Xε of the perturbed Stratonovich equation (1.1) if one establishes an equivalence
between the equations (1.1) and (2.5).

Now let us turn to equations (1.1) and (1.16). The concept of strong solution for these equations is
defined in a standard manner.

Definition 2.1. A strong solution to (1.16) is a continuous stochastic process Xε such that

1. Xε is adapted to the augmented natural filtration of pB,W q;

2. for any t ě 0, the integral
şt

0
|Xε

s |α dBs and the quadratic covariation r|Xε|α, Bst exist;

3. for any t ě 0, equation (1.16) holds P-a.s.

Definition 2.2. A strong solution to (2.5) is a continuous stochastic process Y ε such that

5



1. Y ε is adapted to the augmented natural filtration of pB,W q;

2. for any t ě 0, the integrals
şt

0
|Y ε

s |α dBs and
şt

0
pY ε

s q2α´1 ds exist;

3. for any t ě 0, equation (2.5) holds P-a.s.

Definition 2.3. A weak solution to (1.16) is a triple p rXε, rB, ĂW q of adapted continuous processes on a

stochastic basis prΩ, ĂF , rF, rPq such that

1. rB and ĂW are independent standard Brownian motions on prΩ, ĂF , rF, rPq;

2. for any t ě 0, the integral
şt

0
| rXε

s |α d rBs and the quadratic covariation r| rXε|α, rBst exist;

3. for any t ě 0,

rXε
t “ x `

ż t

0

| rXε
s |α ˝ d rBs ` εĂWt (2.9)

holds rP-a.s.

Definition 2.4. A weak solution to (2.5) is a is a triple prY ε, rB, ĂW q of adapted continuous processes on a

stochastic basis prΩ, ĂF , rF, rPq such that

1. rB and ĂW are independent standard Brownian motions on prΩ, ĂF , rF, rPq;

2. for any t ě 0, the integrals
şt

0
|rY ε

s |α d rBs and
şt

0
prY εq2α´1 ds exist;

3. for any t ě 0,

rY ε
t “ x `

ż t

0

|rY ε
s |α d rBs `

α

2

ż t

0

prY εq2α´1 ds ` εĂWt (2.10)

holds rP-a.s.

The main results of this paper are given in the following theorems. The proofs will be presented in the
subsequent sections.

Theorem 2.5. For any ε ą 0 and any α P p´1, 1q, equation (2.5) has a weak solution, where for α “ 0,
α
2

şt

0
pY ε

s q2α´1ds :“ 0 and for α P p´1, 0q the integral

ż t

0

pY ε
s q2α´1 ds :“ lim

δÓ0

ż t

0

pY ε
s q2α´1Ip|Y ε

s | ą δqds (2.11)

is understood in the principle value (v.p.) sense as defined in Cherny (2001).

Theorem 2.6. For any ε ą 0 and any α P p0, 1q, the pathwise uniqueness property holds for the SDE (2.5).

Applying the Yamada–Watanabe theorem, we arrive at the following result.

Theorem 2.7. For any ε ą 0 and α P p0, 1q, equation (2.5) has a unique strong solution.

Concerning the equivalence of (1.16) and (2.5) the following holds true.

Theorem 2.8. For any α P p0, 1q, a strong solution to the stochastic differential equation (2.5) is also a
strong solution to (1.16).

To establish strong uniqueness of equation (1.16), we show that any of its strong solutions also solves (2.5)
and appeal to Theorem (2.7). We will establish the equivalence of solutions that are Itô semimartingales. In
other words, we assume that the bracket process r|Xε|α, Bs is absolutely continuous with respect to Lebesgue
measure.

Remark 2.9. It will follow from Lemma 4.1 that for any strong solution Y ε to (2.5), α P p0, 1q, the process
r|Y ε|α, Bs is absolutely continuous and hence Y ε is an Itô semimartingale.
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Theorem 2.10. Let ε ą 0 and let Xε be a strong solution to (1.16) such that the bracket r|Xε|α, Bs

is absolutely continuous with respect to Lebesgue measure. Then it is also a strong solution to (2.5). In
particular, strong existence and uniqueness holds for equation (1.16) in the class of Itô semimartingale
solutions.

Eventually we formulate the main qualitative result about the stochastic selection of the benchmark
solution.

Theorem 2.11. Let α P p0, 1q. Let Xε be a strong solution of (2.5) or an Itô semimartingale solution of
(1.16). Let X0 be a benchmark solution (1.17). Then

Xε Ñ X0 (2.12)

in u.c.p. as ε Ñ 0.

3 Analysis of the SDE (2.5) with singular drift

We first address the question of weak existence of a solution of equation (2.5). It can be established even
for α P p´1, 1q. However, for negative α, the drift should be understood in the principal value (v.p.), see
Cherny (2001).

The following function that has already appeared above in the Lamperti method will be crucial in showing
both weak existence and pathwise uniqueness of solution. Let

σεpyq “
a

|y|2α ` ε2 (3.1)

and

Fεpxq “

ż x

0

dy

σεpyq
, x P R, ε ą 0. (3.2)

Clearly, for each ε ą 0 and α P p´1, 1q, the transformation Fε : R Ñ R is a bijection. In the neighbourhood
of zero we have

Fεpxq «

$

’

&

’

%

ε´1 ¨ x, α P p0, 1q,

p1 ` ε2q´1{2 ¨ x, α “ 0,

p1 ` |α|q´1 ¨ pxq1`|α|, α P p´1, 0q,

(3.3)

and

d

dx
Fεpxq “ σεpxq «

$

’

&

’

%

ε´1, α P p0, 1q,

p1 ` ε2q´1{2 ¨ x, α “ 0,

|x||α|, α P p´1, 0q.

(3.4)

Hence, F´1
ε is a monotonically increasing absolutely continuous function, d

dxF
´1
ε pxq “ σεpF´1

ε pxqq, and in
the neighbourhood of zero

d

dx
F´1
ε pxq «

$

’

&

’

%

ε, α P p0, 1q,

p1 ` ε2q1{2 ¨ x, α “ 0,

p1 ` |α|q
2|α|

1`|α| ¨ |x|
2|α|

1`|α| , α P p´1, 0q.

(3.5)

In particular for α P p´1, 1q, d
dxF

´1
ε is locally square integrable, so that the generalized Itô formula (Föllmer

et al., 1995, Theorem 4.1) for the Brownian motion is applicable to F´1
ε .

For α P p0, 1q, the second derivative

d2

dx2
Fεpxq “ ´

αpxq2α´1

p|x|2α ` ε2q3{2
, x ‰ 0, (3.6)

is in L1
locpRq, so that the Itô formula with generalized derivatives from (Krylov, 1980, Chapter 2, Section

10) is applicable.
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3.1 Proof of Theorem 2.5

In this section we assume that α P p´1, 1q. Let ε ą 0 be fixed.

Let W 1, W 2 be independent standard Wiener processes, and let xW :“ 1?
2

pW 1 `W 2q. Define the process

rY ε
t “ F´1

ε

´

Fεpxq ` xWt

¯

(3.7)

and set

rBε
t “

1
?
2

ż t

0

`

|rY ε
s |α ` ε

˘

dW 1
s `

`

|rY ε
s |α ´ ε

˘

dW 2
s

σεprY ε
s q

, (3.8)

ĂW ε
t “

1
?
2

ż t

0

`

ε ´ |rY ε
s |α

˘

dW 1
s `

`

|rY ε
s |α ` ε

˘

dW 2
s

σεprY ε
s q

. (3.9)

It is straightforward to check that rBε and ĂW ε are continuous martingales with r rBεst “ rĂW εst “ t,

r rBε, ĂW εst “ 0. Then, by the Lévy characterization, rBε and ĂW ε are independent standard Wiener pro-
cesses. It is also clear that

|rY ε
t |α d rBε

t ` εdĂW ε
t “

|rY ε
t |α

?
2

p|rY ε
t |α ` εqdW 1

t ` p|rY ε
t |α ´ εqdW 2

t

σεprY ε
t q

`
ε

?
2

pε ´ |rY ε
t |αqdW 1

t ` p|rY ε
t |α ` εqdW 2

t

σεprY ε
t q

“ σεprY ε
t qdxWt.

(3.10)

Applying the generalized Itô formula (Theorem 4.1 in Föllmer et al. (1995)) to the Brownian motion xW and
the function F´1

ε in (3.7) and taking into account (3.10), we get

rY ε
t “ x `

ż t

0

σεprY ε
s q ˝ dxWs

“ x `

ż t

0

σεprY ε
s qdxWs `

1

2
rσεprY εq, xW st

“ x `

ż t

0

|rY ε
s |α d rBε

s ` εĂW ε
s `

1

2
rσεprY εq, xW st.

(3.11)

For α P p0, 1q, by (Föllmer et al., 1995, Remark 3.2 (c)),

rσεprY εq, xW st “ α

ż t

0

`

rY ε
s

˘2α´1
ds; (3.12)

for α P p´1, 0q, by (Cherny, 2001, Corollary 4.4),

rσεprY εq, xW st “ α ¨ v.p.

ż t

0

prY ε
s q2α´1 ds, (3.13)

whence we arrive at the SDE (2.5) for the triple prY ε, rBε, ĂW εq.

3.2 Proof of Theorem 2.6

Now we turn to the path-wise uniqueness of solution to (2.5), using the ideas by Le Gall (1984). In this
section we assume that α P p0, 1q.

Let Y ε, rY ε be two strong solutions to (2.5) and let Uε :“ FεpY εq and rUε :“ FεprY εq. Then, by the
extension of Itô’s formula from (Krylov, 1980, Chapter 2, Section 10) we have

dUε
t “ dFεpY ε

t q “ GεpY ε
t qdBt ` HεpY ε

t qdWt

“ Gε

`

F´1
ε pUε

t q
˘

dBt ` Hε

`

F´1
ε pUε

t q
˘

dWt, t ě 0,
(3.14)
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where

Gεpyq “
|y|α

σεpyq
, Hεpyq “

ε

σεpyq
. (3.15)

The same formula holds for the processes rY ε and rUε, too.
Since Gεpyq2 ` Hεpyq2 ” 1, both Uε and rUε are standard Wiener processes, by virtue of the Lévy

characterization. This, in particular, implies weak uniqueness for (2.5).

Denote Rε
t “ Uε

t ´ rUε
t . Then by Tanaka’s formula

Uε
t _ rUε

t “ Uε
t ` p rUε

t ´ Uε
t q`

“ Uε
t `

ż t

0

Ip rUε
s ą Uε

s qdp rUε
s ´ Uε

s q `
1

2
L0
t p rUε ´ Uεq

“ x `

ż t

0

Gε

`

F´1
ε pUε

s _ rUε
s q

˘

dBs ` Hε

`

F´1
ε pUε

s _ rUε
s q

˘

dWs `
1

2
L0
t pRεq.

(3.16)

Suppose that L0
t pRεq “ 0. Then, by appealing to the extended Itô formula once more, we see that FεpUε_ rUεq

is another strong solution to (2.5), which implies that Uε “ rUε in view of weak uniqueness.
Thus, we are left to show that L0

t pRεq “ 0. To this end, it suffices to show that for any t ě 0

ż t

0

IpRε
s ą 0q

Rε
s

drRεss ă 8 a.s., (3.17)

see Lemma 1.1 in Le Gall (1984). Indeed, since Rε is a continuous martingale the mapping a ÞÑ La
t pRεq

is continuous, see Corollaries 1.8 and 1.9 in Chapter IV in Revuz and Yor (2005). Therefore if L0
t pRεq “

L0`pRεq does not vanish the occupation time formula will yield

ż t

0

IpRε
s ą 0q

Rε
s

drRεss “

ż 8

0`

La
t pRεq

a
da “ `8 a.s. (3.18)

To show (3.17) we apply forthcoming Lemma 3.1 to get

ż t

0

IpRε
s ą 0qdrRεss

Rε
s

“

ż t

0

ˇ

ˇGεpY ε
s q ´ GεprY ε

s q
ˇ

ˇ

2
`

ˇ

ˇHεpY ε
s q ´ HεprY ε

s q
ˇ

ˇ

2

Uε
s ´ rUε

s

IpRε
s ą 0qds

ď Cε

ż t

0

ˇ

ˇ|Y ε
s |α ´ |rY ε

s |α
ˇ

ˇ

2
^ 1

Uε
s ´ rUε

s

IpRε
s ą 0qds

ď Cε

ż t

0

ˇ

ˇpY ε
s qα ´ prY ε

s qα
ˇ

ˇ

2
^ 1

Uε
s ´ rUε

s

IpRε
s ą 0qds

ď Cε

ż t

0

pY ε
s qα ´ prY ε

s qα

Uε
s ´ rUε

s

IpRε
s ą 0qds

“ Cε

ż t

0

hεpUε
s q ´ hεp rUε

s q

Uε
s ´ rUε

s

IpRε
s ą 0qds,

(3.19)

where we have abbreviated hεpyq “
`

F´1
ε pyq

˘α
. Note that hεp¨q is absolutely continuous with integrable

derivative. Using the relation

hεpUε
s q ´ hεp rUε

s q

Uε
s ´ rUε

s

“

ż 1

0

h1
ε

`

θUε
s ` p1 ´ θq rUε

s

˘

dθ, (3.20)

we can write
ż t

0

hεpUε
s q ´ hεp rUε

s q

Uε
s ´ rUε

s

IpRε
s ą 0qds ď Cε

ż t

0

ż 1

0

h1
ε

`

θUε
s ` p1 ´ θq rUε

s

˘

dθ ds. (3.21)
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For each θ P r0, 1s, the process Rε,θ :“ θUε ` p1 ´ θq rUε can be written as

Rε,θ
t “

ż t

0

µε,θ
s dBs `

ż t

0

νε,θs dWs, (3.22)

with the processes µε,θ and νε,θ given by

µε,θ
t “ θ

´

GεpY ε
t q ` GεprY ε

t q

¯

and νε,θt “ p1 ´ θq

´

HεpY ε
t q ` HεprY ε

t q

¯

. (3.23)

One easily checks that 1
2 ď |µε,θ

s |2 ` |νε,θs |2 ď 1, Therefore, Rε,θ possesses a local time and for all θ P r0, 1s,
x P R,

ELx
t pRε,θq ď

?
2ELx

t pW q “ 2

c

t

π
e´x2

{2t. (3.24)

Using Fubini’s theorem and the occupation time formula we obtain the estimate

E

ż 1

0

ż t

0

h1
ε

`

θUε
s ` p1 ´ θq rUε

s

˘

dsdθ “ E

ż 1

0

ż

R
h1
εpxqLx

t pRε,θqdx dθ

ď C
?
t

ż 1

0

ż

R
h1
εpxqe´x2

{2t dx dθ ď Ct,ε ă 8,

(3.25)

whence we get (3.17).
In the following Lemma we prove a technical estimate that has been used in (3.19).

Lemma 3.1. Let α P p0, 1q, and let Gε and Hε be functions defined in (3.15). Then for any ε ą 0 there is
Cε ą 0 such that for all y1, y2 P R we have

ˇ

ˇGεpy1q ´ Gεpy2q
ˇ

ˇ

2
`

ˇ

ˇHεpy1q ´ Hεpy2q
ˇ

ˇ

2
ď Cε

ˇ

ˇ

ˇ
|y1|α ´ |y2|α

ˇ

ˇ

ˇ

2

. (3.26)

Proof. Denote for some β1, β2 P R

Gεpy1q “ sinβ1, Hεpy1q “ cosβ1,

Gεpy2q “ sinβ2, Hεpy2q “ cosβ2.
(3.27)

Then we have

| sinβ1 ´ sinβ2|2 ` | cosβ1 ´ cosβ2|2 “ 2 ´ 2 sinβ1 sinβ2 ´ 2 cosβ1 cosβ2

“ 2p1 ´ cospβ1 ´ β2qq

ď |β1 ´ β2|2

“

ˇ

ˇ

ˇ
arcsinGεpy1q ´ arcsinGεpy2q

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ
arcsin

´

Gεpy1qHεpy2q ´ Gεpy2qHεpy1q

¯
ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ
arcsin

εp|y1|α ´ |y2|αq

σεpy1qσεpy2q

ˇ

ˇ

ˇ

2

ď
ε2||y1|α ´ |y2|α|2

σεpy1q2σεpy2q2
^

π2

4

ď
||y1|α ´ |y2|α|2

ε2
^ 4

ď
4ε2 ` 1

ε2
¨

´
ˇ

ˇ

ˇ
|y1|α ´ |y2|α

ˇ

ˇ

ˇ

2

^ 1
¯

,

(3.28)

and the inequality (3.26) follows.
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4 Analysis of the SDE (1.1) with the bracket

In this and further sections we restrict ourselves to the case α P p0, 1q.

4.1 Proof of Theorem 2.8

Our main goal in this section is to show that for α P p0, 1q, the solution Y ε to (2.5) also solves (1.16), i.e.

that r|Y ε|α, Bst “ α
şt

0
pY ε

s q2α´1 ds.

Lemma 4.1. Let ε ą 0 and let Y ε be a strong solution to (2.5). Then, for any α P p0, 1q the quadratic
variation

r|Y ε|α, Bst “ lim
nÑ8

ÿ

tkPDn,tkăt

`

|Y ε
tk

|α ´ |Y ε
tk´1

|α
˘

pBtk ´ Btk´1
q (4.1)

exists as a limit in u.c.p. and

r|Y ε|α, Bst “ α

ż t

0

pY ε
s q2α´1 ds. (4.2)

Proof. Define the processes

W 1,ε
t “

1
?
2

ż t

0

p|Y ε
s |α ` εqdBs ´ p|Y ε

s |α ´ εqdWs

σεpY ε
s q

, (4.3)

W 2,ε
t “

1
?
2

ż t

0

p|Y ε
s |α ´ εqdBs ` p|Y ε

s |α ` εqdWs

σεpY ε
s q

. (4.4)

It is easy to check that W 1,ε, W 2,ε are independent standard Brownian motions and the original Brownian
motions B and W satisfy the no-tilde counterparts of (3.8) and (3.9), namely, we have

Bt “
1

?
2

ż t

0

`

|Y ε
s |α ` ε

˘

dW 1,ε
s `

`

|Y ε
s |α ´ ε

˘

dW 2,ε
s

σεpY ε
s q

,

Wt “
1

?
2

ż t

0

`

ε ´ |Y ε
s |α

˘

dW 1,ε
s `

`

|Y ε
s |α ` ε

˘

dW 2,ε
s

σεpY ε
s q

.

(4.5)

The process

xW ε
t “

1
?
2

pW 1,ε
t ` W 2,ε

t q (4.6)

is also a Brownian motion and we have the equality

dxW ε
t “ |Y ε

t |α dBt ` εdWt. (4.7)

Literally repeating the argument of Section 3.1 we get that the process pY ε
t “ F´1

ε

`

Fεpxq ` xW ε
t

˘

solves (2.5).

Therefore, by the uniqueness Theorem 2.7, pY ε
t “ Y ε

t “ F´1
ε pFεpxq ` xW ε

t q a.s.
Let us apply the generalized Itô formula from Föllmer et al. (1995) to the function

hεpzq :“ |F´1
ε

`

Fεpxq ` z
˘

|α, h1
ε P L2

locpRq, (4.8)

and the Brownian motion xW ε:

|Y ε
t |α “ hεpxW ε

t q “ |x|α `

ż t

0

h1
εpxW ε

s qdxW ε
s `

1

2
rh1

εpxW εq, xW εst

“ |x|α ` α

ż t

0

pY ε
s qα´1σεpY ε

s qdxW ε
s ` Aε

t ,

(4.9)
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where Aε
t “ 1

2 rh1
εpxW εq, xW εst is an adapted zero energy process (Föllmer et al., 1995, Theorem 3.5). Now we

decompose the bracket’s partial sum as

ÿ

tkPDn,tkăt

´

|Y ε
tk

|α ´ |Y ε
tk´1

|α
¯

pBtk ´ Btk´1
q

“
ÿ

tkPDn,tkăt

α

ż tk

tk´1

pY ε
s qα´1σεpY ε

s qdxW ε
s ¨ pBtk ´ Btk´1

q

`
ÿ

tkPDn,tkăt

´

Aε
tk

´ Aε
tk´1

¯

pBtk ´ Btk´1
q “: Jε

1 ` Jε
2 .

(4.10)

Since Aε is of zero energy, the second sum Jε
2 converges to zero in probability by the Cauchy–Schwarz

inequality.
We rewrite the first sum in terms of W 1,ε and W 2,ε:

Jε
1 “

ÿ

tkPDn,tkăt

α

2

ż tk

tk´1

pY ε
s qα´1σεpYsqdW 1,ε

s ¨

ż tk

tk´1

|Y ε
s |α ` ε

σεpY ε
s q

dW 1,ε
s

`
ÿ

tkPDn,tkăt

α

2

ż tk

tk´1

pY ε
s qα´1σεpYsqdW 1,ε

s ¨

ż tk

tk´1

|Y ε
s |α ´ ε

σεpY ε
s q

dW 2,ε
s

`
ÿ

tkPDn,tkăt

α

2

ż tk

tk´1

pY ε
s qα´1σεpY ε

s qdW 2,ε
s ¨

ż tk

tk´1

|Y ε
s |α ` ε

σεpY ε
s q

dW 1,ε
s

`
ÿ

tkPDn,tkăt

α

2

ż tk

tk´1

pY ε
s qα´1σεpY ε

s qdW 2,ε
s ¨

ż tk

tk´1

|Y ε
s |α ´ ε

σεpY ε
s q

dW 2,ε
s

:“
α

2

´

Iε11 ` Iε12 ` Iε21 ` Iε22

¯

.

(4.11)

By Theorems II.23 and II.29 from Protter (2004) we obtain that as n Ñ 8

Iε11
P
Ñ

ż t

0

pY ε
s qα´1

`

|Y ε
s |α ` ε

˘

ds,

Iε22
P
Ñ

ż t

0

pY ε
s qα´1

`

|Y ε
s |α ´ ε

˘

ds,

Iε12
P
Ñ 0, Iε21

P
Ñ 0,

(4.12)

and the statement of the Lemma follows.

4.2 Proof of Theorem 2.10

To establish strong uniqueness of equation (1.16), we can show that any of its strong solutions also solves
(2.5) and appeal to Theorem 2.7. This is done under the additional requirement that the solution is a
semimartingale.

Remark 4.2. From Lemma 4.1 it follows that for any strong solution Y ε to (2.5), the process r|Y ε|α, Bs is
absolutely continuous and hence of locally bounded variation.

Recall that σε and Fε satisfy (3.1) and (3.2).

Lemma 4.3. FεpXεq2 is a semimartingale with decomposition

FεpXε
t q2 “ Fεpxq2 ` 2

ż t

0

FεpXε
s q

|Xε
s |α dBs ` εdWs
a

|Xε
s |2α ` ε2

` t ` Lε
t , t ě 0, (4.13)

where t ÞÑ Lε
t is a non-decreasing continuous process.
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Proof. Let T ą 0 and let Dn “ ttnk “ kT2´n, k “ 0, . . . , 2nu be the dyadic partition of r0, T s. The
semimartingale Xε has quadratic variation equal to

rXεst “

ż t

0

|Xε
s |2α ds ` ε t. (4.14)

Note also that Fεp¨q2 P C2pR,Rq with

hεpzq :“
d

dz
Fεpzq2 “

2Fεpzq
a

|z|2α ` ε2
, (4.15)

h1
εpzq :“

d2

dz2
Fεpzq2 “

2

|z|2α ` ε2
´

2αFεpzqpzq2α´1

a

p|z|2α ` ε2q3
. (4.16)

Note that the last term in (4.16) is well defined and continuous since F pzq „ z{ε, z Ñ 0, see (3.3). By virtue
of the generalized Itô formula from Föllmer et al. (1995) we get

FεpXε
t q2 “ Fεpxq2 `

ż t

0

hεpXε
s qdXε

s ` t ´ α

ż t

0

FεpXε
s qpXε

s q2α´1

a

|Xε
s |2α ` ε2

ds

“ Fεpxq2 `

ż t

0

hεpXε
s qdXε

s ` t ´
α

2

ż t

0

hεpXε
s qpXε

s q2α´1 ds,

(4.17)

where the first integral exists as a limit in u.c.p.:

ż t

0

hεpXε
s qdXε

s “ lim
nÑ8

ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q
`

Xε
tnk

´ Xε
tnk´1

˘

. (4.18)

We expand

ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q
`

Xε
tnk

´ Xε
tnk´1

˘

“
ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q

ż tnk

tnk´1

`

|Xε
s |α dBs ` εdWs

˘

`
1

2

ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q
`

Aε
tnk

´ Aε
tnk´1

˘

,

(4.19)

where Aε “ r|Xε|α, Bs. Since hεpXεq is continuous, we have

ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q

ż tnk

tnk´1

`

|Xε
s |α dBs ` εdWs

˘

Ñ

ż t

0

hεpXε
s q

`

|Xε
s |α dBs ` εdWs

˘

, n Ñ 8, (4.20)

in u.c.p. Further, define
τn,εk “ mints ě tnk´1 : X

ε
s “ 0u ^ tnk (4.21)

and write
ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q
`

Aε
tnk

´ Aε
tnk´1

˘

“
ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q
`

Aε
tnk

´ Aε
τn,ε
k

˘

`
ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q
`

Aε
τn,ε
k

´ Aε
tnk´1

˘

.
(4.22)

Note that hεpXε
τn,ε
k

q “ 0 if τn,εk ă tnk and Aε
tnk

´ Aε
τn,ε
k

“ 0 if τn,εk “ tnk . Therefore,

ˇ

ˇ

ˇ

ÿ

tnk PDn,tnk ăt

hεpXε
tnk´1

q
`

Atnk
´ Aτn,ε

k

˘

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ÿ

tnk PDn,tnk ăt

`

hεpXε
tnk´1

q ´ hεpXε
τn
k

q
˘`

Aε
tn,ε
k

´ Aε
τn,ε
k

˘

ˇ

ˇ

ˇ

2

ď
ÿ

tnk PDn,tnk ăt

`

hεpXε
tnk´1

q ´ hεpXε
τn,ε
k

q
˘2 ÿ

tnk PDn,tnk ăt

`

Aε
tnk

´ Aε
τn,ε
k

˘2
Ñ 0, n Ñ 8,

(4.23)
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thanks to the fact that Aε is of bounded variation on r0, ts. On rtnk´1, τ
n,ε
k s, Xε satisfies a Stratonovich SDE

with smooth coefficients, therefore (see Section V.5 in Protter (2004))

Aε
u ´ Aε

tnk´1
“ α

ż u

tnk´1

pXε
s q2α´1 ds, u P rtnk´1, τ

n,ε
k s. (4.24)

Fix m ě 1 and consider n ą m. Let

Dε
m “ ttmj P Dm : τm,ε

j “ tmj u (4.25)

be the points of partition Dm such that Xε does not vanish on the intervals rtmj´1, t
m
j s. Let

P ε
m,n “

ď

tmj PDε
m

Pm,n,j “
ď

tmk PDε
m

ttnk P Dn : t
n
k P rtmj´1, t

m
j su

(4.26)

be the corresponding points of the finer partition Dn Ě Dm. Clearly,

ÿ

tnk PP ε
m,n,t

n
k ăt

hεpXε
tnk´1

q
`

Aε
τn,ε
k

´ Aε
tnk´1

˘

“
ÿ

tmj PDε
m,tmj ăt

ÿ

tknPP ε
m,n,j

hεpXε
tnk´1

q ¨ α

ż tnk

tnk´1

pXε
s q2α´1 ds

Ñ
ÿ

tnj PDε
m,tmj ăt

α

ż tmj

tmj´1

hεpXε
s qpXε

s q2α´1 ds “: Km,ε
t , n Ñ 8.

(4.27)

Further, using again (4.24) we get

ÿ

tnk PDnzP ε
m,n,t

n
k ăt

hεpXε
tnk´1

q
`

Aτn,ε
k

´ Aε
tnk´1

˘

“
ÿ

tnk PDnzP ε
m,n,t

n
k ăt

hεpXε
tnk´1

q ¨ α

ż τn,ε
k

tnk´1

pXε
s q2α´1 ds (4.28)

is a non-decreasing process. As n Ñ 8, it converges to some non-negative non-decreasing process, say, Lm,ε,
and we get

FεpXε
t q2 “ Fεpxq2 ` 2

ż t

0

hεpXε
s q

`

|Xε
s |α dBs ` εdWs

˘

` t ` Km,ε
t ` Lm,ε

t ´
α

2

ż t

0

hεpXε
s qpXε

s q2α´1 ds.

(4.29)

Moreover, since the set of zeros of Xε is closed and hεpzqpzq2α´1 “ 0 for z “ 0, we get

Km,ε
t Ñ

α

2

ż t

0

IpXε
s ‰ 0qhεpXε

s qpXε
s q2α´1 ds “

α

2

ż t

0

hεpXε
s qpXε

s q2α´1 ds, m Ñ 8. (4.30)

As a result, the processes Lm,ε also monotonically converge as m Ñ 8 to some non-decreasing limit Lε.
Hence, passing to the limit in (4.29), we get the desired statement.

Lemma 4.4. For any a P p´1, 0q and t P r0, T s, there is Ca,ε,T ą 0 such that

E|Xε
t |a ď Ca,ε,T . (4.31)

Moreover, Xε spends zero time at 0.

Proof. By Lemma 4.3, Qε
t :“ FεpXε

t q2 solves the equation

Qε
t “ Fεpxq2 ` 2

ż t

0

a

Qε
s d

xW ε
s ` t ` Lε

t , (4.32)

where

xW ε
t “

ż t

0

sign
`

FεpXε
s q

˘`

|Xε
s |α dBs ` εdWs

˘

a

|Xε
s |2α ` ε2

(4.33)
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is a standard Wiener process. Since Lε is non-decreasing and continuous, a slight modification of the
comparison Theorem 3.7 in Chapter IX in Revuz and Yor (2005) yields that Qε

t ě pQε
t , t ě 0, with probability

1, where pQε is the unique strong solution to the equation

pQε
t “ Fεpxq2 ` 2

ż t

0

b

pQε
s d

xW ε
s ` t, (4.34)

and hence is a square of a standard Wiener process started at Fεpxq. Consequently, Qε spends zero time
at zero. Furthermore, noting that for |Fεpxq| ď Cε|x|, x P R, for some Cε ą 0 (recall (3.3)), we obtain for
a ą ´1

E|Xε
t |a ď Ca

εE|FεpXε
t q|a “ Ca

εE|Qε
t |a{2 ď Ca

εE| pQε
t |a{2 “ Ca

εE|Fεpxq ` xW ε
t |a ď Cε,a,T . (4.35)

Lemma 4.5. Let Xε be an Itô semimartingale solution of the equation (1.16). Then

r|Xε|α, Bst “ α

ż t

0

pXε
s q2α´1 ds. (4.36)

Proof. Without loss of generality assume that x “ 0. Denote Aε
t “ r|Xε|α, Bst. Since Xε is an Itô semi-

martingale, there is a progressively measurable process aε “ paεt qtě0 such that

Aε
t “

ż t

0

aεs ds. (4.37)

For each n ě 1 consider the stopping times

σn
0 “ 0,

τn,εk “ inf
!

t ą θn,εk´1 : |Xε
t | “

1

n

)

,

σn,ε
k “ inftt ą τn,εk : Xε

t “ 0u, k ě 1.

(4.38)

Denote
θn,εt :“

ÿ

k

Ipσn,ε
k´1,τ

n,ε
k sptq, (4.39)

and note that θn,εt P r0, 1s for all n, ε and t. By Lemma 4.4, since Xε spends zero time at 0, we get

E

ż t

0

θn,εs ds ď E

ż t

0

Ip|Xε
s | ď 1{nqds Ñ 0, n Ñ 8. (4.40)

Hence

Aε
t “

ÿ

k

α

ż σn,ε
k ^t

τn,ε
k ^t

pXε
s q2α´1 ds `

ÿ

k

´

Aε
τn,ε
k ^t ´ Aε

σn,ε
k´1^t

¯

“ α

ż t

0

pXε
s q2α´1 ds ´

ÿ

k

α

ż τn,ε
k

σn,ε
k

pXε
s q2α´1 ds `

ż t

0

θn,εs dAε
s

“ α

ż t

0

pXε
s q2α´1 ds ´ Sn,ε

1 ptq ` Sn,ε
2 ptq.

(4.41)

Clearly, by Lemma 4.4 and the dominated convergence theorem

E|Sn,ε
1 ptq| ď αE

ż t

0

|Xε
s |2α´1Ip|Xε

s | ď 1{nqds Ñ 0, n Ñ 8, (4.42)

and

|Sn,ε
2 ptq| ď

ż t

0

θn,εs |aεs|ds Ñ 0, n Ñ 8 a.s. (4.43)

Since |θn,εs aεs| ď |aεs|, the dominated convergence theorem finishes the proof.
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5 Proof of Theorem 2.11

Recall that

X0
t :“

´

p1 ´ αqBt ´ pxq1´α
¯

1
1´α

, t ě 0, (5.1)

is the strong solution of the equation (1.1) that spends zero time at zero and has no skew behaviour at zero.
Let Xε be the semimartingale solution of (1.16) or (2.5). We apply the generalized Itô formula from Krylov
(1980) to get

FεpXε
t q “ Fεpxq `

ż t

0

|Xε
s |α dBs ` εdWs
a

|Xε
s |2α ` ε2

`
α

2

ż t

0

pXε
s q2α´1 ds

a

|Xε
s |2α ` ε2

´
α

2

ż t

0

|Xε
s |2αpXε

s q2α´1 ds

p|Xε
s |2α ` ε2q3{2

´
α

2

ż t

0

ε2pXε
s q2α´1 ds

p|Xε
s |2α ` ε2q3{2

“ Bt ´

ż t

0

εdBs
a

|Xε
s |2α ` ε2

`

ż t

0

εdWs
a

|Xε
s |2α ` ε2

“ Bt ` Iεt .

(5.2)

Equivalently, we have
Xε

t “ F´1
ε pBt ` Iεt q. (5.3)

Since

F´1
ε pxq Ñ F´1

0 pxq “ p1 ´ αq
1

1´α pxq
1

1´α as ε Ñ 0 (5.4)

uniformly on each compact interval, to prove the Theorem it is sufficient to show that Iε converges to zero
in u.c.p.

By the Doob inequality, for any t ą 0

E sup
sPr0,ts

|Iεs |2 ď 2E sup
sPr0,ts

ˇ

ˇ

ˇ

ż s

0

ε dBu
a

|Xε
u|2α ` ε2

ˇ

ˇ

ˇ

2

` 2E sup
sPr0,ts

ˇ

ˇ

ˇ

ż s

0

ε dWu
a

|Xε
u|2α ` ε2

ˇ

ˇ

ˇ

2

ď 16E

ż t

0

ε2 ds

|Xε
s |2α ` ε2

.

(5.5)

To evaluate the latter expectation we recall that due to (3.7) Xε d
“ F´1

ε pFεpxq ` xW q for some Brownian

motion xW . Let us show that

E

ż t

0

ε2 ds

|Xε
s |2α ` ε2

“ E

ż t

0

ε2

|F´1
ε pFεpxq ` xWsqq|2α ` ε2

ds

“

ż t

0

1
?
2πs

ż 8

´8

ε2

|F´1
ε pyq|2α ` ε2

e´
py´Fεpxqq2

2s dy ds Ñ 0, ε Ñ 0.

(5.6)

First we note that for all y ą 0 and ε ą 0

Fεpyq ď

ż y

0

dz

zα
“

y1´α

1 ´ α
“ F0pyq (5.7)

and hence
|Fεpyq| ď |F0pyq|, y P R, (5.8)

and

|F´1
ε pyq| ě |F´1

0 pyq| “ p1 ´ αq
1

1´α |y|
1

1´α , y P R. (5.9)

For x ě 0 and y P R we have 0 ď Fεpxq ď F0pxq get the following estimate:

1
?
2πt

ε2

|F´1
ε pyq|2α ` ε2

e´
py´Fεpxqq2

2t

ď
1

?
2πt

´

e´
y2

2t Ip´8,0qpyq ` Ir0,F0pxqqpyq ` e´
py´F0pxqq2

2t IrF0pxq,8qpyq

¯

(5.10)
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The right hand side of (5.10) is integrable on pt, yq P p0, T s ˆ R. Since for each t P p0, T s and y ‰ 0

1
?
2πt

ε2

|F´1
ε pyq|2α ` ε2

e´
py´Fεpxqq2

2t ď
1

?
2πt

ε2

|p1 ´ αqy|2α{p1´αq ` ε2
Ñ 0, ε Ñ 0, (5.11)

the limit (5.6) follows by the dominated convergence theorem. Since Fε is asymmetric, the limit (5.6) holds
for x ă 0, too.
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